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ABSTRACT

In this paper, we address the problem of pitch estimation

using Self Supervised Learning (SSL). The SSL paradigm

we use is equivariance to pitch transposition, which en-

ables our model to accurately perform pitch estimation on

monophonic audio after being trained only on a small un-

labeled dataset. We use a lightweight (< 30k parameters)

Siamese neural network that takes as inputs two differ-

ent pitch-shifted versions of the same audio represented

by its Constant-Q Transform. To prevent the model from

collapsing in an encoder-only setting, we propose a novel

class-based transposition-equivariant objective which cap-

tures pitch information. Furthermore, we design the archi-

tecture of our network to be transposition-preserving by

introducing learnable Toeplitz matrices.

We evaluate our model for the two tasks of singing voice

and musical instrument pitch estimation and show that our

model is able to generalize across tasks and datasets while

being lightweight, hence remaining compatible with low-

resource devices and suitable for real-time applications. In

particular, our results surpass self-supervised baselines and

narrow the performance gap between self-supervised and

supervised methods for pitch estimation.

1. INTRODUCTION

Pitch estimation is a fundamental task in audio analysis,

with numerous applications, e.g. in Music Information Re-

trieval (MIR) and speech processing. It involves estimat-

ing the fundamental frequency of a sound, which allows to

estimate its perceived pitch. Over the years, various tech-

niques have been developed for pitch estimation, ranging

from classical methods (based on signal processing) [1–4]

to machine learning approaches [5, 6].

In recent years, deep learning has emerged as a pow-

erful tool for a wide range of applications, outperforming

classical methods in many domains. This is notably true in
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MIR, where deep learning has led to significant advances

in tasks such as music transcription [7–9], genre classifi-

cation [10–12], and instrument recognition [13–15]. Pitch

estimation has also benefited greatly from deep learning

techniques [16, 17]. However, these deep learning mod-

els often require a large amount of labelled data to be

trained, and can be computationally expensive, hindering

their practical applications in devices with limited com-

puting power and memory capabilities. Additionally, these

models are often task-specific and may not generalize well

to different datasets or tasks [18]. Therefore, there is a need

for a lightweight and generic model that does not require

labelled data to be trained. We address this here.

We take inspiration from the equivariant pitch estima-

tion [19] and the equivariant tempo estimation [20] algo-

rithms which we describe in part 2. As those, we use a SSL

paradigm based on Siamese networks and equivariance to

pitch transpositions (comparing two versions of the same

sound that have been transposed by a random but known

pitch shift). We introduce a new equivariance loss that en-

forces the model to capture pitch information specifically.

This work has the following contributions:

• we formulate pitch estimation as a multi-class prob-

lem (part 3.1); while [19, 20] model pitch/tempo es-

timation as a regression problem,

• we propose a novel class-based equivariance loss

(part 3.1) which prevents collapse; while [19] neces-

sitates a decoder,

• the architecture of our model is lightweight and

transposition-equivariant by design. For this, we in-

troduce Toeplitz fully-connected layers (part 3.4).

We evaluate our method on several datasets and show that

it outperforms self-supervised baselines on single pitch es-

timation (part 4.4.1). We demonstrate the robustness of our

method to domain-shift and background music, highlight-

ing its potential for real-world applications (part 4.4.2).

Our proposed method requires minimal computation re-

sources and is thus accessible to a wide range of users for

both research and musical applications. In consideration

of accessibility and reproducibility, we make our code and

pretrained models publicly available 1 .

1 https://github.com/SonyCSLParis/pesto
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2. RELATED WORKS

2.1 SSL to learn invariant representations.

Siamese networks. Most common techniques for SSL

representation involve Siamese networks [21]. The under-

lying idea is to generate two views of an input, feed them to

a neural network, and train the network by applying a cri-

terion between the output embeddings. Various techniques

have been developed for generating views 2 .

Collapse. However, a major issue with these methods

is “collapse”, when all inputs are mapped to the same em-

bedding. To address this, various techniques have been

proposed. One of the most common is SimCLR [22] which

also uses negative samples to ensure that embeddings are

far apart through a contrastive loss. Additionally, several

regularization techniques have been developed that mini-

mize a loss over the whole batch. Barlow Twins [23] force

the cross-correlation between embeddings to be identity,

while VICReg [24] add loss terms on the statistics of a

batch to ensure that dimensions of the embeddings have

high enough variance while remaining independent of each

other. On the other hand, [25] explicitly minimize a loss

over the hypersphere to distribute embeddings uniformly.

Furthermore, incorporating asymmetry between inputs has

been shown to improve performance. [26, 27] uses a mo-

mentum encoder, while [28] and [29] add a projection

head and a stop-gradient operator on top of the network,

with [28] also using a teacher network. Finally, [30] in-

corporates asymmetry to contrastive- and clustering-based

representation learning.

Application to audio. While originally proposed for

computer vision, these methods have been successfully

adapted to audio and music as well. For example, [31],

[32], and [33] respectively adapted [22], [23], and [28] to

the audio domain. By training their large models on Au-

dioSet [34], they aim at learning general audio represen-

tations that are suited for many downstream tasks. More

specifically, [35] successfully adapts contrastive learning

to the task of music tagging by proposing more musically-

relevant data augmentations.

2.2 SSL to learn equivariant representations.

The purpose of the methods described above is to learn a

mapping f : X → Y that is invariant to a set of transforms

TX , i.e. so that for any input x ∈ X and transform t ∈ TX

f(t(x)) ≈ f(x) (1)

However, recent approaches [36–38] try instead to learn

a mapping f that is equivariant to TX , i.e. that satisfies

f(t(x)) ≈ t′(f(x)) (2)

where t′ ∈ TY with TY a set of transforms that acts on the

output space Y . In other words, if the input is transformed,

the output should be transformed accordingly. Representa-

tion collapse is hence prevented by design.

2 The most common technique involves randomly applying data aug-
mentations to inputs to create pairs of inputs that share semantic content.

Equivariant representation learning has mostly been ap-

plied to computer vision and usually combines an invari-

ance and an equivariance criterion. E-SSL [36] trains two

projection heads on top of an encoder, one to return pro-

jections invariant to data augmentations while the other

predicts the parameters of the applied data augmentations.

[37] predicts separately a semantic representation and a ro-

tation angle of a given input and optimizes the network

with a reconstruction loss applied to the decoded content

representation rotated by the predicted angle. Finally, SIE

[38] creates a pair of inputs by augmenting an input and

learns equivariant representations by training a hypernet-

work conditioned on the parameters of the augmentation

to predict one embedding of the pair from the other.

Application to audio. Finally, a few successful exam-

ples of equivariant learning for solving MIR tasks recently

emerged [19,20]. In particular, [20] introduces a simple yet

effective equivariance criterion for tempo estimation while

preventing collapse without any decoder or regularization:

pairs are created by time-stretching an input with two dif-

ferent ratios, then the output embeddings are linearly pro-

jected onto scalars and the network is optimized to make

the ratio of the scalar projections match the time-stretching

ratio within a pair.

2.3 Pitch estimation.

Monophonic pitch estimation has been a subject of inter-

est for over fifty years [39]. The earlier methods typically

obtain a pitch curve by processing a candidate-generating

function such as cepstrum [39], autocorrelation function

(ACF) [40], and average magnitude difference function

(AMDF) [41]. Other functions, such as the normalized

cross-correlation function (NCCF) [1, 2] and the cumula-

tive mean normalized difference function [3,42], have also

been proposed. On the other hand, [4] performs pitch es-

timation by predicting the pitch of the sawtooth waveform

whose spectrum best matches the one of the input signal.

Recently, methods involving machine learning tech-

niques have been proposed [5, 6]. In particular,

CREPE [16] is a deep convolutional network trained on

a large corpus to predict pitch from raw audio waveforms.

SPICE [19] is a self-supervised method that takes as inputs

individual Constant-Q Transform (CQT) frames of pitch-

shifted inputs and learns the transposition between these

inputs. It achieves quite decent results thanks to a decoder

that takes as input the predicted pitch and tries to recon-

struct the original CQT frame from it.

Finally, some works [43, 44] aim at disentangling the

pitch and timbre of an input audio, thus predicting pitch

as a side effect. In particular, DDSP-inv [45] is a DDSP-

based approach [46] that relies on inverse synthesis to infer

pitch in a self-supervised way.

3. SELF-SUPERVISED PITCH ESTIMATION

3.1 Transposition-equivariant objective

We focus on the problem of monophonic pitch estimation

and model it as a classification task. Our model is com-
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Figure 1. Example of k-transpositions. Visually, y and

y
′ are just translated versions of each other. The sign of

k and its absolute value respectively indicate the direction

and the distance of the translation.

posed of a neural network fθ that takes as input an audio

signal x and returns a vector y = (y0, . . . , yi, . . . , yd−1) ∈
[0, 1]d, which represents the probability distribution of

each pitch i. yi represents the probability that i is the pitch

of x. We propose here to train fθ in a SSL way. For this,

similarly to [22, 24, 26, 28, 29], we use data augmentations

and Siamese networks.

Given x, we first generate x
(k) by pitch-shifting x by

a known number k of semitones. Then, both x and x
(k)

are fed to fθ which is trained to minimize a loss function

between y=fθ(x) and y
(k)=fθ(x

(k)).

Definition. For two vectors y,y′ ∈ R
d and 0 ≤ k < d, y′

is a k-transposition of y if and only if for all 0 ≤ i < d










y′
i+k

= yi when 0 ≤ i < d− k

y′
i
= 0 when i < k

yi = 0 when i ≥ d− k − 1

(3)

Similarly, for −d < k ≤ 0, y′ is a k-transposition of y if

and only if y is a −k-transposition of y′.

The concept of k-transposition is illustrated in Figure 1.

Note also that for a vector y ∈ R
d, exists at most one

vector y
′ ∈ R

d that is a k-transposition of y. We can

therefore refer to y
′ as the k-transposition of this vector y.

Equivariance loss. We then design our criterion based

on the following assumption: the probability of x to have

pitch i is equal to the probability of x(k) to have pitch i+k,

i.e. yi should be equal to y
(k)
i+k

3 . In other words, if x(k) is a

pitch-shifted version of x, their respective pitch probability

distributions should be shifted accordingly, i.e. y(k) should

be the k-transposition of y.

We take inspiration from [20] to design our equivari-

ance loss. However, in our case, the output of our network

fθ is not a generic representation but a probability distri-

bution. We therefore adapt our criterion by replacing the

learnable linear projection head from [20] by the following

deterministic linear form:

φ : R
d → R

y 7→ (α, α2, . . . , αd)y
(4)

where α is a fixed hyperparameter 4 .

3 For example, if k = 2 semitones, the probability of x to be C4 is

exactly the probability of x(k) to be a D4, and the same holds for any
pitch independently of the actual pitch of x.

4 We found α = 21/36 to work well in practice.

Indeed, with this formulation, for any k if y
′ is a k-

transposition of y then φ(y′) = αkφ(y). Hence we define

our loss as

Lequiv(y,y
(k), k) = hτ

(

φ(y(k))

φ(y)
− αk

)

(5)

where hτ is the Huber loss function [47], defined by

hτ (x) =

{

x
2

2 if |x| ≤ τ
τ
2

2 + τ(|x| − τ) otherwise
(6)

Regularization loss. Note that if y
(k) is the k-

transposition of y then Lequiv(y,y
(k), k) is minimal. How-

ever, the converse is not always true. In order to ac-

tually enforce pitch-shifted pairs of inputs to lead to k-

transpositions, we further add a regularization term which

is simply the shifted cross-entropy (SCE) between y and

y
(k), i.e. the cross-entropy between the k-transposition of

y and y
(k):

LSCE(y,y
(k), k) =

d−1
∑

i=0

yi log
(

y
(k)
i+k

)

(7)

with the out-of-bounds indices replaced by 0. The respec-

tive contribution of Lequiv and LSCE is studied in part 4.4.3.

Invariance loss. Lequiv and LSCE allow our model to

learn relative transpositions between different inputs and

learn to output probability distributions y and y
(k) that sat-

isfy the equivariance constraints. However, these distribu-

tions may still depend on the timbre of the signal. This

is because our model actually never observed at the same

time two different samples with the same pitch.

To circumvent this, we rely on a set T of data augmen-

tations that preserve pitch (such as gain or additive white

noise). We create augmented views x̃ = t(x) of our inputs

x by applying random transforms t ∼ T .

Similarly to [35], we then train our model to be invari-

ant to those transforms by minimizing the cross-entropy

between y = fθ(x) and ỹ = fθ(x̃).

Linv(y, ỹ) = CrossEntropy(y, ỹ) (8)

Combining the losses. For a given input sample x and

a given set of augmentations T ,

• we first compute x
(k) by pitch-shifting x by a random

number of bins k (the precise procedure is described

in section 3.2);

• we then generate two augmented views x̃ = t1(x) and

x̃
(k) = t2(x

(k)), where t1, t2 ∼ T ;

• we compute y=fθ(x), ỹ=fθ(x̃) and ỹ
(k)=fθ(x̃

(k)).

Our final objective loss is then:

L(y, ỹ, ỹ(k), k) = λinv Linv(y, ỹ)

+ λequiv Lequiv(ỹ, ỹ
(k), k)

+ λSCE LSCE(ỹ, ỹ
(k), k)

(9)

We illustrate this in Figure 2. To set the weights λ∗ we

use the gradient-based method proposed by [48–50].
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Pitch-Shift Augmentation Prediction Loss computation

Figure 2. Overview of the PESTO method. The input CQT frame (log-frequencies) is first cropped to produce a pair of

pitch-shifted inputs (x,x(k)). Then we compute x̃ and x̃
(k) by randomly applying pitch-preserving transforms to the pair.

We finally pass x, x̃ and x̃
(k) through the network fθ and optimize the loss between the predicted probability distributions.

3.2 Audio-frontend

The inputs x are the individual frames of the CQT. We

have chosen the CQT as input since its logarithmic fre-

quency scale, in which bins of the CQT exactly correspond

to a fixed fraction b of pitch semitones, naturally leads to

pitch-shifting by translation. CQT is also a common choice

made for pitch estimation [17, 19, 51].

To compute the CQT, we use the implementation pro-

vided in the nnAudio library [52] since it supports parallel

GPU computation. We choose fmin = 27.5 Hz, which is

the frequency of A0 the lowest key of the piano and select

a resolution of b = 3 bins per semitone. Our CQT has in

total K = 99b log-frequency bins, which corresponds to

the maximal number of bins for a 16kHz signal.

3.3 Simulating translations.

To avoid any boundary effects, we perform pitch-shift by

cropping shifted slices of the original CQT input frame as

in [19] 5 . From a computational point of view, it is indeed

significantly faster than applying classical pitch shift algo-

rithms based on phase vocoder and resampling.

3.4 Transpostion-preserving architecture

The architecture of fθ is illustrated in Figure 3. It is in-

spired by [17]. Each input CQT frame is processed inde-

pendently: first layer-normed [53] then preprocessed by

two 1D-Conv (convolution in the log-frequency dimen-

sion) with skip-connections [54], followed by four 1D-

Conv layers. As in [17], we apply a non-linear leaky-

ReLU (slope 0.3) [55] and dropout (rate 0.2) [56] between

each convolutional layer. Importantly, the kernel size and

padding of each of these layers are chosen so that the fre-

quency resolution is never reduced. We found in practice

that it helps the model to distinguish close but different

5 Specifically, we sample an integer k uniformly from the range
{−kmax, . . . , kmax}, then generate two CQT outputs, denoted as x

and x(k), where x is obtained by cropping the input CQT at indices

[kmax,K− kmax − 1], and x(k) is obtained by cropping the input CQT
at indices [kmax − k,K − kmax + k − 1], with K the total number of
bins of the original CQT frame and kmax = 16 in practice (see Figure 2).

40 40 30 30 10 3

Toeplitz fc

Figure 3. Architecture of our network fθ. The number of

channels varies between the intermediate layers, however

the frequency resolution remains unchanged until the final

Toeplitz fully-connected layer.

pitches. The output is then flattened, fed to a final fully-

connected layer and normalized by a softmax layer to be-

come a probability distribution of the desired shape.

Note that all layers (convolutions 6 , elementwise non-

linearities, layer-norm and softmax), except the last final

fully-connected layer, preserve transpositions. To make the

final fully-connected layer also transposition-equivariant,

we propose to use Toeplitz fully-connected layers. It

simply consists of a standard linear layer without bias but

whose weights matrix A is a Toeplitz matrix, i.e. each of

its diagonals is constant.

A =



















a0 a−1 a−2 · · · a−n+2 a−n+1

a1 a0 a−1
. . .

. . . a−n+2

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

am−1 · · · · · · · · · · · · am−n



















(10)

Contrary to arbitrary fully-connected layers, Toeplitz ma-

trices are transposition-preserving operations and only

have m + n − 1 parameters instead of mn. Furthermore,

they are mathematically equivalent to convolutions, mak-

ing them straightforward to implement.

6 Convolutions roughly preserve transpositions since the kernels are
applied locally, meaning that if two transposed inputs are convolved by
the same kernel, then the output results will be almost transpositions of
each other as well
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Raw Pitch Accuracy

Model # params Trained on MIR-1K MDB-stem-synth

SPICE [19] 2.38M private data 90.6% 89.1%

DDSP-inv [45] - MIR-1K / MDB-stem-synth 91.8% 88.5%

PESTO (ours) 28.9k MIR-1K 96.1% 94.6%

PESTO (ours) 28.9k MDB-stem-synth 93.5% 95.5%

CREPE [16] 22.2M many (supervised) 97.8% 96.7%

Table 1. Evaluation results of PESTO compared to supervised and self-supervised baselines. CREPE has been trained in

a supervised way on a huge dataset containing in particular MIR-1K and MDB-stem-synth. It is grayed out as a reference.

For DDSP-inv, we report the results when training and evaluating on the same dataset.

3.5 Absolute pitch inference from y

Our encoder fθ returns a probability distribution over

(quantized) pitches. From an input CQT frame x, we first

compute the probability distribution fθ(x), then we infer

the absolute pitch p̂ by applying the affine mapping:

p̂(x) =
1

b
(argmax fθ(x) + p0) (11)

where b = 3 is the number of bins per semitones in the

CQT and p0 is a fixed integer shift that only depends on

fθ. As in [19], we set the integer shift p0 by relying on a

set of synthetic data 7 with known pitch.

4. EXPERIMENTS

4.1 Datasets

To evaluate the performance of our approach, we consider

the two following datasets:

1. MIR-1K [57] contains 1000 tracks (about two hours)

of people singing Chinese pop songs, with separate

vocal and background music tracks provided.

2. MDB-stem-synth [58] contains re-synthesized

monophonic music played by various instruments.

The pitch range of the MDB-stem-synth dataset is wider

than the one of MIR-1K. The two datasets have different

sampling rates and granularity for the annotations.

We conduct separate model training and evaluation on

both datasets to measure overfitting and generalization per-

formance. In fact, given that our model is lightweight and

does not require labelled data, overfitting performance is

particularly relevant for real-world scenarios, as it is easy

for someone to train on their own dataset, e.g. their own

voice. However, we also examine generalization perfor-

mance through cross-evaluation to ensure that the model

truly captures the underlying concept of pitch and does not

merely memorize the training data.

4.2 Training details

From an input CQT (see part 3.2), we first compute the

pitch-shifted CQT (see part 3.3). Then two random data

augmentations t1, t2 ∼ T are applied with a probability

of 0.7. We used white noise with a random standard de-

viation between 0.1 and 2, and gain with a random value

7 synthetic harmonic signals with random amplitudes and pitch

picked uniformly between -6 and 3 dB. The overall archi-

tecture of fθ (see part 3.4) is implemented in PyTorch [59].

For training, we use a batch size of 256 and the Adam opti-

mizer [60] with a learning rate of 10−4 and default param-

eters. The model is trained for 50 epochs using a cosine an-

nealing learning rate scheduler. Our architecture being ex-

tremely lightweight, training requires only 545MB of GPU

memory and can be performed on a single GTX 1080Ti.

4.3 Performance metrics

We measure the performances using the following metrics.

1. Raw Pitch Accuracy (RPA): corresponds to the per-

centage of voiced frames whose pitch error 8 is less

than 0.5 semitone [61].

2. Raw Chroma Accuracy (RCA): same as RPA but

considering the mapping to Chroma (hence allowing

octave errors) [61].

RCA is only used in our ablation studies.

4.4 Results and discussions

4.4.1 Clean signals

We compare our results with three baselines: CREPE [16],

SPICE [19] and DDSP-inv [45]. CREPE is fully-

supervised while SPICE and DDSP-inv are two SSL ap-

proaches. To measure the influence of the training set, we

train PESTO on the two datasets (MIR-1K and MDB-stem-

synth) and also evaluate on the two. This allows to test

model generalization.

We indicate the results in Table 1. We see that PESTO

significantly outperforms the two SSL baselines (SPICE

and DDSP-inv) even in the cross-dataset scenario (93.5%

and 94.6%). Moreover, it is competitive with CREPE (-

1.7% and -1.2%) which has 750 times more parameters

and is trained in a supervised way on the same datasets.

4.4.2 Robustness to background music

Background noise and music can severely impact pitch es-

timation algorithms, making it imperative to develop ro-

bust methods that can handle real-world scenarios where

background noise is often unavoidable.

We therefore test the robustness of PESTO to back-

ground music. For this, we use the MIR-1K dataset,

which contains separated vocals and background tracks

8 i.e. distance between the predicted pitch and the actual one
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Raw Pitch Accuracy (MIR-1K)

Model clean 20 dB 10 dB 0 dB

SPICE [19] 91.4% 91.2% 90.0% 81.6%

PESTO

β = 0 94.8% 90.7% 79.2% 50.0%

β = 1 94.5% 94.2% 92.9% 83.1%

β ∼ U(0, 1) 94.7% 94.4% 92.9% 81.7%

β ∼ N (0, 1) 94.8% 94.5% 93.0% 82.6%

β ∼ N (0, 1
2 ) 94.8% 94.5% 92.9% 81.0%

CREPE [16] 97.8% 97.3% 95.3% 84.8%

Table 2. Robustness of PESTO and other baselines to

background music with various Signal-to-Noise ratios.

Adding background music to training samples significantly

improves the robustness of PESTO (see section 4.4.2).

and allows testing various signal-to-noise (here vocal-to-

background) ratios (SNRs).

We indicate the results in Table 2. As foreseen, the per-

formance of PESTO when trained on clean vocals (row

β = 0) and applied to vocal-with-background consider-

ably drop: from 94.8% (clean) to 50.0% (SNR = 0 dB) 9 .

To improve the robustness to background music, we

slightly modify our method to train our model on mixed

sources. Instead of using gain and white noise as data aug-

mentations, we create an augmented view of our original

vocals signal xvocals by mixing it (in the complex-CQT do-

main) with its corresponding background track xbackground:

x = xvocals + βxbackground (12)

Then, thanks to Linv, the model is trained to ignore the

background music for making its predictions.

The background level β is randomly sampled for each

CQT frame. The influence of the distribution we sample

β from is depicted in Table 2. This method significantly

limits the drop in performances observed previously and

also makes PESTO outperform SPICE in noisy conditions.

4.4.3 Ablation study

Table 3 depicts the influence of our different design

choices. First, we observe that the equivariance loss Lequiv

and the final Toeplitz fully-connected layer (eq.(10)) are

absolutely essential for our model not to collapse. More-

over, data augmentations seem to have a negligible influ-

ence on out-of-domain RPA (-0.2%) but slightly help when

training and evaluating on the same dataset (+1.2%).

On the other hand, it appears that both Linv and LSCE do

not improve in-domain performances but help the model to

generalize better. This is especially true for LSCE, whose

addition enables to improve RPA from 86.9% to 94.6% on

MDB-stem-synth.

Finally, according to the drop of performances in RPA

and RCA when removing Linv, it seems that the invariance

loss prevents octave errors on the out-of-domain dataset.

9 It should be noted that the difference between the 96.1% of Table 1
and the 94.8% of Table 2 is due to the fact that we do not apply any data
augmentation (gain or additive white noise) when β = 0.

MIR-1K MDB

RPA RCA RPA RCA

PESTO baseline 96.1% 96.4% 94.6% 95.0%

Loss ablations

w/o Lequiv 5.8% 8.6% 1.3% 6.1%

w/o Linv 96.1% 96.4% 92.5% 94.5%

w/o LSCE 96.1% 96.5% 86.9% 93.8%

Miscellaneous

no augmentations 94.8% 95.4% 94.8% 95.2%

non-Toeplitz fc 5.7% 8.7% 1.2% 6.1%

Table 3. Respective contribution of various design choices

of PESTO for a model trained on MIR-1K.

5. CONCLUSION

In this paper, we presented a novel self-supervised learning

method for pitch estimation that leverages equivariance to

musical transpositions. We propose a class-based equiv-

ariant objective that enables Siamese networks to capture

pitch information from pairs of transposed inputs accu-

rately. We also introduce a Toeplitz fully-connected layer

to the architecture of our model to facilitate the optimiza-

tion of this objective. Our method is evaluated on two stan-

dard benchmarks, and the results show that it outperforms

self-supervised baselines and is robust to background mu-

sic and domain shift.

From a musical perspective, our lightweight model

is well-suited for real-world scenarios, as it can run on

resource-limited devices without sacrificing performance.

Moreover, its SSL training procedure makes it convenient

to fine-tune on a small unlabeled dataset, such as a spe-

cific voice or instrument. Additionally, the resolution of

the model is a sixth of a tone but could eventually be in-

creased by changing the resolution of the CQT. Moreover,

despite modelling pitch estimation as a classification prob-

lem, we make no assumption about scale or temperament.

These features make our method still a viable solution,

e.g. for instruments that use quartertones and/or for which

no annotated dataset exists. We therefore believe that

it has many applications even beyond the limitations of

Western music.

Overall, the idea of using equivariance to solve a clas-

sification problem is a novel and promising approach that

enables the direct return of a probability distribution over

the classes with a single, potentially synthetic, labelled el-

ement. While our paper applies this approach to pitch es-

timation, there are other applications where this technique

could be useful, such as tempo estimation.

Moreover, modelling a regression task as a classifica-

tion problem can offer greater interpretability as the output

of the network is not a single scalar but a whole probability

distribution. Finally, it can generalize better to multi-label

scenarios.

Our proposed method hence demonstrates the potential

of using equivariance to solve problems that are beyond the

scope of our current work. In particular, it paves the way

towards self-supervised multi-pitch estimation.
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