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ABSTRACT

Significant strides have been made in creating voice
identity representations using speech data. However, the
same level of progress has not been achieved for singing
voices. To bridge this gap, we suggest a framework for
training singer identity encoders to extract representations
suitable for various singing-related tasks, such as singing
voice similarity and synthesis. We explore different self-
supervised learning techniques on a large collection of iso-
lated vocal tracks and apply data augmentations during
training to ensure that the representations are invariant to
pitch and content variations. We evaluate the quality of
the resulting representations on singer similarity and iden-
tification tasks across multiple datasets, with a particular
emphasis on out-of-domain generalization. Our proposed
framework produces high-quality embeddings that outper-
form both speaker verification and wav2vec 2.0 pre-trained
baselines on singing voice while operating at 44.1 kHz. We
release our code and trained models to facilitate further re-
search on singing voice and related areas.

1. INTRODUCTION

Singer representation learning is a complex task in Music
Information Retrieval (MIR) that involves extracting a rep-
resentation of a singer’s voice, capturing their unique iden-
tity or vocal timbre. This task is closely related to singer
recognition, which comprises two major tasks: singer
identification and singer verification. The first aims to
determine the singer of a given song from a fixed set of
singers in the dataset, while the latter aims to determine
if two audio excerpts come from the same singer or not.
Singer representation learning has many potential appli-
cations, including retrieval tasks (such as retrieving songs
with a similar singing voice), and providing singer embed-
dings for conditioning Singing Voice Synthesis (SVS) [1]
and Singing Voice Conversion (SVC) systems [2].
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Singer recognition is related to speaker recognition, a
well-established domain with vast literature. Historically,
it has received a much greater interest in particular due to
the need for authentication by voice in many telecommu-
nications applications. Singing voice, however, is different
from speech in several ways, typically containing a wider
variance of phoneme duration, utterances, and a wider
pitch range, which makes singer recognition more chal-
lenging. Moreover, the lack of large labeled datasets fur-
ther restricts the development of data-driven approaches.

In this study, we investigate if speaker recognition mod-
els trained on labeled speech data can be applied to singing
voice, and whether self-supervised learning (SSL) mod-
els trained on singing voice data can achieve comparable
performance. We compare different self-supervised tech-
niques, including SimCLR [3], Uniformity-Alignment [4],
VICReg [5] and BYOL [6], trained on a large collection
of isolated vocal tracks. We also explore high-frequency
regions that are traditionally ignored in speech [7, 8] but
might be present in singing voice by working in 44.1 kHz
sampling rate. Finally, we evaluate the generalization ca-
pabilities of our models on out-of-domain data.

Our main contributions are as follows: 1. We perform
singer representation learning experiments using self-su-
pervised techniques, an area that few works have explored.
2. We train encoders that operate at 44.1 kHz on a large
dataset of singing voice recordings. 3. We conduct an ex-
tensive evaluation of the obtained embeddings for singer
identification and singer similarity tasks, comparing them
with publicly available pre-trained speech baselines. 4. We
measure the out-of-domain generalization capabilities of
our models on four public datasets.

2. RELATED WORK

Singer recognition has traditionally relied on acoustic fea-
tures such as Mel-frequency cepstral coefficients (MFCCs)
or Line Spectral Frequencies (LSFs) to capture timbre
[9–11]. Some approaches focus on singer identification
on polyphonic music [12,13], while others separate vocals
from background [14, 15]. In speaker verification litera-
ture, time-invariant embeddings such as i-vector [16] or x-
vector [17] have been extensively used, and the domain has
shifted towards data-driven approaches using deep neu-
ral networks to encode acoustic features into a lower-
dimensional representation that captures speaker charac-
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teristics. Temporal aggregation is used to remove the time
dimension, and these systems are usually optimized us-
ing speaker label infomation for classification or metric
learning losses. Recent works have also explored SSL for
speaker verification [18–21].

SSL has been successful in many domains, particularly
with approaches such as SimCLR [3], MoCo [22], CPC
[23], and BYOL [6]. In the audio domain, following the
success in Computer Vision and Natural Language Pro-
cessing (NLP), successful SSL models for speech include
Wav2Vec 2.0 [24], HuBERT [25], and WavLM [26]. SSL
has also been successful in learning general-purpose au-
dio representations, with examples like COLA [27], CLAR
[28], and CLMR [29].

While the idea of finding singer embeddings using con-
trastive approaches is not new [30], to the best of our
knowledge, only one work has employed SSL for singer
representations [31]. In their work, contrastive learning is
used to acquire feature embeddings of singing voices using
data augmentations that disturb a singer’s identity to make
the embeddings more attentive to timbre or technique. In
contrast, our work explores different SSL techniques, fo-
cuses on out-of-domain testing, and evaluates on singer
similarity as well as singer identification.

3. METHOD

3.1 Goal

Our objective is to obtain, from isolated vocal tracks,
unique singer representations that capture the timbre of the
singer’s voice. These representations must satisfy three cri-
teria: (I) clips from the same singer should have a higher
average similarity than clips from different singers; (II)
the representation should not be dependent on fundamental
frequency or linguistic content variations; and (III) the rep-
resentations should generalize well to out-of-domain data.

3.2 Overview

The ideal embedding space for singer representations
should cluster elements of the same singer while also en-
suring semantic consistency by placing similar voice tim-
bres close to each other within the space [4]. In line with
the criteria outlined in Section 3.1, we conducted experi-
ments with various self-supervised techniques which force
embeddings of similar input data to be close in the em-
bedding space. We experimented with four frameworks:
SimCLR [3], Uniformity-alignment [4], VICReg [5], and
BYOL [6]. Although these frameworks share a common
goal, they differ in their approach (see Section 3.3). We
took great care in selecting appropriate data augmentations
and used a diverse set of singing voice training data. In
the current section, we describe the general training frame-
work common to all our self-supervised experiments.

Data sampling: In our methodology, we use a COLA
[27] approach to train our models by sampling audio seg-
ments on the fly, from a randomly drawn audio clip com-
ing from a large database. We first extract two segments
(x, x′) ∈ R

N cropped randomly from the audio clip,

called the anchor and positive segment. We obtain aug-
mented views of both audio segments of the positive pair
via a data augmentation module Aug(·) that operates in the
waveform domain, resulting in an augmented positive pair
(x(1), x′(2)). We repeat this process B times for a batch
size of B, obtaining a positive pair batch (x(1),x(2)), with
no repetition of audio clips during a training epoch. The
superscript ′ is further omitted for simplicity.

Model: Our proposed model takes raw audio wave-
forms sampled at 44.1 kHz as input. Firstly, we compute
log-compressed mel-spectrogram features m ∈ R

F×L on
the fly using the nnAudio library 1 . Next, the encoder mod-
ule g(·) maps the extracted mel-spectrograms to a latent
representation h′ = g(m) ∈ R

H×L. At this stage, adaptive
average pooling is used to aggregate embedding vectors h′

into time-invariant feature embeddings h ∈ R
H . A pro-

jection layer p(·) maps h into a lower dimensional latent
space z = p(h) ∈ R

D using a shallow neural network.
We denote the full model f(·) by stacking the acoustic

feature extraction, encoder, and projection modules. Dur-
ing training, we encode the training batch and obtain pro-
jections z = f(x). After training is completed, we discard
the projection layer and use only the feature embeddings h.
The similarity between a pair of embeddings is computed
using the cosine similarity.

Although there are many specialized speaker verifica-
tion architectures in the speech domain [32, 33], we use
the EfficientNet-B0 [34] architecture as the backbone for
the encoder module and a single SiLU non-linearity fol-
lowed by a fully-connected layer for the projection layer.
The projections are ℓ2 normalized.

3.3 Self-supervised frameworks

The core concept of all used approaches is to leverage
big amounts of unlabeled data to build a good represen-
tation space by aligning similar elements (and possibly
separating dissimilar ones). At training time, model f(·)
acts in a Siamese setup by encoding both elements of
the augmented pair z(1) = f(x(1)) and z

(2) = f(x(2)).
For BYOL, we have a separate encoder f ′ with the same
architecture as f and we compute z

(1) = f(x(1)) and
z
(2) = f ′(x(2)). For all setups, we compute a loss function

on the batch projections L(z(1), z(2)).
Contrastive Learning: We employ the contrastive loss

called NT-Xent from SimCLR [3]. The loss maximizes the
agreement between positive samples and pushes all other
embeddings of the batch (the negative parts) away in the
representation space. It does so by maximizing the co-
sine similarity (sim) between positive samples and mini-
mizing the sum of similarities for all other pairs formed in
the batch:

Lcont(z) = −
∑

i

log
exp(sim(z

(1)
i , z

(2)
i )/τ)

∑

j ̸=i exp(sim(z
(1)
i , z

(2)
j )/τ)

. (1)

We decouple the term exp(sim(z
(1)
i , z

(2)
i )/τ) from the

1 https://github.com/KinWaiCheuk/nnAudio
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denominator of the original NT-Xent [3], which has been
shown to make the SSL task easier for smaller batch sizes
and less sensitive to the hyperparameter τ [35].

Uniformity-Alignment: Proposed in [4], Uniformity-
Alignment aims to align similar examples and distribute
elements uniformly in an ℓ2 normalized embedding space.
Instead of using a contrastive loss, the authors propose op-
timizing directly for these two properties, resulting in two
loss functions: alignment (Lalign) and uniformity (Lunif).

Lalign(z
(1), z(2)) =

1

N

∑

i

∥

∥

∥
z
(1)
i − z

(2)
i

∥

∥

∥

2

, (2)

Lk
unif (z

(k)) = log
1

N

∑

i,j

(

exp(−t∥z
(k)
i − z

(k)
j ∥2)

)

,

(3)
where t = 2 and Lunif =

∑

k=1,2 L
k
unif /2.

VICReg: VICReg [5] is an approach that attempts to
maximize the information content of the learned embed-
dings. Three losses are proposed: the variance, invariance,
and covariance losses. The invariance loss is the same as
the alignment loss (see Equation 2). The variance regu-
larization forces the standard deviation of a batch (in the
dimension axis) to be close to the value µ, preventing col-

lapse (when embedding dimensions become useless). Let
dj(z) ∈ R

B be the vector composed of the values of a
batch z at dimension j. The variance regularization is:

Lvar(z) =
1

D

D
∑

j=1

max (0, µ− S (dj(z), ϵ)) , (4)

where D is the number of dimensions of zi, and S is the
regularized standard deviation S(x, ϵ) =

√

Var(x) + ϵ.
The covariance regularization decorrelates the dimen-

sions of the embedding, making them orthogonal:

Lcov(z) =
1

Dz

∑

i ̸=j

(C(z))2i,j, (5)

where C(z) = 1
N−1

∑N

i=1 (zi − z̄) (zi − z̄)
T is the co-

variance matrix of z, and z̄ = 1
N

∑N

i=1 zi.
BYOL: Bootstrap Your Own Latent (BYOL) [6] em-

ploys two neural networks: the online and target networks.
Both networks share the same architecture. In addition,
BYOL employs an additional predictor network q which
computes predictions q(z). BYOL iteratively refines the
representation of the online network by minimizing the
mean squared error (MSE) between its predictions and the
target’s projections. If f and f ′ denote the online and tar-
get networks, respectively, the loss function LBYOL on the
projections z(1) = f(x(1)), z(2) = f ′(x(2)) is:

LBYOL(z
(1), z(2)) =

1

N

∑

i

∥

∥

∥
z
(1)
i − q(z

(2)
i )

∥

∥

∥

2

. (6)

The target network f ′ is not trained using directly the
gradients of LBYOL, but it is updated with an exponential
moving average of the weights of the online network.

Corpus Language #Hours #Singers Type

VCTK [36] English 44 110 Speech
NUS-48E [37] English 1.91 12 Speech/Singing
VocalSet [38] English 10.1 20 Singing
M4Singer [39] Chinese 29.77 20 Singing

Table 1: Out-of-domain datasets used for testing.

4. EXPERIMENTS

4.1 Data

We used a large private corpus of professionally recorded
singing voice data containing approximately 25,000 tracks,
totaling 940 hours of audio data. The dataset consists of
isolated vocals of re-recordings of popular songs by 5,700
artists and includes a variety of singing styles, voice types,
lyrics, and audio effects. We note that the actual number of
singers is unknown, as the same artist might have been re-
recorded by multiple singers. Therefore, we do not believe
that this corpus is appropriate for supervised training. Ad-
ditionally, we added 6 hours of source-separated vocals to
the corpus. All samples were converted to mono 44.1kHz
tracks with 16-bit encoding, and any silence lasting more
than 1.3 seconds was trimmed to 1.3 seconds. Segments
with less than 0.5% amplitude were considered silent, and
segments with more than 0.5% amplitude lasting less than
0.2 seconds were silenced. The dataset was partitioned into
three distinct sets with ratios of 80% for training, 10% for
validation, and 10% for testing, with no artist allocated to
more than one set. The length of a track is typically a few
minutes.

Out-of-domain evaluation: Four datasets are used to
test the out-of-domain generalization of the models. The
summary of all datasets is shown in Table 1.

4.2 Experiment setup

We perform a series of experiments to determine the best
SSL framework for singer representation learning:

• CONT: We train a model on the decoupled version of
the contrastive loss L = Lcont [35].

• CONT-VC: We train a model using Lcont (contrastive
loss) with added variance and covariance regulariza-
tion L = Lcont + µLvar + νLcov [40].

• UNIF: We train a model using the uniformity- align-
ment loss L = Lalign + γLunif [4].

• VICReg: We train a model using the VICReg loss
L = λLalign + µLvar + νLcov [5] .

• BYOL: We train a model on BYOL configuration,
optimizing the MSE L = LBYOL [6].

The contrastive loss has been shown to yield good re-
sults in the literature [27, 31], but there is concern that
it may break the semantic structure of the embeddings by
pushing similar singers away in the representation space
[4]. In the CONT-VC approach, the addition of variance
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and covariance losses from VICReg is tested as a regular-
ization method to mitigate this problem [21,40]. The UNIF
approach attempts to optimize directly for uniformity of
the space, which has shown links with linear separabil-
ity [4] and potential for strong singer identification results.
While VICReg claims to be an information-theoretic ap-
proach to general-purpose representation learning, it has
not yet been thoroughly tested in the audio domain. Fi-
nally, BYOL is included in the study for comparison as it
has shown promising results in several audio downstream
tasks, claiming state-of-the-art [41].

4.3 Evaluation procedure

The models are first trained until the validation loss stops
decreasing. Validation similarity metrics (Section 4.3.1)
are tracked during training, and the best-performing model
is selected. This model is evaluated on the test and on
out-of-domain sets using cropped 4-second clips of singer
recordings (with no overlapping segments). The embed-
dings h are evaluated in two tasks: singer/speech similarity
and singer/speech identification. For simplicity, we refer
to singer similarity/identification even when dealing with
speech data such as with VCTK/NUS-48E datasets (see
Section 5 for details).

4.3.1 Singer similarity

We evaluate singer similarity by measuring two metrics di-
rectly on the singer feature embeddings h: the Equal Error
Rate (EER) and Mean Normalized Rank (MNR). The EER
relates to singer verification. On the other hand, we relate
the MNR to singer retrieval by computing the similarities
between a query excerpt and a set of candidates. No train-
ing is performed for the similarity evaluation.

EER: The EER is a popular metric for verification sys-
tems. To compute the EER, the system is exposed to a
set of trials consisting of true pairs (two segments coming
from the same singer) and fake pairs (two segments coming
from different singers), and a similarity metric is computed
for both cases (in our case the cosine similarity). False pos-
itives (FP) and False Negatives (FN) can be computed by
applying a threshold τ on the similarity metric, and the De-
tection Error Tradeoff (DET) is obtained by varying τ as a
function of FP and FN. The EER is the error rate at which
FP = FN. We compute the EER following the implemen-
tation available as part of the SupERB benchmark [42] 2 .
We sample 50,000 speaker pairs for computing the EER on
the test set and 20,000 speaker pairs for out-of-domain.

MNR: Denote q(1), q(2) two query audio samples, com-
ing from the same audio recording (and therefore the same
singer) drawn at random at each trial. Let S be a set of
N audio samples, drawn at random from a dataset, and
q(2) ∈ S. The MNR is [40]:

MNR =
1

K

K
∑

k=1

R(q
(1)
k , Sk)

N
, (7)

2 https://github.com/s3prl/s3p

Model #Params SR Dim. Backbone

GE2E [43] 3 1.4M 16 256 LSTM
F-ResNet [33] 4 1.4M 16 512 ResNet-34
H/ASP [44] 4 8.0M 16 512 ResNet-34
Wav2Vec-base [24] 5 95M 16 12X768 Wav2Vec 2.0
XLSR-53 [45] 6 300M 16 24X1024 Wav2Vec 2.0

Ours 5.0M 44.1 1000 EfficientNet-B0

Table 2: Number of network parameters, sampling rate in
kHz (SR), the size of the feature embeddings (Dim), and
the architecture backbone for the baselines and our models.

where R(q
(1)
k , Sk) is the integer position (rank) of q(2) in

the sorted list of cosine similarities between q(1) and the
samples in S. We perform K = 1000 trials for N = 512.

Input sample rate: To ensure a fair comparison with
the baselines, which operate on 16 kHz, the evaluation is
done in two scenarios: at 16 kHz and 44.1 kHz. In the
former, the 44.1 kHz inputs are downsampled to 16 kHz
and upsampled back to 44.1 kHz before being fed to the
models, removing energy above 8 kHz. In the latter, the
trained models have access to the full frequency range of
the input data.

4.3.2 Singer identification

To evaluate the linear separability of singer classes, we per-
form singer classification as a downstream task for singer
identification on out-of-domain evaluations. We use 5-fold
cross-validation to split the audio files of each singer into
train, validation, and test subsets (4-fold for NUS-48E).
A single feed-forward linear layer is trained with cross-
entropy loss on the train subset to predict singer classes
from embeddings extracted from frozen models. The best
model is selected on the validation subset. Average metrics
on the test set over all folds are reported. We limit this task
to out-of-domain evaluations since these datasets contain
multiple files per singer and the classes are balanced.

4.4 Baselines

In our experiments, we use as baselines three speaker
verification networks: GE2E [43], Fast-ResNet34 [33]
(hereafter referred to as F-ResNet), H/ASP [44];
and two large general purpose self-supervised models
Wav2Vec-base [24], and XLSR-53 [45]. These models
have been pre-trained on speech and either achieved state-
of-the-art results or have been used for obtaining speaker
representations for speech/singing voice synthesis tasks
while being publicly available. We provide an overview
of the baseline models in Table 2.

Since all baselines operate on 16kHz, we down-
sample the test signals to 16kHz accordingly. For
Wav2Vec-base and XLSR-53, we use adaptive aver-
age pooling as the temporal aggregation method for the
frame-wise feature embeddings, and we employ a learned,
weighted sum of the first three layers for the downstream

3 https://github.com/resemble-ai/Resemblyzer
4 https://github.com/clovaai/voxceleb_trainer
5 https://huggingface.co/facebook/wav2vec2-base
6 https://huggingface.co/facebook/wav2vec2-large-xlsr-53
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In-domain Out-of-domain

Test dataset* VCTK NUS-48E M4Singer* Vocalset*

Model EER MNR EER MNR EER MNR EER MNR EER MNR

16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1

GE2E† 27.24 - 18.9 - 13.42 - 5.41 - 28.04 - 18.99 - 25.01 - 15.99 - 40.45 - 35.34 -
F-ResNet† 15.21 - 7.76 - 1.01 - 0.08⋆ - 15.36 - 6.63 - 14.21 - 5.98 - 40.64 - 33.82 -
H/ASP† 12.36 - 5.82 - 0.28⋆ - 0.08⋆ - 13.99 - 5.42 - 12.31 - 3.93 - 36.27 - 30.79 -

Wav2Vec-base 25.36 - 14.78 - 23.15 - 15.78 - 32.65 - 24.39 - 26.28 - 13.37 - 39.34 - 34.23 -
XLSR-53 25.22 - 15.82 - 25.93 - 19.95 - 36.62 - 28.52 - 26.02 - 16.96 - 40.09 - 35.32 -

VICReg 8.19 3.88 2.29 1.14 25.17 23.88 14.99 14.62 26.11 26.06 15.43 15.34 24.6 22.05 9.78 8.69 34.58 33.12 28.21 26.5
UNIF 9.48 2.86 2.13 0.78 22.51 24.28 12.99 14.67 27.65 26.12 17.08 15.48 20.46 17.03 8.83 6.67 32.4 31.19 25.07 23.19
CONT 6.39 2.16 1.33 0.48 20.04 22.87 9.34 11.56 23.67 24.51 12.86 12.45 14.28 12.67 5.52 4.51 32.16 30.61 23.64 22.6
CONT-VC 7.39 2.74 1.61 0.52 19.92 21.79 10.35 11.12 24.99 25.4 15.06 13.91 15.97 12.68 6.94 4.81 31.03 29.74 22.65 21.87
BYOL 5.88 3.82 1.5 0.68 17.44 19.97 7.8 9.73 26.01 23.9 15.62 12.21 15.65 12.28 5.86 3.77 31.59 29.76 23.93 21.25

Table 3: EER and MNR (%, lower is better) measured on frozen model embeddings. Datasets that contain only singing
voice are marked with *, and models which are not self-supervised are indicated with †. Results in bold are the best among
all models, for both 44.1 kHz and 16 kHz input sample rates. Underlined results highlight the best on 16kHz input only.
For Wav2Vec-base and XLSR-53, we use the embeddings of the first layer and aggregate them using average pooling.

classifier [42]. We empirically found that this approach
boosts classification performance compared to using a sin-
gle layer. Specifically, the first layers of these models are
more effective for speaker verification [26] and are more
correlated with speaker characteristics [46]. For singer
similarity evaluations, we use only the first layer, as there
is no training involved to yield weights for a weighted sum.

4.5 Training

To train our models, we used 4-second audio clips
that were normalized, augmented, and converted to log-
compressed mel-filterbanks with 80 mel bins, a window
length of 2048, and a hop size of 512. This results in
an FFT frame of 46.4ms and sliding windows of 11.6ms
for 44.1 kHz audio. We initialized the EfficientNet-B0
backbone with pre-trained weights on ImageNet [40] and
used the ADAM optimizer with a learning rate of 1e-4 and
weight decay of 1e-5, with a batch size of 120. For con-
trastive loss, we used a temperature parameter of τ = 0.2
[4], and whenever we used covariance regularization, we
set ν = 100. For variance regularization, we set µ = 25.
Additionally, for VICReg experiments, we used an invari-
ance loss factor of λ = 25, and UNIF, we set γ = 1. For
BYOL, we used a learning rate of 3e-5, a weight decay of
1.5e-6 and an initial moving average value τ of 0.99. We
found through empirical analysis that these hyperparame-
ters were effective for convergence and avoiding collapse.

In terms of data augmentation techniques, we applied
Gaussian noise, gain with a minimum attenuation of -6
dB, and time masking with at most 1/8 of the clip be-
ing masked. We also used formant-preserving pitch shift-
ing with Praat [47, 48] as a method of data augmenta-
tion, with the pitch shift ratio and pitch range ratio being
sampled uniformly from U(1,3) and U(1,1.5), respectively,
with a random choice on whether to take the reciprocal
of the sampled ratios or not [46]. All augmentations had
a probability of 0.5 of being applied. We avoided using
naive pitch-shifting techniques that transpose the formants,
which can significantly alter the singers’ timbre.

Model VCTK NUS-48E M4Singer* Vocalset*

GE2E† 97.01 91.13 88.72 45.66
F-ResNet† 99.91 97.36 94.51 49.52
H/ASP† 99.93 98.32 97.87 74.65

Wav2Vec-base 98.70 96.16 96.52 79.19
XLSR-53 99.66 97.02 98.62 86.05

VICReg 52.52 78.98 87.34 49.69
UNIF 74.43 93.05 93.55 67.52
CONT 90.24 96.23 95.72 77.42
CONT-VC 86.03 95.14 94.69 75.20
BYOL 96.95 96.56 97.00 81.01

Table 4: Average linear classification accuracy on out-of-
domain data (%) over K-fold cross-validation. Datasets
that contain only singing voice are marked with *. The
best scores are highlighted in bold and the best among the
trained models (bottom 5 rows) are underlined. Models
which are not self-supervised are indicated with †.

5. RESULTS AND DISCUSSION

Table 3 presents the results of singer similarity evaluation
on both in-domain and out-of-domain test sets, reporting
the best Equal Error Rate (EER) and Mean Normalized
Rank (MNR) for trained models and baselines in all test
datasets. Table 4 shows the accuracies for downstream
singer identification task on out-of-domain datasets. We
also share in supplementary material additional qualitative
visual evaluations of the embeddings 7 , and release code
and models to encourage reproducibility and facilitate its
use in future projects 8 .

5.1 Results on pre-trained models on speech

The results indicate that models pre-trained on speech in
a supervised manner (using speaker labels) exhibit good
generalization to out-of-domain speech datasets. H/ASP

achieves an impressive 0.28% EER on the VCTK, and all
models score higher than 88% accuracy on VCTK, NUS-

7 https://sites.google.com/view/singer-representation-learning
8 https://github.com/SonyCSLParis/ssl-singer-identity
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48E, and M4Singer datasets. Their similarity performance
on singing voice datasets, however, is much worse than on
speech, but the best models still score below 10% EER on
NUS-48E and 12.31% and 14.21% EER on M4Singer for
H/ASP and F-ResNet, respectively.

This suggests that important features of the singing
voice can also be learned directly from speech. However,
the results show the pre-trained models perform worse on
heavily processed data that includes uncommon effects and
vocal techniques. This is evident, in particular, in the last
columns of Tables 3 and 4 (VocalSet), with all baselines
scoring around 40% EER and from 20% to 40% worse ac-
curacy when compared to the other datasets.

5.2 Results on Self-Supervised Models

Models trained with contrastive loss (CONT and
CONT-VC) achieved the best EER and MNR on the
test set. These models were able to learn highly discrimi-
native features for the task of in-domain singer similarity.
For instance, the CONT model had the lowest overall EER
and MNR (2.16% and 0.48% respectively) on the test set.

It can also be seen in Table 3 that in-domain test per-
formance did not necessarily translate to good generaliza-
tion to out-of-domain data. By adding variance and covari-
ance regularizations (CONT-VC), the model achieved bet-
ter generalization to out-of-domain data on some datasets
(such as the VocalSet, with approximately 1% EER dif-
ference). However, in the VICReg scenario, which has
both regularizations but lacks the contrastive part, the re-
sults were worse. In fact, VICReg had the worst overall
results of all the tested self-supervised frameworks. UNIF,
while better than VICReg, also performed worse on aver-
age when compared to the other approaches.
CONT and BYOL achieved the best accuracy over all our

trained models on singer identification (Table 4), achieving
the highest scores of 77.42% and 81.01%, respectively (the
VocalSet paper [38] reports 60-70% accuracy on a super-
vised singer identification task).
BYOL achieved the best generalization on similarity,

performing best on out-of-domain data, even though its
scores were worse on the in-domain test set. Interest-
ingly, of all explored self-supervised techniques, BYOL
is the only one that does not explicitly force any kind of
feature distribution on the embedding space. In addition,
BYOL was able to learn best how to leverage the informa-
tion present at 16 kHz sample rate, with an EER of 5.88
on the test set. It also performed best on out-of-domain
speech data (VCTK). In general, our models struggled with
speech, performing generally better when they only had
access to a reduced frequency band. This suggests that
in speech, high-frequency information the models rely on
hinders their ability to generalize.

44.1 vs 16 kHz: Using 44.1 kHz inputs consistently im-
proved the similarity results on singing voice datasets (e.g.,
M4Singer) for all models, highlighting the models’ ability
to efficiently use high-frequency information. Moreover,
most models showed a marked decline in the in-domain
dataset results when tested with 16 kHz inputs (the CONT

model, for example, shows a drop from 2.16% EER to
6.39% EER). While the 16 kHz inputs could be consid-
ered out-of-domain, this effect shows that high-frequency
information is important for the trained models to achieve
better performance.

Comparison to baselines: The trained models show
better results than baselines on in-domain test sets and
the VocalSet dataset for singer similarity tests, although
they fall behind F-ResNet and H/ASP on the mixed
speech/singing dataset NUS-48E and VCTK. Nonetheless,
on M4Singer, some self-supervised models outperformed
the supervised baselines, with BYOL showing the best per-
formance (12.28% EER and 3.77% MNR), and CONT and
CONT-VC also being superior to F-ResNet.

The trained models have substantially better singer
similarity results compared to Wav2Vec-base and
XLSR-53. These results indicate the potential of training
models on the proposed SSL tasks specifically on singing
voice data. Further improvements could be made by fine-
tuning the embeddings on verification tasks, as has been
demonstrated in previous work on Wav2Vec 2.0 [49].

Moreover, BYOL outperformed Wav2Vec-base for
both VocalSet and M4Singer on classification. Among all
models, XLSR-53 achieved the best overall performance
for singer identification of singing voice. However, is note-
worthy that our models have significantly fewer parameters
than the self-supervised Wav2Vec-base (19 times less)
and XLSR-53 (63 times less).

6. CONCLUSION

In conclusion, we have shown that self-supervised learn-
ing is an effective approach for learning representations
of singers. The self-supervised models trained on a large
corpus of singing voice data demonstrated a performance
that either matched or surpassed publicly available super-
vised speech models, without resorting to specialized ar-
chitecture designs. Additionally, our models outperformed
general-purpose self-supervised counterparts even with a
significantly reduced parameter count. When applied to
singer identification, our models exhibited superior per-
formance over Wav2vec-base on singing voice datasets
but fell somewhat short in comparison to the considerably
more expansive XLSR-53.

Furthermore, our results suggest that these models hold
promise for singer identification and similarity down-
stream tasks. BYOL showed the most promise for gen-
eralizing to out-of-domain data, while the contrastive ap-
proaches were more effective for in-domain data.

However, we note that our models’ representations do
not yet fully capture a singer’s identity when confronted
with unique singing techniques, such as those found in the
VocalSet [38]. This underscores the need for further re-
search on robust SSL frameworks capable of accommodat-
ing such variations. Our findings also suggest that employ-
ing a higher sampling frequency can be advantageous for
singing voice tasks, but optimal frequency for generalizing
to both singing and speech tasks remains to be determined.
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