
TRIAD: CAPTURING HARMONICS WITH 3D CONVOLUTIONS

Miguel Perez♯♭

Huawei, Munich Research Center♯

miguel.perez.fernandez@huawei.com

Holger Kirchhoff♯ Xavier Serra♭

MTG, Universitat Pompeu Fabra♭

xavier.serra@upf.edu

ABSTRACT

Thanks to advancements in deep learning (DL), auto-

matic music transcription (AMT) systems recently outper-

formed previous ones fully based on manual feature de-

sign. Many of these highly capable DL models, however,

are computationally expensive. Researchers are moving

towards smaller models capable of maintaining state-of-

the-art (SOTA) results by embedding musical knowledge

in the network architecture. Existing approaches employ

convolutional blocks specifically designed to capture the

harmonic structure. These approaches, however, require

either large kernels or multiple kernels, with each kernel

aiming to capture a different harmonic. We present TriAD,

a convolutional block that achieves an unequally distanced

dilation over the frequency axis. This allows our method to

capture multiple harmonics with a single yet small kernel.

We compare TriAD with other methods of capturing har-

monics, and we observe that our approach maintains SOTA

results while reducing the number of parameters required.

We also conduct an ablation study showing that our pro-

posed method effectively relies on harmonic information.

1. INTRODUCTION

When a note is played, a set of strongly related frequen-

cies start to sound leading to a pitch sensation for the lis-

tener. These strongly related frequencies are what we call

the harmonic spectrum, in which we distinguish two parts:

the fundamental frequency (f0) and the harmonics. The

fundamental is the frequency associated with the pitch, and

the harmonics are integer multiples of f0. Different in-

struments reinforce different harmonics, achieving differ-

ent timbres; but the underlying structure created by f0 and

its harmonics remain present.

Traditional Automatic music transcription (AMT) sys-

tems based on manual feature design employed this prop-

erty to look for harmonic patterns given an observed spec-

trogram [1]. When DL became more popular, many re-

searchers refrained from incorporating expert knowledge

into their model architectures, but relied on generic models

in combination with large amounts of task-specific train-

ing data. Even though these systems significantly outper-
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formed traditional approaches, models utilized large num-

bers of parameters. [2, 3].

The number of parameters plays an important role, as

more parameters can help capture the harmonic pattern

better; in exchange, larger models require more comput-

ing resources as the number of operations grows. Many

DL practitioners do not always have access to large GPU

clusters, and might not be able to train such large models.

Moreover, many portable devices such as phones have lim-

ited battery and memory, and such large models in those

devices will either quickly drain their battery or be directly

impossible to employ. Part of the research focused on re-

ducing the number of models’ parameters without harming

the transcription’s accuracy. This was achieved in many

cases through the incorporation of pitch expert knowledge

within the architecture neural network (NN) [4–9].

The main challenge resides in the unequal distances be-

tween harmonics in the spectrum, so previous approaches

employ either large kernels or several ones running in

parallel. This paper introduces a tridimensional kernel

harmonically dilated (TriAD), a neural block that captures

music intervals and is capable of observing multiple har-

monics while using a single yet small kernel.

The rest of the paper is divided into the following sec-

tions: Section 2 gives more details about prior work captur-

ing harmonics from the spectrum. Section 3 describes our

method, including the processing of the signal and the de-

sign of the kernels. The experimental setting is described

in Section 4. We present the results for these experiments

as well as an ablation study in Section 5. Finally, Section

6 contains our conclusions for this paper and future work.

2. RELATED WORK

As mentioned in Section 1, harmonics played an important

role in the first AMT systems. For example, [1] creates

a dictionary of sets of expected harmonics for each fun-

damental. These ideal patterns were then matched to the

spectrograms used as input for the system using the non-

negative least squares (NNLS) algorithm. The result is an

estimation of fundamental frequencies that along with their

respective harmonics, would resemble the input’s spectro-

gram.

For AMT systems using DL, prior work has incorpo-

rated domain-specific knowledge in two ways: 1. by

choosing a custom input representation that allows the

model to detect harmonic structures [4, 10, 11]; 2. by em-

ploying specific network architectures to search for pat-
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terns in a given feature map obtained at any point of the

network [6–8, 12]. Within the first category, one of the

most popular approaches is the harmonic constant Q trans-

form (HCQT) [4], a feature that extends the constant Q

transform (CQT) [13]. The standard CQT returns a log-

frequency representation of the spectrum, where the nth

bin is associated with the frequency fn = fmin · 2n/p

where fmin is the minimum frequency to be considered,

and p is the number of bins per octave. The magnitude of

CQT spectrogram is a representation containing a single

channel, Fbins frequency bins, for T frames; its shape is

[1, Fbins, T ]. The HCQT extends the CQT the channel di-

mension, where now H harmonics are aligned, resulting in

a tensor with dimensions [H,Fbins, T ]. This extension is

done by stacking a number of H CQTs through the chan-

nel dimension. Each one of these H CQTs is a regular

one whose fmin has been scaled by a harmonic factor h:

fn = h · fmin ; the CQTs with h = 1 will refer to the fun-

damental, h = 2 will refer to the first harmonic, h = 3 to

the third harmonic, etc. up to H different values. Similarly,

sub-harmonics can be added by making h = 0.5, 0.25, etc.

In a nutshell, the HCQT facilitates information about the

fundamentals directly at the network’s input.

As mentioned, other works incorporated the harmonic

knowledge within the architecture of NNs, e.g. [6] ex-

tended the idea of frequency-shifted representations, for

the internal feature maps obtained inside NNs. The au-

thors named this method multiple rates dilated harmonic

causal convolution (MRDC-Conv). Let X denote a feature

map, with shape [Cin, Fbins, T ] at an arbitrary point of the

network. The number of channels for that map is Cin. In

a CQT spectrum, the distance dn between the fundamental

frequency and the nth harmonic is given by:

dn = round(p · log
2
(n)) (1)

Where p is a parameter that determines the number of bins

per octave in the CQT spectra. To capture k harmonics

with MRDC-Conv, the feature map X is convolved with k

different kernels in parallel, resulting in k outputs. Each of

the outputs is shifted following the harmonic factors given

by Equation 1. E.g. to capture the first three harmon-

ics, three different kernels are required, thus, producing

three different outputs. In the case of p = 12 and follow-

ing Equation 1, the shifts associated with the 2nd, 3rd and

4th harmonics are 12, 19, and 24. The sum across the k

outputs is taken, leading to a single final output of shape

[Cout, Fbins, T ], where Cout is the number of output chan-

nels. This method is illustrated in Figure 1a. MRDC-Conv

achieves a convolution able to observe the input at the pre-

cise position of the harmonics; its drawback is that for each

of the harmonics, a different kernel is needed, thus requir-

ing a different feature map stored in memory for each of

the k harmonics before they can be aggregated.

Some other authors embedded harmonic knowledge

within the convolutional kernels rather than in the manipu-

lation of their inputs/outputs. In [12] the authors use sparse

convolutions so that only relevant parts of the spectrum are

considered. Sparse convolutions allow the kernels to “ig-

nore” certain parts of the input, so they do not contribute

Harmonics Music Interval pitc class distance

2, 4, 8, 16 octave b · 12
17 minor second b · 1

9, 18 major second b · 2
19 minor third b · 3

5, 10, 20 major third b · 4
21 perfect fourth b · 5

11, 22 augmented fourth b · 6
3, 6, 12, 24 perfect fifth b · 7

25 minor sixth b · 8
27 major sixth b · 9

7, 14, 28 minor seventh b · 10
15, 30 major seventh b · 11

Table 1: The harmonics of the first 3 octaves, and their as-

sociated music intervals. The rightmost column indicates

the distance in bins associated with each interval, where b

is the number of bins per semitone.

either to the output or to backpropagation during train-

ing [14]. According to [15], the harmonics are positive

indicators that a certain pitch is present, but some frequen-

cies indicate that the pitch might not be present at all. The

latter are called negative indicators. The sparse convolu-

tions from [12] are used in such a way that only positive

and negative indicators defined in [15] are taken into ac-

count. Sparse convolutions require nonetheless using large

kernels to cover relevant parts of the spectrum, i.e. [12] re-

sulted in around 650k parameters exclusively for harmonic

processing, accounting for the major portion of the model’s

parameters.

In [8], dilated convolutions are used to capture the har-

monics from the spectrum, with a method named harmonic

dilated convolution (HD-Conv). Dilated convolutions are

a special kind of convolution, where the kernels’ inputs are

spaced by a fixed amount. An example of dilated convo-

lutions can be seen in Figure 1b. By controlling the di-

lation size, the authors space the kernels’ inputs, so each

kernel obtains a specific harmonic. The outputs of the dif-

ferent kernels are aggregated by summing across the ker-

nels’ outputs as shown in Figure 1b. The size of the dila-

tions is given by Equation (1). E.g. for p = 12, the second

harmonic is separated from the fundamental by d2 = 12
bins, the third one by d3 = 19; to capture both the sec-

ond and the third harmonic, we would need to create two

convolutional kernels with a dilation size of 12 and 19 at

the frequency dimension. This method has the same draw-

back as MRDC-Conv, as different harmonics also require

a different kernel.

3. OUR METHOD

Similarly to [8], our method uses dilated convolutions to

capture the harmonics of the spectrum. As mentioned be-

fore, a constant dilation can not capture multiple harmon-

ics given the logarithmic nature of these. If it was possible

to use different dilations for the same kernel, this problem
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(a) MRDC-Conv (b) HD-Conv [8]

Figure 1: Figure (a) An example of MRDC-Conv [6]. Two kernels are applied to the same input. The fundamental f is

separated from the harmonic n by dn bins. One output gets shifted by dn, and so f and n get aligned. Figure (b) An example

of HD-Conv [8], with two kernels applied to the same input, each one with a different dilation (3, and 2 respectively).

would have been already solved, but currently, DL frame-

works support only dilations with constant spacing. Our

method is able to partially overcome this technical limita-

tion and achieve a convolution at the frequency axis with

different dilation rates; thanks to this, our proposed method

captures multiple harmonics by just using a single kernel.

We named our method TriAD, and it involves a series

of steps. The first step is to split the frequency dimension

into two new ones, each representing different octaves and

pitch classes. We call this representation the pitch/octave

spectrogram. Next, we create the kernels for our method.

Previous works used kernels spanning 2 dimensions: fre-

quency and time; our method’s kernels however span 3 di-

mensions: octave, pitch class, and time. An arbitrary num-

ber of m different kernels can be created, each one cap-

turing a different music interval. The m kernels are con-

volved with the previously described pitch/octave spectro-

gram, resulting in m different outputs. Finally, these out-

puts are aggregated by taking the sum across them. The

consecutive steps are illustrated in Figure 2.

Subsection 3.1 details the procedure followed to con-

vert a log-frequency spectrogram onto a pitch/octave spec-

trogram. Subsection 3.2 explains how our convolutional

kernels are created and the difference they have with the

method described in [8]. At the end of that subsection, we

describe a special kind of padding used in our technique,

the octave-circular padding.

3.1 The pitch/octave spectrogram

Let X Cin×Fbins×T be a feature map, with Fbins logarith-

mically spaced frequency bins, T frames, and Cin chan-

nels. Our goal is to separate octave and pitch class infor-

mation. We split the Fbins bins into two dimensions repre-

senting the octave (o) and pitch class (p) information. The

number of pitch classes is simply the number of bins per

octave used, and the number of octaves can be obtained by

o = Fbins

p . Note that o must be an integer, and so when

this condition is not met, we pad the upper part of X ’s fre-

quency dimension with the minimum amount of zeros that

satisfies the condition. The result is the pitch/octave spec-

trogram Y Cin×o×p×T , a view of X where Fbins has been

separated into its octave and pitch class information.

3.2 The harmonic convolutions

Our aim is to compare two pitch classes across multi-

ple octaves to capture harmonically related information.

As shown in Table 1, harmonics and music intervals are

closely related. Comparing two pitch classes separated by

a certain interval at multiple octaves simultaneously will

effectively obtain the harmonics associated with that mu-

sic interval.

As previously mentioned, our kernels have 3 dimen-

sions: Kko×kp×kt , related to the octaves (ko), pitch classes

(kp), and frames (kt) of the pitch/octave spectrogram; this

means that our method uses 3D convolutions 1 . By chang-

ing the convolution dilation at the pitch class dimension we

control which interval we capture, and consequently its as-

sociated harmonics. Since our goal is to compare the same

two pitch classes, our method has a fixed kp = 2, but the

sizes of ko and kt can be varied, spanning many octaves

and timesteps. The effect of dilation exclusively on pitch

classes is what achieves the aforementioned non-constant

dilation at the frequency dimension. E.g. Let p = 12
and a kernel K with ko = 3 and a perfect fifth dilation

at the pitch class dimension, in a certain position, this ker-

nel would see C1, G1, C2, G2, C3, G3 simultaneously. The

distance from each C to the next G is 7 bins, but the dis-

tance from each G to the next C is 5 bins. Our method is to

the best of our knowledge, the only one capable of achiev-

ing that effect in dilation. In the same scenario using linear

dilations [8], a kernel with the same size and dilation of

a perfect fifth would see instead C1, G1, D2, A2, E3, B3.

Using our method, a single kernel with ko = 3 and a dila-

tion of perfect fifths at the kp dimension capture 5 of the

first 7 harmonics (see Table 1).

As can be observed in Figure 2, the inputs and outputs

of the convolutions have the same size, which is achieved

by padding the pitch/octave spectrogram. The values used

to pad follow the values of the continuous log-frequency

spectrogram. E.g. given p = 12, to pad above B1, we

use the values of the bins C2,C♯2, etc. In contrast, values

above the highest octave of the pitch/octave spectrogram

will be padded with zeros. We call this method circular-

octave padding.

1 When kt = 1, our method can be implemented with 2D convolutions
by stacking frames across the batch dimension. 3D is just the general case
for an arbitrary kt
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Figure 2: An overview of TriAD. The channel dimension has been omitted in the image. The first stage converts a log-

frequency spectrogram onto a pitch/octave one. We apply m of our harmonically motivated kernels to the pitch/octave

spectrogram. Each kernel captures different harmonics, depending on the dilation at the p dimension. The kernels’ outputs

are aggregated by summing the m outputs. B stands for the batch dimension.

4. EXPERIMENTS

We test the performance of our method on AMT for the

subtask of piano transcription. Our method is compared

with other SOTA approaches of capturing the harmonic

spectrum within the architecture itself; concretely, we used

the harmonic blocks MRDC-Conv [6], and HD-Conv [8].

We do not include input manipulations such as the HCQT,

since these are input manipulations rather than network-

internal musically motivated convolutional operations, and

a fair comparison is not straightforward.

4.1 Datasets

We used two datasets in our experiments: MIDI and

audio edited for synchronous track and organization

(MAESTRO) [16], and MIDI aligned piano sounds

(MAPS) [17]. MAESTRO contains about 200 hours of

audio for complex piano performances precisely aligned

to note labels. Some compositions appear multiple times,

each played by a different interpreter. In the paper where

MAESTRO is presented, an official train/validation/test

configuration was also proposed so that compositions

played by different interpreters are in the same split group.

We use the latest version of this dataset, version 3, in our

experiments. MAPS is another popular dataset used in pi-

ano transcription. In contrast to MAESTRO that contains

only complete piano pieces, this dataset also contains iso-

lated notes and chords.

Following the practice used in previous works [7,8,16],

we use the train and validation splits from MAESTRO

to train our NNs, and the test sets of MAESTRO and

MAPS for testing the trained models. Chunks of audio

of 20 seconds and a sample rate of 16.000Hz were used

and transformed into a CQT spectrogram, with 352 bins,

fmin = 32.070Hz, and a resolution of 4 bins per semi-

tone. A hop size of 320 samples is employed, resulting in

a time resolution of 20 milliseconds.

4.2 The model

We use the HPPNet-base model from [8] for our experi-

ments. This model consists of a backbone and 4 differ-

ent heads; each head is in charge respectively of predict-

ing which notes are present in each frame, its velocity and

whether there is an onset or offset happening. Figure 3

shows an overview of the network. The backbone con-

sists of multiple convolutional layers, and it is divided into

three main sections. The first section consists of 3 blocks

with 2D convolutions, whose kernels are squarely shaped

(7× 7) and perform initial processing of the CQT spectro-

gram. The second section is in charge of doing the back-

bone’s harmonic processing; this is where either HD-Conv,

MRDC-Conv, or TriAD will be placed. The last block con-

sists of 5 2D convolutional layers with filter shape (1× 5),
spanning across the time dimension 2 .

The output of the backbone is then used as input for

the four heads. Each head consists of a bidirectional

long short-term memory (LSTM) [18] and a dense layer.

LSTMs model sequential data, which are the features as-

sociated with each output bin in this case. The dense layer

takes the features outputted by the LSTM and produces a

single value for each of the 88 notes of a piano. Details

about the design choices of HPPNet can be found in [8].

We run our experiments by comparing the model’s per-

formance when the backbone’s harmonic processing is

done either by our method (TriAD), MRDC-Conv [6], or

HD-Conv [8]. We use those methods as employed in their

respective papers: 12 kernels of shape (1 × 1) in the case

of [6], and 8 kernels with shape (3 × 1) in the case of [8].

For our method, we use just two kernels, one dilated for

perfect fifths, and another one for major thirds; these are

2 The third block differs from the original paper description; following
their description, that block of the backbone alone has 983.040 parame-
ters, whereas the paper specifies that the backbone contains 421K param-
eters. We used the network as implemented in the official repo, which
matches the number of parameters and replicates their reported results
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the intervals with the most associated harmonics. Our ker-

nels span 3 octaves (ko = 3) and a single frame (kt = 1).

The code for MRDC-Conv and HD-Conv can be found in

their official repositories 3 4 . We do not train a version

of the model with a “harmonically agnostic” block, as [8]

already shows in an ablation study that the model’s perfor-

mance drops significantly in that case.

As optimizer, ADAM [19] with a learning rate of 6 ·

10−3 was used. We trained all the models for 200.000
steps, where each step consists of a batch size of 4 chunks

of audio. The evaluation was done on MAESTRO’s evalu-

ation dataset every 500 steps, to check for possible cases

of overfitting. The models were trained 3 times, each

one with a random weight initialization. All the harmonic

blocks take a similar time to train, around 24h to complete

in a V100 GPU.

The employed loss is the same one as in HPPNet’s pa-

per [8], a combination of individual losses for the frame,

onset, offset, and velocity heads. Weighted binary cross

entropy (see Equation 2) was used as loss for the frame,

onset and offset heads. This loss is used since there are few

positive onset labels, yet predicting onsets is necessary to

distinguish consecutive notes. The parameter w controls

the relevance of positive labels in the loss and is chosen

as w = 1 for offsets and frames, and w = 2 for onsets.

The loss for the velocity head is the mean squared error

between the expected and estimated velocities of each in-

dividual note.

lbce(y, ŷ) = −wy · log (ŷ)− (1− y) · log (1− ŷ) (2)

5. RESULTS

The metrics reported follow the convention described in

[20]. These metrics report different aspects of the tran-

scription. The frame metric operates at the frame level,

while the other three operate at the note level. Within the

note level, three different metrics exist, considering off-

sets and/or velocity. This is due to the partially subjective

nature of this task. The onset (referred to as the moment

when a certain note starts to sound) is not very subjective

given the sharp attack of the piano [21]. In contrast, off-

set (the moment when a certain note stops sounding) and

velocity are less objective aspects of the transcription. An

estimate of a note is assumed to be correct if its onset is

within ±50ms of the reference, and its pitch is correct.

When contemplating offsets, in addition to the previous

requisites, the estimation’s offset should also be within a

certain range; this range is either ±50ms or 20% of the

reference note’s duration, whatever is larger.

Velocity estimation is more intricate, as depending on

the microphone position a note played with a certain ve-

locity can sound louder or quieter. We use the procedure

described in [2], which involves rescaling velocities and

using linear regression to account for the aforementioned

3 https://github.com/WX-Wei/HarmoF0
4 https://github.com/WX-Wei/HPPNet

Figure 3: A diagram of HPPNet. The brackets’ numbers

represent the sizes of the channel, frequency, and frame

dimensions. Letter d indicates the dilation rate.

difference in loudness. All the metrics were calculated us-

ing mir_eval [22].

The scores for Section 4 experiments are in Table 2. We

also report the results of some larger models of the SOTA

as reference. Onsets & Frames [2] is among the most

well-known DL models for piano transcription. Semi-

CRFs [3] is a method designed to improve the predictions

made about the offsets. These are large and capable mod-

els, but the ones using harmonic knowledge also manage

to achieve similar results with notably fewer parameters.

Both TriAD and HD-Conv blocks achieve similar results,

in pair with large models. The MRDC-Conv block uses

fewer parameters than HD-Conv, but in exchange drops in

performance. Noticeably, the model using TriAD has the

same number of parameters as the one MRDC-Conv, yet it

does not drop in performance.

5.1 Kernel dilation relevance

In music theory, some intervals are more important than

others. Equally, some music intervals have more harmon-

ics associated with them than others, as shown in Table

1. It could be expected, that using a kernel dilated with a

highly relevant interval yields better results than a kernel

associated a with less relevant interval. We tested whether

this assumption held or not in our method; instead of using

multiple kernels as previously described, our block con-

sists of a single kernel for these experiments. We used 2

relevant intervals (perfect fifth, major third), and 2 lesser

relevant intervals (minor second, major seventh) to test the

aforementioned assumption. These kernels span 3 octaves

(ko = 3) and a single frame (kt = 1), as in the previous ex-
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Model # Parameters
FRAME F1 NOTE F1 NOTE W/OFFSET F1 NOTE W/OFFSET & VEL. F1

MAESTRO

Onsets & Frames [2]* 26M 89.68% 95.22% 79.44% 78.85%
Semi-CRFs [3] 9M 90.75% 96.11% 88.42% 87.44%

HPPNet + HD-Conv 820K 91.62%(±.02) 96.14%(±.01) 82.91%(±.02) 80.91%(±.02)
HPPNet + MRDC-Conv 780K 78.69%(±.01) 84.71%(±.01) 58.77%(±.01) 52.15%(±.03)
HPPNet + TriAD (ours) 780K 91.50%(±.02) 96.16%(±.01) 82.62%(±.02) 80.76%(±.01)

MAPS

HPPNet + HD-Conv 820K 72.45%(±.02) 86.09%(±.01) 42.77%(±.02) 40.11%(±.02)
HPPNet + MRDC-Conv 780K 63.25%(±.01) 73.87%(±.02) 32.68%(±.02) 32.68%(±.01)
HPPNet + TriAD (ours) 780K 72.39%(±.03) 85.06%(±.02) 42.41%(±.02) 40.17%(±.02)

Table 2: Results for the experiments described in Section 4. In our experiments, each model was trained three different

times. The metrics here reported are the average across these runs and in parenthesis the variance. * Results from [8].

Model

Major third Perfect fifth Minor second Major seventh

MAESTRO MAPS MAESTRO MAPS MAESTRO MAPS MAESTRO MAPS

HPPNet + TriAD 90.14%(±.02) 71.58%(±.01) 90.23%(±.02) 71.98%(±.01) 83.16%(±.01) 68.53%(±.01) 83.36%(±.01) 69.19%(±.02)
HPPNet + HD-Conv 84.89%(±.01) 69.96%(±.02) 85.98%(±.02) 70.50%(±.03) 84.23%(±.03) 67.86%(±.03) 84.79%(±.01) 68.69%(±.02)

Table 3: F1 framewise results for the single kernel experiments described at section 5.1. Our method obtains worse results

if a “less relevant” music interval is chosen. HD-Conv achieves more similar results regardless of the dilation, with just a

small improvement for the case of the perfect fifth (where it employs two kernels).

periment. We also used the method with constant dilations

i.e. HD-Conv from [8], equally using single kernels except

for the case of the perfect fifth. There are two harmonics

associated with the perfect fifth within the first 3 octaves,

so we employ two rather than a single kernel. The constant

dilations capture in this case major third: 5th harmonic;

perfect fifths, 3rd and 6th harmonics; minor second, 17th
harmonic; and major seventh 30th harmonic. We noticed

that after 50.000 steps, the speed at which the loss dimin-

ished slowed down sensibly, and therefore, we reduced the

number of training steps for this experiment and trained for

70.000 steps in each run.

The results can be seen in Table 3. HD-Conv [8] ob-

tains slightly better results for the perfect fifth kernels, but

similar results for other cases. Our method (TriAD) has

a distinguishable performance gap depending on the inter-

val. Results are worse for minor second and major seventh

intervals, compared to the cases of the major third and the

perfect fifth. Moreover, in those two cases, our method

achieves notably better results than HD-Conv.

6. CONCLUSIONS

In this paper, we presented TriAD, a novel convolutional

block for NNs capable of capturing the harmonics related

to music intervals. To obtain such information, we sepa-

rate octave and pitch class dimensions from log-frequency

spectrograms and create convolutional kernels specifically

designed to process this disentangled representation. We

tested and compared our method with other ones designed

to capture harmonic information, in the task of piano-

AMT. We also compared how our model performed when

only a single kernel was employed. To the best of our

knowledge, our method is the only one capable of achiev-

ing dilated convolutions which are not “equally spaced”

along the frequency axis, allowing our model to capture

multiple harmonics using a small kernel. To achieve this

effect, other approaches require applying different convo-

lutional layers to the same input [6, 8] or using large ker-

nels [12].

Our method is still capable of reaching the performance

achieved by other harmonic blocks while making use of

fewer parameters, showing the effectiveness of our ap-

proach. Furthermore, the results from the experiment de-

scribed in Subsection 5.1 show that our method’s perfor-

mance highly depends on the dilation choice, thus hinting

that our method is indeed using the harmonics to determine

which pitches are present. Moreover, with an appropriate

dilation choice our model outperforms other methods also

using a single kernel.

Harmonic series are relevant for other tasks beyond

AMT, for example, instrument recognition. Some works

have found that the harmonics and their respective am-

plitudes are crucial to correctly classifying instruments

[23, 24]. Our method could be employed to capture the

amplitude of different harmonics and learn specific pat-

terns for each instrument. In future work, we will use “har-

monically designed” networks in other AMT related tasks.

Recent advances in AMT such MT3 [25] demonstrate that

with the current DL techniques is possible to transcribe an

arbitrary number of instruments from a piece of music au-

dio instead of just piano as shown here. Since the harmon-

ics are relevant for instrument recognition, we hypothesize

using harmonic blocks such as the ones presented here, the

accuracy with which notes are assigned to each instrument

in systems like MT3 could improve. We release code for

reproducibility experimentation 5 .

5 https://github.com/migperfer/TriAD-ISMIR2023
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