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ABSTRACT

The concept of form in music encompasses a wide range
of musical aspects, such as phrases and (hierarchical) seg-
mentation, formal functions, cadences and voice-leading
schemata, form templates, and repetition structure. In an
effort towards a unified model of form, this paper proposes
an integration of repetition structure (i.e., which segments
of a piece occur several times) and formal templates (such
as AABA). While repetition structure can be modeled us-
ing context-free grammars, most prior approaches allow
for arbitrary grammar rules. Constraining the structure of
the inferred rules to conform to a small set of templates
(meta-rules) not only reduces the space of possible rules
that need to be considered but also ensures that the result-
ing repetition grammar remains interpretable in the context
of musical form. The resulting formalism can be extended
to cases of varied repetition and thus constitutes a building
block for a larger model of form.

1. INTRODUCTION

Repetition is one of the most central aspects of music [1]
and constitutes a constant across almost all cultures, styles
and genres. The repetition of material is one of the major
compositional devices for the arrangement of parts in over-
arching musical form [2, 3, 4], be it a folksong, a minuet,
a sonata, a jazz standard, or a pop song. In general, mu-
sical form could be characterized in terms of exhaustive
segmentation, hierarchical grouping structure, rhythmic-
hypermetrical structuring, the form functionality of seg-
ments [3], and repetition structure. For the purpose of this
paper, three aspects of form are considered: a hierarchi-
cal organization [5], which is also reflected in hierarchical
harmonic structure [6]; repetition of formal constituents,
which is one of the most prominent and salient features of
form perception in human music cognition [1]; and pro-
totypes of formal organization (such as AABA) which can
characterize classical forms [3] but are also common struc-
tures in pop, jazz, and folk songs.
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Figure 1: A German 19th-century folksong melody on the
lyrics “Stille, stille, kein Geräusch gemacht” or “Bier her,
Bier her, oder ich fall um.”

The GTTM [5] defines grouping structure in terms of
a tree of hierarchical containment relations that provides
an exhaustive segmentation of the piece. GTTM’s prefer-
ence rules for grouping structure include Gestalt principles
[7] as well as repetition. In addition to grouping structure,
repetition structure is defined as a hierarchical grouping
tree that captures (optimal) reuse of material (exact or in
variation) in terms of groups of musical units and recur-
sive groups of groups. Repetition structure provides a full
grouping of a piece, however, it may potentially result in
a different tree than what is obtained by a general formal
analysis of a piece (see Figure 6). For human judgement of
form in general, repetition is not the only factor, as features
of (hyper-)metrical structure, form functions, or harmony
may play a role as well (see also below in section 4.2). Ac-
cordingly, the objective of a computational model of repe-
tition structure as an aspect of musical form may ultimately
require to take such aspects into account as well.

Repetition structure plays a role within a single piece as
well as over a corpus of pieces since abstract repetition pat-
terns generalize over a whole dataset or style. The melody
shown in Figure 1, for example, exhibits repetition of parts
on several levels: On the highest level, the melody follows
an ABA form, as the first four measures are literally re-
peated at the end (mm. 9-12). The B part (mm. 5-8) itself
consists of a repetition of a two-measure phrase (yellow).
Similarly, the first measure of the A part is repeated in the
second measure (blue). Even on the level of individual
notes, the direct repetition of a note is a prominent feature
of mm. 5 and 7.

In the context of form, repetition structure refers to the
re-occurrence of formal constituents (such as phrases and
sections) that form a hierarchical segmentation structure,
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Figure 2: A possible repetition tree of the melody in Figure 1. The leaves of the tree encode pitch and duration of the
melody notes. The second occurence of part A is identical to the first (not shown here).

as opposed to motivic or thematic material, for example.
An example of such a segmentation structure for the ex-
ample piece (Figure 1) is shown in Figure 2. Every formal
segment of the piece corresponds to a subtree in the repeti-
tion tree. Note that all occurrences of the same segment
share the same label and have exactly the same subtree
structure. For this reason, the repetition structure shown
in the tree can be more compactly described as a restricted
context-free grammar (CFG) which has one non-terminal
symbol for each segment (with terminal symbols for the
notes of the piece) and exactly one rule for each symbol,
encoding the decomposition of the corresponding segment.
This relationship between the repetition structure of a piece
and a compact representation of the piece as a CFG has
been utilized for compression-based pattern discovery al-
gorithms such as SEQUITUR [8].

Another aspect of the repetition tree shown in Figure 2
is that its rules use a limited set of formal prototypes, such
as αβα (e.g., Piece −→ ABA), ααβ (A −→ CCD), or αα
(B−→GG). In order to avoid confusion with the letters for
specific form parts, we denote these form templates with
greek letters, e.g., αβα, ααβ, or αα. A concrete instance
of a form template is denoted by applying the template to
specific segments: CCD = ααβ(C,D). While the rules
in a piece’s repetition grammar are specific to a particular
segment in that particular piece, the form templates estab-
lish a relation between different rules with the same shape,
within the same piece or across different pieces. We there-
fore call them meta rules.

This paper is a contribution towards an integrated com-
putational model of musical form, combining two impor-
tant aspects of form: repetition and formal prototypes. The
model characterizes the relationship between meta rules
and hierarchical repetition structure and provides a proof

of concept algorithm and evaluation for repetition structure
inference based on minimal description length [9].

2. RELATED WORK

Identification of repetition structure is closely related to
compression, as identification of redundant information is
important to achieve shorter encodings. An early exam-
ple of grammar-based compression is SEQUITUR, an al-
gorithm that infers a (not globally optimal) grammar for

a given sequence in linear time [8, 10]. For an overview
of approximate grammar-based compression, see [11, 12].
Besides inference of segmentation structure, grammar-
based compression algorithms have been used for tasks
such as error detection and tune classification [12, 13].
The principle of minimum description length has also been
used outside of grammar-based approaches, e.g., in com-
bination with hidden Markov models [14]. The approach
presented in this paper differs from previous smallest-
grammar approaches in two ways: the shape of the gram-
mar rules is not arbitrary but constrained to a set of for-
mal prototypes, and this constrained model is evaluated by
inferring the global optimum instead of an approximation,
which is generally NP-hard and thus only feasible for short
sequences.

The segmentation structure of a piece can also be in-
ferred based on criteria other than repetition. The GTTM
[5] defines grouping structure based on a set of well-
formedness and preference rules for recursively combining
events into larger segments. In the MIR community, the
analysis of musical form is known as music structure anal-

ysis (MSA) [15, 16, 17, 18, 19, 20, 21, 22]. MSA comes
in a variety of tasks, involving boundary detection, (hi-
erarchical) segmentation, the identification of segment la-
bels and relations, and combinations of these tasks. While
MSA uses a wide spectrum of supervised and unsupervised
methods, from matrix factorization to deep learning, the
definition of musical form in this context is usually given
implicitly in the form of a dataset (e.g., [21, 22]) on which
the model may be trained, and on which it is evaluated.
The present paper, in contrast, presents a theoretical contri-
bution towards an explicit definition of musical form, and
the resulting model is not intended as a solution to a com-
putational problem, such as performing a general segmen-
tation and labeling task. As a consequence, our evalua-
tion focuses on exploring the characteristic properties of
the model.

3. METHODS AND DATA

3.1 Problem Description

A specific repetition structure for a given piece can be
characterized through a piece-specific context-free gram-
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m1 : αα m2 : αβ

m3 : ααα m4 : αβα

m5 : ααβ m6 : αββ

m7 : ααβα m8 : αββα

Table 1: The set of meta rules used in this paper.

mar that generates exactly one string — the piece. We call
such a grammar a local grammar for the piece. It consists
of:

• a set of terminal symbols T , corresponding to the
unique atomic segments of the piece; 1

• a set of non-terminal symbols N , corresponding to
the unique composite segments of the piece;

• a starting symbol P that stands for the full piece;
• a set of production rules R.

Since each non-terminal symbol stands for a specific seg-
ment, R contains exactly one rule for each non-terminal
symbol, signifying the decomposition of the segment and
enforcing that all occurrences of the segment are decom-
posed identically. As a consequence, the rules are not al-
lowed to be (mutually) recursive since a segment cannot
contain itself as a proper subsegment. 2

In order to establish a relation between local repetition
grammars and general formal prototypes, the right-hand
side (RHS) of each rule must be an instance of a meta rule.
Meta rules are generally of the shape {α, β, γ, . . .}+ and
are instantiated by creating a bijective mapping between
letters and specific non-terminal symbols. For example,
the meta rule ααβα encodes the formal prototype AABA
and can be instantiated as

ααβα(S, T ) = ααβα{α 7→ S, β 7→ T} = SSTS (1)

where S ̸= T . Thus, a local grammar can express that a
piece has an overarching AABA structure by using a rule

P −→ ααβα(S, T ) (2)

that takes the starting symbol P to an instance of ααβα
with α = S and β = T . The set of meta rules can be cho-
sen freely to encode a set of typical formal prototypes. The
meta rules used in the following experiments are shown in
Table 1.

The goal of repetition structure inference is to find a
local grammar for a given piece according to some op-
timality criterion, such as musical plausibility, probabil-
ity, or description length (DL). In accordance with prior
approaches that use repetition grammars, our proof-of-
concept implementation searches for local grammars with

1 In the case of melodies, these atomic segments correspond to notes
and rests, but they could also correspond to polyphonic events (slices), or
previously annotated elementary phrases.

2 A unary identity rule (e.g. X −→ X) is not permitted. Other unary
rules are not possible because of the one-to-one correspondence between
segments and grammar symbols.

minimum description length, defined in analogy to [13] by
counting the symbols needed to encode the grammar:

DL(R) =
∑

r∈R

2 + |params(r)| (3)

where params(r) denotes the parameters of the meta rule
on the RHS of rule r. That is, for each rule we count one
symbol for the meta rule, one symbol for each parameter
of the meta rule, and one separator symbol 3 marking the
end of the rule. For example, the rule in Equation 2 has
a description length of 4: one meta-rule symbol (ααβα
or m7) 4 , two parameters (S and T ) and the separator. It
is not necessary to encode the left-hand side (LHS) of a
rule since there exists a canonical order of rules, starting
with the rule for P and then listing the rules in the order
in which their LHS symbols are introduced on the RHS of
other rules.

3.2 Algorithm

The minimal grammar for a given piece is found in a two-
stage process. First, a set of possible rules for each unique
segment of the piece is computed. Second, a set of rules
is selected from these candidates, ensuring that the result-
ing grammar is consistent and minimizing the cost of the
selected rules.

Algorithm 1 Enumerating all rule candidates.
1: function PARSE(input)
2: subs ← uniqueSubsequences(input)
3: chart ← {}
4: for seq ∈ sortByLength(subs) do

5: for s from 1 to |seq | − 1 do

6: cs ← COMPLETE(seq [: s], seq [s+ 1 :])
7: chart [seq ]← cs

8: return chart

9: function COMPLETE(left , right)
10: il ← chart [left ]incomplete

11: ir ← chart [right ]incomplete

12: bs ← binaryRules(left , right)
13: is ← incompleteConstituents(left , right , il , ir)
14: ns ← nAryRules(left , right , il , ir)
15: return (complete = bs ∪ ns, incomplete = is)

The first stage (Algorithm 1) begins with collecting all
unique subsegments of the piece. For each of these subseg-
ments, all possible decompositions according to the meta
rules are computed using dynamic programming, analo-
gous to the CYK algorithm: The segment is split at ev-
ery possible split point (l. 5), generating two subsegments
left and right of the split point. For binary meta rules
(αα and αβ), an instance of the rule can be identified di-
rectly by comparing the subsegments (l. 12). Meta rules

3 The separator is not strictly necessary since the length of the rule
is known from the meta rule, but it is included here to stay as close as
possible to [13].

4 ααβα is counted as one symbol since the set of meta rules is as-
sumed to be fixed and cannot be freely extended.
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of higher arity are decomposed into binary parts. For ex-
ample, the meta rule αβα can be decomposed into an in-
complete constituent αβ∗ and another α. When a segment
S = S1S2 has a decomposition into αβ(S1, S2), it ad-
ditionally stores an αβ∗(S1, S2) item (l. 13). At a later
point, a larger segment T = SS3 = S1S2S3 retrieves the
item S −→ αβ∗(S1, S2), checks whether S3 = S1, and
accordingly stores a rule T −→ αβα(S1, S2). Similarly,
all larger meta rules are constructed from incomplete con-
stituents such as αβ∗ and αα∗ (l. 14).

Once the possible decompositions of each subsequence
are known, the second stage of the algorithm converts the
set of possible rules into an integer linear program (ILP)
which then extracts a set of rules with minimal cost. Each
subsequence of the input of lenght ≥ 2 corresponds to
a potential non-terminal symbol, so one binary indicator
variable ssymb for each symbol symb encodes the inclu-
sion of the symbol in the grammar. Similarly, the inclu-
sion of each candidate rule is indicated by a binary variable
srule . The optimization problem is then given by

min
r∈{0,1}|rules|

s∈{0,1}|symbols|

∑

rule∈rules

rrule ·DL(rule)

s.t. ssymb =
∑

rule∈rules
LHS(rule)=symb

rrule

rrule ≤
∑

symb∈RHS(rule)

ssymb

|RHS(rule)|

sstart = 1.

(4)

Two constraints define the relationship between symbols
and rules: each included symbol requires exactly one cor-
responding rule; and each included rule requires the sym-
bols on its right-hand side. 5 A third constraint requires
the presence of the starting symbol which corresponds to
the full input sequence. The rules and symbols are then
selected by minimizing the total cost of the included rules
as defined in Equation 3.

4. RESULTS AND DISCUSSION

4.1 Quantitative Evaluation on a Dataset

For evaluating the above approach, we infer the minimal
grammars (under the meta rules from Table 1) for the 298
shortest melodies from the Essen folksong collection [23],
with a length of 8 to 24 notes. The melodies are repre-
sented as sequences of notes (including rests), consisting
of pitch (or a rest symbol) and duration. Other aspects,
such as the position of a note in a measure, are not taken
into account. The minimization algorithm is implemented
in Julia and is available online. 6 For ILP optimization
we use the JuMP framework [24] together with the Gurobi
solver backend. 7

5 The logical conjunction of the RHS symbols is expressed as a nor-
malized sum instead of a product in order to maintain linear relationships
between the variables in the program.

6 https://github.com/DCMLab/form-repetition-ismir23
7 Gurobi requires a license, which is provided freely for academic pur-

poses. Alternatively, the JuMP framework supports using different solver

(a) Grammar size vs. input length.

(b) Optimal grammar size vs. Monte-Carlo minimum.

Figure 3: Comparison of the description length of the min-
imal local grammars to (a) the input sequence length and
(b) local grammars obtained through Monte-Carlo mini-
mization.

Since the local repetition grammar formalism is not de-
signed to obtain optimal compression of the input sequence
(but uses description length as a rather arbitrary proxy for
the plausibility of a specific segmentation), we cannot ex-
pect very good compression rates. Indeed, when compar-
ing the length of the input sequences to the total description
length of the corresponding minimal grammar, the gram-
mars are usually larger than the original piece (Figure 3a)
with a average ratio of 2.47 (geometric mean). This indi-
cates that restricting the grammars to a small set of meta
rules is not sufficient to achieve an actual compression of
the dataset, at least when only considering exact repetition.

Since finding the global minimum is expensive (see be-
low), most grammar-based compression algorithms only
attempt to approximate the global optimum [8, 12, 13].
We estimate the payoff of inferring the global optimum
by comparing the optimal description lengths to approx-
imate solutions obtained by a Monte-Carlo minimization
process: Beginning with the start symbol, the rule for each
required symbol is chosen randomly from the set of possi-
ble rules, and the corresponding RHS symbols are added to
the list of required symbols. This process is repeated until
all required symbols are covered. Out of 10,000 randomly
sampled grammars for each piece, the smallest grammar
is selected. The results are shown in Figure 3b. For the

backends.
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(a) Runtime relative to input length.

(b) Runtime relative to possible rules.

Figure 4: The measured runtime of the optimization step
relative to (a) the length of the input sequence and (b) the
number of possible rules for the sequence. Note that in
both cases, the time axis is scaled logarithmically, so the
fitted exponential curves appear as straight lines.

given dataset, the Monte-Carlo minimum is on average
1.08 times longer than the true grammar. In many cases,
the Monte-Carlo process finds a true optimum, since the
sample size of 10,000 is large enough to find an optimal
solution by chance. However, with growing input size,
the range of possible grammars grows exponentially, in the
worst case. 8 So, while a Monte-Carlo estimate can be a
useful approximation on short sequences, it cannot keep
up with the size of the search space for longer sequences,
unless the sample size is increased exponentially as well.

The runtime behavior of the optimization problem is
shown in Figure 4. The problem of finding an unrestricted
minimal CFG is known to be NP-hard [13]. The runtime
for the restricted case relative to the input length is shown
in Figure 4a with logarithmic scaling. Since the actual size
of the optimization problem depends not only on the in-
put length but also on the amount of redundancy within
the sequence, Figure 4b shows the runtime relative to the
number of possible rules obtained in the first stage of the
algorithm. In both cases, the runtime grows approximately
exponentially with the number of rules. This is supported
by an exponential regression in both figures, fit as a linear
function in logarithmic space which minimizes the squared

8 The number of subsequences grows quadratically, and the number of
possible grammars is a product over all substrings.

(a) Overall meta rule usage.

(b) Meta rules used at the top of the form tree.

Figure 5: The meta rules used in the inferred minimal
grammars for the melodies in the dataset.

ratio between measured and predicted runtime instead of
the squared difference.

The distribution of meta rules in the inferred grammars
is shown in Figure 5a. By far the most common rule type
is αβ, which is not surprising since it is the only rule type
that does not require any form of repetition. The rule type
αα is used very infrequently, which may seem surprising
due to its simplicity. However, all other rules (except for
αββα and ααα which are similarly rare) have one part
that does not need to be repeated and are thus applicable
to a wider range of situations. The distribution of starting-
rule types is shown in Figure 5b. These rule types cor-
respond to the overarching form of the melody in terms of
exact repetition. The even stronger prevalence of αβ in this
case indicates that there is very little exact repetition on the
highest form level in the given dataset of melodies, which
might be biased due to the focus on short melodies. On the
other hand, this lack of repetition indicates that a model of
formal segmentation cannot be exclusively based on repe-
tition but needs to take into account at least the possibility
of varied repetition, as well as other markers of form such
as cadences and meter.

4.2 Qualitative Evaluation on an Example Melody

Table 2 displays the minimal grammar for the example
piece in Figure 1. Compared to the overall distribution of
meta rules, the grammar uses many repeating rules, which
reveals that the piece features an unusual amount of inter-
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Figure 6: The minimal tree for the example piece in Figure 1.

rule meta rule cost

r1 S198 −→ S277 S398 αββα(S277, S398) 4
r2 S277 −→ S98 S164 αβ(S98, S164) 4
r3 S398 −→ S347 g2 αβ(S347, g2) 4
r4 S98 −→ S173 S18 ααβ(S173, S18) 4
r5 S164 −→ g4 e1 αβ(g4, e1) 4
r6 S347 −→ d4 S136 ααβ(d4, S136) 4
r7 S173 −→ g2 e2 αβ(g2, e2) 4
r8 S18 −→ f4 e4 αβα(f4, e4) 4
r9 S136 −→ f4 e4 ααβα(f4, e4) 4

Table 2: The minimal grammar for the example piece in
Figure 1.

nal repetition. As the derivation tree in Figure 6 shows, the
optimal solution found by the algorithm captures many as-
pects of the human intuition. Similar to the hand-annotated
segmentation in Figure 2, the minimal tree captures the
overarching repetition of mm. 1-4 and mm. 9-12 as well as
mm. 5-6 and mm. 7-8. However, whereas the human intu-
ition groups the single note repetitions together and splits
non-repeating segments according to bar units (mm. 5, 7),
the algorithm finds that other groupings provide an even
more economic description length in terms of rule usage,
which leads to a somewhat counter-intuitive dangling half
note g at the end of the phrase. This illustrates that human
decisions in terms of repetition structure do not purely opti-
mize repetition, but that they take rhythmic-metric bound-
aries into account. Therefore, the objective of a model of
repetition structure that captures or comes close to the hu-
man intuition needs to be further developed to also incor-
porate such features. A candidate model may be the hier-
archical model of rhythmic structure as a formal grammar
[25].

5. CONCLUSION

In this paper we have presented a computational model of
musical repetition structure as an aspect of musical form.
Since repetition structure is an aspect of human music cog-
nition, the overarching objective of our approach is to ap-
proach human listening. The model captures repetition
structure with a special form of context-free grammar, in
which the rewrite of each category is only defined once

such that it captures a unique repeating fragment of a given
piece. A set of meta-rules defines the generic types of rep-
etition patterns that could occur within a piece. The model
is very generic and can also be applied to more complex
textures as well as music of all styles and cultures, as long
as a representation as a sequence of symbols is meaningful.

Inferring the optimal grammar with respect to a suitable
objective criterion (such as description length) is able to ef-
fectively capture the repetition structure in a piece. Other
objective criteria (e.g., prior probabilities of meta rules)
can be used in a similar way since the algorithm does not
depend on a fixed cost function. On the other hand, maxi-
mizing the redundancy that is captured by a segmentation
does not ensure that the segmentation is a good analysis of
the form of a piece. For one, not all repetition and reuse of
material is exact, which is evident from the low proportion
of repeating meta rules used in the example dataset. Sim-
ple forms of varied repetition could be integrated in our
model relatively easily: given a suitable measure of sim-
ilarity, not only identical segments are grouped together
but also sufficiently similar segments. More sophisticated
versions of this model could capture how variations are
produced through the generative process of the grammar
(e.g., by making different decisions in different subtrees),
or how only certain aspects of a segment are repeated while
others change (e.g., using the same rhythm with a differ-
ent melodic contour). Furthermore, even when all repeti-
tions are exact (as in the example piece), capturing repeti-
tion is not the only criterion for grouping tokens into for-
mal segments, as other criteria such as cadences, rhythm
and meter, formal function, or harmonic and contrapuntal
schemata interact with grouping as well.

The runtime complexity of finding the smallest gram-
mar for a given piece is generally exponential. For suffi-
ciently short pieces, exact inference can be approximated
probabilistically, but there is no guarantee that the result-
ing suboptimal grammars resemble the true optimum. For
larger inputs, the search space grows exponentially, so
naive Monte-Carlo approximation can become arbitrarily
bad. This indicates that further research is required to
find plausible estimates of formal structure, integrating the
technical aspect of optimization with the musical problem
of defining what constitutes a plausible analysis.
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