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ABSTRACT

Nowadays, humans are constantly exposed to music,

whether through voluntary streaming services or incidental

encounters during commercial breaks. Despite the abun-

dance of music, certain pieces remain more memorable

and often gain greater popularity. Inspired by this phe-

nomenon, we focus on measuring and predicting music

memorability. To achieve this, we collect a new mu-

sic piece dataset with reliable memorability labels us-

ing a novel interactive experimental procedure. We then

train baselines to predict and analyze music memorabil-

ity, leveraging both interpretable features and audio mel-

spectrograms as inputs. To the best of our knowledge,

we are the first to explore music memorability using data-

driven deep learning-based methods. Through a series

of experiments and ablation studies, we demonstrate that

while there is room for improvement, predicting music

memorability with limited data is possible. Certain intrin-

sic elements, such as higher valence, arousal, and faster

tempo, contribute to memorable music. As prediction tech-

niques continue to evolve, real-life applications like music

recommendation systems and music style transfer will un-

doubtedly benefit from this new area of research.

1. INTRODUCTION

Music memorability is essential and has a wide range of

commercial applications. For instance, content creators

and marketing teams can use unique visual aids or au-

dio components to captivate target audiences and distin-

guish themselves from other information sources [1, 2].

Sound logos, such as Netflix’s iconic “ta-dum,” are de-

signed to engage listeners and promote brand recognition.

In the realm of cognition literature, numerous studies have

sought to understand the factors that contribute to music

memorability [3–6]. For instance, [5, 6] bridged the gap

between cognitive science and MIR by examining whether

implicit or explicit memory for a single tune is impacted by
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the type of encoding task and variations in timbre, tempo

and structure.

However, music memorability remains a relatively un-

explored area, particularly from a data-driven standpoint.

Research related to music memorability includes the study

of involuntary musical imagery (INMI) [7, 8], also known

as “earworms,” which refers to the phenomenon where

fragments of music become mentally lodged on repeat. For

instance, Jakubowski et al. proposed a model that can de-

termine whether a piece of music may induce the INMI ef-

fect by using statistical analysis and a random forest model

[8]. However, the mechanism of INMI differs from music

memorability since the former is a passive process while

the latter can be active, e.g., everyone remembers how to

sing “Happy Birthday,” but the song may not qualify as

an earworm. Another line of prior studies [9–12] inves-

tigating the intrinsic memorability of multimedia content

have predominantly focused on computer vision, with their

findings suggesting that data-driven approaches can effec-

tively determine memorability levels. Motivated by these

studies, we break new ground in exploring music memora-

bility from a data-driven perspective by compiling a novel

dataset and employing machine learning techniques.

Specifically, to expand the scope of memorability detec-

tion and recognition in music information retrieval (MIR),

we establish a new research domain called music memora-

bility regression (MMR), which aims to predict a memo-

rability score for a given music piece. We create an ex-

perimental procedure as shown in Figure 1 to collect a

new dataset, the YouTube Music Memorability (YTMM)

dataset, where memorability scores are determined by the

percentage of participants who can recall the music piece

after a certain period. This dataset provides reliable and

consistent music memorability scores across all partici-

pants, paving the way for further research in the field.

We also propose several baseline approaches for predict-

ing music memorability, including feature engineering us-

ing hand-crafted music-related features and transfer learn-

ing techniques. These baselines not only demonstrate the

potential of machine learning in addressing music memo-

rability but also serve as a foundation for future work.

Despite the promise of machine learning in tackling

music memorability by predicting memorability scores, its

“black box” characteristics hinder the interpretation of ma-

chine decisions in MIR tasks. A straightforward approach

would be to compute correlations without relying on black-
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Figure 1. The music memory game, which allows data annotators to label music memorability scores reliably. The

experiment is divided into three stages, each with a 3-minute long break in between. Each 18-minute stage is composed of

multiple 5-second music pieces and short breaks.

box prediction models to glean insights about the relation-

ship between memorability and musical features. How-

ever, given the complexity of analyzing music memorabil-

ity, using a single feature results in an extremely low cor-

relation with memorability, leading to inconclusive find-

ings. One alternative would be to explore all possible fea-

ture combinations when calculating correlations, but the

sheer number of combinations, e.g., 220 − 1 for just 20

features, renders this approach impractical. A/B testing

could be used to determine which type of music is more

memorable, but it suffers from similar drawbacks, such as

being time-consuming and unable to account for all vari-

ables that may impact the experiment’s outcome. To make

machine learning models reveal their “black box” char-

acteristics, researchers are increasingly adopting explain-

able artificial intelligence (XAI) [13] for deeper insights.

Building on previous interpretability analyses in audio pro-

cessing [14, 15], we utilize Shapley Additive Explanations

(SHAP) [16], a game-theoretic approach that clarifies the

output of machine learning models, to identify the key

components of memorable music.

Our main contributions are as follows: first, we present

the new YTMM dataset with objective annotations of

memorability scores, which will be publicly available for

future research; second, we propose several deep learn-

ing baseline models for MMR; and finally, we explore

the potential characteristics of memorable music pieces

while providing interpretability for these deep learning-

based methods.

2. RELATED WORK

In addition to the cognition literature on music memora-

bility [5, 6], there are several related yet distinct terms,

such as Involuntary Musical Imagery (INMI) or "ear-

worms"—fragments of music that involuntarily come to

mind [7]. Studies have examined earworms through inter-

views, environmental and psychological conditions lead-

ing to INMI, and the impact of melodic features and song

popularity on spontaneous musical imagination [8]. Cru-

cial differences between INMI and music memorability in-

clude: 1) INMI involves uncontrollable mental repetition,

while memorability requires conscious recall; and 2) the

stimuli in [8] are highly familiar to participants, whereas

our study selects audios unfamiliar to most annotators to

mitigate the influence of individual listening histories on

memorability. Another related concept is hook catchi-

ness [17–20], which refers to the most easily recalled frag-

ment of a musical piece. However, our focus lies in pre-

dicting the memorability of different music pieces rather

than assessing the impact of various segments within the

same tune on catchiness prediction and recognition. Fur-

thermore, we ensure our stimuli consist solely of pure in-

strumental music clips to prevent any textual information

from lyrics influencing music memorability.

Moreover, while deep learning has achieved significant

success in supervised MIR tasks, it often demands large-

scale annotated data. However, collecting useful anno-

tations for MIR tasks can be costly, as it typically re-

quires expertise and domain knowledge [21]. To tackle this

challenge, various data augmentation and training strate-

gies have been proposed [21–24]. For instance, McFee

et al. [21] apply transformations such as pitch shifting,

time-stretching, and adding background noise to the orig-

inal waveform. Cubuk et al. [22] mask both time and

frequency content to expand the input space in automatic

speech recognition (ASR) and MIR tasks. To enhance

learning robustness with limited data, Wu et al. [23] ex-

tract general music representations using a multi-task pre-

trained encoder, inspired by speech processing research

[25, 26]. Similarly, Castellon et al. [24] employ trans-

fer learning from existing music generation architectures.

However, not all the aforementioned methods are simul-

taneously open-source, computationally inexpensive, and

interpretable. Therefore, in this paper, we focus on apply-

ing signal processing approaches like masking, with fur-

ther details provided in Section 4.

3. DATASET CONSTRUCTION FOR MUSIC

MEMORABILITY

In this section, we discuss the details of our dataset collec-

tion process and how music memorability is measured.

3.1 Audio Collection

To construct a dataset with objective music memorabil-

ity scores, we first ensure that the audio samples are un-

biased. We randomly select music by querying music-

related videos using the YouTube API with random query

keys, avoiding any specific music genre preference. Addi-
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Task Type # of Audios # of Repetition (min) # of Repetition (max) # of Repetition (avg) # of Repetition (std)

Filler 65 - - - -

Vigilance 21 5 10 6.5 1.08

Short-Term Target 88 10 49 25.23 10.81

Medium-Term Target 41 61 131 110.33 16.32

Long-Term Target 20 155 276 222.05 36.64

Table 1. Details of different audio tasks in the music memory game.

Figure 2. Distributions of the audio published location and

the distributions of the audio views in the final dataset.

tionally, we manually filter the music to confirm that the

queried videos contain pure music content, excluding in-

strument tutorials or gadget unboxings. Next, we conduct a

pilot study to verify that the selected audios are unfamiliar

to most of the annotators in our target user group. Consid-

ering the annotators’ nationalities might not be as varied as

the music collection’s, and language can be a memorable

yet non-music-related element, we only use the intro part

of each song. This approach helps eliminate other potential

variables affecting music memorability. Also, the volume

across all audio clips is normalized to minimize any mem-

orable attributes unrelated to the music itself. Loudness

normalization ensures the music is remembered based on

its inherent qualities rather than its loudness.

We use only a segment of each audio for two reasons: i)

to better eliminate confounding factors, such as vocal tim-

bre, and ii) to shorten the period of annotations and prevent

fatigue. We achieve this by truncating audios into struc-

turally meaningful segments and applying proper time-

stretching to alter the duration of an audio signal to a fixed

length without distorting the audio. The segmentation pro-

cess is supervised by an expert with a professional music

education background. Note that time-stretching not only

reduces modeling complexity but also prevents annotators

from memorizing the audio based on its duration.

Ultimately, we collect 235 structurally meaningful 5-

second audios with labeled music memorability scores.

Our goal is to determine which types of music pieces are

more likely to be memorized, rather than focusing on en-

tire music clips, which are more complex and involve ad-

ditional factors. This research can facilitate various appli-

cations, such as Netflix’s iconic “ta-dum” sound. The col-

lected data can be found in the supplementary materials.

Figure 2 illustrates the distribution of the collected audios

concerning their published geographical locations and to-

tal views on YouTube, with view counts ranging from 10K

to 100M.

3.2 The Music Memory Game

To annotate the memorability of the collected musical data,

we follow the setting of image memory game [9] to de-

sign a novel music listening experiment. During the ex-

periment, the recruited data annotators are asked to listen

to 235 music pieces in total and answer whether the au-

dio is repeated in the experiment or not. From a cognitive

view, we define music memorability as long-term musical

salience and the extent to which a musical piece continues

to be remembered over time. In the music memory game,

music memorability is measured as the tendency to cor-

rectly recognize a music piece when encountering it again

in the experiment among all users. Specifically, let x
(i)
j de-

note whether the i-th music piece can be recalled by the

j-th data annotator, i.e., 1 if the annotator recognized the

i-th music piece. The memorability score of music i, de-

noted by m(i), is then calculated by:

m(i)
=

1

ni

ni∑

j=1

x
(i)
j , x

(i)
j ∈ {0, 1} (1)

where ni is the total number of data annotators for the i-th

music.

To make the ground truth unbeknownst to all partici-

pants, music excerpts are split into three task categories:

“vigilance”, “target”, and “filler”. Targets and vigilance

targets are both repeated in the experiment, while the for-

mer are collected to be the true labels and the latter is used

to make sure participants are attentive when labeling data.

Moreover, fillers are used to stuff the spacing between the

first and second repetition of a target and therefore is only

presented once. The overview of the music memory game

experimenting procedure is shown in Figure 1. The target-

vigilance-filler split details can be found in Table 1. Rig-

orous criteria are enforced to monitor the performances of

data annotators and preserve the quality of memorability

labels. Specifically, annotations from users who detect vig-

ilance repetition with an accuracy lower than 60% are au-

tomatically discarded. Furthermore, to prevent gathering

biased memorability, all annotators only engage in label-

ing once. We recruited a total of 218 users from cam-

pus, with 163 clearing the vigilance accuracy level, 17%

of passed annotators having professional music education

backgrounds, and over 98% being between the ages of 20

and 29.

Differing from previous works on image memorability,

our experiment is composed of three similar stages with

breaks inserted in between. The reasons for using stages

and breaks are two-fold. First, audios are sequential, there-

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

176



Figure 3. Memorability scores at various stages. The color

symbolizes the rank of short-term memorability, while the

lines represent stage relationships. The plot also shows

Spearman’s rank correlations ρ between memorabilities

measured at each stage.

fore it is more exhausting to label the memorability score

to audios as compared to static images. Second, it usu-

ally takes some time for the earworm phenomenon to hap-

pen when listening to music. Hence, we assume memo-

rability should be invariant even after encountering breaks

that probably would reset the memory. The results of re-

lations between repeat interval and memorability score are

shown in Figure 3, where the lines exhibiting memorabil-

ity scores across short-term, medium-term, and long-term

repeats. The results manifest that the memorability score

is indeed independent of the sequential context. Therefore,

it is easier to memorize truly memorable pieces of music

even after long breaks. The fact that Spearman’s rank cor-

relation [27] between short-term, medium-term, and long-

term are all greater than 0.64 also proves that the rank of

memorability score is preserved across variant repeat in-

tervals.

3.3 Labels and Consistency Analysis

To assure that collected labels are universal across all data

annotators, we evaluate the human consistency according

to previous work [9] by randomly splitting all participants

into 2 groups and examining how well the memorability

scores measured in the first groups matched the ones mea-

sured in the second group by averaging Spearman’s rank

correlation [27] between randomly separated two halves

of the participants 25 times. The average Spearman’s rank

correlation coefficient ρ is 0.83, indicating the consistency

of the collected data.

Figure 4 shows the scattering plot of music memorabil-

ity and repeat interval. The graph demonstrates that mu-

Figure 4. Relations between memorability score and target

repeat interval in log scale. The hue represents the level of

fatigue.

sic possesses a linear relation between memorability score

and log-scaled repeat interval. Please note that the fatigue

level is another factor in the plot that also contributes to

the memorability score of audio. The fatigue level, de-

fined as the amount of audios listened without a 3-minute

break, is a direct result caused by staging experiment and

participating in taking a break in the middle since listen-

ing to more music at one time without resting reduces par-

ticipants’ ability to identify repeated music pieces. The

setting of inserting audio to random positions in the exper-

iment procedure adds more context diversity to the process

of memorizing music, thus making the labeled memorabil-

ity scores more robust.

4. MUSIC MEMORABILITY PREDICTION

4.1 Learning with Handcrafted Features

Although feature extractions for deep learning models

can be data-driven without being handcrafted, leading to

a better result given sufficient training data, handcrafted

features provide interpretable information for more in-

sights. Therefore, we propose handcrafted features that

can more accurately depict the low-level acoustic features

or high-level semantic features of musical clips as shown

in Table 2. For the low-level acoustic features that can

be directly derived from the audio signal of music seg-

ments, we leverage the harmony, rhythm and timbre since

they are most easily recognizable fragments of a piece of

music [17] and describe the fundamental elements of a

tune. Moreover, zero crossings and zero crossing rate are

also extracted since they give the impressions into the fre-

quency content of a signal. On the other hand, high-level

semantic features are more abstract descriptions. Since the

previous works in Psychology [28,29] mention the link be-

tween music emotion and memory, we introduce valence

and arousal, which represent the mood of music pieces as

features.

Another high-level feature is genre, which describes
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Level Category Feature Implementation

Low-level

Harmony mean, std of 12 pitch class
Rhythm beat per minute (bpm)
Timbre mean, std of 4-tracks (Vocals,

Bass, Drums, Others)
Zero Crossing # of zero crossings & avg, me-

dian of zero crossings rate

High-level
Mood valence, arousal
Genre Music, Musical Instrument

Table 2. Explainable handcraft features.

how likely a clip is belong to a certain type of music.

Specifically, due to the unstable performance of exist-

ing algorithms for detecting sequences of chord labels,

we employ chromagram (chroma) [30] as a representa-

tion of harmony patterns. To extract timbre informa-

tion, the Mel-Frequency Cepstral Coefficient (MFCCs) is

widely utilized. Although MFCCs is representative for

timbre, its components are difficult to grasp intuitively.

As a result, we treat MFCCs as a raw feature and find

an alternative solution by first separating source audios

into four components using source separation software

Spleeter [31], and calculating their respective amplitudes

to represent the characteristics of different instruments and

frequency ranges. For the rhythmic pattern, although Tem-

pogram [32] captures the underlying rhythmic pattern of

raw audios, it is unable to provide precise insights to con-

cretely measure the audio’s groove. Therefore, we instead

utilize beat per minute (bpm) to represent general rhythm

characteristics. We also use static valence and arousal val-

ues to describe perceived music moods, which are pre-

dicted by using Support Vector Regression (SVR) with a

linear kernel trained on the PMEmo dataset [33]. For genre

features, we use the predicted music tagging and instru-

ments from the downstream task of PANN [34]. Finally,

SVR and Multilayer Perceptron (MLP) are employed as

predictors to link audio features to memorability scores.

4.2 End-to-End Deep Learning

Deep learning [35] is featured by its ability to directly learn

meaningful information from raw data, as opposed to us-

ing hand-crafted features. As a result, we also test end-

to-end models to find if their feature-learning process im-

proves performance. Our model uses spectrograms in Mel-

scale as inputs, similar to previous end-to-end MIR tasks.

Moreover, transfer learning [36], which applies previously

learned knowledge to new data, has been found to signif-

icantly increase learning performance by skipping costly

data-labeling procedures. Here, we use the self-supervised

pre-trained Audio Spectrogram Transformer (SSAST) [37]

since SSAST has been proved to achieve state-of-the-art

results on numerous audio tasks, including audio event

classification, keyword spotting, mood recognition, and

speaker identification, after being trained on a vast amount

of unlabeled data.

Method Corr. MSE MSE STD

chroma + MLP 0.1740 0.0326 -

MFCCs + MLP 0.1179 0.0353 -

convnet features [38] + MLP 0.1889 0.0314 -

EHC features + SVR 0.2988 0.0339 0.0128

EHC features + SVR + PS 0.2084 0.0391 0.0129

EHC features + MLP 0.2656 0.0263 0.0058

EHC features + MLP + PS 0.2388 0.0275 0.0059

mel-spectrograms + SSAST 0.0124 0.0298 0.0061

mel-spectrograms + SSAST + PS 0.2658 0.0265 0.0074

Table 3. Spearman’s rank correlation and MSE loss

between predicted and ground truth music memorability

score using different models. Note that EHC features stand

for explainable handcrafted features, PS stands for pitch

shift data augmentation, and Corr. represents Spearman’s

rank correlation.

5. EXPERIMENT RESULTS

Evaluation Metrics. Spearman’s rank correlation and

mean squared error (MSE) loss are used as the metrics to

evaluate the performance of music memorability predic-

tion. The former indicates the ability to rank the relative

memorability of different audios, while the latter indicates

the absolute error of the predicted results.

Different Baselines. Here, we leverage Chroma and

MFCCs along with their respective derivatives as two

hand-crafted feature representations and fit the ground

truth by Multilayer Perceptron (MLP) as two simple base-

lines. Moreover, we also use the convnet model as a base-

line since it is the most referenced and available work in

general music representation. The convnet model [38] uti-

lizes CNNs for music tagging in the pre-training stage, and

the extracted features serve as the representation for down-

stream tasks. Finally, Self-Supervised Audio Spectrogram

Transformer (SSAST) [37] is also used as the baseline,

which is a Transformer-based model with more parame-

ters as compared to CNNs. SSAST pretrains the model

with joint discriminative and generative masked spectro-

gram patch modeling.

Implementation Details. All the feature classifiers are

pretrained without finetuning on the self-collected dataset.

To handle the instability stemming from the limited la-

beled data, we normalize labels by subtracting the mean

value, i.e., predicting a relative value instead of an abso-

lute value. For MLP and SSAST models, the learning rates

are respectively set to 5e-5 and 5e-6 with the Adam opti-

mizer [39]. We also conduct additional feature selection on

the handcrafted features to improve the convergence of the

MLP/SVR model (only select 25 features) due the small

number of data samples. In addition, techniques includ-

ing frequency masking, band stop filtering, and reverbera-

tion [26] are used to augment data, together with the pitch

shifting augmentation. The results are reported by the av-

erage of the 10-fold outputs.

5.1 Prediction Results.

Table 3 compares the results of different prediction mod-

els, where SVR and MLP take explainable handcrafted
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Model Top-k feature selection Corr. MSE

MLP k = 40 (no feature selection) 0.2160 0.0272

MLP k = 35 0.2324 0.0270

MLP k = 25 0.2656 0.0263

MLP k = 20 0.2018 0.0271

SVR k = 40 (no feature selection) 0.2168 0.0324

SVR k = 35 0.2291 0.0340

SVR k = 25 0.2988 0.0339

SVR k = 20 0.2630 0.0354

Table 4. Spearman’s rank correlation and MSE loss for

MLP/SVR models with different top-k feature selection.

features as inputs, and SSAST takes mel-spectrograms as

inputs. The results indicate that chroma and MFCCs pro-

duce the worst results due to the ineffective feature extrac-

tion. For convnet features, the performance is better than

chroma and MFCCs due to the pretraining. However, the

amount of training data is too small to finetune the model

on the music memorability regression task. SSAST outper-

forms other baselines since it incorporates the prior knowl-

edge of spectrograms pre-trained by using advanced meth-

ods. Finally, Explainable Handcrafted Features (EHC)

method produces the best correlation results by combin-

ing both low- and high-level features that help improve

music memorability. These quantitative findings manifest

that data-driven MIR tasks are notably reliant on huge data

quantities to be resilient and general.

5.2 Ablation Study

Table 4 shows an ablation study on feature selection for

handcrafted features, indicating that selecting top-25 fea-

tures leads to the best overall correlation results. More-

over, Table 3 also shows an ablation study on extra pitch

shifting for data augmentations. Small pitch shifts (less

than 5 semitones) make the altered audio seem natural to

the human ear according to [40]. Therefore, we add semi-

tone shifts of -5 to 5 to our data. The results manifest that

pitch shifting is effective for the models that take sequence

information into account because applying mean pooling

across time on harmony features in non-sequential models

like SVR and MLP just forces the model to forecast the

same value using multiple static chroma information. This

may confuse the model on harmony characteristics. On the

other hand, models with sequential information, such as

SSAST, learn pitch-invariance after pitch shifting. The per-

formance of SSAST notably decreases without pitch shift

data augmentation, possibly due to its data-hungry nature

as a Transformer-based model, i.e. requiring more data for

optimal parameter tuning.

5.3 Interpretability

We attempt to gain insight into the intrinsic memory uti-

lizing XAI methodologies. One post-hoc strategy for ex-

pressing black box models in a human-interpretable man-

ner is SHAP [16]. Specifically, SHAP explanations are ob-

tained by perturbing a specific instance in the data and ob-

serving the impact of these perturbations on the black-box

Figure 5. SHAP summary of the SVR model with RBF

kernel [41]. The most important features are listed in de-

creasing order and the fact that feature value rises after the

SHAP value shows a positive relationship between the two.

model’s output. As such, SHAP allows us to explore the

factors that the model considers when determining memo-

rability. Figure 5 visualizes the directionality impact of the

top-5 features in SHAP, where the x-axis stands for SHAP

value and each point is a SHAP value of a sample for a fea-

ture. Red color and blue colors respectively indicate higher

and lower values of a feature. As such, we can observe the

feature directionality impact based on the distribution. For

example, the first row shows that a higher arousal value

leads to high memorability scores, while a lower arousal

value can lead to both high and low memorability scores.

The important factors for the predictor among the EHC

features include arousal, bpm, harmony (the feature "D

mean") and the timbre features extracted from the source

other than vocals, drums, and bass (the feature "other db

mean"). According to Psychology research [28], normal

individuals without brain damage find it easier to recog-

nize musical excerpts with high arousal. The melodies are

the main constituent elements of the source ”others” after

applying 4-stem Spleeter separation. This finding supports

our understanding that we often focus on the main melody

in music, and thus the chorus or hook of the song with out-

standing melody usually represents the entire song.

6. CONCLUSION AND FUTURE WORK

In this work, we explore the novel task of music memo-

rability regression (MMR) using a data-driven approach.

The consistency of our newly proposed YouTube Music

Memorability (YTMM) dataset supports our hypothesis

that music memorability indeed exists and can be pre-

dicted. Furthermore, we investigate the use of feature engi-

neering and self-supervised learning for predicting music

memorability, highlighting the importance of prior knowl-

edge and other training approaches, such as label normal-

ization, for improving results with limited data. We make

the dataset available online to encourage further research

and development in the field of MMR. In the future, we

plan to: 1) scale the dataset to better represent the mem-

orability of full music structures, 2) investigate the poten-

tial of transfer learning trained on music-oriented datasets

to enhance our current baselines, and 3) study the person-

alization issue since music memorability can be strongly

related to the past musical experience of individuals.
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