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ABSTRACT

In piano performance, some mistakes stand out to listeners,

whereas others may go unnoticed. Former research con-

cluded that the salience of mistakes depended on factors

including their contextual appropriateness and a listener’s

degree of familiarity to what is being performed. A con-

spicuous error is considered to be an area where there is

something obviously wrong with the performance, which a

listener can detect regardless of their degree of knowledge

of what is being performed. Analogously, this paper at-

tempts to build a score-independent conspicuous error de-

tector for standard piano repertoire of beginner to inter-

mediate students. We gather three qualitatively different

piano playing MIDI data: (1) 103 sight-reading sessions

for beginning and intermediate adult pianists with formal

music training, (2) 245 performances by presumably late-

beginner to early-advanced pianists on a digital piano, and

(3) 50 etude performances by an advanced pianist. The

data was annotated at the regions considered to contain

conspicuous mistakes. Then, we use a Temporal Convo-

lutional Network to detect the sites of such mistakes from

the piano roll. We investigate the use of two pre-training

methods to overcome data scarcity: (1) synthetic data with

procedurally-generated mistakes, and (2) training a part of

the model as a piano roll auto-encoder. Experimental eval-

uation shows that the TCN performs at an F-measure of

0.78 without pretraining for sight-reading data, but the pro-

posed pretraining steps improve the F-measure on perfor-

mance and etude data, approaching the agreement between

human raters on conspicuous error labels. Importantly, we

report on the lessons learned from this pilot study, and what

should be addressed to continue this research direction.

1. INTRODUCTION

A commonly held notion in automatic music performance

analysis (MPA) research is that deviations of music perfor-

mances from their underlying music score can be regarded

as performance mistakes. But previous music pedagogy
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research suggests that some of such deviations are more

apparent to a listener than others [1, 2]. For example, a

chord that is voiced differently from that written in the

score might be overlooked, but missing a note in a char-

acteristic motif or playing a note that clashes with the un-

derlying harmony would stand out. Repp [1] referred to

errors of the former category as perceptually inconspicu-

ous. Accordingly, we consider a conspicuous error to be

"a performance error that can be detected by the majority

of listeners with a formal music training, regardless of their

degree of knowledge about the underlying music score of

a performed piece."

This paper explores the potential of building score-

independent models that detect regions of conspicuous er-

rors in MIDI piano performances of piano solo pieces

based on Western music theory, as shown conceptually in

Figure 1. Based on the intuition that a listener is capable

of detecting obvious mistakes in piano performances by

listening to the surrounding context, we use a non-causal

variant of the Temporal Convolutional Network (TCN) [3]

We gather datasets for our task, since despite the plethora

of work in automatic MPA that has spanned both the

score-dependent (or reference-dependent) [4–7] and score-

independent paradigms [8–13], there is no data available to

support our desired goal.

More specifically we: (1) gather three datasets of con-

spicuous errors in various performance situations, report-

ing on the dataset creation process and annotation proce-

dure, (2) study the properties of the annotated data through

(i) observing the annotated data for sources of inconsisten-

cies, (ii) analyzing the relationship between inconspicuous

and conspicuous errors and (ii) analyzing the ambiguity of

the task through listening experiments, (3) present a model

based on TCN to identify conspicuous errors from piano

MIDI performance and discuss its effectiveness through

experimental evaluation, and (4) present and evaluate two

pre-training strategies, depending on the nature of the un-

labeled data that can be acquired. A subset of the gathered

data and listening examples can be found on the compan-

ion page 1

2. RELATED WORK

We distinguish between locally and globally-based auto-

matic MPA. In local approaches (such as the majority

1 https://bit.ly/3UCCiea
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Figure 1: Illustration of our problem definition. Some errors stand out more than others in performance. Our goal is to

identify segments containing conspicuous errors to the listeners, without the need for music score data.

of score-dependent performance assessment), the analysis

is conducted at a note (or equivalent) level. Global ap-

proaches learn from data mapping large performance snip-

pets (often entire performances) to overall evaluations.

Local approaches include score-based performance

mistake identification, which tends to cover note-level (or

equivalent) errors such as pitch [1, 2, 4, 7] and rhythm mis-

takes [2]. Pitch mistakes are essentially categorized as

pitch intrusions (extra note) and pitch omissions (miss-

ing note), and occasionally pitch substitutions (wrong

note in-place of a correct one), although the latter can be

treated the joint occurrence of the former two [1]. Align-

ment/score comparison-based approaches for detecting de-

viations are locally-based by definition. Piano assessment

examples of such include [4,7,14], which cover pitch mis-

takes. Not all local approaches are score-dependent, such

as those which capture note-level aspects relating to the ar-

ticulation or sound quality. Examples are [15] and [12], for

piano (3-point scale for quality of legato or staccato) and

trumpet (7-point scale) respectively.

Global approaches to performance assessment have

usually been score-free, with the exception of [5] which

utilizes the score as input. Usually, such approaches

are based on regression models mapping features to

performance-wide ratings [9, 11, 16, 17], or end-to-end

approaches which learn correspondences between whole

or parts of performances to performance wide ratings

[5, 10, 13]. Such ratings can be discrete or continuous and

can span several performance dimensions. Although the

connection has not been explicitly made, we speculate that

most likely they would excel in capturing conspicuous per-

formance mistakes that manifest as consistent errors/error

patterns across a performance.

Accordingly, we frame our approach as a score-

independent locally based one since our goal is to return

binary labels for each time point in a piano MIDI roll re-

flecting the presence or absence of an obvious performance

mistake. Therefore, we need similarly annotated data for

piano MIDI performances to train our models. Despite

score deviations not necessarily indicating conspicuous er-

rors, our desired output is closest to that of score-based

performance mistake identification systems because their

output can be interpreted as a binary sequence indicating

the presence or absence of a score deviation albeit with-

out perceptual relevance. However, their methods are not

applicable for our problem formulation.

3. DATA

We obtain 3 sources of non-commercial, piano MIDI per-

formance data for different playing situations:

Sight-Reading Data (SR): 103 sight-reading perfor-

mances comprising mostly of piano reductions of popular

classical pieces, arranged for beginner to intermediate

difficulty. They are played by seven beginning to interme-

diate adult pianists with formal music training.

Performance Data (PF): 245 performances of approx-

imately 3 minutes each, collected from a digital piano

recording app. Not all performed pieces are known, but

most of them are pop and classical, that are either read

from a score, or semi-improvised. While user attributes

are unknown, the performance data suggests that the skill

levels range between late-beginner and early-advanced.

Burgmüller Data (BM): 50 performances from

Burgmüller’s 25 Etudes, Op. 100 recorded twice on

a digital piano. They are played by an advanced pianist

who had previously played the etudes. The pianist

practiced each etude briefly before recording two takes.

The total time for the SR, PF, and BM are 379, 723, and

60 minutes respectively, of which 128, 176, and 3 minutes

were annotated as conspicuous errors. Non-overlapping

splits of SR and PF are used for training, validation, and

testing, whereas BM is kept exclusively for testing. The

annotation procedure is described in 3.1. SR and PF sub-

sets cannot be shared, but short excerpts of them, and the

full BM set can be found in the companion page.

3.1 Annotation Procedure

We had 2 annotators: Annotator 1, who has experience

as a classical piano teacher, and Annotator 2, has train-

ing in music production and is also an intermediate-level

pianist. We asked Annotator 1 to label the SR and BM
data, and asked Annotator 2 to label the PF data, and to

indicate (yes/no) whether they know the piece being per-

formed. For the SR and PF subsets, annotators were given

instructions to annotate obvious performance mistakes that

can be recognized even without checking the score, and it

was left open to them to decide what that entails. The an-
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notation was done with Cubase 2 , and they were asked to

add an annotation at MIDI note 0 covering the span of the

time window which they judge as pertaining to an error.

Despite the potential label ambiguity due to the openness

of the instructions, we wanted to observe the judgments of

different people in this pilot study so that we can improve

the data annotation protocol for future experiments.

The BM subset was treated differently because it has

been played off of known music score data. First, the per-

formances were automatically annotated with sites of score

deviations using a score alignment system. Then, the anno-

tator manually reviewed the labels by listening to the per-

formance while looking at the corresponding sheet music,

and added missing deviations from the score or removed

those which do not reflect errors. The annotator simultane-

ously manually labeled each error as conspicuous or not.

3.2 Annotation Examples and Pitfalls

Some types of errors were labeled more consistently than

others. The more common error modes, as shown in Fig-

ure 2, include insertions and deletions of notes that do not

fit in musical context, abrupt pauses, and unstable rhythm

coming from hesitations during playing. Annotators have

shown reasonable consistency in terms of label location

and span when mistakes are relatively short after which

the player recovers into their playing flow, such as those

of Figure 2. However, more compound deviations were la-

belled ambiguously. For example, sometimes after an error

a player would ’sneak-in’ some practice before resuming

the flow of the piece. In such examples, if the short phrase

being practiced sounds out of context, but in itself is co-

herent, an open question is where the label should be, and

whether it should be one continuous label or an intermit-

tent one.

Moreover, we also observe the presence of non-

annotated conspicuous mistakes in the data, but there is

an inherent ambiguity in how one would assess a "bad but

acceptable" and "erroneous" performance". In a discus-

sion with Annotator 1 after the annotations, they indicated

that their mental model for deciding whether a segment

should be labelled was dependent on every performance.

If a region contrasts with their expectation of the music

given how that performer is playing, then it was annotated.

This opens the possibility that annotators have calibrated

what should count as a mistake based on individual per-

formance. Silence regions are one of the main sources of

ambiguity, since silences between correct portions are non-

annotated regardless of their length, but silences within or

surrounding mistake portions often receive a mistake label.

3.3 Analysis of the dataset

3.3.1 Conspicuous to total label ratio in BM

Although the ratio of annotated regions to total perfor-

mance time is very small in the BM data, its annotation

approach of allows us to investigate the relationship be-

tween the set of errors obtained by comparing with a score

2 https://www.steinberg.net/cubase/

Figure 2: Examples of musical attributes that seemed to be

consistently annotated as conspicuous errors (in red). (a)

missed note that breaks a pattern, (b) harmonically unnat-

ural note insertions, (c) repetition, (d) abrupt pauses.

(presumably all errors) to conspicuous errors. We found

that 59% of all identified errors were perceived as conspic-

uous. Note that this is a very subset-specific result, because

it depends on the ratio between subtle and obvious errors

in the performances themselves as much as the qualities of

the performer and the annotation.

3.3.2 Listening test of conspicuous errors

Through a listening test of some performance portions la-

beled as conspicuous errors and unlabeled areas for PF,

we assess how different subjects agree with the annotations

and among themselves. We chose PF because we expect

it to contain a nice balance between famous and unknown

pieces for each subject.

Conditions: We recruited 31 subjects, not necessarily

trained musicians. 84% of the subjects had experience

playing a musical instrument, and 97% of the subjects had

experienced either reading or notating music scores. Each

subject is asked to first listen with headphones to a snip-

pet from the PF dataset, ranging from 4 to 12 seconds.

The snippet is either (1) a randomly chosen conspicuous

mistake segment, with 2 seconds of padding on either end,

or (2) a segment that contains no error label, whose dura-

tion is the average duration of the conspicuous error seg-

ments within the piece, plus two seconds of padding. The

subjects were allowed to skip questions and no constraints

were given on the number of times the snippet may be lis-

tened to. The subject is then asked to choose if they hear

an obvious mistake or not, along with the subject’s knowl-

edge of the piece. This procedure was repeated 15 times.

Then, we scale the counts obtained when presenting non-

conspicuous snippets, to provide a sensible assessment of

the dataset itself. That is, the ratio of snippets contain-

ing the inconspicuous error to the conspicuous ones, ρ0,

should match the ratio between the total duration of the

inconspicuous error labels to that of the conspicuous la-

bels in the dataset, ρ1. Thus, we scale the count of the re-

sponses obtained when presenting the inconspicuous error

by ρ1/ρ0.

Results and discussion: A total of 462 responses were

obtained (30-31 responses per snippet). The precision, re-

call, and the F-measure of how correctly the subjects iden-

tified the mistakes were 0.37, 0.50, and 0.43, respectively.

The result suggests that the notion of conspicuous error is

not so clear-cut when only presenting a short snippet sur-

rounding an error, without providing a longer musical con-

text. We also found that famous pieces tend to get more

consistent responses. To check this, we computed for each
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Figure 3: Our method reads a piano roll and outputs the

probability of the center of a segment being a conspicuous

error. It is comprised of a TCN backbone and a 1d convo-

lution classifier head.

snippet (1) the probability that a song is unknown and (2)

the entropy of the probability that a subject would identify

that snippet to contain an error. The correlation between

(1) and (2) was 0.63, indicating a moderate correlation be-

tween how well the piece is known among the subjects and

how consistent are the labels.

4. METHODOLOGY

Given a sequence of piano note events, the goal is to infer

a time sequence of binary labels that indicates the presence

of conspicuous errors at a given time.

4.1 Model

Our model is a TCN-based network that receives a piano

roll X as input and emits a binary label of conspicuous

error e at each time frame of the piano roll. As shown in

Figure 3, it is comprised of a feature extraction backbone

followed by a classification head. We choose to assign a

label at frame-level instead of note-level, since not only

the note itself but its absence can indicate errors.

4.1.1 Piano Roll Input

Two piano rolls are extracted for a given sequence

of piano note events, one for the note onset and an-

other for the sustained portion according to the key de-

pression. Specifically, suppose a set of I MIDI note

events (start time, end time, pitch, velocity) given as

{(si, ei, pi, vi)}
I
i , and a sampling rate of R are given.

Then, a 256-dimensional piano roll X ∈ R
256×T is com-

puted, such that X(pi, round(Rsi)) = vi, and X(128 +
pi, round(Rs)) = vi for s ∈ [si, ei]. Partitura [18] is used

for the computation, and R is set to 16 Hz.

Notice that the sustain pedal information is ignored in

the computation of the piano roll. This is necessary to pre-

vent the piano roll of the sustained portion from smear-

ing since a beginning pianist has a tendency to keep the

pedal depressed which causes and excessive elongation of

the computed note durations.

4.1.2 Conspicuous mistake detector

We model the mistake detector as a simple TCN compris-

ing of a feature extraction backbone followed by a classi-

fication head, based on preliminary experiments exploring

model architectures and inspired by the approach in [13].

Feature extraction backbone: Given the piano roll X ,

the feature extraction backbone computes a feature φ ∈
R

D×T . We set D = 256 in this paper. This is realized as

a 5-layer noncausal TCN with dilation of [1,2,4,8,16], and

for all layers, has an output channel size of 256, kernel size

of 3, uses ELU nonlinearity and has a residual connection,

similar in spirit to [3].

Classification head: Given the feature φ, a network com-

prising of three layers of 1x1 convolution with output chan-

nel sizes [256,64,1] with residual connections and ELU

nonlinearity followed by a sigmoid function is used to ar-

rive at the conspicuous error posterior probability e.

4.2 Training strategies

The model is trained using RAdam with a learning rate of

10−3, as to minimize the cross-entropy between the con-

spicuous error probability e and the posterior distribution

computed from the ground-truth label. We augment the

data by randomly transposing the entire MIDI file in the

training data. Furthermore, when computing the cross-

entropy loss, we smooth the ground-truth label to account

for annotation inconsistencies in the start and end times

of the conspicuous error segment. Furthermore, since it

is difficult to obtain annotations of conspicuous errors, we

pre-train the model as well, using the following two strate-

gies.

4.2.1 Pretraining the feature extractor as an autoencoder

The feature extractor can be trained in an unsupervised

manner, by training it as an autoencoder for a much larger

collection of piano performances in the wild. Specifically,

we train an auto-encoder using the feature extraction TCN

introduced earlier as the encoder and a TCN with trans-

posed 1d convolutions instead of a 1d convolution as the

decoder. This way, the space of φ is pre-trained as to model

the space of piano performances within a given receptive

field of a TCN. This method could be useful if a large

dataset of performances of unknown performance qualities

are obtainable.

4.2.2 Pretraining the model with synthetic mistake labels

The model can also be pre-trained on performance data

onto which mistakes are simulated and corresponding mis-

take labels are inserted to match the expected format of

data in Section 3.1. Specifically, we apply systematic ad-

justments to a set of mistake-free performances and modify

the note events, in a manner inspired by performance mis-

takes made by beginning adult pianists [19]. For each note

event, with probability pc we modify the note in one of the

following ways:

1. With probability po omit a note with a probability po

2. With probability pr replace a note, to the same

note transposed n semitones, to simulate hitting the

wrong key.

3. With probability pi insert a note that is transposed

by n semitones.
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Method Precision Recall F-measure

Baseline 0.79 0.80 0.78
SYNTH 0.65 0.76 0.69

SYNTH(FT) 0.61 0.69 0.62
AE 0.55 0.59 0.55

AE+SYNTH 0.44 0.65 0.51

(a) SR Data

Method Precision Recall F-measure

Baseline 0.28 0.46 0.33
SYNTH 0.27 0.54 0.34

SYNTH(FT) 0.30 0.61 0.38
AE 0.28 0.52 0.34

AE+SYNTH 0.27 0.63 0.36

(b) PF Data

Method Precision Recall F-measure

Baseline 0.26 0.36 0.26
SYNTH 0.26 0.69 0.35

SYNTH(FT) 0.26 0.49 0.32
AE 0.27 0.46 0.31

AE+SYNTH 0.28 0.52 0.35

(c) BM Data

Table 1: Results for different training strategies

4. With probability pp pause the performance by a

small amount distributed uniformly between 0.3 and

0.8 seconds. With probability ppr, repeat the last

played note.

5. With probability ps pause the performance by a large

amount distributed uniformly between 2 and 4 sec-

onds. Repeat the last played note.

In this paper, we set pc = 5%, po = 10%, pi = 39%,

pr = 39%, ps = 2%, and pp = 10%. Furthermore,

for note replacement and insertion, n is chosen so that

n = 1, 2 are chosen with probabilities of 22% and n = 4, 6
by 2%. For a set of mistake-free performances, we ob-

tained 260 hours of mostly jazz and classical MIDI piano

performances. The quality and repertoire are comparable

to those available from Yamaha PianoSoft 3 .

This method is useful if many performances that are

known to be relatively error-free are obtainable Further-

more, this idea may possibly be used for data augmenta-

tion, at the risk of increasing false positives, since not all

synthetic errors sound conspicuous, as also hinted by [1,2].

4.3 Experiment: Model Evaluation

We evaluate our model using different training strategies.

4.3.1 Experimental conditions

Our model has been trained with the following strategies:

1. Baseline - The model is trained on SR and PF data.

2. SYNTH - Same as Baseline, in addition to the inclu-

sion of a subset of the synthetic data introduced in

Section 4.2.2 during training and validation.

3. SYNTH(FT) - The model is pretrained on the syn-

thetic data, then fine-tuned using SR and PF. This

3 https://shop.usa.yamaha.com/

simulates a situation where a new annotated dataset

becomes available after traing a model solely trained

on a synthetic data.

4. AE - Train TCN autoencoder introduced in Sec-

tion 4.2.1 as a pretraining step for the backbone

TCN, using approximately 100,000 MIDI perfor-

mances played by various users. The set of perfor-

mances does not contain SR PF or BM, although it

is obtained from the same source as PF. The model

is fine-tuned on SR and PF.

5. AE+SYNTH - Use the pretrained autoencoder back-

bone and fine-tune using SR, PF and the synthetic

data.

The trained models have been validated on SR and PF, and

tested on a test split of SR, PF, and the entire BM.

As the metric, we have evaluated the transcription

precision/recall/F1-measure using mir_eval [20], treat-

ing the estimated and the ground-truth annotations as note

events occurring at a predefined pitch. When computing

the transcription metrics, the note onset and offset toler-

ances have been set to 2 seconds. Furthermore, based

on the validation set, the ends of the estimated segments

have been padded by 0.2 seconds and overlapping seg-

ments have been merged.

4.3.2 Results and discussion

The results are shown in Table 1. For PF and BM datasets,

the augmentation strategies offer some improvements. The

two strategies proposed, i.e., the use of synthetic data and

autoencoder, also result in improvements. In general, both

strategies tend to improve the recall rate, suggesting that

they provide similar qualitative improvements, and either

one can be used depending on the data available.

Despite the augmentation strategies, the F-measures for

PF and BM data suggest future room for improvement,

even taking into account the ambiguity of conspicuous

errors. The PF and BM data are difficult to infer, as

seen by the differences in the F-measure between the SR
dataset and the two. As another example, the validation

F-measure of the models on the synthetic dataset is about

0.60. This suggests that the model is moderately capable of

pin-pointing the ground-truth labels if they are easy to clas-

sify, or generated stochastically but systematically. At the

same time, however, the model has room for improvement,

as the best-performing F-measure of 0.38 on the PF dataset

falls somewhat short of the oracle F-measure of 0.43, as

discussed in Section 3.3.

The method performs well for the SR data, perhaps

because most of the mistakes are quite conspicuous in

a sight-reading situation, especially compared to PF and

BM, both of which contain mostly beginner-intermediate

performances with occasional mistakes. The performance

tends to drop as more pretraining steps are added, presum-

ably because the pretraining data mostly contain data of the

same type as the PF set, increasing the disparity between

the training data and the test data. In sight-reading situa-

tions, the results suggest it is sufficient simply to train on a
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(a) True positives. The black band indicates the detected conspic-
uous error with different training strategies. The model presum-
ably responds to (a) repetition, (b) silences, (c) slight hesitations
in playing, (d) note insertions, and (e) lack of synchrony voices.

(b) False positives. The model presumably confuses (a) the re-
peated motives as an error, (b) rhythm with rest as abrupt pauses,
(c) an audible but weak note with a note deletion, and (d) a long
chord after a fast passage with hesitations.

Figure 4: Examples of typical operation and failure modes.

dataset that solely contains data from the same set, instead

of pretraining or augmenting the dataset with typical ama-

teur performances containing some conspicuous errors.

4.3.3 Qualitative insights of the estimates

Figure 4 shows some examples of true positives that are

consistent across different strategies and consistent false

positives. The proposed method tends to capture repeti-

tion, pauses, hesitations, and note insertions that occur in

narrow pitch intervals as mistakes. At the same time, how-

ever, the very same properties arising from musical expres-

sion or composition are detected as false positives, such

as repeated motifs, ornaments, and grand pauses. Even

though such musical aspects are superficially performed

similarly to the aforementioned mistakes, humans are ca-

pable of differentiating between genuine performance mis-

takes and those within musical contexts. This suggests that

the model has room to improve by modeling the underly-

ing composition better. The readers are invited to check

the companion page for examples.

5. LIMITATIONS AND IMPROVEMENTS

Our work opens door to many open problems that need to

be solved, some more fundamental than others.

Problem definition and annotation protocol: More

work is needed to define the concept of conspicuous er-

rors, and how the task should be evaluated from a music

technology perspective. Accordingly, a more comprehen-

sive protocol for data collection should be developed. Al-

though we had kept the annotation instructions open to also

develop an understanding of annotator behavior, it became

evident that our data collection approach does not guaran-

tee that the labels we have are for solely conspicuous er-

rors. In [1], conspicuous errors were identified in a music

performance by finding the subset of agreed-upon mistake

labels between multiple listening subjects.

To define manifestations of conspicuous errors, a mid-

point should be found between a rule-based approach and

one learned from empirical labels. The outcome should be

a set of error descriptions, some of which happen at partic-

ular time instants and some over longer windows, whether

continuous windows or a longer span of intermittent la-

bels. However, since the conspicuousness of errors is in-

spired by a perceptual idea, we think these errors should be

defined through an empirical process albeit better defined

than the one in this study to avoid the same pitfalls.

Synthetic mistakes: Synthetic data is important for

improving performance, but current synthesized mistakes

sound unnatural. A simple example was a case of induced

pitch insertions, where it seemed impossible that someone

can perform with such confidence and tempo despite the

extent of out-of-context pitch insertions. We observe that

beginners make mistakes and employ recovery strategies in

a manner that is more complex than the presented method,

so a better understanding of beginning pianists’ behavior

is necessary to create more natural-sounding mistakes.

Listener, player, expression, and style: Conspicuous

errors are dependent on the listener’s knowledge of the

piece and the proficiency of the performer. Furthermore,

conspicuous error and expression are two sides of the same

coin. For example, hitting an adjacent key can either come

across as an expressive ornament or a conspicuous error.

This suggests that conspicuous error detection should in-

herently be conditioned on the style, the level of the lis-

tener, and the player’s proficiency.

Connecting with pedagogy and edu-tainment: The

impact of music education software which provides anal-

ysis solely founded on rigid note-level rhythmic and pitch

correctness has been challenged [21] on the basis that users

might end up too focused on playing too correctly (almost

robotically) to attain the highest scores. There are many

pedagogical considerations for designing useful automatic

assessments [22].

6. CONCLUSION

This paper presented a study on detecting conspicuous per-

formance mistakes for a piano solo performance of begin-

ning to intermediate players. We (1) clarified the idea of a

conspicuous error in line with previous research, (2) gath-

ered locally annotated piano MIDI performance data, and

(3) discussed sources of inconsistencies in our data through

analysis of the annotation procedure and subjective tests.

Although some of our models show an acceptable perfor-

mance on the test split of the SR data subset, we find that

the our pre-training suggestions do not provide remarkable

performance improvements.
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