
Studienarbeit No. 848

A Comparison of Reduced-Order Models
for Wing Buffet Predictions

Anton Schreiber

Examiner: Dr.-Ing. André Bauknecht
Institute of Fluid Mechanics
Head of Institute: Prof. Dr.-Ing. David E. Rival
TU Braunschweig

Supervisor: Dr.-Ing Andre Weiner (TU Braunschweig)

Publication: December 2023

Affidavit

I, Anton Schreiber, declare that I have authored this thesis independently, that I have not used
other than the declared sources and resources, and that I have explicitly marked all material
that has been quoted either literally or by content from the used sources.

i

Abstract

The primary aim of this study is to train and evaluate a set of Reduced-Order Models (ROMs) for
predicting upper-wing pressure distributions on a civil aircraft configuration. Using wind tunnel
data recorded for the Airbus XRF-1 research configuration in the European Transonic Windtun-
nel (ETW), the ROMs integrate dimensionality reduction and time-evolution components. For
dimensionality reduction, both Singular Value Decomposition (SVD) and a convolutional Vari-
ational Autoencoder (CNN-VAE) neural network are employed to reduce/encode Instationary
Pressure Sensitive Paint (IPSP) data from a transonic buffet flow condition. Fully-Connected
(FC) and Long Short-Term Memory (LSTM) neural networks are then applied to predict the
evolution of the latent representation, which is subsequently reconstructed/decoded back to its
original high-dimensional state.

SVD and CNN-VAE are trained on data from five flow conditions and tested on two unseen
conditions. When comparing the power spectra of the reconstructed and experimental data, SVD
demonstrates marginally better performance. Subsequently, FC and LSTM models are applied
for the forward evolution of the reduced/latent representation for one flow condition, resulting in
four evaluated ROMs. Among them, the CNN-VAE-LSTM model excels by accurately capturing
buffet dynamics, encompassing both transient features and steady-state oscillations. SVD-based
models tend to struggle with transient buffet behavior, as they predominantly learn steady-state
dynamics. Additionally, the CNN-VAE-LSTM model was employed for an end-to-end training
approach. The results suggest that it faces difficulties maintaining dynamics in predictions,
demanding further investigation and optimization.

iii

Contents

Nomenclature vii

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 1
1.3 Approach . 3

2 Three-Dimensional Transonic Buffet 4
2.1 Physical Mechanism . 4
2.2 Three-Dimensional Behavior . 5
2.3 Buffeting and its effects . 6

3 Reduced Order Modeling 7
3.1 Dimensionality Reduction . 7

3.1.1 Singular Value Decomposition (SVD) . 7
3.1.2 Convolutional Variational Autoencoder (CNN-VAE) 9

3.2 Deep Learning (DL) . 11
3.2.1 Neural Networks . 11
3.2.2 Convolutional Neural Network (CNN) . 13
3.2.3 Long Short-Term Memory (LSTM) . 14

3.3 Metrics . 15
3.3.1 Mean Squared Error (MSE) . 15
3.3.2 Coefficient of Determination (R2) . 16
3.3.3 Power Spectral Density (PSD) . 16

4 Model Optimization 18
4.1 Data Source and Preparation . 18

4.1.1 Interpolation . 19
4.2 Dimensionality Reduction . 20

4.2.1 SVD . 20
4.2.2 CNN-VAE . 22

4.3 Time Evolution in Reduced State . 27
4.3.1 FC Models . 27
4.3.2 LSTM Models . 29

4.4 End-to-End Training . 29

5 Results 31
5.1 Dimensionality Reduction . 31

5.1.1 SVD . 31
5.1.2 CNN-VAE . 34

5.2 Reduced-Order Models . 36
5.2.1 SVD-FC . 36
5.2.2 CNN-VAE-FC . 38
5.2.3 SVD-LSTM . 40
5.2.4 CNN-VAE-LSTM . 41

5.3 End-To-End CNN-VAE-LSTM . 43

6 Conclusion 45

v

vi Table of Contents

Bibliography 47

List of Figures 50

Nomenclature

Latin Symbols

a(·) activation function
a(t) mode coefficient
â(f) Fast-Fourier-transformed signal
A mode coefficients
Ã truncated mode coefficients/ reduced data matrix
b bias term
b bias vector
c chord, [m]
cp pressure coefficient
c̄ mean chord, [m]
c cell state
c̃ candidate cell state
C channel dimension,
C covariance matrix
d(·) decoder network
d∗(·) optimal decoder network
e(·) encoder network
e∗(·) optimal encoder network
f frequency, [1/s]
fθ(·) model
f forget gate
FFT (·) Fast Fourier Transform
g(·) representation of advanced optimization techniques
h hidden state
H height dimension
i input gate
I identity matrix
L(·) loss function
m state dimension
m(·) transformation through neural network layer
Ma Mach number
n snapshot (time) dimension
N(·) normal distribution
Nf number of features
Nneu number of neurons
o output gate

vii

viii Nomenclature

r truncation rank/ bottleneck layer size
R2 Coefficient of Determination (R-squared)
Re Reynolds number
s stride
sigm(·) sigmoid activation function
std standard deviation
St Strouhal number
tanh(·) hyperbolic tangent activation function
u left singular vector
U fluid velocity, [m/s]
U left singular vectors
Ũ truncated left singular vectors
var variance
v right singular vector
V right singular vectors
Ṽ truncated right singular vectors
w weight
W width dimension
W weight matrix
x feature
x feature vector
X data matrix
X̃ approximated data matrix
X̄ data matrix mean
y label
y label vector
ŷ model prediction
z weighted sum (activation)
z vector of weighted sums (activations)

Greek Symbols

α angle of attack, [◦]
χ sampled vector
ζ random variable
η spanwise position
θ model parameters
θ∗ optimal model parameters
λ learning rate
ν kinematic viscosity, [m2/s]
ω reduced frequency
ϕ sweep angle, [◦]
σ singular value
Σ singular values
Σ̃ truncated singular values
τ dimensionless time

Nomenclature ix

Indices

0 initial; starting
θ model parameters
∞ undisturbed external flow; incoming flow
f forget
i, j, o (tensor) indexing
in input
k kernel (filter)
l layer
loc local
n step
normal normal component
out output
p pressure
reconstr. reconstructed
t timestep

Acronyms

AE Autoencoder
ARMA AutoRegressive Moving Average
ARIMA Autoregressive Integrated Moving Average
CNN Convolutional Neural Network
DL Deep Learning
DMD Dynamic Mode Decomposition
E2E End-to-End
ETW European Transonic Windtunnel
FC Fully-Connected
GP Galerkin Projection
GPU Graphics Processing Unit
GPT Generative Pre-Trained Transformer
IPSP Instationary Pressure-Sensitive Paint
KL Kulback-Leibler
LCO Limit Cycle Oscillations
LSTM Long Short-Term Memory
ML Machine Learning
MSE Mean Squared Error
NASA National Aeronautics and Space Administration
NODE Neural Ordinary Differential Equation
PCA Principal Component Analysis
POD Proper Orthogonal Decomposition
PSD Power Spectral Density
RNN Recurrent Neural Network
ROM Reduced Order Model(ing)
SV D Singular Value Decomposition
TCAN Temporal Convolutional Attention-based Network
TFN Through Flow Nacelle

x Nomenclature

UHBR Ultra High Bypass Ratio
V AE Variational Autoencoder
V AR Vector Autoregression
XRF eXternal Research Forum

Chapter 1

Introduction

1.1 Motivation

For decades, scientists and engineers have been striving to comprehend the complex, multi-scale
dynamics of aerodynamic configurations [4]. However, certain phenomena are still not fully
understood due to their highly nonlinear nature. One such phenomenon is the transonic buffet,
involving an interaction of the shock-wave with a boundary layer separation that can induce
critical structural vibration in aircraft (known as buffeting), thus posing significant challenges
for engineers [8]. Estimating buffet conditions within the flight envelope is crucial for designing
safer and more efficient aircraft.

Over the last few years, Machine Learning (ML) algorithms have increasingly been utilized in
fluid mechanics applications due to their ability to extract informative features from data. This
is particularly beneficial for the wide range of spatial and temporal features of fluid flows, which
require more meaningful representations. The modular and agile modeling framework of ML
can be adapted to address a broad spectrum of fluid mechanics problems, paving the way for
new applications of dimensionality reduction and Reduced-Order Modeling (ROM) in general
[4, 10].

The research unit FOR 2895 [19] conducted Instationary Pressure-Sensitive Paint (IPSP) mea-
surements on the Airbus XRF-1 research configuration. These measurements were carried out
within the European Transonic Windtunnel (ETW) and provided time-resolved pressure distri-
butions over the upper wing during transonic buffet conditions. However, the measurements
come with considerable cost and do not provide well-defined outlines for buffet conditions.
Therefore, the use of ROMs becomes valuable to reduce the significant cost linked to further
high-fidelity investigations. With these models, intermediate flow conditions can be explored
and and an estimate of buffet onset, in terms of both angle of attack and Mach number, can be
formulated.

1.2 State of the Art

The auto-regressive prediction of sequential data has a wide range of applications. To forecast
time series such as airline passengers or sales, statistical models like ARMA (Auto-regressive
Moving Average), ARIMA (Auto-regressive Integrated Moving Average), and VAR (Vector Au-
toregression) are often used [25, 39, 40]. ARMA models use moving average components, in
which the current value linearly depends on the time series mean, a current error term, and
past error terms. ARIMA models incorporate differencing, which is an approach to handling
non-stationary series by transforming them into stationary ones. VAR models consider the inter-

1

2 1. Introduction

dependencies between multiple variables to forecast multiple time series variables simultaneously.
An often used library in Python to implement such models is the statsmodels library.

Statistical models encounter significant limitations when confronted with datasets containing
numerous features, intricate nonlinear relationships, and a data volume surpassing a certain
threshold. Deep learning demonstrates its effectiveness in addressing complex data in these
scenarios, proving its capability to handle such challenges with ease [25]. Van den Oord
et al. [23] proposed the audio generation model WaveNet, which is used for text-to-speech,
speech enhancement, and more. The auto-regressive benchmark model consists of stacked layers
of dilated causal convolutions, i.e. by introducing holes within the convolutional kernel, it is
possible to achieve a larger receptive field while preserving a compact kernel size.

In the field of language modeling, ChatGPT is probably the most popular application, currently
based on GPT-4 [24], a Generative Pre-trained Transformer (GPT) model from OpenAI. An
additional model in this field is the Temporal Convolutional Attention-based Network (TCAN)
[13]. TCAN was able to outperform prior state-of-the-art models based on Recurrent Neural
Network (RNN) and Convolutional Neural Network (CNN) architectures and also the previous
ChatGPT model GPT-2 [29], while having 10 times fewer model parameters. Pravallika et
al. [28] used a Long Short-Term Memory (LSTM) [14] architecture to predict the sea surface
temperature of the Indian Ocean. In light of the work’s results, the authors consider employing a
convolutional LSTM as a more sophisticated model for future work. For the solar power forecast
of a photovoltaic plant in Konya, Turkey, Tosun et al. [38] trained three models, namely a wide
LSTM, a deep LSTM, and a WaveNet model, on six months of power generation data from
a plant at a resolution of 15 minutes. The researchers could show that these architectures
outperform classical methods like regression but also fully-connected neural networks.

In the field of fluid mechanics, models often have to deal with high-dimensional, spatiotemporal
data, obtained from experiments or numerical simulations. Based on the latter, Maulik et al.
[21] investigated time series learning of latent-space dynamics for an advection-dominated prob-
lem given by the viscous Burgers equation. The problems were projected onto a latent space
utilizing Singular Value Decomposition (SVD) where time evolution is then learned by Neural
Ordinary Differential Equation (NODEs) and LSTM networks. The study showed that both
methods could provide stable 400 timestep predictions in contrast to the Galerkin Projection
(GP) method. Eivazi et al. [10] proposed a nonlinear reduced-order modeling approach, com-
bining an autoencoder (AE) with an LSTM network, to handle complex unsteady fluid flows.
In this method, the AE serves as a substitute for SVD. For future state prediction, an initial
sequence was fed through the encoder and utilized as input for the LSTM network, enabling
auto-regressive prediction within the latent space. Subsequently, the predicted time steps were
encoded and mapped back to the original space. The AE and LSTM were trained independently
and compared against the widely recognized Dynamic Mode Decomposition (DMD) method and
a newly developed ROM incorporating POD (Proper Orthogonal Decomposition) modes and the
LSTM network. Notably, the findings demonstrated that the autoencoder-LSTM model achieved
superior performance, particularly in more complex test scenarios, outperforming the other con-
sidered methods. In a related study by Solera-Rico et al. [33], the authors introduced a
novel approach combining a β-variational-autoencoder (β-VAE) and a transformer model for
numerical fluid flow modeling. The performance of the AE was compared to POD, revealing the
superior performance of the AE, particularly in complex test cases. Additionally, the prediction
accuracy of the transformer network was compared to that of an LSTM architecture. Interest-
ingly, the authors found that only the transformer network adequately captured and learned the
correlations among the temporal coefficients, highlighting its superiority in capturing temporal
dependencies.

Based on experimental data of the Airbus XRF-1 model, two related follow-up studies [44, 45]

1.3 Approach 3

dealt with the auto-regressive prediction of buffet pressure fields. Zahn et al. [44] explored the
application of an LSTM-based ROM, which was trained on a specific flow condition and fixed
sensor position, to predict buffet pressure characteristics at various sensor positions and angles
of attack. The findings of the study indicated that LSTMs successfully captured the buffet
frequency content. Although a slight shift in the amplitude between the predictions and the
experimental data was visible, there is an overall precise agreement. In a related investigation
by Zahn et al. [45], they employed a convolutional-VAE-LSTM (CNN-VAE) on IPSP data. The
convolutional VAE was used for reducing the dimensionality of the flow field data, while the
LSTM was employed to predict the temporal evolution of the pressure distributions. Utilizing
an initial sequence of 32 encoded timesteps, the proposed model achieved stable predictions up
to timestep 200, accurately capturing the buffet flow physics.

1.3 Approach
The objective of this study is to implement, train, and compare a set of ROMs for the prediction
of upper-wing pressure distributions based on IPSP data recorded at buffet conditions. To
achieve this, the data must undergo a process of dimensionality reduction to lower-dimensional
states, followed by a forward evolution in time and subsequent reconstruction to its original state.
ROMs are employed incorporating the dimensionality reduction techniques SVD and CNN-VAE,
along with time-evolution frameworks involving FC and LSTM neural networks. The temporal
evolution of the reduced state follows an auto-regressive approach, in which predictions are used
to make successive predictions, with a focus on achieving stability for long-term forecasts. While
the traditional sequential training approach is followed for most ROMs, an end-to-end training
strategy is applied for the best-performing model.

The mentioned objectives are structured within the framework of the present work. After intro-
ducing the buffet phenomenon in chapter 2, chapter 3 derives the mathematical fundamentals
of the employed ROM methodologies and metrics. This includes the presentation of SVD and
CNN-VAE as dimensionality reduction techniques, an introduction to Deep Learning (DL) with
neural networks, and an overview of FC, CNN, and LSTM neural networks. Additionally, this
chapter includes a section dedicated to metrics that serve as the foundation for the optimization
and evaluation of the ROMs.

Focusing on model optimization, the subsequent chapter 4 provides details about the employed
training methodologies. It offers comprehensive insights into the frameworks adopted, the range
of parameters utilized, and the parameter studies conducted, aimed toward enhancing model
performance. Chapter 5 involves applying all developed ROMs to previously unseen data, assess-
ing their capability for making stable long-term predictions while accurately reproducing buffet
flow physics. A detailed examination of various metrics supports the evaluations. Finally, the
study’s findings are summarized and discussed in Chapter 6, providing implications for future
work.

Chapter 2

Three-Dimensional Transonic Buffet

The transonic buffet represents an interaction between shock-wave oscillation and boundary
layer separation on aircraft wings. It is a complex phenomenon that occurs during edge-of-the-
envelope transonic flight conditions. Despite advances in experimental and numerical investiga-
tions, it is still an unresolved flow phenomenon due to a lack of fundamental understanding. This
section aims to briefly elaborate on the current state of knowledge regarding this phenomenon.

2.1 Physical Mechanism

The buffet occurs at transonic flight conditions which are essentially characterized by high sub-
sonic cruise speeds and therefore in the operating range of modern aircraft. At these conditions,
the flow around the airfoil locally exceeds the speed of sound and forms supersonic flow regions.
At the downstream border of these regions - the shock wave - the flow decelerates to subsonic
speeds. With increasing Mach number (Ma) and/ or angle of attack (α), the shock intensifies
while moving aft over the airfoil, eventually inducing a massive boundary layer separation at
the shock that generally goes along with an aerodynamic resonance [6]. In this case, the flow
can become highly unsteady, introducing oscillations of the flow variables and load coefficients,
affecting aerodynamic performance. These variations indicate buffet [8]. To describe buffet in
the frequency domain, the Strouhal number St = fc/U , with frequency f , chord c, and flow
speed U , is commonly employed as it characterizes oscillating flows.

In fig. 2.1, the movement of the shock wave and its influence on the shock-induced separation
can be observed for a generic airfoil following 2D numerical simulations [20]. It becomes evident
that, while the intensity of the shock remains almost constant, the separation layer as well as
the supersonic flow region strongly vary in shape and size over time.

(a) (b) (c)

Figure 2.1: Airfoil buffet for three consecutive timesteps, taken from [20]

4

2.2 Three-Dimensional Behavior 5

2.2 Three-Dimensional Behavior
While the causes of shock-separation interactions are well understood, understanding the 3D
dynamics of buffet phenomena presents a significant challenge. However, recent research progress
has led to the development of techniques to tackle more complex flow fields. As highlighted in
various studies, there are fundamental flow physical differences between 2D airfoils, exhibiting
harmonic shock motion at a specific frequency, and 3D swept wings, exhibiting more complex
broadband dynamics. Consequently, the research focus has shifted towards the more practical
aspects of three-dimensional swept wings [11, 36, 37].

Figure 2.2: Schematic shock and sep-
aration behavior on a 3D
swept wing, taken from
[35]

According to [7, 16, 26, 35], the general 3D buffet be-
havior on a classical swept wing is elaborated in the
following. In fig. 2.2, the schematic shock-separation-
interaction is illustrated for the NASA (National
Aeronautics and Space Administration) Common Re-
search Model. Depicted are the time-averaged loca-
tions of the shock at different angles of attack with
Ma = 0.85, taken from [35]. Starting from the in-
board leading edge, the shock foot runs aft in spanwise
direction until it converges with a second shock foot
at η ≈ 0.25 that originates at approximately 60%c in
the wing root. This characteristic shock appearance
is typically denoted as lambda-shock.

As depicted in the illustration, the region of partic-
ular interest for buffet investigations is located be-
tween the previously mentioned point of convergence
and the vicinity of the wingtip. This area is particu-
larly significant as most of the shock movement and
shock-induced separation phenomena occur there. As
the angle of attack increases, there is typically a corre-
sponding decrease in pressure on the upper-wing side.
Starting with smaller angles of attack, pressure and
shock begin to oscillate on the main wing at buffet
conditions. Small areas of shock-induced separation
and trailing edge separation occur. This behavior is
a 2D buffet instability and occurs at a constant fre-
quency, independent of the sweep angle [26]. Shock-
induced separation becomes highly possible when the
shock normal Mach number1 is > 1.2 [35]. When
further increasing the angle of attack, the separated
flow regions grow large over the main wing with large
spatial amplitude shock oscillations.

Besides the 2D buffet instability, a second dominant behavior can be observed, denoted as
buffet cells. For swept wings, pressure and shock oscillations propagate in spanwise direction
toward the wingtip as cellular patterns at a frequency proportional to the sweep angle. The
frequency of the outboard convection increases with the sweep angle which explains why the
buffet on conventional aircraft wings exhibits a higher frequency than the 2D buffet under the
same flow conditions [26]. Furthermore, the spanwise shock front oscillation goes along with
periodic boundary layer separation. Multiple studies suggest that buffet cells are linked to the
generation of pressure perturbations in the lambda-shock region [16, 27].

1Maloc,normal = Maloc × cos ϕ, with local Mach number Maloc and sweep angle ϕ

6 2. Three-Dimensional Transonic Buffet

2.3 Buffeting and its effects
While buffet is a purely aerodynamic phenomenon, the aircraft’s performance, stability, and
safety are influenced by the aeroelastic structural response called buffeting. The large fluctua-
tions in flow field characteristics can result in critical vibrations due to the similarity between the
reduced frequency2 of the buffet induced oscillation of the wing and its low-frequency structural
modes. This similarity can induce Limit Cycle Oscillations (LCOs), which adversely affect the
handling quality and fatigue life of the aircraft [11] or lead to destructive outcomes. Moreover,
buffeting limits the aircraft flight envelope due to design standards demanding a margin of 30%
on the cruise lift coefficient [8].

2The reduced frequency ω is a fundamental aeroelastic parameter used to describe the link between airfoil
oscillation frequency and flow velocity: ω = fc/2U with frequency f , chord c and flow velocity U

Chapter 3

Reduced Order Modeling

In fluid dynamics, high-fidelity data of flow fields can be computed with CFD simulations, or
gathered by carrying out experiments - both at significant cost and/ or time expenditure. There-
fore, ROMs are utilized to represent a high-dimensional system in terms of a low-dimensional
one. By balancing accuracy and efficiency, these lower-order models are still able to capture
nonlinearities sufficiently while reducing the (computational) costs significantly. In the present
work, hybrid ROMs are employed by combining dimensionality reduction techniques (3.1) with
deep learning-based prediction models (3.2). Additionally, different metrics are applied for the
training, optimization, and evaluation of such models (3.3). In the following, the fundamentals
of the separate ROM components and different metrics will be derived.

3.1 Dimensionality Reduction

Dimensionality reduction for flow modeling is based on extracting dominant patterns and flow
feature relationships. If these prerequisites are fulfilled, techniques like SVD or CNN-VAE neural
networks are utilized to encode information by projecting the full-order space onto a reduced
(or latent) space, where the dynamics are described compactly and efficiently. When working
with supervised learning algorithms in DL, identifying a lower-dimensional representation of
immensely large datasets can be viewed as a pre-processing step [4]. The subsequent sections
will provide detailed explanations of how dimensionality reduction can be accomplished using
SVD and CNN-VAEs to preprocess data prior to its utilization in time-evolution models, that
evolve the reduced state in time.

3.1.1 Singular Value Decomposition (SVD)

The SVD is a widely used modal decomposition technique in linear algebra. It involves fac-
torizing a given matrix into three separate matrices. The SVD provides a powerful tool for
analyzing and understanding the structure, properties, and relationships within a given matrix.
The derivations in this section are based on [1, 3, 34, 41]

Let X be any Rm×n data matrix

X =

x1 x2 · · · xn

 . (3.1)

In the context of this work, it consists of time-series data, where each column represents a
specific timestep commonly referred to as "snapshot". Each snapshot has a state dimension m,

7

8 3. Reduced Order Modeling

which is much larger than the number of snapshots n for many systems. The data matrix can
be decomposed as:

X = UΣVT , (3.2)

where

U ∈ Rm×m − left singular vectors
Σ ∈ Rm×n − singular values
VT ∈ Rn×n − right singular vectors

U and V are both orthonormal matrices, which means that, for the full SVD, the transpose is
identical to the inverse of the matrix, and the product of the matrix with itself in either the
transposed or inversed form leads to the identity matrix I:

UT = U−1 (3.3)
UUT = UT U = I (3.4)

The columns of U and V hold the left and right singular vectors, respectively, in order from most
to least important concerning variance. These singular vectors correspond to the orthogonal
modes into which the data matrix is decomposed and are also the eigenvectors of XXT and
XT X, respectively. Depending on the area of application, the singular vectors are called Proper
Orthogonal Decomposition (POD) modes or principal components in the Principal Component
Analysis (PCA).

The matrix Σ is a diagonal matrix with the singular values positioned on the main diagonal in
descending order: σ1 ≥ σ2 ≥ ... ≥ σn > 0, considering that m ≥ n. This particular arrangement
ensures that Σ can have a maximum of n non-zero singular values, allowing for a more compact
but exact representation of X, a concept known as the Economy SVD. To explain the amount
of variance that is explained by a single mode, a connection can be drawn between Σ and the
covariance matrix C of the data matrix:

C = 1
n − 1XXT , (3.5)

and with equation 3.2
C = 1

n − 1UΣ2UT . (3.6)

Equation 3.6 provides a connection between the singular values and variances in C, scaled by
the number of snapshots n, enabling the quantification of the variance explained by each mode.
When expressing the relative variance of a single mode compared to the overall variance in the
dataset σ2

i /
∑

j σ2
j , this leads to values in the range [0, 1]. Each of the σiuivi

T is a (m×n) matrix
and contributes to the reconstruction of the data matrix based on the value of σi. Specifically,
the first mode σ1u1vT

1 contributes the most to variance reconstruction as σ1 represents the
largest singular value.

While σi represents the importance of each mode, the left singular vectors ui capture the spatially
variant but time-invariant aspect of the mode. On the other hand, the right singular vectors
vi capture the spatially invariant but time-variant part of the mode. Therefore, ui represents
the spatial pattern, while vi indicates the extent to which this spatial pattern is dominant over
time. This temporal variation is contained within the matrix of mode coefficients A:

A = ΣVT . (3.7)

3.1 Dimensionality Reduction 9

For dimensionality reduction, the goal is to reduce and reconstruct a data matrix with fewer
memory requirements and without losing the inherent variance of the data. This optimization
problem can be stated as:

arg min
X̃,s.t.rank(X̃)=r

∥X − X̃∥F = ŨΣ̃ṼT , (3.8)

where

Ũ ∈ Rm×r − truncated left singular vectors
Σ̃ ∈ Rr×r − truncated singular values
ṼT ∈ Rr×r − truncated right singular vectors
∥·∥F − Frobenius norm

Since most singular vectors ui do not contribute much to the variance, they are discarded. Based
on different metrics or algorithms such as optimal hard threshold, the so-called truncation rank
r can be identified and leads to the approximation of the data matrix X̃.

In this study, the SVD is computed based on a subset of the data, and its performance is
evaluated using a separate, unseen subset. These data subsets have a consistent number of
state dimensions m, while they can vary in the number of snapshots n. Different datasets are
projected onto the latent space through the precomputed SVD to effectively train and apply
time-evolution models. This projection is followed by a reconstruction step that restores the
dataset to its original, full-dimensional space. Hence, for any given dataset X, reduction is
achieved by performing a matrix multiplication with the transpose of the previously computed
left singular vectors denoted as Ũ (as derived from equation 3.2):

ŨT X = Σ̃ṼT = Ã (3.9)

This operation results in the reduced dataset Ã ∈ Rr×n that resides in the latent space. To
reconstruct Ã to its original shape Rm×n, the left singular vectors are multiplied again to the
left side of equation 3.9:

ŨŨT X = ŨΣ̃ṼT = ŨÃ = Xreconstr. (3.10)

3.1.2 Convolutional Variational Autoencoder (CNN-VAE)

AEs are neural networks that can be used for dimensionality reduction purposes. They employ
multiple non-linear transformations to compress high-dimensional data into a lower-dimensional
latent space. VAEs are a specific type of AE that incorporates a probabilistic approach, allowing
for more robust data compression in the latent space.

Standard Autoencoder

There are two key components in the architecture of an AE: the encoder network denoted as e,
and the decoder network denoted as d. The role of the encoder network is to map the initial
high-dimensional data x from Rm to the lower-dimensional latent space Rr using e(x), where
m > r. In the context of neural networks, the latent space is commonly referred to as the
bottleneck layer, characterized by r neurons. This layer creates a bottleneck for the flow of
information during the encoding process. Unlike SVD, which linearly decomposes data, AEs
can utilize nonlinear activation functions to develop nonlinear embeddings. This characteristic
enables AEs to generate more compact and expressive representations of the data with equal
latent space dimension [4]. The decoder reverses this process by decompressing the data back
to the original Rm space with d(e(x)) [31]. The information flow of a standard AE is illustrated
in fig. 3.1.

10 3. Reduced Order Modeling

x e(x) d(e(x))
encoding decoding

Figure 3.1: Standard autoencoder information flow, based on [31]

The objective of the optimization problem is to find an encoder and decoder pair (eθ, dθ) that
minimizes the information loss during compression and maximizes the accuracy of the recon-
struction, which can be written as [31]:

(eθ, dθ) = arg min
θ

ϵ(x, d(e(x))) (3.11)

where

θ − autoencoder parameters (weights)
ϵ(x, d(e(x))) − reconstruction error between input x and encoded-decoded x

Typically, the chosen metric to measure the reconstruction error is the Mean-Squarred-Error
(MSE), introduced in section 3.3. The optimization process is iterative and conducted through
backpropagation and gradient descent (as derived in section 3.2.1), like for most neural networks.
In each iteration, the input data x is reduced and reconstructed by the AE and compared
against the original x to compute a gradient for the model parameters by nonlinear optimization
methods, such as backpropagation [4]. However, the search for solving the optimization problem
in equation 3.11 is achieved with gradient descent, which is the algorithm that updates the model
parameters according to the computed gradient. That way, one solution (eθ, dθ) can be obtained
[31].

The main degrees of freedom AE architectures can have are the bottleneck layer size, which
corresponds to the dimension of the latent space, and the depth of the network, which refers to
the number of transformation layers - in this case, convolutional layers (refer to section 3.2.2) -
between the input and output. Convolutional layers apply a set of learnable kernels (or filters)
to an input, typically images. By sliding these filters across the input, patterns, and features can
be extracted in a step-by-step manner. The bottleneck layer size and the latent space dimension
collectively determine the level of data compression and the quality of compression achieved.
While AEs have the ability to reconstruct data without loss when provided with a large number
of transformation layers for compression and decompression, this trade-off often leads to a loss
of regularity in the compressed data, i.e. the usability of the data in the latent space becomes
limited. In such scenarios, generating new data in the latent space and passing it through the
decoder network may lead to meaningless results due to the overfitting of the decoder network.
Overfitting occurs when the decoder network becomes too specialized for the training data,
resulting in the generation of meaningless or unrealistic outputs. This happens since there is no
regularisation in the optimization problem in equation 3.11, enforcing the decoder network to
maintain structure in the latent space [31].

Regularisation with Variational Autoencoders

Unlike standard AEs, VAEs address this issue of overfitting by introducing a probabilistic frame-
work. For training VAEs, the encoding-decoding process is adjusted so that an encoded input x
is no longer represented as a deterministic vector in the latent space but as a probability distribu-
tion over the latent space N(µx, stdx) with a mean vector and a standard deviation (std) vector.
During decoding, a vector χ is sampled from this latent space distribution χ ∼ N(µx, stdx), and
the reconstruction error is backpropagated through the network. This process is very similar

3.2 Deep Learning (DL) 11

to standard AEs, with one exception: the random sampling node blocks the backpropagation
and needs to be adjusted. Here, the so-called reparametrization trick is used that introduces a
random variable ζ representing a standard normal distribution N(0, 1) with zero mean and a
standard deviation of 1 so that the sampled vector can be expressed as χ = µx + stdxζ [31].
How information is fed through the VAE is illustrated in fig. 3.2:

x N(µx, σx) χ = µx + stdxζ d(χ)
encoding sampling decoding

Figure 3.2: Variational autoencoder information flow, based on [31]

Therefore, the optimization problem is extended by a regularisation term, namely the Kulback-
Leibler (KL) divergence. The KL divergence measures the difference in information represented
by two distributions [9] and by optimizing for low values it ensures that the probability distri-
butions returned by the encoder are close to standard normal distributions. Accordingly, the
optimization problem changes to:

(eθ, dθ) = arg min
θ

ϵ(x, d(χ)) + KL(N(µx, stdx), N(0, 1)), (3.12)

and ensures a compromise between a performant and regularised encoding-decoding process.

3.2 Deep Learning (DL)
DL is a subset of machine learning that focuses on algorithms capable of learning data rep-
resentations with multiple layers of abstraction, enabling informed decision-making based on
these learned features. DL involves combining various non-linear components, which represent
algorithms, into a computational model designed to handle specific types of data [18]. As stated
in the universal approximation theorem proposed by Hornik et al. [15], a sufficiently large and
complex DL model has the capacity to approximate any function. This characteristic makes DL
models extensively utilized due to their effectiveness in understanding the intricate features of
high-dimensional data [30].

Output

Hidden
Input

Figure 3.3: Artificial neural
network by Colin
M.L. Burnett,
CC BY 4.0

This study focuses on the application of supervised learning al-
gorithms, in which labeled datasets are used, providing exam-
ples of inputs along with corresponding desired model outputs
[4]. Following a derivation of the key concepts and training
methods for neural networks, two specific network architec-
tures are presented: the CNN and the LSTM neural network.

3.2.1 Neural Networks

The traditional representation of artificial neural networks, as
illustrated in Figure 3.3, takes inspiration from the structural
arrangement of biological neuronal networks and their math-
ematical representation. In the brain, such networks comprise
hierarchical layers of neurons (nerve cells) responsible for pro-
cessing visual stimuli and other types of information. Neural
networks consist of an input layer that receives data (features)
and an output layer that generates predictions. In the context
of supervised learning, the fundamental process involves com-
paring these predictions to the ground truth (labels), which
forms the basis of the learning process [2, 3, 4].

https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg

12 3. Reduced Order Modeling

Following the terminology introduced in [2] and [41], each neuron in the input layer of the
network corresponds to a feature xi within the feature vector x = [x1, x2, ..., xNf

], where Nf

represents the number of features. The connections between neurons of one layer and those
of the subsequent layer indicate the flow of information. When every neuron in one layer is
linked to all neurons in the following layer, these layers are referred to as fully connected (FC).
These connections are parameterized as weights wji, representing their strength. The weighted
sum (or activation) zl

j of the j-th neuron within a hidden layer l can be computed as a linear
combination of all N l−1

neu neurons (features) of the preceding layer:

zl
j

(
xl−1

)
=

N l−1
neu∑

i=1
wl−1

ji xl−1
i + bl−1

j . (3.13)

Hence, the contribution of the i-th neuron in the preceding layer is the sum of its weighted
feature value wl−1

ji xl−1
i and a bias term bl−1

j . In vector-matrix notation, the weighted sum of all
hidden layer l neurons is given as:

zl = WT
l−1xl−1 + bl−1, (3.14)

where

zl ∈ RN l
neu×1 − vector of activations

Wl−1 ∈ RN l−1
neu×N l

neu − weight matrix
xl−1 ∈ RN l−1

neu×1 − feature vector
bl−1 ∈ RN l−1

neu×1 − bias vector

Each value zl
j is subsequently passed through a nonlinear activation function a(zl

j), without which
the network’s outputs would be only a linear combination of its inputs, limiting its capacity for
approximation. Moreover, the purpose of the bias term becomes clear when considering the
application of activation functions. It represents the shift of the activation function, similar to
how a linear function can be shifted, which enables more complex computations within each
neuron. The choice of activation function depends on the underlying dataset and the particular
problem being addressed. One frequently employed activation function in deep learning is the
Rectified Linear Unit (ReLU). It returns 0 for input values less than or equal to 0 and keeps the
input unchanged for values greater than 0. There are also other popular activation functions,
such as the hyperbolic tangent (tanh), which outputs values in the range between -1 and 1, and
the sigmoid activation function sigm, which outputs values in the range between 0 and 1 [41].

Applying activation functions to all the activations within the current layer yields the inputs
(the feature vector) of the subsequent layer:

xl = al(zl) = al(WT
l−1xl − 1 + bl−1). (3.15)

At a higher level, the transformations of a layer l can be summarized as ml(xl). This allows for
the representation of the network’s approximation fθ(x) as:

fθ(x) = mNL
◦ mNL−1 ◦ ... ◦ m0(x), (3.16)

with the network’s parameters (weights) θ, the input feature vector x and the number of layers
NL. To make a prediction, neural networks perform a forward pass, during which a specific
feature vector xi traverses through all transformation blocks of the network, resulting in the
model prediction ŷi:

ŷi = fθ(xi). (3.17)

3.2 Deep Learning (DL) 13

In a supervised learning context, the optimization task revolves around finding a set of parame-
ters θ that minimizes a specific error (or loss) function. A commonly employed loss function in
regression problems is the Mean Squared Error (MSE), also known as L2 loss [30], which will be
used for the model optimizations in the present study. Formulated with a general loss function
L, this results in the general optimization problem:

θ∗ = arg min
θ

L(θ), (3.18)

where θ∗ refers to the combination of model weights yielding the minimal loss.

As previously mentioned in section 3.1.2, optimization methods such as backpropagation are
employed to determine the model weights that minimize the error between the predictions and
the true labels [4]. Consequently, the gradient of the loss function dL/dθ is computed and used
to modify the model weights using optimizer algorithms such as gradient descent. This involves
updating the current weights θn with a portion λ of the gradient to yield the next set of weights
θn+1:

θn+1 = θn − λ
dL
dθ

. (3.19)

The parameter λ is commonly known as the learning rate. However, in practical scenarios, more
advanced optimizer algorithms are frequently employed, particularly for complex and deep net-
works. One such algorithm is ADAM (short for adaptive moment estimation), which calculates
distinct learning rates for individual parameters by making use of a concept called momentum
[5]. Additionally, learning rate scheduling techniques are utilized to dynamically adjust the
learning rate during training. Using the initial learning rate λ0 and a function representation
denoted as g for these advanced techniques, equation 3.19 can be redefined as follows:

θn+1 = θn − g

(
λ0,

dL
dθ

)
. (3.20)

3.2.2 Convolutional Neural Network (CNN)

CNNs are a powerful category of neural networks that employ convolutional kernels (or filters)
in place of traditional activation functions [4]. They start to outperform generic FC networks
when the data is structured in a way that neighboring points exhibit significant correlation,
resulting in patterns and structures. This type of data can typically be found in images, but
also in time series. Fundamentally, convolutional layers are the primary components of CNNs,
followed by other layers such as pooling layers, FC layers, and normalization layers [45].

Mathematically, convolution is a function that operates on two inputs: an image and a filter.
The central aim of CNN optimization is to train the convolutional kernels to identify specific
patterns within the input image and highlight these patterns in the resulting output image [30].
Input data matrices in CNNs are typically three-dimensional, characterized by an input channel
dimension Cin

1, a height dimension H, and a width dimension W : (Cin × H × W). Any point
in the data matrix can be accessed by the indices (i, j, o). Based on the terminology introduced
in [12, 41], the convolution can be expressed as:

zi,j,o =
Cin−1∑

l=0

Hk−1∑
m=0

Wk−1∑
n=0

xl,i×s+m,j×s+nWo,l,m,n + bo. (3.21)

Similar to the previous section, x denotes an input at a specific index, and b represents a bias
term. Within the matrix W, the filter’s weights are stored, which define what kind of patterns
to extract from the input.

1Most images are represented in RGB format, which means that they are composed of three channels: red,
green, and blue. These channels are combined to create the full spectrum of colors within the image.

14 3. Reduced Order Modeling

The convolution operation revolves around the concept of sliding a filter across the input data
and performing element-wise multiplications between the filter weights and the corresponding
values of the input. The summation of these operations results in a value within the output
image. The parameter s defines the stride, which determines the number of steps by which the
filter shifts while performing a convolution. This parameter offers a means to further control the
reduction of the output size during the convolution operation. The entire set of filters within a
convolutional layer can be represented by a matrix of dimension (Cin × Hk × Wk × Cout), where
Hk and Wk correspond to the filter’s height and width, and Cout to the number of filters applied
to the input [30]. This approach enables an increase in the abstraction of the spatial patterns
present in an image, even as its resolution may be reduced.

In this study, convolutional layers are utilized for dimensionality reduction within the CNN-VAE
architecture, as elaborated in section 3.1.2. Through the application of multiple convolutional
layers, the CNN-VAE model is capable of learning an encoded and abstract representation of the
input in the bottleneck layer. This is then followed by deconvolutions, representing the inverse
operation, to decode the input and restore it to its original size.

3.2.3 Long Short-Term Memory (LSTM)

LSTM networks are a subset of the class of RNNs, which are specialized for tasks involving
sequential data input, allowing them to utilize their internal state (memory) to process input
sequences and maintain information about them [22]. However, a significant issue with conven-
tional RNNs is the vanishing gradient problem. This issue revolves around RNNs struggling to
capture long-term dependencies, as the backpropagated gradients either explode or vanish after
a certain number of timesteps [18].

A solution to this problem is the LSTM architecture, first introduced by Hochreiter and
Schmidhuber in 1997 [14]. Unlike traditional RNNs, the LSTM is designed to manage both
short-term and long-term dependencies effectively. In contrast to the single neural network layer
employed by conventional RNNs, the LSTM architecture, illustrated in fig. 3.4, consists of four
interconnected layers, represented as rectangular boxes [22].

Figure 3.4: The LSTM Cell by Guillaume Chevalier, CC BY 4.0

The core idea of the LSTM algorithm is the cell state c, which can be altered by structures called
gates to store and forget information about past inputs [4]. The LSTM cell comprises several
crucial components, each serving a specific purpose in processing sequential data. Following
the nomenclature introduced in [22, 45], the forget gate ft is the first of these components. It
determines which portion of the previous cell state ct−1 to retain, based on the previous hidden
state ht−1 and the current feature vector xt:

ft = sigm (Wf xt + Wf ht−1 + bf) , (3.22)

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png

3.3 Metrics 15

where Wf is the weight matrix of the forget layer and bf is the bias term. The sigmoid activation
function sigm is then applied to the weighted sum.

The input gate it is the second component of the LSTM cell, determining the extent to which
new information is used to update the previous cell state ct−1, based on the same inputs as the
forget gate:

it = sigm (Winxt + Winht−1 + bin) . (3.23)

The LSTM cell also introduces a candidate cell state vector c̃t that processes the current input
xt and the previous hidden state ht−1 by means of a tanh activation function:

c̃t = tanh (Whxt + Whht−1 + bh) . (3.24)

The new cell state ct is then computed by multiplying the previous state ct with the forget gate
vector ft and by adding the product of the input gate vector it and the new cell state c̃t:

ct = ftct−1 + itc̃t (3.25)

Finally, the output gate ot determines what part of the new cell state ct to output. It is
computed in a similar manner as the previous gates:

ot = sigm (Woutxt + Woutht−1 + bout) . (3.26)

The updated cell state ct is squashed using a tanh activation function and then multiplied by
the output gate vector to create the new hidden state ht, which also serves as the output of the
current time step:

ht = ottanh(ct). (3.27)

3.3 Metrics
Error Metrics play an essential role in the training and testing of ROMs. They provide a means
to assess a model’s performance and quantify the discrepancies between model predictions and
actual labels. Given the complexity of the spatiotemporal data in this study, there are multiple
possibilities to analyze errors.

3.3.1 Mean Squared Error (MSE)

As mentioned earlier in section 3.2.1, the MSE (or L2) error serves as the primary evaluation
metric in this work. Following the terminology of section 3.2, the MSE for all N pairs of
feature-label data xi and yi can generally be computed as follows [41]:

MSE(θ) = 1
N

N∑
i=1

(yi − fθ(xi))2, (3.28)

where θ refers to the model’s parameters f .

According to the definition in section 3.1.1, a data matrix X is two-dimensional, with m state
dimensions and n snapshots, indexed by (i, j). Consequently, the MSE of a reconstructed data
matrix can be expressed as:

MSE = 1
m × n

m∑
i=1

n∑
j=1

(
X(i,j) − X(i,j)

reconstr.

)2
, (3.29)

yielding a scalar value.

16 3. Reduced Order Modeling

For evaluating the reconstruction performance of SVD and CNN-VAE, two distinct categories
of MSE are employed: temporal and spatial MSE. The temporal MSE, quantifying errors for
each timestep, is computed column-wise:

MSE[j] = 1
m

m∑
i=1

(
X(i,j) − X(i,j)

reconstr.

)2
, for j = 1, 2, . . . , n. (3.30)

Similarly the spatial MSE reveals information about the spatial distribution of the error, aver-
aged over time:

MSE[i] = 1
n

n∑
j=1

(
X(i,j) − X(i,j)

reconstr.

)2
, for i = 1, 2, . . . , m. (3.31)

When visualizing spatial errors, it is useful to reshape the spatial MSE vector into a matrix with
dimensions (H ×W). In the case of CNN-VAE, the data matrices are already three-dimensional
with (H × W × n), resulting in an MSE matrix with two dimensions. The computations were
adapted accordingly.

Additionally, the hybrid model architecture results in two distinct spaces that can be used for
error assessment: the latent space and the original full space. The concept of "latent loss"
refers to an error metric calculated between the reduced snapshot and the reduced snapshot
predicted by the models evolving the reduced state in time. Furthermore, the term "full space
loss" denotes the computed error between the original snapshot and the reconstructed snapshot,
with or without the time evolution of the reduced snapshot taken into account.

3.3.2 Coefficient of Determination (R2)

To assess the extent to which the predictions capture the variance present in the input data,
the coefficient of determination R2 is employed. This statistical metric quantifies the proportion
of the variance in the input data that is accounted for by the predictions of the model. This
mathematical relationship can be expressed as follows [17]:

R2 = 1 −
1

m×n

∑m
i=1

∑n
j=1

(
X(i,j) − X(i,j)

reconstr.

)2

1
m×n

∑m
i=1

∑n
j=1

(
X(i,j) − X̄

)2

R2 = 1 − MSE

var
(
X(i,j)) ,

(3.32)

where V ar
(
X(i,j)

)
represents the variance of the data matrix, which is the squared deviation

of each data point from the mean X̄.

3.3.3 Power Spectral Density (PSD)

To assess the accuracy of the models in capturing the buffet characteristics, the distribution
of energy in the frequency domain is compared using the Power Spectral Density (PSD). To
achieve this, both the original and reconstructed data matrices are decomposed through SVD.
As outlined in section 3.1.1, the matrix of mode coefficients A captures the temporal variations,
with each row corresponding to the time variation of the i-th POD mode, which can be denoted
as ai(t).

Using the Fast Fourier Transform (FFT) algorithm, which is commonly employed to decompose
a discretized signal into its sine and cosine components, the mode coefficients can be analyzed.

3.3 Metrics 17

This involves transforming the temporal behavior of the mode coefficients ai(t) into the frequency
domain: [4]:

âi(f) = FFT (ai(t)), (3.33)

where âi(f) represents how the i-th mode is present at each frequency f . Finally, to assess the
power of each mode, the PSD can be computed as the normalized squared magnitude of the
FFT [4]:

PSDi = |âi(f)|
n

, (3.34)

where n is once again the number of snapshots that make up the mode.

Chapter 4

Model Optimization

This chapter outlines the methodologies employed in the present study. Beginning with a brief
overview of the source and nature of the underlying data, the training processes of the dimen-
sionality reduction techniques and time-evolution models are explained. The chapter concludes
with the presentation of an end-to-end training approach. The aim of the following sections
is to provide insights into the frameworks employed, the range of parameters utilized, and the
conducted parameter studies aimed to optimize model performance.

4.1 Data Source and Preparation

Training, testing, and validation of the ROMs were conducted using surface pressure data ob-
tained from wind tunnel test campaigns carried out in the ETW. Throughout these campaigns,
the Airbus provided industrial-standard research test case XRF-1 has been employed for buffet
investigations. The campaigns included two different configurations of the model, one with Ul-
tra High Bypass Ratio (UHBR) Through Flow Nacelles (TFNs) and one with the clean wing.
For this work, only the cp-data obtained with the nacelle configuration was used. Wind tunnel
tests were carried out by the ETW and the German Aerospace Center (DLR) using IPSP [43].
The IPSP measurements enable time-resolved buffet investigation of the upper wing through
2kHz sampling [19, 45]. In this work, the temporal scale was normalized in terms of the mean
chord and the free-stream airspeed, resulting in a dimensionless time parameter represented as
τ = tU∞/c.

During the measurements, the free-stream Mach number and Reynolds number were varied
between Ma∞ = [0.84, 0.87, 0.9] and Re = [3.3 Mio., 6.7 Mio., 12.9 Mio., 25 Mio.]. The angle
of attack was varied additionally for each of the flow conditions [19, 45]. For simplification, the
present work focuses on the Ma∞ = 0.84 flow condition with Re = 12.9 Mio. considering seven
different angles of attack α = [1.5◦, 3.0◦, 3.5◦, 4.0◦, 4.5◦, 5.0◦, 6.0◦].

As a first post-processing step, non-physical cp values were clipped by applying a weight mask
that defines values of cp ≥ 1.5 as 1 and values of cp ≤ −1.5 as 0 [45]. The experimental data
also exhibited shock reflections that were reduced in a second post-processing step via SVD, as
shown in fig. 4.1. For that, the area around the reflections was masked. Then, the SVD was
computed for a data matrix constructed from the mask. The undesired modes were identified,
the masked area was reconstructed without the mentioned modes and the post-processed area
was added back into the dataset. Furthermore, a small area on the wing edges was masked and
set to uniform values as non-physical cp outliers are especially likely in these areas due to the
strong curvature of the wing surface.

18

4.1 Data Source and Preparation 19

Figure 4.1: Spatial mask with SVD to eliminate shock reflections from the dataset (Ma∞ =
0.9, Re = 25Mio., α = 2.50◦)

4.1.1 Interpolation

As a first step after receiving the post-processed dataset, its resolution was downscaled according
to the approach by Zahn et al. [45] who conducted work on a comparable dataset at higher
Re. Interpolating the snapshots from an array of (465 × 159) to (256 × 128) data points enables
faster processing of the data since the length and width of the array are both powers of two
(28 × 27).

Figure 4.2: Comparison of the original and interpolated grid. Note that these are not the
actual data grids. The displayed grids were coarsened by a factor of 8 and only
for scale comparison.

In fig. 4.2 a comparison of the original and the downscaled point grids is shown. It has to be noted
that the displayed grids were coarsened by a factor of eight to enable a sensible visual comparison.
In fig. 4.3 a snapshot is visualized in the original and the downscaled resolution, respectively. As
expected, the interpolated snapshot is slightly blurred compared to the original one. Downscaling
means losing information - which is not necessarily purely a negative effect. The interpolation
acts like a filter and could also aid in suppressing noise artifacts in the experimental data that
the unsupervised learning techniques may try to reconstruct. Apart from that, no differences

20 4. Model Optimization

can be identified and there are no changes in the physical meaning of the data.

Figure 4.3: Comparison of original and interpolated cp snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 5.00◦, τ = 53.69)

4.2 Dimensionality Reduction

After interpolating and normalizing the dataset to [-1, 1], dimensionality reduction was accom-
plished through SVD and a CNN-VAE neural network separately. Both were trained on five
of the angles of attack and tested on the remaining two which are α = [3.0◦, 5.0◦]. To avoid
extrapolation during testing, the training dataset contains the lowest and highest angles of at-
tack measured. In section 4.2.1, the results obtained from training and testing the SVD are
presented, followed by the results of the CNN-VAE in section 4.2.2.

4.2.1 SVD

SVD was performed with the Python library flowtorch [42] and its dedicated SVD function. The
following elaboration serves the purpose of analyzing the SVD’s performance in dealing with this
type of data and finding a suitable truncation rank.

SVD Computation

As previously mentioned, the modal decomposition of the flow is based on five of the seven flow
conditions. These data subsets with 500 timesteps each were concatenated to a data tensor
from which its temporal mean was subtracted in order to center it and therefore have a zero-
mean component in the time axis. Since the SVD is based on data matrices with only one
state dimension, the height and width dimensions were flattened. The SVD computation then
results in 2500 left singular vectors (or POD modes). In fig. 4.4, the individual and cumulative
contributions of the mentioned modes to the sum of all singular values are illustrated. Due to the
significant drop in individual contributions after the first few modes, the y-axis of the upper figure
is logarithmic. The dashed line in the figure represents the flowtorch.analysis.SVD attribute
opt_rank, which corresponds to the optimal truncation rank determined through optimal hard
thresholding. For this specific dataset, the opt_rank was calculated to be 323. The lower
illustration in fig. 4.4 indicates that the first 1994 singular values yield a cumulative contribution
of 90.02% to the sum of all singular values.

4.2 Dimensionality Reduction 21

Figure 4.4: Singular value contributions

Since the actual performance of the modal decomposition can’t be assessed on the training
data, the two aforementioned test datasets were reduced and reconstructed with the left singular
vectors of the SVD, as derived in section 3.1.1. The results are presented in the following section.

Truncation Rank Study

In the first step, the test datasets were reduced and reconstructed for ranks 1 − 400, followed by
computing the MSE and variance reconstruction in the form of R2 (refer to section 3.3.2). The
rank-dependent metrics are illustrated in fig. 4.5. As already verified for the training data, the
first few ranks contribute to the majority of information reconstruction which can be recognized
by the steep drop in MSE and steep increase in variance reconstruction, respectively. After the
first 300 POD modes are considered, the R2 value converges towards ≈ 0.985 for the first test case
and ≈ 0.99 for the second one. This convergence indicates that the snapshot reconstruction is
in very good agreement with the original data. As the rank increases further, the reconstruction
improvement becomes marginal. This phenomenon stems from the fact that both test datasets
were not included in the SVD computation, resulting in missing modal information for these
datasets.

To analyze potential temporal dependencies in the reconstruction error, the temporal MSE
distribution (refer to 3.3.1) was computed for selected ranks between 1 and 1000 in Figure
4.6. Both datasets exhibited similar behavior, so only the results for the first test case are
shown. The figure reveals that there is no apparent correlation between time and MSE, with
fluctuations appearing random. Moreover, the figure suggests that beyond a certain rank, further
information gained from additional ranks does not significantly contribute to improving the
quality of reconstruction.

In fig. 4.7, the spatial MSE distributions (refer to 3.3.1) for ranks [3, 30, 300] are presented for
both test datasets. It can be observed from the figure that the most significant deviation from
the ground truth is concentrated in the shock foot area between the medium span and wing tip.
This deviation is likely due to the intense pressure dynamics (i.e. variance) that occur in that

22 4. Model Optimization

specific region. With increasing rank, a desirable decrease in MSE can be observed.

Figure 4.5: MSE and variance reconstruction with increasing rank

Figure 4.6: Temporal MSE distributions with increasing rank for test dataset 1

For a side-by-side comparison of the actual cp-snapshots, fig. 4.8 depicts the reconstructed flow
fields with ranks 30 and 300, alongside the ground truth, for both test datasets. The recon-
structed pressure distributions capture the characteristic shock pattern, as indicated by the
ground truth, with only minor deviations. However, the shock appears less detailed and slightly
misaligned, especially in the reconstructions with only 30 modes. This observation is further
supported by the presence of larger error regions, as illustrated in Figure 4.7. The reconstruc-
tion with rank 300 reflects more details, particularly in the areas of interest. Beyond rank 300,
the physical accuracy does not increase much further, only more noise will be added by the
additional POD modes, indicating that there is more data needed. Based on the discussions in
this section, rank 300 has been selected as the truncation rank, i.e. only the first 300 modes are
used to span the reduced space.

4.2.2 CNN-VAE

All neural networks, including the CNN-VAE model, were trained using the PyTorch framework.
In the following sections, the training and evaluation of various CNN-VAE model architectures

4.2 Dimensionality Reduction 23

Figure 4.7: Comparison of spatial MSE distributions for reconstructed cp-snapshot using SVD
ranks 3, 30, and 300 (Ma∞ = 0.84, Re = 12.9Mio., α1 = 3.00◦, α2 = 5.00◦)

Figure 4.8: Comparison of cp-snapshot with reconstructions using SVD ranks 30 and 300
(Ma∞ = 0.84, Re = 12.9Mio., α1 = 3.00◦, α2 = 5.00◦, τ = 53.69)

24 4. Model Optimization

are presented, following a similar approach as for the SVD for comparability. The objective of
this section is to identify the most suitable CNN-VAE model, i.e. the optimal bottleneck layer
(or latent) size.

CNN-VAE Training

The CNN-VAE model architecture used in this work was adopted from the previous study by
Zahn et al. [45], already mentioned in 1.2. The model comprises five convolutional levels in
both the encoder and decoder, transforming the input size from (1×256×128) to (512×32×16)
and back, where the first dimension represents the number of channels, followed by the height
and width. The encoder is followed by a regularization framework, from which a latent vector
is sampled during a forward pass and then passed to the bottleneck layer for further processing.

During an initial parameter study, layer normalization layers were tested as an alternative to
batch normalization layers, and they were found to enhance both convergence speed and model
quality. Additionally, the ReduceLROnPlateau learning rate scheduler was employed, in com-
bination with the Adam optimizer with an initial learning rate of 10−4. The MSELoss loss
function was used to compute the error between labels and predictions. In the aforementioned
work by Zahn et al., the bottleneck layer size was set to 256. To account for the modifications
made to the model and training routine, as well as the differences in the underlying datasets, a
bottleneck layer size study was conducted, similar to the truncation rank study in the previous
chapter. In this study, seven different CNN-VAE models were trained with varying bottleneck
layer sizes of (8, 16, 32, 64, 128, 256, 512) neurons. Each model was trained for 500 epochs
with a batch size of 32. To address uncertainties during the training process, each training was
repeated 10 times, resulting in a total of 70 trainings.

Figure 4.9: Training and test MSE mean of 10 training iterations for different latent sizes of
the CNN-VAE model

Similar to the SVD approach, the dataset was split into five flow conditions for training and
two for testing. Additionally, during training, 10% of each flow condition in the training set was
utilized for validation. This results in a dataset comprising 2250 snapshots for training, 250 for
validation, and 1000 for testing.

In fig. 4.9, the average train and test losses of each model are displayed. Notably, the loss ranges
of all model configurations are similar and they tend to converge toward similar values, with the
training loss varying from 1×10−3 to 2×10−3 and the test loss from 4×10−3 to 5×10−3. While
there is no clear correlation between the bottleneck layer size and the final loss, it is noticeable
that models with smaller bottleneck layers generally require more epochs to converge during
training.

Additionally, fig. 4.10 provides information about median, quartiles, and potential outliers in

4.2 Dimensionality Reduction 25

Figure 4.10: Test MSE tendency and spread for different latent sizes of the CNN-VAE model

terms of test loss for all training iterations of each model. The figure does not reveal a clear
connection between the number of bottleneck neurons and a general trend of the test loss.
However, it does indicate that the test loss range increases with the model complexity, and
training with smaller models tends to yield more comparable results than with larger models
which is due to the lower number of parameters. While no optimal bottleneck size is evident
from fig. 4.10, it is worth noting that among all training iterations, the models with 32 and 128
bottleneck neurons achieved the lowest test losses.

Bottleneck Size Study

In the next step, the model with the lowest test loss among all training iterations was selected
for each architecture. Similar to the SVD evaluation in section 4.2.1, the different CNN-VAE
models were employed to reconstruct two test datasets. In fig. 4.11, the MSE and R2 values were
computed for each latent size. While there’s no clear pattern in the behavior of the variables,
the overall MSE and R2 value ranges are comparable to those in fig. 4.5 from the SVD analysis.
It’s worth mentioning that the models exhibit greater accuracy differences for both test cases,
with deviations in R2 values reaching up to 2%.

The temporal MSE distribution of the CNN-VAE reconstruction exhibits similar qualitative
behavior as observed in fig. 4.6, indicating the absence of temporal dependencies. In fig. 4.12,
the spatial MSE distributions for the two selected latent sizes, 32 and 128, are displayed. The
CNN-VAE model with 256 bottleneck neurons will be used as a reference for comparison to Zahn
et al. [45]. Much like the SVD reconstruction, the spatial distribution of MSE is concentrated
in the shock front regions. The reconstruction involving 256 bottleneck neurons presents more
evident artifacts. Nonetheless, all models exhibit nearly identical performance, with minimal
variations in MSE and slight differences in the contours of regions dominated by errors.

When comparing the cp-snapshot reconstruction of the best-performing models with the ground
truth, there are only marginal differences visible. They exhibit an overall good agreement with
the ground truth as the shock patterns are predicted accurately, and there is a desirable reduction
in noise compared to the experimental data, similar to the SVD reconstruction in fig. 4.8. Since
the reconstructed snapshots do not yield additional insights into performance, the model choice
is based on fig. 4.11, where MSE and R2 for various bottleneck layer sizes are depicted. Overall,
the CNN-VAE model employing 128 bottleneck neurons yields the most favorable outcomes
across both test cases and is therefore selected.

26 4. Model Optimization

Figure 4.11: MSE and R2 with increasing latent size

Figure 4.12: Comparison of spatial MSE distributions for reconstructed cp-snapshot using 32,
128, and 256 bottleneck neurons (Ma∞ = 0.84, Re = 12.9Mio., α1 = 3.00◦, α2 =
5.00◦)

4.3 Time Evolution in Reduced State 27

4.3 Time Evolution in Reduced State
The employment of SVD and the CNN-VAE to project the cp snapshot data onto a low-
dimensional space represented the initial step in the ROM development. For predicting time
evolution, a second set of models was trained utilizing the reduced/encoded state of the α =
4.00◦ flow condition. In this case, the training incorporated the first 80% of the dataset (400
timesteps), preserving the remaining 20% (100 timesteps) for monitoring and testing. As the
baseline model, a generic FC network was employed, as derived in 3.2.1. Following this, a recur-
rent network architecture was implemented with the LSTM model, detailed in 3.2.3. To embed
the sequential time-series data into the training routine, a DataWindow class was implemented.
Given an input sequence length and a prediction horizon, the class computes a rolling window
mechanism for generating pairs of input-target sequences over a given dataset. In this work,
the term "targets" refers to a sequence of labels in a data window that is compared against
the prediction sequence for optimization. All input-target pairs are stored in a TensorDataset
and then fed into a Dataloader. The subsequent sections will provide an overview of the model
architectures, as well as the training and optimization process.

4.3.1 FC Models

Given the different compression sizes resulting from SVD and CNN-VAE, 300 and 128 dimen-
sions, respectively, the input and output dimensions of the FC models vary. Unlike previous
methods, the order of cp-snapshots in a sequence is relevant for capturing temporal relationships.
To address this, the sequences of mode coefficients were aligned to form a feature vector, which
was then fed into the FC model’s input layer. Given the models are designed for single-step
forecasts, the number of output neurons matches the size of the reduced/latent space.

During training, the CNN-VAE methodology was adapted and adjusted to integrate auto-
regressive prediction steps into the optimization process. To enhance GPU (Graphics Processing
Unit) utilization and training efficiency, the batch size was increased to 64. The remaining de-
sign parameters within the training architecture are the sequence length, the number of hidden
layer neurons, the number of hidden layers, and the learning rate. Following an initial parame-
ter exploration to identify suitable parameter ranges, several potential parameter combinations
were subjected to training. After a sufficient convergence was achieved with the best-performing
architecture, the prediction horizon was increased during training to enhance long-term accuracy
stability. Instead of computing the loss for the next optimizer step based on a single prediction,
it is computed considering a series of auto-regressive single-step predictions. The subsequent
two sections will provide brief overviews of the study findings for both FC models.

SVD-FC Model

The SVD-FC model combines data reduction and reconstruction using the left singular vectors
from the SVD with auto-regressive prediction of mode coefficients through an FC network. For
this model, a configuration of 5 hidden layers, each containing 256 neurons, was adopted as it
yielded the best training results. Sequence lengths were tested in the range of [8, 48], and it
was found that a sequence length of 32 provides the best predictive performance. Since all time
steps are organized into a feature vector, the input layer of the SVD-FC network consists of
9600 neurons, while the output layer contains 300 neurons.

In fig. 4.13, the average train and test losses for 5 training iterations are displayed. The reduced
number of training iterations in comparison to the CNN-VAE models is due to FC models having
fewer trainable parameters, making them more likely to yield similar outcomes. Notably, the
final train and test losses differ by an order of magnitude. This difference arises since the test loss
stops decreasing beyond 1000 epochs and starts to increase again. While this suggests potential
overfitting, the slight increase in test loss is outweighed by the model’s continued learning of

28 4. Model Optimization

Figure 4.13: Training and test MSE mean of 5 training iterations of the SVD-FC model

temporal relationships from the training data. In the context of the present work, accurate
temporal dynamics are more important than precisely matching the test data.

When training with a prediction horizon greater than 1, the extended training period positively
impacts model stability when evaluated on test data, effectively acting as a regularization mea-
sure. An optimal balance between stability and overfitting was achieved around 6000 epochs
of training, using a prediction horizon of 3 and a learning rate of 1 ∗ 10−4. Higher prediction
horizons would lead to a variance loss in the predictions, as the metrics used for optimization
are evaluated on more and more timesteps and the gradients smear.

CNN-VAE-FC Model

Similar to the previous model, the CNN-VAE-FC model is a combination of snapshot encod-
ing/decoding using the pre-trained CNN-VAE, and an FC network that forecasts the temporal
evolution within the latent space. Given the latent space comprises only 128 features, an ar-
chitecture with 128 hidden layer neurons across 5 hidden layers was employed. As the optimal
input sequence length was also determined to be 32, the input layer consists of 4096 neurons,
with 128 neurons in the output layer. An exploration of the remaining parameters identified a
learning rate of 2 ∗ 10−4 and a prediction horizon of 4 as suitable for the model’s performance.

Figure 4.14: Training and test MSE mean of 5 training iterations of the CNN-VAE-FC model

In fig. 4.14, the train and test MSE mean over 5 training iterations, each involving 7000 training
epochs, is depicted. Qualitatively, a similar trend is observed as seen in fig. 4.13. Notably, the
model is unable to achieve as low train and test loss values as the SVD-FC model. The average
final test loss corresponds to 8 ∗ 10−3. This trade-off is acceptable given the model’s extraction
of temporal dynamics from the latent representation.

4.4 End-to-End Training 29

4.3.2 LSTM Models

A similar strategy was adopted for the training and optimization of the LSTM models. In
contrast to FC networks, the input sequence is processed in a step-by-step (recurrent) manner
rather than as a complete feature vector. A stacked LSTM architecture was employed, followed
by an FC layer for making predictions. Throughout training, a batch size of 64 was employed,
with an input sequence length of 32 timesteps. Within the model architecture, the free parame-
ters include the number of stacked LSTMs and the number of neurons within each of the LSTM
gate networks. Furthermore, a parameter study was carried out to obtain suitable learning rates
and prediction horizons. In the following two sections, the findings of the optimization process
are briefly presented.

SVD-LSTM Model

In the SVD-LSTM model, an architecture comprising 2 stacked LSTMs, each containing 256
features in the hidden state. The parameter study on the remaining parameters yielded a
learning rate of 8 ∗ 10−5 with a prediction horizon of 3. Fig 4.15 displays the average train and
test MSE for 5 training iterations on the final configuration. A trend similar to the previous
models is observable. However, in this case, the difference between train and test loss exceeds
an order of magnitude. Nevertheless, the test MSE tends to converge toward a maximum loss
after approximately 2000 epochs. Since the LSTM model exhibited significantly faster learning,
the training process was stopped after 5000 epochs, during which a sufficient convergence was
achieved.

Figure 4.15: Training and test MSE mean of 5 training iterations of the SVD-LSTM model

CNN-VAE-LSTM Model

For the CNN-VAE-LSTM model, a configuration featuring 2 stacked LSTMs was implemented,
each incorporating 128 hidden state features. Fig 4.16 depicts the training outcomes over 5
iterations of the final configuration with a learning rate of 8 ∗ 10−5, a prediction horizon of 3,
and a training duration of 5000 epochs. Compared to the preceding model, the average train and
test losses are larger by an order of magnitude. This trend was also observed for the SVD-FC
and CNN-VAE-FC models, but it is more distinct in the case of the LSTM models.

4.4 End-to-End Training
As the CNN-VAE-LSTM model stood out among the remaining ROMs, it was employed for end-
to-end (E2E) training in which both ROM components are trained simultaneously by merging
the separate models. E2E training is a common approach for deep neural networks as it enables
bypassing all intermediate model stages requiring careful design, instead utilizing the layered

30 4. Model Optimization

Figure 4.16: Training and test MSE mean of 5 training iterations of the CNN-VAE-LSTM
model

architecture of neural networks to treat the model as a closed system [32]. For that, an LSTM
was implemented between the encoder and decoder architectures.

In the first step, the the sequence length 32 is appended to the initial input size yielding the new
input size (1 × 256 × 128 × 32). Within the forward function of the model, the input sequence
is encoded to (64 × 32), where 64 represents the number of bottleneck neurons. The latent
size was decreased to 64 as the end-to-end model was trained and evaluated on a single flow
condition. The encoded sequence is subsequently processed by the stacked LSTM model with 2
layers, each containing 64 features in the hidden state. With a prediction horizon of 3 during
training, the LSTM produces 3 recurrent single-step predictions, which are then decoded back
to the full space and compared to the targets for optimization.

Figure 4.17: Training and test MSE of the E2E model

The previously implemented DataWindow class was adapted to handle the different input shapes.
As each timestep consists of (256 × 128) spatial points and each window of data, therefore,
consumes a lot of memory, the batch size was set to 24 which yields ≈ 100% GPU utilization.
In fig. 4.17, the train and test MSE is plotted for 5000 epochs of training with a learning rate
of 1 ∗ 10−4. As the E2E training required significant temporal resources, only one training was
carried out. After a few epochs, the model seems to be stuck at an MSE of around 1 ∗ 10−2 but
manages to accelerate the learning process again until 1200 epochs, where a sharp kink with
subsequent flattening of the loss curve can be observed. Compared to the sequentially trained
model, the final train losses are similar, while the test loss of the E2E model is significantly
lower.

Chapter 5

Results

To assess the performance of the sequentially trained ROM components, they are applied to pre-
dict buffet pressure distributions not included in the training at Ma∞ = 0.84 and Re = 12.9Mio..
For SVD and CNN-VAE, the test flow conditions consist of the angles of attack [3.0◦, 5.0◦] since
these models were trained on the remaining angles of attack α = [1.5◦, 3.5◦, 4.0◦, 4.5◦, 6.0◦] for
this specific Reynolds/Mach number setting. Subsequently, the FC and LSTM models are eval-
uated using the α = 4.00◦ flow condition. Finally, the performance of the end-to-end trained
CNN-VAE-LSTM is compared against its sequentially trained counterpart.

5.1 Dimensionality Reduction

The central purpose of applying SVD and CNN-VAE is to map complex high-dimensional spa-
tiotemporal data to a lower-dimensional reduced/latent space. The primary goal of implementing
these methods in the present work is to maintain the essential physical characteristics of the
buffet while achieving dimensionality reduction. In the context of the forward evolution of the
compressed representation, the term mode coefficients, as introduced in section 3.1.1, is also
used to describe the temporal evolution of the latent dimensions generated by the CNN-VAE
model. After analyzing the SVD based on the test cases, a similar evaluation is conducted for
the CNN-VAE model.

5.1.1 SVD

As detailed in section 4.2.1, the parameter analysis identified rank 300 as a favorable balance be-
tween dimensionality reduction and variance explanation with regard to the buffet characteristic.
Thus, both test datasets were reduced and reconstructed using the first 300 POD modes.

In fig. 5.1, an experimental cp-snapshot of the α = 3.00◦ flow condition is compared to the
reconstructed snapshot obtained using the truncated left singular vectors from the SVD. The
relatively low MSE indicates a favorable agreement, with minor deviations observed primarily
at the shock front. Notably, the SVD-reconstructed snapshot exhibits reduced noise compared
to the original experimental data, particularly downstream of the shock. This suggests that the
truncation process effectively filters out higher-frequency noise modes, which could potentially
originate from measurement errors or vortices forming in the wake of the shock wave, causing
pressure fluctuations. A similar pattern is observed for the α = 5.00◦ flow condition, as depicted
in fig. 5.2. While deviations seem slightly larger in this case, they can be traced back to the
larger variance of the second test case. Therefore, the associated MSE values are naturally
higher. Nonetheless, it is important to note that based on R2 values shown in fig. 4.5, the
reconstruction for the second test case actually explains more variance.

31

32 5. Results

Figure 5.1: Comparison of original and SVD reconstructed cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 3.00◦, τ = 53.69)

Figure 5.2: Comparison of original and SVD reconstructed cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 5.00◦, τ = 53.69)

To assess how well buffet characteristics are captured, the PSDs of selected mode coefficients
are compared. This involves a modal analysis by means of a POD, i.e. computing an SVD for
both experimental and reconstructed data. The mode coefficients are then transformed into the
frequency domain using FFT, from which the PSDs are derived. In the last step, the frequency
is replaced with the Strouhal number St (refer to section 2.1) using mean chord length and flow
velocity.

Fig. 5.3 displays the power spectra of the initial six mode coefficients for the α = 3.00◦ flow con-
dition. While this subset of mode coefficients may not reflect the entire dataset, it significantly
influences the buffet cycle as it represents the most dominant modes. It is also important to note
that modes with higher indices can exhibit considerable noise due to the experimental nature
of the data, making their reconstruction less desirable. The logarithmic representation of the
Strouhal number (St) effectively captures a broad frequency range, with particular emphasis on
lower frequencies that align with structural eigenfrequencies. In the context of the underlying
flow condition, a Strouhal number of 10−2 corresponds to a frequency of approximately 11Hz.
According to the Nyquist-Shannon theorem, the maximum frequency that can be accurately
acquired from the mode coefficients is half the sample rate, thus 1000Hz.

The y-axis is logarithmically scaled to enhance the visibility of both small and large values.

5.1 Dimensionality Reduction 33

Figure 5.3: Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 3.00◦)

Figure 5.4: Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 5.00◦)

Therefore, deviations at higher y-value regions are more significant than deviations in the lower y-
axis range. Overall, the reconstructed mode coefficients match the true coefficients, particularly
in the lower frequency ranges. Deviations become more apparent at higher frequencies. The
same pattern holds for the α = 5.00◦ test case, depicted in fig. 5.4. Notably, the agreement of
mode coefficients is even closer compared to the first test case, as previously indicated by the
larger R-squared value associated with the second test case (as detailed in 4.2.1). These results
indicate that the SVD is a viable method for constructing ROMs as it effectively reproduces the
physical behavior, maintains a limited amount of noise, and significantly reduces computational
resources.

34 5. Results

5.1.2 CNN-VAE

Similar to the previous section, the CNN-VAE model was employed to reconstruct the two
test datasets. In this case, the dimension of the latent space is determined by the size of the
bottleneck layer within the CNN-VAE model, which consists of 128 neurons. Notably, this is
approximately half the size of the reduced space spanned by the modes of the SVD.

Figure 5.5: Comparison of original and CNN-VAE predicted cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 3.00◦, τ = 53.69)

Figure 5.6: Comparison of original and CNN-VAE predicted cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 5.00◦, τ = 53.69)

In fig. 5.5 and fig. 5.6, a comparison between the original and predicted cp-snapshot for the two
test flow conditions is depicted. In general, there is a good agreement between the ground truth
and the prediction. Similar to the SVD approach, the shock fronts are slightly smeared in the
regions of high variance and exhibit minor displacements compared to the original snapshots.
The CNN-VAE model also effectively reduces the presence of noise in the experimental data.
However, when compared to the SVD, the overall reconstruction performance of the CNN-VAE
model appears to be marginally lower.

This observation made on individual cp-snapshot is further supported by comparing the power
spectra of the complete test datasets and with their corresponding CNN-VAE reconstructions
in fig. 5.7 and fig. 5.8. While the overall trend of the true mode coefficients is reproduced
accurately, the deviations from the experimental data are slightly larger. Specifically, for the
α = 3.00◦ test case (depicted in fig. 5.7), the coefficient of the first and most dominant mode does

5.1 Dimensionality Reduction 35

not accurately match both the lower and higher frequency contents. However, the agreement
for the α = 5.00◦ flow condition is satisfactory.

Figure 5.7: Comparative Power Spectra of the first six POD Modes. Visualizing the agreement
between experimental data and the CNN-VAE reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 3.00◦)

Figure 5.8: Comparative Power Spectra of the first six POD Modes. Visualizing the agreement
between experimental data and the CNN-VAE reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 5.00◦)

In comparison to the previous study conducted by Zahn et al. [45], the CNN-VAE model used
in this work doesn’t achieve the same level of precision in matching each mode coefficient as the
model in the mentioned study. However, the performance of the current model is still sufficient.
The differences in performance could be attributed to several factors, one of them being the
underlying dataset. In the earlier study, the training involved just two flow conditions, with
double the number of snapshots (1000) each, and one additional condition for testing. This
setup might have enabled the model to better generalize due to the more compact dataset.

36 5. Results

In contrast, the current study employed a broader spectrum of flow conditions, with fewer
snapshots for each. This increased diversity might have impacted the model’s ability to generalize
to unseen flow conditions. Nevertheless, while the present model might exhibit a slightly lower
accuracy on test data, it holds the potential for predicting a broader spectrum of flow conditions.
Additionally, when considering validation data, the current model exhibits better performance
compared to the previous one, indicating that the adjustments made to the model architecture
and training process had a positive impact after all.

5.2 Reduced-Order Models
In this section, the focus shifts to the evaluation of the time-evolution models. The main
goals here are the accurate reproduction of the reduced/latent space dynamics and the effective
representation of buffet characteristics when reconstructed/decoded back to the full-dimensional
space. As mentioned earlier, the FC and LSTM models were trained on 80% of the data from
the α = 4.00◦ flow condition, and their performance is assessed in the following sections using
the remaining 20% of the data.

5.2.1 SVD-FC

Figure 5.9: Comparison of true and SVD-FC predicted mode coefficents (Ma∞ = 0.84, Re =
12.9Mio., α = 4.00◦)

The SVD-FC model was applied to the test case in an auto-regressive single-step prediction
mode, using an initial input sequence of 32 timesteps. In fig. 5.9, the first four mode coefficients
are plotted against the SVD-FC predictions. It is evident that, apart from the first mode
coefficient, the model is able to accurately predict the remaining mode coefficients up to a
prediction horizon of about 16 timesteps. At this point, the first half of the input sequence
consists of true labels and the second half is predictions. Notably, the first mode coefficient does
not align well with the predictions, indicating that the model struggles to capture its dynamics
effectively. It is important to note that among the four coefficients, the first mode seems to
exhibit the most frequent changes over time, which the model is not able to reproduce. Given
that SVD-based mode coefficients are ordered in terms of descending importance, the quality
of the first mode coefficient’s representation significantly affects the ability to reproduce the
full space buffet dynamics. Although the true dynamics, observable through the interaction of
opposing maxima and minima, were not predicted accurately in this specific data window, the
model still manages to learn similar dynamics, as the predicted mode coefficients also interact
with each other.

Fig 5.10 illustrates a comparison of the FC model’s loss, denoted reduced space loss, and the loss

5.2 Reduced-Order Models 37

Figure 5.10: Comparison of latent loss and full space loss over 68 auto-regressive predictions
of SVD-FC model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦)

between the SVD reconstructed prediction and the corresponding original cp-snapshot, referred
to as full space loss. Throughout the entire prediction horizon, the reduced space loss remains
lower than the full space loss. This indicates that the ROM approach is suitable for capturing
information in a lower-dimensional space and therefore provides efficiency gains, resulting in
faster computations and reduced memory requirements. Moreover, the close matching of both
loss curves suggests that the SVD is preserving the important information when reconstructing
back to the full space. Furthermore, both losses follow an upward trend over time, confirming
the missing long-term stability of the SVD-FC model, as previously observed in fig. 5.9.

Figure 5.11: Comparison of original and SVD-FC predicted cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 4.00◦, τ = 258.25 (50 timesteps ahead))

Fig. 5.11 represents a comparison between a true cp-snapshot and the predicted snapshot using
the SVD-FC model. The prediction is generated using an input sequence of 32 timesteps and a
prediction horizon of 50 timesteps. As evident in fig. 5.11, the predicted cp-snapshot is generally
in good agreement with the ground truth and displays characteristic features. However, it is
important to note that while snapshot comparisons are informative, they are limited in their
ability to draw conclusions without considering the temporal context. Therefore, in order to
gain more insights into the test case dynamics, the power spectra of the SVD-FC predicted
dataset are compared to the corresponding experimental data in fig. 5.12. The initial sequence
of 32 timesteps was ignored, leaving the remaining 68 timesteps for comparison.

In this context, the power spectra of the first six mode coefficients provide valuable information
about the buffet dynamics at a higher level. The analysis reveals that the predicted dynamics
exhibit considerable deviations from the ground truth for most mode coefficients. The power
of the low-frequency content tends to be overestimated while the power of the mid- and high-

38 5. Results

frequency content tends to be underestimated. This behavior suggests that the SVD-FC model
excels in capturing the steady-state and more persistent buffet components while struggling to
capture transient behavior, characterized by rapid variations.

Figure 5.12: Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD-FC predicted dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦)

As part of the optimization process, the reconstructed test dataset was animated and compared
against the ground truth to confirm the conclusions drawn from the PSDs. The animation
was created by treating individual timesteps as frames and concatenating them to a Graphics
Interchange Format (GIF) image. While the general behavior of the shock wave appeared
physically accurate in terms of interaction, there were noticeable differences in the dynamics.
The reconstructed dynamics appeared smeared and less pronounced compared to the ground
truth. This observation matches the previous PSD findings in fig. 5.12, where overpowered
lower frequencies and underpowered higher frequencies were identified. Ultimately, the lack
of transient features and dominance of steady-state dynamics is reflected in the suppressed
propagation of buffet cells toward the wing tip.

5.2.2 CNN-VAE-FC

Similar to the previous section, the CNN-VAE-FC model was employed for the test case using an
auto-regressive single-step prediction approach. The mode coefficients, representing the latent
dimensions of the CNN-VAE model, were predicted and compared to the true coefficients in
fig. 5.13. In contrast to the SVD-FC model, each mode coefficient’s temporal evolution is
equally important in the case of the CNN-VAE-FC model.

Examining the figure, it becomes evident that the predictions only match the true coefficients for
the first one or two predictions. In this aspect, the SVD-FC model seems to outperform the CNN-
VAE-FC model. Furthermore, it is worth noting that the CNN-VAE-FC model encountered
challenges in achieving as low train and test losses as the SVD-FC model, as elaborated in
section 4.3.1, indicating that the relationships within the fewer latent dimensions might be more
complex, resulting in a more challenging training process.

In fig. 5.14, the reduced space loss and the full space loss over 68 auto-regressive predictions
using the CNN-VAE-FC model are plotted. Similar to the SVD-FC case, the loss curve shapes

5.2 Reduced-Order Models 39

Figure 5.13: Comparison of true and CNN-VAE-FC predicted mode coefficents (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦)

Figure 5.14: Comparison of latent loss and full space loss over 68 auto-regressive predictions
of CNN-VAE-FC model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦, τ = 266.30)

closely match, indicating that the CNN-VAE’s decoding process effectively preserves most of the
information. However, in contrast to fig. 5.10, the reduced space loss is consistently larger in
the case of the CNN-VAE-FC model. This suggests that the model’s predictions do not match
the test data as well as the SVD-FC model. Nevertheless, the full space loss after the decoding
process is similar, implying that both models provide equally good representations of the test
data in terms of predicting individual cp-snapshots.

Moving from matching predictions to accurately reflecting buffet characteristics, a comparison
of the PSDs of the first six mode coefficients is depicted in fig. 5.15. The mode coefficients of
the CNN-VAE-FC predicted dataset demonstrate a significant improvement in comparison to
the previous model. The trend of each mode coefficient is matched more accurately, and the
overestimation of lower frequencies is less pronounced. Nevertheless, the figure also indicates
that some of the transient features may be overpowered.

Similarly, the temporal evolution of the CNN-VAE-FC reconstruction was visualized. Although
the dynamics of the shock are more accurately captured, including transient behavior, they
appear less physically coherent. In the context of buffet cell propagation, a standing wave
forms initially causing a flickering effect in the pressure distribution across the wing. This
behavior persists for 15-20 timesteps before the dynamics stabilize and converge towards the
ground truth. Although the CNN-VAE-FC model improves upon the accurate balance of buffet
dynamics compared to the SVD-FC model, the predicted dynamics still appear less smooth and
coherent.

40 5. Results

Figure 5.15: Comparative Power Spectra of the first six POD Modes. Visualizing the
agreement between experimental data and the CNN-VAE-FC predicted dataset
(Ma∞ = 0.84, Re = 12.9Mio., α = 5.00◦)

5.2.3 SVD-LSTM

During the optimization process, the SVD-LSTM model achieved the lowest training loss while
maintaining a moderate test error. In fig. 5.16, the initial mode coefficients of the reduced dataset
are plotted against 68 auto-regressive SVD-LSTM predictions. The corresponding losses for each
prediction and the full space loss after reconstruction are depicted in fig. 5.17.

Figure 5.16: Comparison of true and SVD-LSTM predicted mode coefficents (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦)

The first mode coefficient is predicted with reasonable accuracy. For the remaining three mode
coefficients shown in the figure, the agreement is less accurate. While the first few timesteps
are well matched, the predicted wavelengths of the mode coefficient dynamics become too large
afterward. Therefore, it is expected that the corresponding POD modes in the full space are
not represented accurately, as their temporal behavior is not matched. Nevertheless, the LSTM
was able to learn the inherent dynamics of the training data, evident in the interaction of the
coefficients.

5.2 Reduced-Order Models 41

Figure 5.17: Comparison of latent loss and full space loss over 68 auto-regressive predictions
of SVD-LSTM model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦)

In terms of the power spectra, as shown in fig. 5.18, the SVD-LSTM model manages to capture
the majority of buffet dynamics quite accurately. However, it becomes evident in for of the
mode coefficients that the predicted spectra tend to be unbalanced, with stronger low-frequency
content and less dominant mid- and high-frequency content. This behavior is similar to what was
observed in the SVD-FC model, although less pronounced. The unbalanced frequency contents
are also noticeable in the animated reconstruction, in which slow-moving features appear to be
slightly more dominant.

The initial sequence of outward propagating buffet cells is captured accurately, which is a positive
outcome. However, as predictions extend further into the future, they seem to converge towards
more steady-state dynamics. The general behavior of the shock wave appears smeared and not
as precise as in the ground truth data. It is worth noting that this behavior is consistent with
what was observed in the SVD-FC model, suggesting that the limitations of capturing transient
behavior might be attributed to the SVD-based dimensionality reduction approach.

Figure 5.18: Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD-LSTM predicted dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦)

5.2.4 CNN-VAE-LSTM

Following the previous evaluation process, the CNN-VAE-LSTM model is employed in a recur-
rent single-step prediction mode on the test data. Fig. 5.19 illustrates predictions and ground

42 5. Results

truth for the initial four latent dimensions/mode coefficients. In comparison to the CNN-VAE-
FC model, it is evident that the LSTM model provides a closer match to the dynamics of the
true coefficients, although not an exact reproduction of the true values is achieved.

Figure 5.19: Comparison of true and CNN-VAE-LSTM predicted mode coefficents (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦)

In fig. 5.20, reduced space loss and full space loss are compared. Notably, a pattern similar to
that observed in the corresponding fig. 5.14 of the CNN-VAE-FC model is visible. Altogether,
this implies that the reduced space loss is consistently larger for the time-evolution models
trained with the encoded data from the CNN-VAE. The models trained with the mode coeffi-
cients obtained from SVD exhibit significantly lower test losses, which are also lower than the
final full space loss. However, these findings shouldn’t be interpreted as a direct indication of
more accurate buffet dynamics reproduction. This could suggest that the intricate temporal re-
lationships within the latent space, generated by the CNN-VAEs, are more challenging to learn.
Nevertheless, the CNN-VAE-based ROMs still outperform the SVD-based ones. The lower er-
ror observed in the SVD-ROMs might stem from their enhanced representation of the more
persistent buffet components. Therefore, the deviations from the ground truth appear lower,
although the dynamics are not reproduced accurately. It’s worth noting that the reconstruction
of predicted mode coefficients potentially also introduces some smearing of the shock wave os-
cillations, although the α = 4.00◦ flow condition was used for training the SVD. In contrast, the
CNN-VAE ROMs exhibit more pronounced dynamics, resulting in greater deviations from the
ground truth, despite better dynamics reproduction.

Figure 5.20: Comparison of latent loss and full space loss over 68 auto-regressive predictions
of CNN-VAE-LSTM model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦)

This observation is reinforced by fig. 5.21, where the PSDs of the first six mode coefficients of
the test dataset and the CNN-VAE-LSTM predicted test dataset are displayed. Evidently, there

5.3 End-To-End CNN-VAE-LSTM 43

is a high level of agreement with the experimental data, indicating the model’s capability to
capture both steady-state patterns and transient buffet dynamics effectively.

Figure 5.21: Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the CNN-VAE-LSTM predicted dataset
(Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦)

This expected behavior is further confirmed by creating an animation from the predictions.
Here, the predicted evolution closely aligns with the experimental data, accurately reproducing
both the low-frequency and transient buffet features. Among all the models assessed previously,
the CNN-VAE-LSTM model stands out for its superior performance in capturing buffet charac-
teristics. It not only replicates the general underlying dynamics, as seen in previous models to a
certain degree, but it also demonstrates an impressive agreement between the auto-regressively
predicted time series and the actual temporal evolution over 68 timesteps. Therefore the 3D
buffet phenomenon is fully captured.

5.3 End-To-End CNN-VAE-LSTM

The CNN-VAE-LSTM model, which demonstrated superior performance among all evaluated
ROMs, was selected for end-to-end training. In this section, the end-to-end trained model (E2E)
is assessed and contrasted with the sequentially trained CNN-VAE-LSTM model, which will be
referred to as the sequential model. Following the previous methodology, the E2E model was
utilized to reconstruct the test case involving the α = 4.00◦ flow condition.

A comparison of the full space losses between the sequential and E2E model is illustrated in
fig. 5.22. Notably, both fall into a similar value range, with the E2E model’s loss showing slightly
less variation and a slightly higher average. In fig. 5.23, the predicted PSDs of both models and
the ground truth are depicted. The E2E-predicted spectra appear smoother in comparison.
While they do show agreement with the ground truth, this indicates that there are almost no
dynamics apparent as there is no diversity in the predictions.

Clearly, when visualizing the E2E predictions through animations, the dynamics are well-
matched in the initial few timesteps but are vanishing from there in a fast decaying manner.
Roughly after eight predictions, the model outputs similar pressure distributions for the remain-
ing window with no apparent dynamics. Although an implementation error cannot be ruled out,

44 5. Results

Figure 5.22: Comparison of E2E and sequential CNN-VAE-LSTM full space losses (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦)

Figure 5.23: Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the E2E predicted dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦)

there could be other factors responsible for this behavior. The train and test loss curves exam-
ined earlier exhibited an irregular behavior as a sharp flattening of the loss curve was observed
after a certain number of epochs. Although reaching relatively low loss values, the model might
struggle to maintain its internal memory beyond the extent to which it was trained, which in
this case was a prediction horizon of 3.

Given the unsatisfactory results obtained with the E2E model, further investigation and opti-
mization is required. It is important to note that optimizing an E2E model can be significantly
more complex due to the simultaneous training of all its components, demanding more compu-
tational resources and expertise. Additionally, it is worth noticing that the CNN-VAE models
tend to converge faster compared to the LSTMs used in this study, with the latter requiring
approximately ten times the number of epochs to achieve desirable performance. Verifying if
better results can be achieved after an extensive parameter is an essential step. Nevertheless, it
must be determined if the tremendous time expenditure outweighs the potential benefits.

Chapter 6

Conclusion

In the present study, the training and comparison of a set of ROMs has been carried out for
predicting pressure distributions based on IPSP data acquired during a wind tunnel campaign
at the ETW. The campaign involved measurements of the Airbus XRF-1 configuration under
transonic buffet flow conditions, characterized by strong variations in aerodynamic forces and
potentially critical structural vibrations (buffeting).

The ROMs developed in this study combine dimensionality reduction techniques, specifically
SVD and CNN-VAE, with FC and LSTM neural networks to predict the temporal evolution
of reduced/encoded spatiotemporal data. The data was obtained from a flow condition with
Ma∞ = 0.84 and Re = 12.9Mio., for which seven angles of attack were recorded. SVD and
CNN-VAE were trained using data from five angles of attack and then coupled with FC and
LSTM networks, individually trained on a single angle of attack, to predict buffet dynamics.

The evaluation of SVD and CNN-VAE reconstruction performance was carried out on two unseen
test flow conditions, involving a comparison of measured cp-snapshots with their corresponding
reconstructions. Additionally, the ability of SVD and CNN-VAE to capture the buffet charac-
teristics was assessed by decomposing results and ground truth by means of a POD. An FFT
of the first six mode coefficients was computed to analyze their power spectra. The evaluation
indicated that SVD performs marginally better when employed on the test cases. Nevertheless,
both techniques were able to capture the inherent variance accurately with 97% ≤ R2 ≤ 99%.

After training the FC and LSTM neural networks for auto-regressive predictions, the sequentially
trained ROMs were applied to predict buffet dynamics for the unseen part of the test case. The
evaluation involved assessing the reproduction of temporal relationships of the reduced state and
examining the relationship between the reduced space loss and the full space loss. Additionally,
the ROMs were employed to predict the test case using auto-regressive single-step predictions
to discuss the PSDs. The study suggested that the SVD ROMs tend to provide more accurate
predictions of reduced space dynamics. This was indicated by predictions closely matching the
true mode coefficients, as well as a reduced space loss that was about an order of magnitude
lower than that of CNN-VAE ROMs. Notably, the full space loss across all models fell within
a similar range. However, these findings shouldn’t be interpreted as a direct indication of more
accurate buffet dynamics reproduction. A possible interpretation is that the complex temporal
relationships within the latent space, generated by the CNN-VAE, are more challenging to
learn. In contrast, the temporal coefficients derived from SVD inherently combined both slower-
changing, more persistent components and rapidly changing short-term components.

When analyzing the PSDs of SVD-FC and SVD-LSTM, it becomes apparent that these models
tend to overestimate lower-frequency contents while underestimating higher-frequency contents.

45

46 6. Conclusion

This suggests that they predominantly learned steady-state dynamics from data. Visualizing
the predicted datasets of the SVD ROMs as animations reveals minimal transient behavior,
causing the characteristic shock wave movement to appear blurred or smeared. In contrast to
the SVD-FC model, the SVD-LSTM model manages to capture the outward propagation of
buffet cells to some extent, indicating a limited ability to represent transient behavior.

The ROMs employing CNN-VAE for encoding and decoding provide a more precise represen-
tation of shock wave oscillations, evident from their more balanced PSDs. Among all ROMs,
the CNN-VAE-LSTM stands out as it aligns closely with the experimental data’s PSDs. When
viewed through animations, it becomes evident that the CNN-VAE-LSTM model not only repli-
cates the general underlying dynamics, as seen in previous models to a certain degree, but it also
demonstrates an impressive agreement between the auto-regressively predicted time series and
the actual temporal evolution over 68 timesteps. Hence, the CNN-VAE-LSTM model emerges as
the most effective ROM in terms of capturing and representing buffet dynamics, both in terms
of transient features and steady-state oscillations.

For that reason, the CNN-VAE-LSTM model was employed in an end-to-end training approach
in which CNN-VAE and LSTM are trained concurrently to investigate if such an approach could
further improve performance. The results, however, showed a decaying dynamics representation
and potential stability issues in the E2E model, particularly over extended prediction horizons.
While the integrated training methodology could improve overall performance, further investi-
gations and optimizations are crucial to achieve the desired predictive accuracy.

In terms of future work, there are several potential approaches that can enhance the capabilities
and insights provided by the developed ROMs. A first step could be applying the time-evolution
models for multiple flow conditions to investigate the robustness of different architectures when
dealing with a more comprehensive dataset. Additionally, more sophisticated model architec-
tures such as time-convolution FC/LSTM networks and transformer networks could be explored.
Graph Neural Networks could also be investigated, to learn a graph-based representation of data
and potentially provide complex relationships between different aerodynamic features. In terms
of data augmentation and interpolation, employing Generative Adversarial Networks could help
generate new cp-snapshots to increase the size and diversity of the dataset, or to interpolate
between Mach numbers and angles of attack. As the overall objective is to create an estimate
of the buffet onset, integrating techniques like Monte Carlo Dropout could provide the models
with the ability to estimate prediction uncertainty, which is particularly important when fore-
casting buffet onset conditions. Although further exploration of methods on the present dataset
could aid in understanding buffet, the ultimate challenge is to transfer the learned dynamics to
different wing geometries and flow conditions.

Bibliography

[1] Bagheri, R.: Understanding Singular Value Decomposition and its Application in Data
Science. url: https://towardsdatascience.com/understanding-singular-value-
decomposition- and- its- application- in- data- science- 388a54be95d (visited on
06/26/2023).

[2] Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738.

[3] Brunton, S. L. and Kutz, J. N.: Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press, 2019. doi: 10.1017/9781
108380690.

[4] Brunton, S. L., Noack, B. R., and Koumoutsakos, P.: “Machine Learning for Fluid Me-
chanics”. In: Annual Review of Fluid Mechanics 52(1) (2020), pp. 477–508. doi: 10.1146/
annurev-fluid-010719-060214.

[5] Bushaev, V.: Adam — latest trends in deep learning optimization. url: https://tow
ardsdatascience . com / adam - latest - trends - in - deep - learning - optimization -
6be9a291375c (visited on 08/19/2023).

[6] Crouch, J. D., Garbaruk, A., Magidov, D., et al.: “Origin of transonic buffet on aerofoils”.
In: Journal of Fluid Mechanics 628 (2009), pp. 357–369. doi: 10.1017/S0022112009006
673.

[7] Dandois, J., Molton, P., Lepage, A., et al.: “Buffet Characterization and Control for Turbu-
lent Wings”. In: Aerospace Lab(6) (June 2013), p. 1–17. url: https://hal.science/hal-
01184458.

[8] Dandois, J.: “Experimental study of transonic buffet phenomenon on a 3D swept wing”.
In: Physics of Fluids 28(1) (Jan. 2016). 016101. issn: 1070-6631. doi: 10.1063/1.4937426.

[9] Dhinakaran, A.: Understanding KL Divergence. url: https://towardsdatascience.
com/understanding-kl-divergence-f3ddc8dff254 (visited on 07/01/2023).

[10] Eivazi, H., Veisi, H., Naderi, M. H., et al.: “Deep neural networks for nonlinear model order
reduction of unsteady flows”. In: Physics of Fluids 32(10) (Oct. 2020). issn: 1070-6631.
doi: 10.1063/5.0020526.

[11] Giannelis, N. F., Vio, G. A., and Levinski, O.: “A review of recent developments in the
understanding of transonic shock buffet”. In: Progress in Aerospace Sciences 92 (2017),
pp. 39–84. issn: 0376-0421. doi: https://doi.org/10.1016/j.paerosci.2017.05.004.

[12] Goodfellow, I. J., Bengio, Y., and Courville, A.: Deep Learning. http://www.deeplearn
ingbook.org. Cambridge, MA, USA: MIT Press, 2016.

[13] Hao, H., Wang, Y., Xia, Y., et al.: Temporal Convolutional Attention-based Network For
Sequence Modeling. 2020. arXiv: 2002.12530 [cs.CL].

[14] Hochreiter, S. and Schmidhuber, J.: “Long Short-term Memory”. In: Neural computation
9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

[15] Hornik, K., Stinchcombe, M., and White, H.: “Multilayer feedforward networks are univer-
sal approximators”. In: Neural Networks 2(5) (1989), pp. 359–366. issn: 0893-6080. doi:
https://doi.org/10.1016/0893-6080(89)90020-8.

47

https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d
https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://doi.org/10.1017/S0022112009006673
https://doi.org/10.1017/S0022112009006673
https://hal.science/hal-01184458
https://hal.science/hal-01184458
https://doi.org/10.1063/1.4937426
https://towardsdatascience.com/understanding-kl-divergence-f3ddc8dff254
https://towardsdatascience.com/understanding-kl-divergence-f3ddc8dff254
https://doi.org/10.1063/5.0020526
https://doi.org/https://doi.org/10.1016/j .paerosci.2017.05.004
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2002.12530
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8

48 Bibliography

[16] Iovnovich, M. and Raveh, D.: “Numerical Study of Shock Buffet on Three-Dimensional
Wings”. In: AIAA Journal 53 (Feb. 2015), pp. 449–463. doi: 10.2514/1.J053201.

[17] Kumar, A.: Data Analytics: Mean Squared Error or R-Squared – Which one to use? url:
https://vitalflux.com/mean-square-error-r-squared-which-one-to-use/#What_
is_R-Squared (visited on 08/20/2023).

[18] LeCun, Y., Bengio, Y., and Hinton, G.: “Deep learning”. In: nature 521(7553) (2015),
p. 436.

[19] Lutz, T., Kleinert, J., Waldmann, A., et al.: “Research Initiative for Numerical and Ex-
perimental Studies on High-Speed Stall of Civil Aircraft”. In: Journal of Aircraft 60(3)
(2023), pp. 623–636. doi: 10.2514/1.C036829.

[20] Martin, D. Q.: Shock Buffet und aerodynamische Resonanz. url: https://www.dlr.de/
ae/desktopdefault.aspx/tabid-9619/16552_read-36584/ (visited on 06/26/2023).

[21] Maulik, R., Mohan, A., Lusch, B., et al.: “Time-series learning of latent-space dynamics for
reduced-order model closure”. In: Physica D: Nonlinear Phenomena 405 (2020), p. 132368.
issn: 0167-2789. doi: https://doi.org/10.1016/j.physd.2020.132368.

[22] Olah, C.: Understanding LSTM Networks. url: https://colah.github.io/posts/2015-
08-Understanding-LSTMs/ (visited on 08/19/2023).

[23] Oord, A. van den, Dieleman, S., Zen, H., et al.: “WaveNet: A Generative Model for Raw
Audio”. In: CoRR abs/1609.03499 (2016). arXiv: 1609.03499.

[24] OpenAI: GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].
[25] Peixerio, M.: Time Series Forecasting in Python. Manning, 2022.
[26] Plante, F.: “Towards Understanding Stall Cells and Transonic Buffet Cells”. AAI30161490.

PhD thesis. 2020. isbn: 9798358404144.
[27] Plante, F., Dandois, J., Sartor, F., et al.: “Study of Three-Dimensional Transonic Buffet on

Swept Wings”. In: 35th AIAA Applied Aerodynamics Conference. doi: 10.2514/6.2017-
3903.

[28] Pravallika, M. S., Vasavi, S., and Vighneshwar, S. P.: “Prediction of temperature anomaly
in Indian Ocean based on autoregressive long short-term memory neural network”. In:
Neural Computing and Applications 34 (2022). url: https://doi.org/10.1007/s00521-
021-06878-8.

[29] Radford, A., Wu, J., Child, R., et al.: “Language Models are Unsupervised Multitask
Learners”. In: (2019).

[30] Raff, E.: Inside Deep Learning: Math, Algorithms, Models. Manning, 2022. url: https:
//books.google.de/books?id=s8hhzgEACAAJ.

[31] Rocca, J.: Understanding Variational Autoencoders (VAEs). url: https://towardsdatas
cience.com/understanding-variational-autoencoders-vaes-f70510919f73 (visited
on 06/30/2023).

[32] Roza, F.: End-to-end learning, the (almost) every purpose ML method. url: https://
towardsdatascience.com/e2e-the-every-purpose-ml-method-5d4f20dafee4 (visited
on 08/31/2023).

[33] Solera-Rico, A., Vila, C. S., Gómez, M. A., et al.: β-Variational autoencoders and trans-
formers for reduced-order modelling of fluid flows. 2023.

[34] Strang, G.: Introduction to Linear Algebra. Fourth. Wellesley, MA: Wellesley-Cambridge
Press, 2009. isbn: 9780980232714 0980232716 9780980232721 0980232724 9788175968110
8175968117.

[35] Sugioka, Y., Koike, S., Nakakita, K., et al.: “Experimental analysis of transonic buffet on
a 3D swept wing using fast-response pressure-sensitive paint”. In: Experiments in Fluids
59 (May 2018). doi: 10.1007/s00348-018-2565-5.

[36] Sugioka, Y., Kouchi, T., and Koike, S.: “Experimental comparison of shock buffet on
unswept and 10-deg swept wings”. In: Experiments in Fluids 63 (Aug. 2022). doi: 10.
1007/s00348-022-03482-x.

https://doi.org/10.2514/1.J053201
https://vitalflux.com/mean-square-error-r-squared-which-one-to-use/#What_is_R-Squared
https://vitalflux.com/mean-square-error-r-squared-which-one-to-use/#What_is_R-Squared
https://doi.org/10.2514/1.C036829
https://www.dlr.de/ae/desktopdefault.aspx/tabid-9619/16552_read-36584/
https://www.dlr.de/ae/desktopdefault.aspx/tabid-9619/16552_read-36584/
https://doi.org/https://doi.org/10.1016/j .physd.2020.132368
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/2303.08774
https://doi.org/10.2514/6.2017-3903
https://doi.org/10.2514/6.2017-3903
https://doi.org/10.1007/s00521-021-06878-8
https://doi.org/10.1007/s00521-021-06878-8
https://books.google.de/books?id=s8hhzgEACAAJ
https://books.google.de/books?id=s8hhzgEACAAJ
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/e2e-the-every-purpose-ml-method-5d4f20dafee4
https://towardsdatascience.com/e2e-the-every-purpose-ml-method-5d4f20dafee4
https://doi.org/10.1007/s00348-018-2565-5
https://doi.org/10.1007/s00348-022-03482-x
https://doi.org/10.1007/s00348-022-03482-x

BIBLIOGRAPHY 49

[37] Timme, S. and Thormann, R.: “Towards Three-Dimensional Global Stability Analysis of
Transonic Shock Buffet”. In: June 2016. doi: 10.2514/6.2016-3848.

[38] Tosun, N., Sert, E., Ayaz, E., et al.: “Solar Power Generation Analysis and Forecasting
Real-World Data Using LSTM and Autoregressive CNN”. In: 2020 International Confer-
ence on Smart Energy Systems and Technologies (SEST). 2020, pp. 1–6. doi: 10.1109/
SEST48500.2020.9203124.

[39] Towards Data Science, E. H.: How To Forecast Time-Series Using Autoregression. 2017.
url: https://towardsdatascience.com/how- to- forecast- time- series- using-
autoregression-1d45db71683 (visited on 06/06/2023).

[40] Turing: Guide to Autoregressive Models. 2023. url: https://www.turing.com/kb/guide-
to-autoregressive-models (visited on 06/06/2023).

[41] Weiner, A.: Machine learning in computational fluid dynamics. https://github.com/
AndreWeiner/ml-cfd-lecture. 2021.

[42] Weiner, A. and Semaan, R.: “flowTorch - a Python library for analysis and reduced-order
modeling of fluid flows”. In: Journal of Open Source Software 6 (Dec. 2021), p. 3860. doi:
10.21105/joss.03860.

[43] Yorita, D., Klein, C., Henne, U., et al.: “Successful Application of Cryogenic Pressure
Sensitive Paint Technique at ETW”. In: 2018 AIAA Aerospace Sciences Meeting. doi:
10.2514/6.2018-1136.

[44] Zahn, R. and Breitsamter, C.: “Prediction of transonic wing buffet pressure based on deep
learning”. In: CEAS Aeronautical Journal 14 (2023), pp. 155–169.

[45] Zahn, R., Weiner, A., and Breitsamter, C.: “Prediction of wing buffet pressure loads using
a convolutional and recurrent neural network framework”. In: CEAS Aeronautical Journal
(2023).

https://doi.org/10.2514/6.2016-3848
https://doi.org/10.1109/SEST48500.2020.9203124
https://doi.org/10.1109/SEST48500.2020.9203124
https://towardsdatascience.com/how-to-forecast-time-series-using-autoregression-1d45db71683
https://towardsdatascience.com/how-to-forecast-time-series-using-autoregression-1d45db71683
https://www.turing.com/kb/guide-to-autoregressive-models
https://www.turing.com/kb/guide-to-autoregressive-models
https://github.com/AndreWeiner/ml-cfd-lecture
https://github.com/AndreWeiner/ml-cfd-lecture
https://doi.org/10.21105/joss.03860
https://doi.org/10.2514/6.2018-1136

List of Figures

2.1 Airfoil buffet for three consecutive timesteps, taken from [20] 4
2.2 Schematic shock and separation behavior on a 3D swept wing, taken from [35] . 5

3.1 Standard autoencoder information flow, based on [31] 10
3.2 Variational autoencoder information flow, based on [31] 11
3.3 Artificial neural network by Colin M.L. Burnett, CC BY 4.0 11
3.4 The LSTM Cell by Guillaume Chevalier, CC BY 4.0 14

4.1 Spatial mask with SVD to eliminate shock reflections from the dataset (Ma∞ =
0.9, Re = 25Mio., α = 2.50◦) . 19

4.2 Comparison of the original and interpolated grid. Note that these are not the
actual data grids. The displayed grids were coarsened by a factor of 8 and only
for scale comparison. 19

4.3 Comparison of original and interpolated cp snapshot (Ma∞ = 0.84, Re = 12.9Mio., α =
5.00◦, τ = 53.69) . 20

4.4 Singular value contributions . 21
4.5 MSE and variance reconstruction with increasing rank 22
4.6 Temporal MSE distributions with increasing rank for test dataset 1 22
4.7 Comparison of spatial MSE distributions for reconstructed cp-snapshot using SVD

ranks 3, 30, and 300 (Ma∞ = 0.84, Re = 12.9Mio., α1 = 3.00◦, α2 = 5.00◦) 23
4.8 Comparison of cp-snapshot with reconstructions using SVD ranks 30 and 300

(Ma∞ = 0.84, Re = 12.9Mio., α1 = 3.00◦, α2 = 5.00◦, τ = 53.69) 23
4.9 Training and test MSE mean of 10 training iterations for different latent sizes of

the CNN-VAE model . 24
4.10 Test MSE tendency and spread for different latent sizes of the CNN-VAE model 25
4.11 MSE and R2 with increasing latent size . 26
4.12 Comparison of spatial MSE distributions for reconstructed cp-snapshot using 32,

128, and 256 bottleneck neurons (Ma∞ = 0.84, Re = 12.9Mio., α1 = 3.00◦, α2 =
5.00◦) . 26

4.13 Training and test MSE mean of 5 training iterations of the SVD-FC model . . . 28
4.14 Training and test MSE mean of 5 training iterations of the CNN-VAE-FC model 28
4.15 Training and test MSE mean of 5 training iterations of the SVD-LSTM model . 29
4.16 Training and test MSE mean of 5 training iterations of the CNN-VAE-LSTM model 30
4.17 Training and test MSE of the E2E model . 30

5.1 Comparison of original and SVD reconstructed cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 3.00◦, τ = 53.69) . 32

5.2 Comparison of original and SVD reconstructed cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 5.00◦, τ = 53.69) . 32

5.3 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 3.00◦) . 33

5.4 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 5.00◦) . 33

5.5 Comparison of original and CNN-VAE predicted cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 3.00◦, τ = 53.69) . 34

5.6 Comparison of original and CNN-VAE predicted cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 5.00◦, τ = 53.69) . 34

50

https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png

List of Figures 51

5.7 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the CNN-VAE reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 3.00◦) . 35

5.8 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the CNN-VAE reconstructed dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 5.00◦) . 35

5.9 Comparison of true and SVD-FC predicted mode coefficents (Ma∞ = 0.84, Re =
12.9Mio., α = 4.00◦) . 36

5.10 Comparison of latent loss and full space loss over 68 auto-regressive predictions
of SVD-FC model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦) 37

5.11 Comparison of original and SVD-FC predicted cp-snapshot (Ma∞ = 0.84, Re =
12.9Mio., α = 4.00◦, τ = 258.25 (50 timesteps ahead)) 37

5.12 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD-FC predicted dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦) . 38

5.13 Comparison of true and CNN-VAE-FC predicted mode coefficents (Ma∞ = 0.84, Re =
12.9Mio., α = 4.00◦) . 39

5.14 Comparison of latent loss and full space loss over 68 auto-regressive predictions
of CNN-VAE-FC model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦, τ = 266.30) . . 39

5.15 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the CNN-VAE-FC predicted dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 5.00◦) . 40

5.16 Comparison of true and SVD-LSTM predicted mode coefficents (Ma∞ = 0.84, Re =
12.9Mio., α = 4.00◦) . 40

5.17 Comparison of latent loss and full space loss over 68 auto-regressive predictions
of SVD-LSTM model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦) 41

5.18 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the SVD-LSTM predicted dataset (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦) . 41

5.19 Comparison of true and CNN-VAE-LSTM predicted mode coefficents (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦) . 42

5.20 Comparison of latent loss and full space loss over 68 auto-regressive predictions
of CNN-VAE-LSTM model (Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦) 42

5.21 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the CNN-VAE-LSTM predicted dataset
(Ma∞ = 0.84, Re = 12.9Mio., α = 4.00◦) . 43

5.22 Comparison of E2E and sequential CNN-VAE-LSTM full space losses (Ma∞ =
0.84, Re = 12.9Mio., α = 4.00◦) . 44

5.23 Comparative Power Spectra of the first six POD Modes. Visualizing the agree-
ment between experimental data and the E2E predicted dataset (Ma∞ = 0.84, Re =
12.9Mio., α = 4.00◦) . 44

	Nomenclature
	Introduction
	Motivation
	State of the Art
	Approach

	Three-Dimensional Transonic Buffet
	Physical Mechanism
	Three-Dimensional Behavior
	Buffeting and its effects

	Reduced Order Modeling
	Dimensionality Reduction
	Singular Value Decomposition (SVD)
	Convolutional Variational Autoencoder (CNN-VAE)

	Deep Learning (DL)
	Neural Networks
	Convolutional Neural Network (CNN)
	Long Short-Term Memory (LSTM)

	Metrics
	Mean Squared Error (MSE)
	Coefficient of Determination (R2)
	Power Spectral Density (PSD)

	Model Optimization
	Data Source and Preparation
	Interpolation

	Dimensionality Reduction
	SVD
	CNN-VAE

	Time Evolution in Reduced State
	FC Models
	LSTM Models

	End-to-End Training

	Results
	Dimensionality Reduction
	SVD
	CNN-VAE

	Reduced-Order Models
	SVD-FC
	CNN-VAE-FC
	SVD-LSTM
	CNN-VAE-LSTM

	End-To-End CNN-VAE-LSTM

	Conclusion
	Bibliography
	List of Figures

