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ABSTRACT

Deep neural network models have become the dominant

approach to a large variety of tasks within music informa-

tion retrieval (MIR). These models generally require large

amounts of (annotated) training data to achieve high ac-

curacy. Because not all applications in MIR have suffi-

cient quantities of training data, it is becoming increasingly

common to transfer models across domains. This approach

allows representations derived for one task to be applied to

another, and can result in high accuracy with less strin-

gent training data requirements for the downstream task.

However, the properties of pre-trained audio embeddings

are not fully understood. Specifically, and unlike tradi-

tionally engineered features, the representations extracted

from pre-trained deep networks may embed and propagate

biases from the model’s training regime.

This work investigates the phenomenon of bias prop-

agation in the context of pre-trained audio representations

for the task of instrument recognition. We first demonstrate

that three different pre-trained representations (VGGish,

OpenL3, and YAMNet) exhibit comparable performance

when constrained to a single dataset, but differ in their abil-

ity to generalize across datasets (OpenMIC and IRMAS).

We then investigate dataset identity and genre distribution

as potential sources of bias. Finally, we propose and evalu-

ate post-processing countermeasures to mitigate the effects

of bias, and improve generalization across datasets.

1. INTRODUCTION

Transfer learning generally refers to the concept of adapt-

ing a model for one task to solve another task. Often,

this is achieved by extracting the internal representation

(an embedding) of input data from a pre-trained neural net-

work, and providing it as input features to some (often sim-

pler) downstream model for the target task. While this ap-

proach is increasingly common and effective, pre-trained

embedding models may encode and propagate implicit bi-

ases which can have detrimental and disparate population-
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dependent effects. Biases have caught wide attention from

research fields such as natural language processing (NLP)

[1–3], cognitive science [4], and computer vision [5], while

in music information retrieval (MIR), bias of pre-trained

audio embeddings, is under-explored.

In this paper, we identify and address the bias of dif-

ferent pre-trained audio embeddings for transfer learning

on the task of instrument recognition. We summarize the

contributions as following. (1) We study the within- and

cross-domain performance of three pre-trained audio em-

beddings (VGGish, OpenL3, YAMNet) on two instrument

datasets (IRMAS and OpenMIC-2018). (2) We demon-

strate that this approach can propagate bias by produc-

ing classifiers which are sensitive to the source domain

(dataset). (3) Based on the performance variation in cross-

domain generalization, we investigate dataset identity and

genre distribution as potential sources of bias. (4) We

propose a post-processing countermeasure to mitigate un-

wanted bias in the representation. We experiment differ-

ent bias correction strategies, and analyze the robustness

of each pre-trained audio embedding. The proposed strate-

gies make use of relatively little additional information,

and generally produce a modest improvement to cross-

domain accuracy for the instrument recognition task. Our

code for all experiments is publicly available 1 .

2. RELATED WORK

Pre-trained embeddings are becoming increasingly used in

transfer learning for audio-related tasks. Choi et al. [6] pre-

sented a transfer learning approach for music classification

and regression tasks using the internal activations of a pre-

trained convolutional network as features. The network

was trained on the source task of music tagging, and the

learned representation was then transferred to five target

tasks, including genre classification, vocal/non-vocal clas-

sification, emotion prediction, speech/music classification,

and acoustic event classification. Other well-known au-

dio embedding models include OpenL3 [7], VGGish [8],

and YAMNet 2 . The OpenL3 is a 512-dimensional em-

bedding model that results from self-supervised training

of the look-listen-learn (L3)-Net for audiovisual correla-

tions. VGGish (128-dimensional) and YAMNet (1024-

1 https://github.com/changhongw/audio-embedding-bias
2 https://github.com/tensorflow/models/tree/master/research/audioset/

yamnet
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dimensional) are both embeddings derived from classifica-

tion models trained on AudioSet [8]. Although these em-

bedding models differ in the architecture of the network,

source data, and training regime, they have each demon-

strated good and comparable generalization performance

for a variety of tasks.

Despite that embedding models are normally trained on

large amounts of data, it inevitably encodes biases due to

the limitation of collected data. This problem can be espe-

cially prevalent in models trained via unsupervised or self-

supervised strategies, where there may be no incentive for

the model to learn invariances or equivalencies in the data

beyond what is required for by the training objective. As

a result, pre-trained embeddings may propagate unwanted

biases to downstream tasks. Different types of biases and

bias correction methods are explored in the NLP literature,

such as gender [9], race and religion [10]. A general ap-

proach for addressing gender bias in word embedding was

proposed by Bolukbasi et al., following three steps: iden-

tify bias direction, remove bias by projecting out the bias

direction, and equalize pairs [9].

Besides field-specific biases, dataset bias is a general

type of bias that could happen in any application domain.

Tommasi et al. [5] investigated dataset bias in visual recog-

nition with a cross-dataset testbed comprising 12 different

datasets. Ganin et al. [11] proposed adversarial training

for domain adaptation to reduce sensitivity to data drawn

from similar but different distributions. When detecting

depression, a mental health disorder, from speech, Bailey

and Plumbley [12] found that biases in dataset could result

in skewed classification performance.

The approach we take in this paper is most similar to

those of Bolukbasi et al. [9] and Ganin et al. [11]. While

Bolukbasi et al.’s method requires numerous paired exam-

ples to identify a subspace which encodes undesirable bias,

our proposed method works at the level of collection statis-

tics rather than individual correspondence, and may be eas-

ier to apply for audio applications. Similarly, Ganin et al.’s

method requires adversarial training of the initial model to

produce a representation which cannot discriminate well

between subsets of data that should be treated equivalently.

Our approach is implemented as a post-processing step,

and can be applied to any pre-trained model. While we

focus in this work on dataset identity as a concrete source

of bias, we emphasize that the method should be generally

applicable to other scenarios in which audio representa-

tions exhibit unwanted sensitivity to identifiable attributes.

3. METHODS

We consider embedding bias from the perspective of do-

main adaptation. Unlike transfer learning, which relates to

the output of the model, domain adaptation refers to the be-

havior of a model (classifier, regressor, etc.) under changes

to the distribution of input data. This is closely related to

representation bias, which is one among many forms of

bias known to impact machine learning systems as enu-

merated by Mehrabi et al. [13]. If a classifier is trained on

a sample of (labeled) data which is not representative of

the target population, then we expect the model to gener-

alize poorly. The degree to which a pre-trained audio em-

bedding is sensitive to differences between populations of

interest—e.g., between a dataset annotated for instrumen-

tation, compared to other collections of music—is there-

fore of principal interest [14].

3.1 Domain sensitivity

We investigate the domain sensitivity of three pre-trained

embeddings (OpenL3, VGGish, and YAMNet) in transfer

learning for the downstream task of instrument recogni-

tion. Each embedding is evaluated in both within-domain

and cross-domain setting. For within-domain evaluation,

we train and test the embedding in a single dataset; while

for cross-domain case, we investigate the domain adapta-

tion capability of the embedding models across datasets,

i.e. training and testing the downstream classifier using

data from different datasets. As a study case, we consider

two well-known datasets for instrument recognition, i.e.

IRMAS [15] and OpenMIC-2018 [16] (see Section 4.1 for

dataset details).

Fig. 1 (a) and (d) visualize the within-domain (IRMAS–

IRMAS and OpenMIC–OpenMIC) recognition results in

terms of area under the receiver operating characteristic

curve (ROC-AUC) using the three embeddings above for

each of the ten instrument classes. 3 All three embeddings

achieve comparable results, although there is a loose per-

formance ranking of YAMNet > OpenL3 > VGGish for

most instrument classes.

When generalizing across domains, performance degra-

dation happens for both cross-dataset pairs, as shown in

Fig. 1 (b) IRMAS–OpenMIC and (c) OpenMIC–IRMAS.

The performance ranking of the three embedding does

not persist either. Comparing the results when testing on

OpenMIC, i.e. (b) and (d), only voice, piano, and guitar re-

tain close results. For the remaining instrument classes, all

three embeddings exhibit diminished performance. Simi-

lar trends take place in the comparison between (a) and (c)

where the test set is IRMAS.

Surprisingly, a dramatic performance drop happens for

the organ class. Examining this class in both datasets, we

notice a large distribution difference on genre, as shown

in Fig. 2. Organ in IRMAS is confined to pop/rock and

jazz/blue genres, suggesting that examples mostly contain

electric organ sounds (e.g. Hammond B3). The distribu-

tion of organ in OpenMIC is more balanced, but domi-

nated by classical recordings which are more likely to con-

tain pipe organ than electric. These differences aside, we

generally expect the instrument labels to refer to similar

sounds across domains.

3.2 Quantifying domain bias

To quantify the effect of domain bias, we first obtain the

domain separation direction vector w ∈ R
D by fitting a

linear discriminant analysis (LDA) model to discriminate

3 We report AUC because it is invariant to overall class proportions and
decision thresholds—which vary between datasets—and thereby allows
us to focus on the separating directions identified for each class.
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Figure 1. Within-domain (a, d) and cross-domain (b, c)

performance of pre-trained audio embeddings (VGGish,

OpenL3, and YAMNet) on instrument recognition in the

IRMAS and OpenMIC datasets. ROC-AUC refers to area

under the receiver operating characteristic curve.

between the OpenMIC and IRMAS datasets in each rep-

resentation (VGGish, OpenL3, and YAMNet). vk ∈ R
D

is the instrument separation direction vector, i.e. the coef-

ficient vector of the trained downstream classifier, for the

k-th instrument. k = 1, 2, ...,K is the instrument class

index and D is the dimension of pre-trained embedding.

We measure the correlation between the domain separation

and downstream classification using the cosine similarity

between w and vk:

ck(w,v) =
⟨w,vk⟩

∥w∥ × ∥vk∥
(1)

Large (in magnitude) ck indicates that the instrument clas-

sifier is sensitive to dataset identity.

Fig. 3 top shows the absolute correlation value for each

instrument class, when the classifier is trained on the train-

ing set of (a) IRMAS and (b) OpenMIC dataset, respec-

tively. The mean correlation value over all instruments for

each embedding is displayed in the legend. It clearly shows

that YAMNet is the least sensitive to dataset bias; OpenL3

is also relatively stable while VGGish is the most sensi-

tive to dataset bias. The relatively large correlation value

for the organ class matches our analysis in Section 3.1

that genre distribution might be also a potential source of

bias (see Fig. 2). Although the sensitivity of different em-

beddings to dataset bias are different, bias cannot gener-

ally be removed by simply using different pre-trained em-

beddings. As we will demonstrate, explicitly correcting

for dataset bias can potentially improve domain adaptation

performance for each choice of embedding.

3.3 Bias correction

To mitigate domain bias, we propose a post-processing

countermeasure on the pre-trained embeddings which does

not interact with the training process of embeddings. Im-

portantly, the proposed method requires only samples of

data which should behave similarly for the downstream

task, but it does not require these samples to be labeled

for the downstream task.

Continuing our instrument classification example, given

that both datasets contain examples from each of the in-

strument categories of interest, we should expect that a

well-formed linear classifier should behave independently

of the domain from which data is drawn. Concretely, this

means that the separating direction vk should be orthogo-

nal to any direction w which separates the two datasets in

the embedding space, resulting in ck(w,vk) = 0. While

Ganin et al. [11] use this intuition to adversarially train

the representation, this approach is impractical when using

pre-trained embeddings which are presumed to be fixed

in advance. Instead, we approach this problem by post-

processing the embedding to project out the direction w

which separates domains that should be indistinguishable

for the downstream task.

Concretely, if w ∈ R
D is the domain-separating di-

rection (normalized to unit length, ∥w∥ = 1), we project

this dimension out of the space by applying the following

transformation to input data x ∈ R
D:

xP :=
(

I−ww
T
)

x (2)

where I is the D×D identity matrix. The new embedding

xP is the input to the classifier.

3.4 Multiple bias correction

While the above strategy is defined for binary bias correc-

tion, e.g. where there are two domains to be reconciled,

it does generalize to more complex settings. In the instru-

ment recognition example, we may also consider differ-

ences between genres across datasets as a source of bias.

Even if two datasets both consist of examples in the same

genre categories, this does not necessarily mean that the

genre terms are used consistently between datasets.

To consider the influence of genre distribution, we pro-

pose also multiple bias correction, where we extract the

dataset separation direction in the genre subspace. That

is, for each pair of matched genre labels, e.g. pop/rock

in IRMAS and pop/rock in OpenMIC, we fit a binary

LDA to separate them. Then for each genre category

g = 1, 2, . . . G (for G ≥ 1 genres), we obtain a dataset

separation direction vector wg which depends only on ex-

amples from genre g. Collecting all wg into a matrix

W ∈ R
D×G defines a basis for a subspace of the embed-

ding of dimension at most G. Note that W may not be an

orthogonal basis, as different wg may correlate with each

other.
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Figure 2. Number of genre examples for each instrument in the training set of IRMAS and OpenMIC datasets. We align

the genre labels according to those in the IRMAS dataset: pop/rock, jazz/blue, classical, and country/folk.

We therefore derive an orthogonal basis by factorizing

W via the reduced singular vector decomposition (SVD):

W = UΣV T (3)

where Σ is a G×G diagonal matrix of singular values, and

U ∈ R
D×G and V ∈ R

D×G are the left- and right-singular

vectors. We use the right singular vectors as an orthogonal

basis for the domain-separating subspace, resulting in the

following generalization of Eq. (2):

xP :=
(

I− V V T
)

x (4)

In applying Eq. (4), it is important to verify that W is

full rank (G), e.g. by verifying that all singular values Σ
are sufficiently large, as Eq. (4) would otherwise remove a

larger than necessary subspace from the representation. In

all cases studied in this work, W was full rank.

3.5 Nonlinear bias correction

The above methods are based on two assumptions: 1) that

the downstream model will be linear, and 2) that the do-

mains are linearly separable. These assumptions may be

restrictive in practice, so we generalize the method above

by transforming the embeddings to a higher dimensional

space using kernel methods. While both logistic regres-

sion and linear discriminant analysis support kernel gener-

alizations [17], the subspace projection method described

above is less directly adaptable. 4

Instead of using implicit kernel representations, we will

use approximate, i.e. explicit kernel approximation. That

is, instead of replacing inner products ⟨w,v⟩ by nonlinear

kernel function calculations k(w,v), we apply an explicit

nonlinear transformation f : RD → R
D′

such that

⟨f(w), f(v)⟩ ≈ k(w,v) (5)

We then apply the previously defined bias correction meth-

ods on the transformed data f(w), which results in project-

ing out the dataset-separating direction(s) after applying f

but prior to fitting the downstream (instrument) classifiers.

There are several choices to be made here when select-

ing the kernel k and the approximating map f . In this

work, we use a standard radial basis function (Gaussian)

4 One could achieve a similar effect by adding a linear constraint
⟨w,v⟩ = 0 to the logistic regression problem, but this would require
a custom solver and limit the general utility of the approach.

kernel and the “random Fourier features” approximation

method [18]. However, we note that other choices (e.g., the

Nyström method) are readily available in scikit-learn [19],

and may work just as well.

In total, we have four bias-correction strategies: lin-

ear bias correction (LDA), linear multiple bias correction

(mLDA), nonlinear bias correction in the kernelized em-

bedding space (KLDA), nonlinear multiple bias correction

in the kernelized embedding space (mKLDA).

4. EXPERIMENTS

4.1 Datasets and experimental details

The datasets we use are two well-known datasets with

instrument annotations, IRMAS [15] and OpenMIC-

2018 [16]. The former comprises 20,000 examples of 10-

second excerpts, partially labeled for the presence or ab-

sence of 20 instrument classes; and the latter contains 6705

audio files of 3-second clips, of which only the predomi-

nant instrument were annotated. Since there are 20 instru-

ment classes in the OpenMIC dataset and 11 in the IR-

MAS, we focus only on the 10 mutual classes: cello, clar-

inet, flute, guitar, organ, piano, saxophone, trumpet, violin,

and voice. For the sake of consistency, electric guitar and

acoustic guitar in the IRMAS dataset have been merged

into a single class: guitar.

To investigate the impact of genre, we also align the

genres in the two datasets. Each audio sample in the

IRMAS dataset is labeled with one of the five genres:

pop/rock, jazz/blue, classical, country/folk, and latin/soul;

while samples in the OpenMIC datase has multiple la-

bels from around 130 genres. We consider four gen-

res (pop/rock, jazz/blue, classical, country/folk) as the

latin/soul genre has few examples in both datasets. The

genre labels of the OpenMIC dataset are merged into those

of IRMAS with name intersections. For example, we

merge the genres—Rock, Loud-Rock, Noise-Rock, Psych-

Rock, et. al.—in OpenMIC into one genre label: pop/rock.

Multiple genre labels in the OpenMIC dataset are reduced

to a single label by the first activation from the four con-

sidered genres or the first of the original labels otherwise.

With the embedding features extracted using pre-

trained VGGish, OpenL3, and YAMNet models, we train

a logistic regression classifier for each instrument class us-

ing IRMAS and OpenMIC training data. The input to the
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Figure 3. Correlation between domain separation and instrument classification for each instrument in the IRMAS and

OpenMIC training set. (Top): correlation in the original embedding space with domain separation direction extracted using

only dataset identity; (middle): correlation in the original embedding space with domain separation direction extracted

class-wise; (bottom): same as middle but in the kernelized embedding space. Mean value is given in parentheses.

classifier is the mean frame embedding of each audio ex-

ample. For OpenMIC dataset, we follow the train-test split

in [16], with a ratio of 3:1. For fair comparisons, we create

a new partition with the same train-test ratio on IRMAS

dataset which takes into account of the class-balance and

non-track overlap between training and test sets. To focus

only on distribution shift, we use the same number of sam-

ples per class for both datasets during training, following

the lower one.

For the nonlinear method, we first standardize the em-

bedding features using z-score normalization with the

training-set statistics. Then we approximate the kernels for

the embeddings with a fixed dimension D′ of four times

the dimension (D) of the original embeddings. Finally, we

tune the hyper-parameter for the logistic regression classi-

fier, i.e. the inverse of regularization strength C, by cross-

validation with a grid of 10−8:1:4.

4.2 Results

Table. 1 lists the instrument classification performance of

the debiasing methods discussed in Section 3 in terms

of mean ROC-AUC over the 10 instrument classes. To

compare the performance of using only dataset identity

as additional information and that uses also class-labels,

we present two sets of results: global bias correction and

class-wise bias correction. We first present some obser-

vations that are common to both cases and then discuss

the comparison. For the original embeddings (in italic),

large performance drop shows for all cross-domain cases.

OpenL3 is most sensitive to distribution shift, with a drop

of 12.7% and 7% when testing on IRMAS and OpenMIC

dataset, respectively. Yet, from the cosine similarity values

in Fig. 3 top and middle, OpenL3 does not embed the most

domain bias. This may indicate that for the task at hand,

other more significant distribution shifts that OpenL3 is

sensitive to may exist. For all embeddings, projecting

to the higher dimensional space (debiasing methods with

“K”) almost never substantially hurts the within-domain

performance and sometimes improves the performance.

Interestingly, when comparing linear debiasing (“-

LDA” and “-mLDA”) with nonlinear debiasing (“-KLDA”

and “-mKLDA”) for all embeddings, we find that kernel-

ization does not help for VGGish while YAMNet only

works in the kernelized embedding space. This explains

the relative increase of cosine similarity values for YAM-

Net after kernelization as compared to the other two em-

beddings (see Fig. 3 bottom). Both linear and nonlinear

debiasing exhibit performance improvement for OpenL3.

In terms of global bias correction, almost no improvement

for VGGish except LDA for OpenMIC->IRMAS; OpenL3

yields some boost for both cross-domain cases. YAMNet

improves the results only for OpenMIC->IRMAS. It is ex-

pected that the class-wise bias correction achieves better

performance as we extract the domain bias for the target

instrument exactly. This is also verified by the more no-

ticeable cosine similarity values in the middle subfigure as

compared to the top of Fig. 3. VGGish and OpenL3 yields

slight improvement for most linear debiasing. All nonlin-

ear debiasing improves the results of OpenL3 for IRMAS-

>OpenMIC and YAMNet for OpenMIC->IRMAS. Al-

though the overall improvement is not significant, we ob-

serve large improvements for some instrument classes.
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Global bias correction Class-wise bias correction
Debiasing method Within-domain Cross-domain Within-domain Cross-domain

IR-IR OP-OP OP-IR IR-OP IR-IR OP-OP OP-IR IR-OP

VGGish 91.6 87.95 82.82 83.81 91.60 87.95 82.82 83.81
VGGish-LDA 91.60 87.99 82.99 (+0.18) 83.82 (0.0) 91.60 87.94 82.93 (+0.12) 83.85 (+0.03)
VGGish-mLDA 91.45 87.98 82.70 (-0.11) 83.30 (-0.51) 91.56 87.87 83.13 (+0.31) 83.66 (-0.16)
VGGish-K 92.24 88.08 82.57 (-0.25) 83.67 (-0.14) 92.24 88.08 82.57 (-0.25) 83.67 (-0.14)
VGGish-KLDA 92.24 88.08 82.58 (-0.24) 83.67 (-0.14) 92.22 88.07 82.70 (-0.12) 83.78 (-0.04)
VGGish-mKLDA 92.22 88.15 82.42 (-0.39) 83.70 (-0.11) 92.26 88.08 82.70 (-0.11) 83.76 (-0.05)

OpenL3 93.26 87.16 80.56 80.13 93.26 87.16 80.56 80.13
OpenL3-LDA 93.26 87.16 80.56 (+0.01) 80.15 (+0.02) 93.24 87.18 80.59 (+0.04) 80.38 (+0.26)
OpenL3-mLDA 93.11 87.16 80.67 (+0.12) 79.93 (-0.20) 93.09 87.23 80.57 (+0.02) 80.62 (+0.50)
OpenL3-K 93.89 87.91 79.46 (-1.09) 81.23 (+1.11) 93.89 87.91 79.46 (-1.09) 81.23 (+1.11)
OpenL3-KLDA 93.89 87.84 79.03 (-1.53) 81.23 (+1.11) 93.96 87.91 79.99 (-0.57) 81.79 (+1.66)
OpenL3-mKLDA 93.88 87.88 79.56 (-1.00) 81.20 (+1.07) 94.04 87.83 79.97 (-0.59) 81.32 (+1.19)

YAMNet 94.65 89.74 85.01 85.47 94.65 89.74 85.01 85.47
YAMNet-LDA 94.65 89.74 85.01 (0.0) 85.47 (0.0) 94.65 89.74 85.02 (0.0) 85.47 (0.0)
YAMNet-mLDA 94.65 89.74 85.01 (0.0) 85.47 (0.0) 94.65 89.74 85.02 (0.0) 85.46 (0.0)
YAMNet-K 93.83 89.24 85.87 (+0.86) 84.56 (-0.91) 93.83 89.24 85.87 (+0.86) 84.56 (-0.91)
YAMNet-KLDA 93.83 89.23 85.87 (+0.86) 84.56 (-0.91) 93.63 89.24 86.00 (+0.99) 84.76 (-0.70)
YAMNet-mKLDA 93.79 89.19 85.72 (+0.71) 84.43 (-1.04) 93.79 89.34 85.53 (+0.51) 84.60 (-0.87)

Table 1. Mean ROC-AUC (%) of global bias correction and class-wise bias correction on instrument classification in

IRMAS (IR) and OpenMIC (OP) datasets. VGGish, OpenL3, and YAMNet (in italic) refers to the original embedding; the

other cases, i.e. with -LDA, -mLDA, -LDA, and -mKLDA, correspond to linear, linear-multiple, nonlinear, and nonlinear-

multiple debiasing strategies; cases with -K are the kernelized embeddings. Values in parenthesis are the performance boost

(>0.1 are bolded) or degradation as compared to the original embedding (the closest underlined above).

5. DISCUSSION

We notice two important factors for transfer learning with

pre-trained audio embeddings: the training regime of the

embeddings, and the class vocabulary alignment between

the source task and downstream task.

The better generalization performance of YAMNet and

VGGish in a transfer setting may be attributed to their

training regime. YAMNet and VGGish are derived from

supervised training while OpenL3 is from self-supervised

training and more prone to overfitting a domain. As a re-

sult, YAMNet and VGGish have both been incentivized

to learn invariances within specific categories (including

musical instrumentation), while OpenL3 has no such in-

centive as it is only designed to predict audio-visual corre-

spondence. Moreover, YAMNet was specifically trained

for sound classification using a vocabluary that broadly

subsumes that of our downstream task (instrumentation).

This likely contributes to its high performance and cross-

domain stability overall.

The class vocabulary alignment is related to label shift,

an under-explored type of distribution shift in the domain-

adaptation field [20]. The labelling scheme difference be-

tween the two datasets complicates the debiasing as the

IRMAS dataset only contains labels for the predominant

instrument while all active instruments are annotated in the

OpenMIC dataset. Aligning these two datasets is nontrivial

as it involves label shift besides covariate shift. We pro-

pose multiple-bias correction, i.e. debiasing in the genre

subpsace, to deal with this problem. Yet, it does not resolve

the conditional probability shift that happens due to un-

balanced relationships between instrumentation and genre,

e.g. the strong dependence between organ and pop/jazz

in IRMAS, and in this specific case an argument could be

made that the classification task is closer to transfer learn-

ing than domain adaptation.

A notable limitation of the presented experiments is

the small amount of functional data. Although OpenMIC

dataset is relatively large with 14915 samples for training,

only a small portion is actually used in the binary classifi-

cation of each instrument. After equalizing the number of

samples per class in both datasets, there are only 288, 221,

177, 578, 290, 551, 476, 427, 385, and 358 samples for

the 10 instrument classes in the binary classification. Most

classes have number of samples less than the dimension of

OpenL3 (512) and all of them are below that of YAMNet

(1024).

6. CONCLUSION

The method proposed in this work addresses one specific

form of bias that can arise in transfer learning scenarios.

Correctly applying this method requires identifying sub-

sets of data that should be treated equivalently, i.e., be in-

distinguishable under the chosen representation. We stress

that this notion of equivalence ultimately depends on the

choice of the downstream task, and caution should be ex-

ercised when identifying populations to treat as equiva-

lent. For the case study presented here—domain adapta-

tion and instrument recognition—we argue that the down-

stream task ought to be generally independent of the source

domain, though we recognize that this will not always be

true in practice. We therefore urge practitioners to criti-

cally investigate all assumptions of equivalence and inde-

pendence when applying bias correction methods.
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