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Our energy analysis uses the concept of energy separation in a time-mean ( ) and time-varying 
( ) component: 




with  the horizontal velocity components,  the reference density,  a 4-year average, and  deviation from this average. 

The steady-state balance of  and  reservoirs is analyzed with a regional formulation of the 
Lorenz Energy Cycle (Lorenz, 1955):

K
K′ 

K =
1
2

ρ0(u2 + v2) and K′ =
1
2

ρ0(u′ 2 + v′ 2)
(u, v) ρ0 ( . ) ( . )′ 

K K′ 

2. Theory 

1

 P′ 

 P K

 K′ 

Swind(K )
Sb. drag(K )

Ssubgrid diss(K )

T(K ) −C(K, P )

C(K′ , P′ )

Ssubgrid diss(K′ )
Sb. drag(K′ )Swind(K′ )

T(K′ )

−TV(K, K′ )
−TH(K, K′ )

−CV(K, K′ )
−CH(K, K′ )

CH(K′ , K )
+CV(K′ , K )

Energy rates of change related to: 
• : wind stress, bottom drag,  subgrid 

dissipation.

• : non-local effects being spatial 

redistribution due to pressure work and 
advection.


• : conve rs ion be tween ene rgy 
reservoirs.


• : local and non-local 
eddy-mean energy conversions.


• : energy conversions 
related to buoyancy flux.
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Scheme of ocean energy pathways as described by the Lorenz Energy Cycle (Lorenz, 1955). Dashed arrows denote non-local effects. Terms are defined 
positive in the direction of the arrow. Adapted from Capo et al., (2018).

1. Context 
What is the leading-order energy balance of the subtropical gyre of the North Atlantic? 

Which flows does it rely on, and how does it vary in space? 

• The North Atlantic is a key region in the global ocean circulation and plays a central role in regulating our 
climate (Ganachaud and Wunsch, 2000). 

• Its response to climate change is constrained by energy transfers between basin-scale time-averaged 
currents and smaller-scale (hundreds to the order of a kilometer) time-varying currents, including low-
frequency mesoscale and submesoscale currents and high-frequency internal waves. 

• Although understanding the energy pathways of North Atlantic’s subtropical gyre is crucial for accurately 
representing its role in  climate models, we lack (1) a description of energy pathways at the basin-scale (2) 
based on a dataset simultaneously resolving the different time-varying flows. 

Snapshots of surface (right) temperature and (left) normalised relative vorticity. (Right) Streamlines show 4-year averaged surface currents. Black square denotes the 
subtropical gyre region.

4.  (time-mean) and  (time-varying) budgets for tidal scenario K K′ 

(Top) Vertically-integrated  averaged over a 4-year period. The four sub-regions: Coastal Gulf Stream and separation, Gulf stream’s extension, Interior 
and Eastern boundary are shown as squared areas. Streamlines show 4-year averaged surface currents. (Left and right) Frequency-wavenumber  spectra 
and scheme of ocean energy pathways for the four sub-regions. In the schemes, amounts have been computed from time-averaged and vertically-integrated 
terms and then horizontally-averaged [10-3  m3 s-2].

K + K′ 
K′ 

           : main energy balances
           : weak energy pathways
(x <.>): ratio between net contributions in tidal and non-tidal scenarios

Subtropical gyre’s interior 

•  is larger than the  reservoir by 
a factor of 6 and is dominated by 
submesoscale currents and internal 
waves.

•  and  budgets are insensitive to 
tidal forcing.


•  budget follows a Sverdrup-like 
balance: only region with a net  
export provided by the wind.


•  reservoir is mainly energised by 
wind and tides.

K′ K

K K′ 

K
K

K′ 

• State-of-the-art numerical simulations of the Atlantic performed using the 
CROCO model with realistic forcings (https://github.com/Mesharou/GIGATL). 


• Two simulations at 3 km resolution including 1-hour atmospheric forcing, 
one without and with tidal forcing. 

• Outputs: hourly 3-dimensional variables ( ) and 5-day averages of 
online diagnostics of kinetic energy and momentum budgets and quadratic 
terms .


u, v, w, b, η

(uu, vv, uv, uw, vw, bb, ub, vb, wb)

3. Numerical simulation 

5. Take home messages 
Impact of tidal forcing on  and  budgets:

• Tidal forcing adds a  source, increases mean-to-eddy energy 
conversion driven by shear processes and energy spatial 
redistribution. 

•

• The impact of tidal forcing on energy budgets is the largest east 
of the basin.

• The impact of internal tides on the time-mean circulation should 
be represented, together with those of mesoscale and 
submesoscale currents, in ocean models.

K K′ 

K′ 

 and  budgets:
•  and  budgets have the same order of magnitude.

•  and  budgets spatially vary, from leading-order energy 
balances to contributions from time-varying flows.

• The leading-order  source in the interior is the wind, and it is the 
spatial redistribution in other regions.

• Regions of net  sources (western and eastern boundaries) are 
hotspots of mean-to-eddy energy conversion.

K K′ 

K K′ 

K K′ 

K

K′ 

Snapshot of  surface currents performed as modelled by a dx~1km simulation of the Atlantic (https://github.com/Mesharou/GIGATL).
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Western Boundary:  
Coastal Gulf Stream and separation 

•  and  reservoirs have comparable magnitudes.

•  and  budgets are insensitive to tidal forcing.


• net  budget denotes a local  sink, and net  budget 
denotes a local  source.


•  is transported within the region (by pressure work) and 
locally lost to mean-to-eddy conversion and dissipative processes.


•  is energized by wind, mean-to-eddy conversion, and baroclinic 
instability and exported to the Gulf Stream’s extension.
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Western Boundary:  
Gulf Stream’s extension 

•  is larger than  reservoir by a 
factor of 3.  reservoir is dominated 
by mesosca le , submesosca le 
currents, and internal waves.


•  and  budgets are sensitive to 
tidal forcing.


• Net  and  budgets denote local 
energy sinks.


•   is advected within the region, 
energised by wind, and lost to non-
local mean-to-eddy conversion and 
dissipative processes.


•  is transported within the region 
from the coastal Gulf Stream and lost 
to dissipative processes (although 
wind and mean-to-eddy conversion 
are intense  inputs).
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Eastern Boundary

Eastern Boundary:  

•  is larger than the  reservoir by a 
factor of 2.5 and is dominated by 
internal waves.


•  and  budgets are the most 
sensitive to tidal forcing.


• net  and  budgets denote local 
energy sinks.


•   is transported within the region 
and lost to non-local mean-to-eddy 
conversion driven by horizontal and 
vertical shear processes.


•  is advected within the region and 
lost to dissipative processes and 
bottom drag.

K′ K

K K′ 

K K′ 

K

K′ 

1

3.3

 P′ 
1.2

0.04

0.5

0.2

2.5

0.8
5.7 

4.5

0.6

0.14
-0.18

0.11
+0.01

0.25
+0.19

 P K

 K′ 

(x 1.4)

https://github.com/Mesharou/GIGATL
mailto:pauline.tedesco@univ-brest.fr
https://github.com/Mesharou/GIGATL

