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ABSTRACT

Estimating the performance difficulty of a musical score

is crucial in music education for adequately designing the

learning curriculum of the students. Although the Music

Information Retrieval community has recently shown in-

terest in this task, existing approaches mainly use machine-

readable scores, leaving the broader case of sheet music

images unaddressed. Based on previous works involv-

ing sheet music images, we use a mid-level representa-

tion, bootleg score, describing notehead positions relative

to staff lines coupled with a transformer model. This archi-

tecture is adapted to our task by introducing an encoding

scheme that reduces the encoded sequence length to one-

eighth of the original size. In terms of evaluation, we con-

sider five datasets—more than 7500 scores with up to 9 dif-

ficulty levels—, two of them particularly compiled for this

work. The results obtained when pretraining the scheme

on the IMSLP corpus and fine-tuning it on the considered

datasets prove the proposal’s validity, achieving the best-

performing model with a balanced accuracy of 40.34% and

a mean square error of 1.33. Finally, we provide access

to our code, data, and models for transparency and repro-

ducibility.

1. INTRODUCTION

Estimating the difficulty of a piece is crucial for music ed-

ucation, as it enables the effective structuring of music col-

lections to attend to the student’s needs. This has led to a

growing research interest [1–4], as well as the development

of automatic systems for exploring difficulties by major in-

dustry players such as Muse Group [5,6] and Yousician [7].

Previous research on predicting piano difficulty has pri-

marily focused on symbolic machine-readable scores [1,

2, 4, 8–10]. Early studies explored feature engineering de-

scriptors [1,2] and the relationship between piano fingering
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Figure 1. We consider the bootleg score mid-

representation with a multi-task GPT-based recognition

framework to predict the performance difficulty associated

to a piano score directly from sheet images from multiple

annotated collections with varied difficulty levels.

and difficulty [8–10]. A recent study [4] used stacked re-

current neural networks and context attention for difficulty

classification on machine-readable scores, employing em-

beddings from automatic piano fingering, piano expressive

generation [11], and score information. This study found

that modeling the score difficulty classification task as an

ordinal regression problem [12] was advantageous, and us-

ing entire pieces for training, rather than fragments, was

essential to avoid degraded performance.

Although symbolic machine-readable scores offer more

interpretability [10], with all the music information com-

pletely accessible, their limited availability compared to

sheet music images restricts the practical use of difficulty

prediction tools for librarians, teachers, and students. Fo-

cusing on sheet music image analysis expands the range

of available music, has the potential to preserve the cul-

tural heritage of symbolic-untranscribed scores, and ad-

dresses the lack of diversity in Western classical piano cur-

ricula. By analyzing image-based sheet music, we aim
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to create technology for highlighting historically under-

represented communities like female composers [13, 14]

and promoting diversity in piano education. This pro-

motion is crucial since the piano teaching repertoire has

remained mostly unchanged for decades [15], containing

around 3,300 pieces [16], while projects such as IMSLP

house remarkably larger databases.

One of the main challenges in working with sheet music

is attaining a symbolic music-based representation for di-

rect analysis. Although Optical Music Recognition (OMR)

literature has considerably improved in creating such rep-

resentations over the past 30 years, it remains an unsolved

task [17]. Bootleg score [18] is an alternative to symbolic

scores obtained with OMR. This mid-level symbolic rep-

resentation keeps the most relevant primitives of the mu-

sic content in a music sheet, which has shown remarkable

success in several tasks [19–22], especially in classifica-

tion, such as piano composer classification [19, 23, 24] or

instrument recognition [25].

We build on this literature, employing the GPT

model [26] and bootleg score in our analysis. More pre-

cisely, we consider the approach by Tsai et al. [18], in

which a GPT model pretrained on the IMSLP piano col-

lection is finetuned for specific recognition tasks. With

adequate adaptations, we hypothesize that this framework

may also succeed in estimating performance difficulty on

music sheet images.

As aforementioned, difficulty estimation benefits from

the use of entire music pieces rather than excerpts to ob-

tain adequate success rates. However, processing large

sequence stands as a remarkable challenge in music pro-

cessing, especially when addressing bootleg representa-

tions due its considerable verbosity. While some recent

mechanisms address this issue in general learning frame-

works (e.g., Flash Attention [27]), we extend the original

proposal by Tsai et al. [18] with a multi-hot optimization

target for GPT pretraining, and replace the categorical en-

coding with causal convolutional or feedforward projec-

tion layers to enhance performance and reduce costs.

Moreover, addressing data scarcity is crucial for pro-

moting and establishing this task within the Music Infor-

mation Retrieval community. As of now, the Mikrokosmos-

difficulty (MK) [10] and Can I Play It? (CIPI) [4] sym-

bolic datasets stand for the only available annotated collec-

tions, out of which music sheet images can be obtained by

engraving mechanisms. To enhance data availability and

encourage further research, we have collected additional

datasets from existing collections, namely Pianostreet-

difficulty (PS), Freescore-difficulty (FS), and black female

composers collection Hidden Voices (HV). This results in

more than 7500 music pieces, spanning up to 9 difficulty

levels and each annotated with a difficulty classification

system. Although difficulty prediction contains a subjec-

tive element, global trends may emerge when examining

multiple difficulty classification systems simultaneously.

To our knowledge, no previous research has explored this

aspect. Consequently, we propose a multitask approach to

training simultaneously on CIPI, PS, and FS datasets. Fi-

nally, we also analyze the generalization of our proposed

methodologies with the MK and HV benchmark datasets.

Considering all above, our precise contributions are:

(i) we adopt the previous bootleg-representation litera-

ture [23,24], pretraining a GPT model on IMSLP and fine-

tuning it for our task, adapting the encoding scheme ac-

cordingly, as presented in Figure 1; (ii) we evaluate our

proposal using a novel sheet music image collection of five

datasets with more than 7,500 pieces with difficulty levels

ranging up to 9; (iii) we propose a multi-task strategy for

combining multiple difficulty classification systems from

the datasets; (iv) we conduct extensive experiments to as-

sess the proposed methodologies, including a zero-shot

scenario for testing generalization and comparisons with

previous proposals on the CIPI dataset; and (v) to promote

the task, code, and models 1 , and datasets 2 are publicly

available.

2. MUSIC SHEET IMAGE DATASETS

Due to the relative recentness of the field, the lack of an-

notated corpora has severely constrained the performance

difficulty assessment. The earliest data assortments may

be found in the works by Sebastian et al. [1] and Chiu

et al. [2], which respectively collected 50 and 300 MIDI

scores from different score repositories. However, these

datasets were never publicly released.

To our best knowledge, the Mikrokosmos difficulty

(MK) set by Ramoneda et al. [10], which comprises 147

piano pieces by Béla Bartók in a symbolic format graded

by the actual composer, represents the first publicly avail-

able collection for the task at hand. More recently, the au-

thors introduced the Can I Play It? (CIPI) dataset [4], a

collection of 652 piano works in different symbolic for-

mats annotated after 9 different difficulty levels. Note that,

while sheet music scores can be obtained by resorting to

engraving mechanisms, the insights obtained may not ap-

ply to real-world scenarios.

Dataset Pieces Classes AIR Noteheads Composers

MK [10] 147 147 .78 49.2k 1

CIPI [4] 652 9 .33 1.1M 29

PS 2816 9 .24 7.2M 92

FS 4193 5 .37 5.8M 747

HV 17 4 1 21.5k 10

Table 1. Description of existing collections for perfor-

mance difficulty estimation based on the number of pieces,

classes, average imbalance ratio (AIR), noteheads, and

composers. The dashed line differentiates the datasets

based on symbolic (above) and image (below) sheet mu-

sic.

To address this limitation, we compiled a set of real

sheet music images of piano works together with their per-

formance difficulty annotations from different music edu-

cation and score-sharing platforms on the Internet. More

1 https://github.com/PRamoneda/pdf-difficulty
2 https://zenodo.com/record/8126801
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precisely, we arranged three different collections attend-

ing to the source: (i) the Pianostreet-difficulty (PS) set

retrieved from [28] that depicts 2,816 works with 9 dif-

ficulty levels annotated by the Pianostreet team; (ii) the

Freescores-difficulty (FS) assortment from [29] that con-

tains 4,193 pieces with 5 difficulty levels comprising a

variety of compositions and annotations by the users of

the platform; and (iii) the Hidden Voices (HV) collec-

tion [30,31], a set of 17 pieces by black female composers

annotated with 4-level difficulty labels by musicologists of

the Colorado Boulder Music Department.

Table 1 summarizes the main characteristics of com-

mented publicly-available collections. The average imbal-

ance ratio (AIR), measured as the mean of the individual

ratios between each difficulty class and the majority label

in each collection, is also provided for reference purposes.

3. METHODOLOGY

Based on its success when addressing classification tasks

from sheet music images [23, 25], our proposal considers

the use of the so-called bootleg score representation cou-

pled with a GPT-based recognition model to estimate the

performance difficulty of a piece.

Introduced by [18], bootleg scores stand as a simple—

yet effective—representation to encode the content of a

sheet music image for certain recognition tasks. Formally,

a bootleg score is a binary matrix of length w and h = 62
vertical positions—i.e., X ∈ {0, 1}

w×62
—that respec-

tively denote the temporal and pitch dimensions. Note

that the w value represents the number of note heads de-

tected by the bootleg extraction process. Our work resorts

to this representation, being the use of alternative codifica-

tions posed as a future line to address.

The GPT recognition framework undergoes an unsu-

pervised pretraining step on the IMSLP piano collection,

which was originally used by [18]. Eventually, considering

a set of labeled data T ⊂ X ×C where C =
{

c1, . . . , c|C|
}

denotes the possible difficulty levels, the model is fine-

tuned to retrieve the recognition function f̂ : X → C that

relates a bootleg representation to a particular difficulty

level. Based on previous work addressing this task [4],

we consider an ordinal classification framework [12] as the

difficulty grading scales naturally fit this formulation.

Despite being capable of addressing the task, the frame-

work was noticeably affected by two factors: (i) the ex-

cessive length of the input sequences when pretraining the

model; and (ii) the inconsistent definition of difficulty lev-

els among corpora. Consequently, we introduce two mech-

anisms specifically devised to address these limitations.

3.1 Sequence length in pretraining

One of the main drawbacks related to bootleg representa-

tions is their verbosity, as it depicts h = 62 elements per

frame. To address this issue, Tsai et al. [23] proposed sub-

dividing each column into groups of 8 elements and encod-

ing each according to a vocabulary of |σ| = 28 elements.

In this regard, the initial bootleg score x ∈ {0, 1}
w×62

is

mapped to a novel space defined as Σw×8. This represen-

tation is then flattened to undergo a categorical embedding

process that maps it to a feature-based space denoted as

R
8w×768, which is eventually used for pretraining the GPT

model with 768-dim hidden states. Note that this process

reduces the vocabulary size and remarkably increases the

sequence length.

To address this issue, we propose substituting this to-

kenization process with an embedding layer that directly

maps the bootleg score into a suitable representation,

avoiding the extension of the initial length of the se-

quence. In this sense, the initial bootleg representation

x ∈ {0, 1}
w×62

is mapped to a space defined as R
w×768

that serves as input to the GPT model with a fraction of the

length of the encoding used by Tsai et al. [23]. Besides re-

ducing the length of the sequences to process, we hypoth-

esize that such an embedding may benefit the recognition

model as a suitable representation is inferred for the task.

In this regard, our experiments will compare two types of

embedding approaches—more precisely, a fully-connected

layer and a convolutional one, respectively denoted as FC

and CNN—to quantitatively assess this claim.

Figure 2 graphically describes the approach by Tsai et

al. [23] and the presented proposal. In opposition to the ref-

erence work, the proposal considers multi-hot encoding in-

stead of discrete categorical index as the output of the GPT

recognition framework, by using binary cross-entropy loss

instead of negative log-likelihood loss.

Figure 2. Comparison between the proposal by Tsai et

al. [23]—denoted as (a)—and the presented proposal—

highlighted as (b)—for a case of toy example with a du-

ration of w = 4.

3.2 Multi-task learning of multiple difficulty

classification systems

The pretrained GPT model can be simply finetuned for a

performance difficulty classification task by adding a pro-

jection layer and a learnable classification token, as de-
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picted in Figure 3. However, the actual definition of the

performance difficulty of a piece is a highly subjective

problem that may bias—and, hence, remarkably hinder—

the goodness of a recognition model. In this regard, we hy-

pothesize that using a multi-task approach that attends dif-

ferent definitions of difficulty—i.e., a labeled assortment

of data from multiple annotators—may benefit the gener-

alization capabilities of the approach.

In this regard, we modify the reference architecture for

the downstream task to include an additional classifica-

tion layer for each training collection. While simple, such

a proposal is expected to improve the overall recognition

performance given the wider variety of data provided dur-

ing the training process. Figure 3 graphically describes this

proposal.

Finally, no pre-processing is done in relation to the label

distribution of the corpora to avoid inducing any type of

bias. In this regard, the sampling protocol of the model has

been forced to maintain its original distributions.

Figure 3. Graphical description of the downstream archi-

tecture depicting the classification heads for the multi-task

proposals as well as the single-head case of the reference

work.

4. EXPERIMENTAL SETUP

4.1 Data collections and assessment metrics

To validate the proposal, we have considered the five

publicly-available data collections presented in Section 2,

i.e., Mikrokosmos difficulty (MK) [10], Can I Play It?

(CIPI) [4], Pianostreet-difficulty (PS) [28], Freescores-

difficulty (FS) [29], and Hidden Voices (HV) [30, 31].

While MK and CIPI exclusively comprise symbolic scores,

we engraved them into music sheets and included them due

to the commented scarcity of annotated data.

We considered a 5-fold cross-validation scheme with a

data partitioning of 60% for the finetuning phase after the

pretraining stage with IMSLP together with two equal-size

splits of the remaining data for validation and testing. Note

that, since MK and HV are exclusively used for benchmark

purposes, no partitioning is applied to them.

In terms of performance evaluation, we resort to

two assessment criteria typically used in ordinal clas-

sification [32]: accuracy within n (Accn) and mean

squared error (MSE). To adequately described them, let

S ⊂ X × C denote a set of test data and let Sc =
{(xi, yi) ∈ S : yi = c} with 1 ≤ i ≤ |S| be the subset

of elements in S with class c.

Based on this, Accn is defined as:

Accn =
1

|C|

∑

∀c∈C

∣

∣

∣

{

y ∈ Sc :
∣

∣

∣
f̂(x)− c

∣

∣

∣
≤ n

}
∣

∣

∣

|Sc|
(1)

where f̂(·) represents the trained recognition model and

n ∈ N0 denotes the tolerance or class-boundary relaxation

that allows for errors in adjacent labels. In our experiments

we consider the values of n = 0 (no tolerance) and n =
1 (smallest adjacency tolerance), respectively denoted as

Acc0 and Acc1 in the rest of the work.

Regarding MSE, this figure of merit is defined as:

MSE =
1

|C|

∑

∀c∈C

∑

∀x∈Sc

(

f̂(x)− c
)2

|Sc|
(2)

Finally, note that all these metrics are macro-averaged

to account for the unbalanced nature of the data collections

used in the work.

4.2 Training procedure

As commented, the recognition model undergoes an ini-

tial pretraining stage considering the IMSLP corpus. Dur-

ing this stage, the model considers sequences of 256 to-

kens, each with a binary cross-entropy as a loss function.

To speed up this process, the Flash Attention framework

by [27] is also considered. For comparative purposes,

all other parameters remain unaltered from the reference

works [23].

After that, the model is finetuned on the downstream

difficulty estimation task, considering an Adam opti-

mizer [33] with a learning rate of 10−5 and early stopping

based on the Acc0 and MSE metrics on the validation set.

Moreover, a balanced sampler is considered to tackle the

issue of unbalanced data collections. Ordinal Loss [12]

is applied to train the difficulty prediction as an ordinal

classification problem, while no loss weighting considered

in the multi-task framework. For regularization and stable

training, gradient clipping is set to 10−4, with a batch size

of 64 and L2 regularization. This optimization process is

carried out exclusively on the last layer of the model, re-

sorting the remaining parts to the weights obtained during

the pretraining phase of the procedure.
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Note that while these processes may be further studied

to account for the optimal solution that retrieves the best-

performing results, such a study is out of the scope of the

work and is left as future work to address.

5. EXPERIMENTS AND RESULTS

This section presents the results obtained with the intro-

duced experimental scheme. To adequately provide in-

sights about the task, the section provides a series of in-

dividual experiments devoted to analyzing one aspect of

the proposal: Section 5.1 analyzes the influence of the en-

coding scheme; Section 5.2 evaluates the influence of the

multitask architecture; Section 5.3 delves on the ranking

generalization in a zero-shot scenario; finally, Section 5.4

compares the attainable results when addressing the task

from the symbolic versus the sheet-image domains.

5.1 Encoding schemes experiment

This first experiment compares the performance of the two

encoding schemes presented in Section 3.1, i.e., GPTFC

and GPTCNN. Table 2 presents the results obtained for the

CIPI, FS, and PS collections for the three figures of merit

considered.

Encoding Acc0 (%) Acc1 (%) MSE

Can I Play it?

GPTFC 34.3(6.1) 78.1(4.6) 1.6(0.3)

GPTCNN 36.2(8.2) 81.7(1.5) 1.4(0.1)

PianoStreet

GPTFC 30.9(3.8) 71.1(9.6) 2.1(0.4)

GPTCNN 31.8(1.6) 78.8(1.8) 1.9(0.1)

FreeScores

GPTFC 46.6(1.9) 92.5(1.0) 0.8(0.1)

GPTCNN 47.3(3.4) 92.4(0.6) 0.8(0.1)

Table 2. Results of comparing the encoding schemes

GPTFC and GPTCNN. Bold values highlight the best results

per collection and metric.

As it may be observed, the GPTCNN experiment outper-

formed the GPTFC experiment in most evaluation metrics

across the three datasets. More precisely, the GPTCNN con-

sistently achieved the best performance in the Acc0 metric

for all data collections, showing an average improvement

of 1% concerning the GPTCNN case. This trend remains for

the rest of the figures of merit except for the case in the

FS assortment, in which the results of the FC-based model

outperform those of the CNN case.

Nevertheless, attending to the high standard deviations,

the performance results of the two models show a remark-

able overlap in performance, hence suggesting that both

schemes are equally capable of performing the posed task

of score difficulty analysis from sheet music images. In

this regard, further work should explore other encoding al-

ternatives to assess whether this performance stagnation is

due to the representation capabilities of the considered em-

bedding layers or due to the recognition framework.

5.2 Multi-task learning experiment

In this second study, we assess the capabilities of the multi-

task framework proposed in Section 3.2 trained simul-

taneously on the CIPI, PS, and FS datasets for the two

GPTmulti
FC and GPTmulti

CNN encoding schemes. Table 3 pro-

vides the results obtained.

Encoding Acc0 (%) Acc1 (%) MSE

GPTmulti
FC

CIPI 40.3(4.3) 82.0(1.4) 1.3(0.1)

PS 35.9(3.1) 78.2(3.4) 1.9(0.2)

FS 45.8(2.5) 92.0(1.4) 0.8(0.1)

GPTmulti
CNN

CIPI 34.9(5.0) 81.4(1.3) 1.4(0.1)

PS 35.9(2.8) 74.5(3.4) 2.7(0.2)

FS 45.9(1.2) 92.4(2.1) 0.8(0.1)

Table 3. Results of multi-task learning experiment when

evaluated on different test collections for the two encoding

schemes. Bold values highlight the best results per collec-

tion and metric.

Overall, the GPTmulti
FC method had higher results than

the GPTmulti
CNN method on the CIPI and PS datasets, es-

pecially on Acc0 and Acc1. For CIPI, GPTmulti
FC sur-

passed GPTmulti
CNN with gains of 5.4% in Acc0, 0.6% in

Acc1, and 0.1 in MSE. For PS, GPTmulti
FC slightly exceeded

GPTmulti
CNN with a 3.7% improvement in Acc1 and a 0.6-

point reduction in MSE, while Acc0 was nearly equal for

both methods, although GPTmulti
CNN had a smaller standard

deviation. Both methods displayed similar performance on

the FS dataset, with less than a 1% difference across all

metrics. As a result, subsequent experiments will reference

the GPTmulti
FC model.

The comparison between Tables 2 and 3 shows a trend

change with better results performed with the FC version

of the models. The other major difference is the relative

improvement between the GPTmulti
FC method and the best

previous model GPTCNN in the CIPI and slightly in the PS

dataset. In contrast, the FS dataset results remain compa-

rable. In CIPI, Acc0 is 11.3% higher in GPTmulti
FC , and in

PS, there is a relative improvement of 12.8%. For CIPI,

Acc1 sees a minor increase of 0.4%. MSE exhibits a small

improvement of 3.6% for CIPI and 0.5% for PS. Possible

reasons include label quality differences—CIPI annotated

by a musicology team, PS labels provided by the platform,

and FS crowdsourced by users—or the impact of dataset

sizes—CIPI being the smallest and FS the largest.

5.3 Ranking generalization experiment

In this experiment, we assess the ranking capabilities of

the proposal in a zero-shot setting by utilizing the embed-

dings of the projection layer of the model (check Figure 3).

We reduce the 768-dimensional embeddings to a single di-

mension using Principal Component Analysis (PCA) and

employ the resulting values to rank the target pieces.

Table 4 shows the results obtained resorting to the
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Kendall rank correlation coefficient, τc, for all data col-

lections discussed in the experiment, considering both the

single-task and multi-task frameworks posed. Note that

MK and HV are only used for benchmarking purposes.

Train
Evaluation

CIPI PS FS MK HV

CIPI .67 (.01) .56 (.02) .56 (.01) .67 (.05) .50 (.05)

PS .67 (.01) .58 (.02) .56 (.01) .68 (.01) .43 (.04)

FS .64 (.04) .55 (.01) .56 (.02) .71 (.02) .56 (.07)

MULTI .68 (.02) .59 (.02) .56 (.01) .63 (.02) .51 (.07)

Table 4. Zero-shot ranking results. Bold values denote the

best-performing result on each evaluation dataset.

In the three training datasets, the multi-task architec-

ture GPTmulti
FC achieves the best performance with CIPI

(τc = 0.68), PS (τc = 0.59), and FS (τc = 0.56). Unex-

pectedly, the FS method outperforms others in the datasets

of the MK (τc = 0.61) and HV (τc = 0.56). This outcome

may suggest that simultaneous training on all three datasets

could limit generalizability. Alternatively, the presence of

license-free pieces composed after 1900 in the FS dataset,

which users have uploaded, might explain the difference.

The HV dataset displays notably lower generalizabil-

ity, possibly due to the smaller number of pieces, result-

ing in higher standard deviations. Potential bias similar to

MK could also arise from the predominance of pre-20th-

century data in CIPI and PS. These factors might affect the

zero-shot experiment’s performance. However, we must

also acknowledge that most composers used for training

are white males, and the HV results are significantly worse

than the rest of the datasets. Therefore, future research

should investigate and minimize the potential gender gap

in difficulty prediction tasks.

5.4 Comparison with previous approaches

This last experiment compares the goodness of the pro-

posed methodology in sheet music scores against other

image-based approaches and with the symbolic-oriented

methods domain. Regarding sheet image methods, we

consider the reference method by Tsai et al. [23] based

on bootleg mid-representation, denoted as GPTEMB. Con-

cerning the symbolic baseline, we reproduce the approach

in [4] that proposes to describe the symbolic score in

terms of piano fingering information, expressive annota-

tions, and pitch descriptors to feed a recurrent model based

on Gated Recurrent Units with attention layers (referred to

as GRU+Att). Table 5 provides the results obtained. For

comparative purposes, we only consider the CIPI dataset as

the reference symbolic work accounted for that collection.

Examining the experiments, the GPTmulti
FC model may

be observed to outperform the other cases in the Acc0 fig-

ure of merit. However, for the rest of the metrics, the refer-

ence symbolic case—denoted as GRU+Att—outperforms

all image-oriented recognition models. Such a fact sug-

gests that, while a bootleg score somehow suits this dif-

ficulty estimation task, a performance gap between this

representation and pure symbolic notation needs to be ad-

dressed.

Case Acc0 (%) Acc1 (%) MSE

Symbolic [4]

GRU+Att 39.5(3.4) 87.3(2.2) 1.1(0.2)

Tsat et al. [23]

GPTEMB 19.7(4.0) 58.1(7.2) 3.3(0.8)

Proposal

GPTFC 34.3(6.1) 78.1(4.6) 1.6(0.3)

GPTCNN 36.2(8.2) 81.7(1.5) 1.4(0.1)

GPTmulti
FC 40.3(4.3) 82.0(1.4) 1.3(0.1)

Table 5. Performance results for the symbolic [4] and Tsai

et al. [23] methods as well as the proposed approach for

the CIPI dataset. Bold values highlight the best result per

figure of merit.

Finally, the GPTEMB model achieves the lowest perfor-

mance of all alternatives, with remarkably lower accuracy

rates than our proposal. Note that such a fact emphasizes

the relevance of our work as a more suitable approach for

performing difficulty estimation in sheet music images.

6. CONCLUSIONS

Estimating the performance difficulty of a music piece is

a crucial need in music education to structure the learn-

ing curriculum of the students adequately. This task has

recently gathered attention in the Music Information Re-

trieval field, given the scarce existing research works de-

voted to symbolic machine-readable scores. However, due

to the limited availability of this type of data, there is a

need to devise methods capable of addressing this task with

image-based sheet music.

Attending to its success in related classification tasks,

this work considers the use of a mid-level representation—

namely, bootleg score—that encodes the content of a

sheet music image with a GPT-based recognition frame-

work for predicting the difficulty of the piece. Instead

of directly applying this methodology, we propose using

specific embedding mechanisms and multi-task learning

to reduce the task complexity and improve its recogni-

tion capabilities. The results obtained with five different

data collections—three of them specifically compiled for

this work—prove the validity of the proposal as it yields

recognition rates comparable to those attained in symbolic

machine-readable scores.

Further work comprises assessing and proposing alter-

native representations to the bootleg scores (e.g., solutions

based on Optical Music Recognition). Also, we consider

that using smaller training sequences using hierarchical

attention models or weak labels for varying-length piece

fragments may report benefits in the process. Finally, the

practical deployment of this proposal in real-world sce-

narios involving real users may report some additional in-

sights about the validity of the proposal.
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