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Abstract: The rising global energy demand has made it essential to reduce energy consumption in the
residential building stock. Adding a new insulating envelope with Renewable Energy Sources (RESs)
onto the existing buildings’ facade is one way to achieve zero energy consumption in residential
buildings. The ENSNARE project aims to semi-automate this process by using prefabricated facade
modules and developing new building data acquisition techniques. Prior to this research project, an
analysis was carried out and several research gaps were identified. One of the obstacles to using
prefabricated modules with RES is that the layout needs to be drawn and adjusted during different
phases of the project. That is time-consuming. For this reason, this article describes two new solutions:
(1) automated drafting of the optimized layout of prefabricated modules of the facade and the number
of solar panels based on the existing residential building model, and (2) automated adjustment of
the layout depending on the phase of the renovation project and the accuracy of the measurements
in each step. The proposed semi-automated approach has the potential to significantly reduce the
time used in drafting the layout of the prefabricated modules, which benefits the whole renovation
process, contributing to a more sustainable future for the residential building stock.

Keywords: online; building model; prefabrication; renovation

1. Introduction

One of the key strategies for addressing the challenge of climate change is to reduce
global energy consumption [1]. In recent years, efforts to achieve zero-energy consumption
of residential buildings have focused on insulating existing structures and installing renew-
able energy sources (RES) on their rooftops [2–4]. Other approaches include optimizing
building envelopes to facilitate better harvesting of solar energy [5–7]. However, manually
implementing these measures carries the potential risks of user intrusion, disruptions,
and hazardous activities carried out at elevated heights. To circumvent these issues, pre-
fabricated modules are now being manufactured off-site, incorporating insulation, RES,
windows, and waterproofing elements [8]. Previous studies have explored the use of auto-
mated, robotic facade renovation with prefabricated modules, which can be categorized
into three sub-categories [9–11]: information or data flow, off-site manufacturing of the
modules, and on-site installation of the modules (see Figure 1).

The adoption of prefabricated elements in residential building renovation has not
yet gained widespread market acceptance due to its lack of competitiveness compared
to traditional manual methods. The ENSNARE research project [12] aims to reduce data
acquisition and processing time by 90%, while also reducing the duration of the manufac-
turing and installation processes. It is crucial to ensure that any reduction in working time
does not result in a loss of quality and adheres to regulations and standards [13]. Errors in
the data flow can lead to deviations in the manufactured modules, resulting in water and
heat leaks, collisions, or impeded installation processes.
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Figure 1. Building renovation with prefabricated modules.

The successful implementation of robotics and automated solutions in residential
building renovation largely depends on their economic feasibility [14–17]. Furthermore, it
is essential to address the issue of managing and preparing such technologies for the mar-
ket [18–20]. Previous research initiatives, including BERTIM [21] and HEPHAESTUS [22],
have examined this matter. Earlier studies [23] have identified up to 15 research gaps (RG)
in this field.

In the field of residential building renovation, the utilization of prefabricated modules
for energy-saving and generation purposes often presents less competitive alternatives
compared to manual procedures due to the requirement for more comprehensive and
detailed planning. When it comes to prefabricated modules for building renovation,
the involved parties, including building owners, promoters, or engineers, must possess
a comprehensive understanding of the building’s solar energy generation capabilities,
investment costs, and the necessity for insulation in the preliminary stages of the project.
To achieve this, it is crucial to have a geo-located three-dimensional (3D) model of the
building that can represent the building’s shape, structure, and capability to accommodate
prefabricated modules and solar panels. In this context, the layout of prefabricated walls
and solar panels assumes a significant role, providing a clear depiction of the number of
solar panels that can fit onto the building envelope, the requisite amount of insulation, and
the corresponding investment costs. Concerning data acquisition and flow, and to explain
the context of this article, it has been determined that the following measures are necessary:

• RG1.1: In the initial phases, it is necessary to generate a building model online,
meaning without visiting the site. In previous stages of the research, a method to
generate building models online was achieved based on facade images and Open-
StreetMaps data.

• RG1.2: Typically, in building renovation, the initial definition of the prefabricated
module layout is a manual process and can take up to 5–20 h for a low-rise building.
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The aim should be to automatize defining the layout of prefabricated modules with
the information of the building modeled online in RG1.1.

• RG1.3: On the next stages of the project, once the “client” or building owner approves
the budget, the engineering team can afford to visit the building and measure ac-
curately. Using Total Station or even a 3D Laser Scanner can be a time-consuming
activity. A faster method was developed based on OpenCV Apriltags [24].

• RG1.4: The measurement accuracy is much higher in RG1.3 than with the technique
described in RG1.1. This means that the layout needs to be re-adjusted based on more
accurate measurements. Adjusting the layout by manual means is time-consuming.
Therefore, we developed a technique to adjust the layout automatically.

This article focuses on describing solutions in order to mitigate research gaps RG1.2

and RG1.4 in the following sections. As said before, RG1.1 and RG1.3 were developed in a
previous phase of the research.

2. Addressing RG1.2 by Defining the Layout of the Prefabricated Modules

In this section, we explain RG1.2, which is based on the ENSNARE_MODULE_

PLACEMENT, which is a FreeCAD [25] plugin developed to generate the layout of pre-
fabricated facade modules with solar panels for residential building upgrading. The tool
represents a concerted effort to improve the cost-effectiveness and efficiency of residential
building renovation within the ENSNARE project. The flow chart in Figure 2 explains the
process of the solution.

Figure 2. Flow-chart of the solution RG1.2. The inputs are shown in gray, the outputs in green, and
the steps required in yellow.

Before applying RG1.2, the ENSNARE project has defined a technique to draft the
building model online. In Figure 3, one of the four pictures of a demo building is shown.
This demo-building is part of the ENSNARE research project and it is located in Milan.
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Figure 3. Actual photo of a demo-building in Milan. With images like this and the OSM floor-plan,
the building model can be generated as shown in Figure 4.

The building model is generated with the images of the building and the OSM infor-
mation. The building model type that is achieved is shown in Figure 4.

Figure 4. Building model generated with building images and OSM, in this case, the demo-building
in Milan.

This building model is the primary input for RG1.2. In the next subsections, each of
the steps and the code of RG1.2 are explained.

2.1. Tools Associated with the Plugin

The FreeCAD plugin ENSNARE_MODULE_PLACEMENT comprises several tools
that facilitate the generation of the layout of prefabricated solar panel modules with the
output of the 3D building model. Each of these tools serves primarily two sets of functions.
Namely, a set of tools to extract the relevant information about the 3D building geometries
and another set of tools to place solar panels based on the geometric information as
explained in Figure 5.
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Figure 5. Several tools and functions of the plugin.

2.1.1. Extraction of Relevant Information

This research has devised an algorithm for maximizing the number of solar panels of
diverse dimensions that can be accommodated on a two-dimensional facade. To implement
this algorithm, it is necessary to extract pertinent information related to the building’s
facade from the 3D building model generated by the plugin team in ENSNARE.

ENSNARE_MODULE_PLACEMENT is equipped with several tools that enable the
extraction of essential information from the online 3D building model, as depicted in
Figure 5. The subsequent subsection provides a comprehensive description of these tools:

1. Tool: exportWallProperties
This tool facilitates the extraction of essential data related to a building facade, such

as its height, width, and four corner points. The user can access this tool by selecting the
desired facade and clicking on the corresponding icon. Upon execution, the tool generates a
JSON file containing the aforementioned information. This tool is implemented in Listing 1
as shown below:

Listing 1. A Python function which generates a JSON file containing building geometries.

1

2 def exportWallProperties ():

3

4 clicked_face = freecad_utils.get_clicked_face ()

5 facade_height ,

6 facade_width ,

7 wall_vertices_list = face_dimensions(clicked_face)

8 wall_dict = { "wall_height": facade_height ,

9 "wall_width": facade_width ,

10 "vertexes_anticlockwise":wall_vertices_list}

11

12 with open(f"{constants.path}/ wall_properties.json","w")

13 as write_file:

14 json.dump(wall_dict , write_file , indent =4)

15

16 FreeCADGui.Selection.clearSelection ()

This function uses another function internally: face_dimensions, which shows how
exactly the corner vertices and the height and width are determined from the FreeCAD
data. This function returns those values to the user. This procedure is described in Listing 2:
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Listing 2. A Python function integral to the previous one.

1

2 def face_dimensions(face: ’Part.Face’) ->

3 Tuple[float , float ]:

4 vertexes = [v.Point for v in face.Vertexes]

5 corner_points_list_bottom = []

6 corner_points_list_top = []

7 max_z = 0

8 min_z = 0

9 for point in vertexes:

10

11 if point.z == min_z:

12 corner_points_list_bottom.append(point)

13 if point.z > max_z:

14 max_z = point.z

15

16 for point in vertexes:

17

18 if point.z == max_z:

19 corner_points_list_top.append(point)

20

21 if corner_points_list_bottom [0].x >

22 corner_points_list_bottom [1].x:

23 right_bottom_vertex = corner_points_list_bottom [0]

24 left_bottom_vertex = corner_points_list_bottom [1]

25 else:

26 right_bottom_vertex = corner_points_list_bottom [1]

27 left_bottom_vertex = corner_points_list_bottom [0]

28

29 if corner_points_list_top [0].x >

30 corner_points_list_top [1].x:

31 right_top_vertex = corner_points_list_top [0]

32 left_top_vertex = corner_points_list_top [1]

33 else:

34 right_top_vertex = corner_points_list_top [1]

35 left_top_vertex = corner_points_list_top [0]

36

37 wall_vertices = [left_bottom_vertex ,

38 right_bottom_vertex , right_top_vertex , left_top_vertex]

39

40 ref_point = wall_vertices [0]

41 for point in wall_vertices [1:]:

42 if point.z == ref_point.z:

43 fac_width = abs(point.sub(ref_point).Length)

44 else:

45 fac_height = abs(FreeCAD.Vector(ref_point.x,

46 ref_point.y, point.z).sub(ref_point).Length)

47

48 assert fac_height and fac_width

49

50 wall_index_list = []

51 for index , point in enumerate(vertexes):

52 if point == wall_vertices [0]

53 or point == wall_vertices [1]

54 or point == wall_vertices [2]

55 or point == wall_vertices [3]:

56 wall_index_list.append(index)

57

58 wall_vertices_list = []

59 for item in wall_vertices:

60 item_list = math_utils_.vector2list(

61 item ,scale =0.001)

62 wall_vertices_list.append(item_list)

63

64 return fac_height , fac_width , wall_vertices_list
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2. Tool: exportTriangularRoofProperties
This tool serves the purpose of extracting information related to pitched roofs. In some

cases, buildings consist of facades with pitched roofs on top. To obtain relevant information
such as the height and width of the facade, the topmost point of the roof, and the vertices
of the roof, the user must select the appropriate roof and click on the corresponding icon.

The code for generating the required information from a pitched roof is presented in
Listing 3:

Listing 3. A Python tool which extracts relevant geometric information associated with pitched roofs.

1

2 def face_dimensions_roof_triangle(face: ’Part.Face’) ->

3 Tuple[float , float ]:

4 vertexes = [v.Point for v in face.Vertexes]

5 corner_points_list_bottom = []

6 corner_points_list_top = []

7

8 z_list_vertexes = []

9

10 for point in vertexes:

11 point.z = math_utils_.truncate(point.z, 4)

12 z_list_vertexes.append(point.z)

13

14 max_z = max(z_list_vertexes)

15 min_z = min(z_list_vertexes)

16

17 for point in vertexes:

18

19 if point.z == min_z:

20 corner_points_list_bottom.append(point)

21 if point.z > max_z:

22 max_z = point.z

23

24 for point in vertexes:

25

26 if point.z == max_z:

27 corner_points_list_top.append(point)

28

29 # roof_start

30 print(corner_points_list_top)

31 print(corner_points_list_bottom)

32 # roof_end

33 wall_vertices = [corner_points_list_bottom [0],

34 corner_points_list_bottom [1],

35 corner_points_list_top [0]]

36 roof_topmost_point = corner_points_list_top [0][2]*1000

37 fac_width = abs(corner_points_list_bottom [1]. sub(

38 corner_points_list_bottom [0]).Length)

39 side1 = abs(corner_points_list_top [0]. sub(

40 corner_points_list_bottom [0]).Length)

41 side2 = abs(corner_points_list_top [0]. sub(

42 corner_points_list_bottom [1]).Length)

43

44 area = math_utils_.area_triangle(side1 , side2 ,

45 fac_width)

46 fac_height = 2 * area / fac_width

47

48 assert fac_height and fac_width

49

50 wall_vertices_list = []

51 for item in wall_vertices:

52 item_list = math_utils_.vector2list(item ,

53 scale =0.001)

54 wall_vertices_list.append(item_list)

55

56 return fac_height , fac_width , wall_vertices_list ,

57 roof_topmost_point
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3. Tool: exportLBCProperties
This tool is intended to determine the left bottom corner points of a building facade.

The need for this tool arises due to the manner in which FreeCAD software version 0.19.3
stores information. In later stages, a 2D projection of the facade is required, and it is
necessary to know which portion of the 3D facade corresponds to its left bottom corner.
Since it is challenging to select and extract the left bottom corner point from FreeCAD, the
sketch file of the left bottom-most window must be chosen, and the button needs to be
clicked to obtain the left bottom points of the facade.

4. Tool: exportRBCProperties
This tool has a similar purpose as the previous one, with the difference being that it

tracks the right bottom points of the building facade. The need for this tool arises because
some building facades have no windows on their left side, only on the right. Since the
previous tool uses the corner window positions to determine the corners of the facade for
efficient 2D projection, it cannot be used in such cases.

5. Tool: exportWindowProperties
This tool is utilized to collect and store the position, length, and width of all the

windows on a given facade. The user selects the sketch files of all the windows present on
the corresponding facade and clicks on this tool. The information regarding the position,
length, and width of each window is then collectively stored in a JSON file for further use.

2.1.2. Maximizing the Solar Panels

This particular section describes the workbench’s functionality to maximize the total
number of possible solar panel modules that can be placed on the facade. Additionally,
it also provides a total manufacturing cost estimate for this entire project. This entire
functionality is achieved by pressing a single button on the workbench, as described in
detail below.

6. Tool: maximize_solar_panel
This tool’s main function is to maximize the number of solar panels that can be fit in a

selected facade and also to provide a manufacturing cost estimate. It serves a variety of
functions in order to achieve that. Firstly, it projects the entire 3D facade into 2D. For that,
it calculates the slope and reference point of the facade by taking into consideration the
four corner vertices and the left bottom point of the facade (obtained from previous tools).
This procedure is implemented in Listing 4 as shown below:

Listing 4. A Python function which performs a geometric projection.

1

2 def get_slope_reference_point ():

3

4 height_wall = wall_dict["vertexes_anticlockwise"][3][2]

5 list_x = [wall_dict["vertexes_anticlockwise"][0][0] ,

6 wall_dict["vertexes_anticlockwise"][1][0] ,

7 wall_dict["vertexes_anticlockwise"][2][0] ,

8 wall_dict["vertexes_anticlockwise"][3][0]]

9

10 list_y = [wall_dict["vertexes_anticlockwise"][0][1] ,

11 wall_dict["vertexes_anticlockwise"][1][1] ,

12 wall_dict["vertexes_anticlockwise"][2][1] ,

13 wall_dict["vertexes_anticlockwise"][3][1]]

14

15

16 arr_x = np.asarray(list_x)

17 arr_y = np.asarray(list_y)

18

19 for value in left_bottom_dict:

20 if sketch in value["label"]:

21 point = value["placement"]["origin"]

22 i_x = (np.abs(arr_x - point [0])).argmin ()

23 i_y = (np.abs(arr_y - point [1])).argmin ()

24
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25 if i_x == 0:

26 if list_x [0]!= list_x [3]:

27 wall_dict["vertexes_anticlockwise"][3] =

28 [list_x[i_x], list_y[i_x], height_wall]

29 elif i_x == 1:

30 if list_x [1]!= list_x [2]:

31 wall_dict["vertexes_anticlockwise"][2] =

32 [list_x[i_x], list_y[i_x], height_wall]

33 elif i_x == 2:

34 if list_x [2]!= list_x [1]:

35 wall_dict["vertexes_anticlockwise"][1] =

36 [list_x[i_x], list_y[i_x], 0.0]

37 else:

38 if list_x [3]!= list_x [0]:

39 wall_dict["vertexes_anticlockwise"][0] =

40 [list_x[i_x], list_y[i_x], 0.0]

41

42 p0 = np.array(wall_dict["vertexes_anticlockwise"][0])

43 p1 = np.array(wall_dict["vertexes_anticlockwise"][1])

44

45 dist = np.linalg.norm(p0 - p1)

46 fac_width = dist * 1000

47 wall_vertices_list=wall_dict["vertexes_anticlockwise"]

48 first_wall_vertex_xy =

49 [wall_dict["vertexes_anticlockwise"][0][0] ,

50 wall_dict["vertexes_anticlockwise"][0][1]]

51 reference_point_ = [list_x[i_x], list_y[i_x], 0]

52 reference_point_xy = [reference_point_ [0],

53 reference_point_ [1]]

54

55 point1 = wall_dict["vertexes_anticlockwise"][0]

56 point2 = wall_dict["vertexes_anticlockwise"][1]

57 point_x = [point1 [0], point2 [0]]

58 point_y = [point1 [1], point2 [1]]

59

60 slope , intercept = np.polyfit(point_x ,point_y ,1)

61 origin = [0,0]

62 change_point_value = [origin [0] - reference_point_ [0],

63 origin [1] - reference_point_ [1]]

64 reference_point =

65 [reference_point_ [0]+ change_point_value [0],

66 reference_point_ [1]+ change_point_value [1]]

67

68 return slope , change_point_value , reference_point ,

69 fac_width , wall_vertices_list

This tool is designed to extract essential information required for generating the 2D
facade and converting it back into 3D after the placement of solar panel modules. It collects
the reference point and slope information required for generating the 2D facade, and the 3D
orientation of the facade is extracted from its left bottom point. This information is crucial
for the placement of the optimized number of solar panel modules in 3D space. Additionally,
the tool calculates the 2D positions of all the windows based on the provided data.

Subsequently, the floors within the facade are calculated using a proprietary algorithm
as shown in Listing 5. This algorithm considers the list of windows along with their 2D
positions and the height of the facade. The algorithm proceeds as follows:

1. Firstly, it calculates all the top and bottom 2D positions of each window.
2. Then, it separates all the bottom and top positions into two distinct lists.
3. Subsequently, the topmost corner positions of a window on a specific floor are com-

puted, and the same applies to the lowermost corner positions.
4. The corresponding topmost corner points of each floor are compared against the

bottom corner point. The floor’s height is then determined as the average of those
two values.
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Listing 5. A Python function which returns a list of floors.

1

2

3 def get_floors(window_list , height):

4

5 window_corner_list =

6 get_top_bottom_points_for_each_window(window_list_all)

7

8 top_corner_list=top_corner_as_list(window_corner_list)

9 bottom_corner_list=

10 bottom_corner_as_list(window_corner_list)

11

12 max_top_corner_new =

13 get_max_corner_points(top_corner_list)

14

15 max_top_corner_new.sort()

16

17 min_bottom_corner_new =

18 get_min_corner_points(bottom_corner_list)

19

20 min_bottom_corner_new.sort()

21

22 if max_top_corner_new [0] > min_bottom_corner_new [0]:

23 min_bottom_corner_new.pop(0)

24

25 index_list_min = []

26 index_list_max = []

27

28 if len(max_top_corner_new)<len(min_bottom_corner_new):

29 for index , value in enumerate(max_top_corner_new):

30 if value > min_bottom_corner_new[index ]:

31 index_ =

32 min_bottom_corner_new.

33 index(min_bottom_corner_new[index ])

34

35 index_list_min.append(index_)

36 min_bottom_corner_new =

37 [i for j, i in enumerate(min_bottom_corner_new)

38 if j not in index_list_min]

39

40 elif len(max_top_corner_new)>len(min_bottom_corner_new):

41 for index , value in enumerate

42 (min_bottom_corner_new):

43 if value > max_top_corner_new[index]:

44 index_ = max_top_corner_new.

45 index(max_top_corner_new[index ])

46

47 index_list_max.append(index_)

48

49 max_top_corner_new =

50 [i for j, i in enumerate(max_top_corner_new)

51 if j not in index_list_max]

52

53 else:

54 min_bottom_corner_new = min_bottom_corner_new

55 max_top_corner_new = max_top_corner_new

56

57 if len(min_bottom_corner_new)>len(max_top_corner_new):

58 min_bottom_corner_new.pop(-1)

59

60 floor_list = []

61 for (item1 , item2) in zip(max_top_corner_new ,

62 min_bottom_corner_new):

63 floor_list.append (( item1+item2) / 2)

64

65 floor_list = np.array(floor_list)

66 difflist_floor = np.diff(floor_list)

67 difflistbool_floor =
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68 difflist_floor[difflist_floor <1600]

69

70 index_list_ = []

71 for item in difflistbool_floor:

72

73 index= np.where(difflist_floor == item)

74 for item2 in index:

75 for item3 in item2:

76 index_list_.append(int(item3))

77

78 floor_list =

79 [i for j, i in enumerate(floor_list)

80 if j not in index_list_]

81 floor_index_list = []

82

83 for value in floor_list:

84 if value < 1600:

85 index = floor_list.index(value)

86 floor_index_list.append(index)

87

88 floor_list =

89 [i for j, i in enumerate(floor_list)

90 if j not in floor_index_list]

91 floor_list.insert(0, 0.0) # hardcoded

92 floor_list.insert(-1,height)

93 floor_list.sort()

94

95

96 return floor_list

Then, a text file is generated to provide comprehensive information about the per-
missible panel and module dimensions, window list within a facade, floors in the facade,
as well as the height and width of the facade in 2D, all of which are generated from the
workbench. This information is then utilized to implement the solar panel maximization
algorithm, which is described in the next section.

2.2. Solar Panel Optimization Algorithm

The goal of this section is to explain the Solar Panel Optimization algorithm, imple-
mented using Python. Let us first look at the nature of the problem at hand. Essentially, we
are given the following data:

• A finite collection of solar panels that are both photovoltaic and collector.
• A building facade (this information also includes the positions of the various windows

and balconies present on the facade.)
• A set of engineering requirements that a panel, if attached, must satisfy.

The goal (it should be immediately clear that we are dealing with 2-dimensional
objects), then, is to place the panels on the facade such that the total area covered is maxi-
mized. It should be immediately clear, that this is a Constrained Optimization problem.
The easiest way to generate this maximized placement is by brute-forcing: go through all
possible combinations of panel placements and then pick the one that covers the maximum
possible area. However, as the number of panels increases and the facades become more
complicated, this brute-force approach becomes highly undesirable as it is inefficient and
slow. The next best thing is a greedy approach.

2.3. A Rough Overview of the Algorithm

We will first employ a “divide and conquer” approach. Given a facade, we will break
the optimization problem into smaller chunks.

• STEP 1: divide the entire facade into floors. A typical floor is shown in Figure 6.

• STEP 2: For each floor, we will use a “dynamic programming” approach: given a
floor, we will begin an iteration that will start from the leftmost point of the floor and
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end at the right end of the floor. At each stage of the iteration, we will try placing
a panel of the largest area from the list of available panels, and progressively work
towards the smaller ones.

• STEP 3: Once we have placed all the panels, we will create the vertical module divi-
sions, that is, the separation that defines the length of each prefabricated module. The
length limitation in ENSNARE project is 6 meters, due to the prefabrication processes
of the industrial partners. Each module might contain several windows/panels. These
module separations need to adhere to certain engineering requirements—there is an
upper limit and a lower limit to the module separations.

Note that we also need to attach registration areas for the panels. These are the yellow
rectangles in Figure 7. The goal of the registration areas is to host the pipes and cables
of the solar panels. Also, if needed, to have the possibility to open and access from the
exterior of the facade these pipes and cables, for instance, in case of emergency.

Figure 6. An example of a typical facade section from floor to floor. In this case, the floor has two
windows (in red).

Figure 7. A typical facade section from floor to floor, in this case, with windows and the added
prefabricated modules with the registration area in yellow, and the solar panels in green.

2.4. Pythonic Implementation of Basic Objects

For the purposes of this algorithm, we will be mostly dealing with objects such as
windows, panels, registration areas, etc. All of these objects have a certain distinct physical
property in common: they are all rectangular. That is, we need precisely four two-tuples to
describe every such rectangular object. It is important to note that this rectangular nature is
essential for the algorithm. Since the optimization problem is highly geometric in nature,
we will be required to implement a wide array of useful geometric properties. We have
implemented RectangularObject using dataclasses as described in Listing 6.

The various class properties will be used extensively throughout the code. We have
omitted a few class methods in Listing 6 for the sake of brevity. One such class method
is intersects (self,cls), described in Listing 7, returns a boolean object to decide if two
rectangular objects are intersecting or not:
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Listing 6. The base class for all the rectangular objects that we will encounter in this project.

1

2 @dataclass(kw_only= True)

3 class RectangularObject:

4

5 object_type: str = field(init = False)

6 object_coordinates: list

7

8 @property

9 def area(self) -> float:

10 return (self.length)*(self.height)

11

12 @property

13 def right_end_point(self) -> float:

14 return self.object_coordinates [3][0]

15

16 @property

17 def left_end_point(self) -> float:

18 return self.object_coordinates [0][0]

19

20 @property

21 def top_end_point(self) -> float:

22 return self.object_coordinates [1][1]

23

24 @property

25 def bottom_end_point(self) -> float:

26 return self.object_coordinates [0][1]

27

28 @property

29 def length(self) -> float:

30 return abs(self.object_coordinates [3][0] - self.object_coordinates

[0][0])

31

32 @property

33 def height(self) -> float:

34 return abs(self.object_coordinates [1][1] - self.object_coordinates

[0][1])

Listing 7. Class method to decide if two rectangular objects are intersecting.

1

2 #to check if two rectangular objects intersect

3 def intersects(self ,cls) -> bool:

4 A = self.left_end_point > cls.right_end_point or cls.left_end_point >

self.right_end_point

5 B = self.bottom_end_point > cls.top_end_point or cls.bottom_end_point >

self.top_end_point

6 if A or B:

7 return False

8 else:

9 return True

Further, the use of dataclasses increases the performance of the code. Other rectangu-
lar objects, such as floors, are first of all child classes of the rectangular object class. They
might have additional properties, as Listing 8 demonstrates:

Listing 8. Python implementation of a facade. A facade can consist of floors, panels, windows, etc.

1

2 @dataclass(kw_only= True)

3 class Facade(RectangularObject):

4

5 object_type = ENSNARE.FACADE

6 has_pitched_roof:bool = False

7 has_panels:bool = False

8 has_module_divisions:bool = True

9 floor_list = []

10 pitched_roof:PitchedRoof = field(init = False)
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As we will see in later sections, the algorithm will act on a facade object.

2.5. Specific Requirements of the ENSNARE Project

The various modules and panels have to adhere to certain engineering requirements
which is essential to the manufacturing process, which is given by the manufacturing
partners of the project:

• Sizes of the registration areas;
• The length of a given module must be at least the MIN_MODULE_LENGTH and at

most MAX_MODULE_LENGTH;
• The sizes of the inner and outer profile areas;
• The panels cannot be of arbitrary size: there is a finite amount of panels of specific

lengths and widths.

All this information is contained in the requirements.py file. A typical example is
demonstrated in Listing 9 (note that the REQUIREMENTS class also inherits from float,
since these are floating point numbers).

Listing 9. requirements.py, which contains the various manufcaturing requirements.

1

2 class REQUIREMENTS(float ,Enum):

3 "engineering requirments for the ENSNARE project"

4

5 INNER_PROFILE = 100

6 OUTER_PROFILE = 40

7 STEP_SIZE = 10

8 MAX_MODULE_LENGTH = 3300

9 MIN_MODULE_LENGTH = 1500

10

11

12 AVAILABLE_PANEL_DATA = [

13 (1066, 1756),

14 (1756, 1086),

15 (1551, 1756),

16 (1756, 1551),

17 (2036, 1756),

18 (1756, 2056),

19 ]

20

21 class REGISTRATION_AREA_SIZE(float ,Enum):

22 "sizes of the available registration areas"

23

24 VERTICAL = 400

25 HORIZONTAL = 400

The facade information, which might comprise floors, windows, and balconies, is
provided in the form of a text file. This text file consists of a dictionary, which contains the
coordinates of the above-mentioned objects. The general structure of the text file is shown
in Listing 10:

Listing 10. A typical facade text file. We have provided a simplified version for the sake of brevity.

1

2 {

3 "facade ": {

4 "length ": 22_000 ,

5 "height ": 2600,

6 "windows ": [

7 {

8 "xy": (2_200 , 400),

9 "length ": 2_000 ,

10 "height ": 1400

11 },

12 {
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13 "xy": (5_750 , 400),

14 "length ": 1_950 ,

15 "height ": 1400

16 } }

Before the main algorithm can do anything, we first need to translate this facade
information into Pythonic objects. A helper function that converts this into a JSON object
(which Python can understand) is implemented in Listing 11:

Listing 11. A helper function to convert the text file into a Python dictionary.

1

2 def read_from_textfile(file_name:str) -> dict:

3

4 file = open(file_name , "r")

5 text_data = file.read()

6 dictionary = ast.literal_eval(text_data)

7 return dictionary

Once this is performed, extracting the Pythonic objects from this is fairly straightforward.
This is achieved via the function return_facade_from_textfile, which accepts the text file
location as an argument and returns a Facade object. This is implemented in Listing 12:

Listing 12. Function which reads the facade text file and returns a Python Facade object.

1

2 def return_facade_from_textfile(text_file_location:str) -> Facade:

3

4 #storing the textfile as a python dictionary

5 facade_data_dict = read_from_textfile(file_name = text_file_location)

6

7 #creating the facade

8 facade_length = facade_data_dict["facade"]["length"]

9 facade_height = facade_data_dict["facade"]["height"]

10 facade_coordinates = np.array ([(0 ,0),

11 (0, facade_height),

12 (facade_length ,facade_height),

13 (facade_length ,0)])

14

15 new_facade = Facade(object_coordinates=facade_coordinates)

2.6. The Main Algorithm I: Placing Panels

The function responsible for placing panels on a given floor is the place_panel function,
which accepts a Floor object as an argument and returns an object of the same type. The
Floor class, as described in Listing 13, is a child class of the RectangularObject class, with
a few further attributes to store the list of windows and panels present on the floor.

Listing 13. Python implementation of a Floor class. This is a simplified version.

1

2 @dataclass(kw_only=True)

3 class Floor(RectangularObject):

4

5 object_type = ENSNARE.FLOOR

6 window_list:list[RectangularObject]

7 floor_module_separation:list

8 panel_list:list[RectangularObject]

9 registration_area_side:RectangularObject

10 registration_area_top:RectangularObject

The place_panel function places the panel starting from the left endpoint of the floor.
The rate at which it moves along the right is given by the step-size parameter. For the sake
of clarity, we have broken this up into several snippets as described in Listings 14–17.
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Listing 14. A snippet of the panel placing function.

1

2 def place_panel(floor:Floor) -> Floor:

3 #placing the panels with a step size given by the inner profile size

4 current_distance = starting_point

5

6 while current_distance < floor.right_end_point:

7

8 #creating a temporary copy for each iteration

9 temp_panel_list = [panel for panel in available_panels]

At each stage of the iteration, we try to place the panel of the maximum area—this is
the greedy approach that we referred to earlier.

Listing 15. A snippet of the panel placing function.

1

2 #trying to fit all the panels until we run out

3 while len(temp_panel_list) != 0:

4 #starting with the panel of maximum area

5 panel = max(temp_panel_list , key=attrgetter(’panel_area ’))

For each panel, we try to see if it fits at the given position of the iteration: we check if
it intersects any windows and panels. We also see if it sticks out of the floor.

Listing 16. A snippet of the panel placing function.

1

2 #instead of checking if the panel touches the windows

3 #we will check if the panel touches the window shell

4 modified_window_list = [window.inner_profile_shell for window in floor.

window_list]

5

6 #now check if this panel fits

7 panel_exceeds_floor = test_panel.bottom_end_point < (floor.

bottom_end_point+REQUIREMENTS.OUTER_PROFILE)

8 panel_touches_shell = any(shell.intersects(test_panel) for shell in

modified_window_list)

9 panel_exceeds_length = test_panel.right_end_point > (floor.

right_end_point -REQUIREMENTS.OUTER_PROFILE)

If it fits, we will add this panel to the list of panels associated with this floor. Otherwise,
we discard this panel and see if there are any smaller panels available. If there are no smaller
panels available, we move on to the next stage of the iteration.

Listing 17. A snippet of the panel placing function.

1

2 #i.e panel does not fit

3 if panel_exceeds_floor or panel_touches_shell or panel_exceeds_length

:

4 #if this is the smallest panel and it is hitting a window

5 if len(temp_panel_list) == 1 and panel_touches_shell:

6 #finding the problematic window

7 problematic_windows = find_intersecting_objects(test_panel ,

modified_window_list)

8 new_distance = max(shell.right_end_point for shell in

problematic_windows)

9 current_distance = new_distance

10 break

11

12 temp_panel_list.remove(panel)

13 continue

14

15 #if it fits

16 else:
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17 floor.panel_list.append(test_panel)

18 current_distance = current_distance + REQUIREMENTS.OUTER_PROFILE+

test_panel.length

19 break

20

21 current_distance = current_distance + step_size

2.7. The Main Algorithm II: Placing Modules

Once the panels have been placed, a function called the create_module_seprations

tries to create the module separations: it creates the separations using an object called the
VerticalSeparator which is implemented in Listing 18. This is simply a vertical line given
by the top point, bottom point, and its distance from the y-axis.

Listing 18. A Vertical Separator.

1

2 @dataclass

3 class VerticalSeparator:

4

5 top:float = 0

6 bottom:float = 0

7 distance:float = 0

The create_module_seprations, described in Listing 19, first collects the left/right
endpoints of the windows and panels present on the floor.

Listing 19. A snippet of the create_vertical_separations function.

1

2 def create_module_separation(floor:Floor) -> Floor:

3 #First , we collect all the rectangular objects on this floor

4 #Then , we collect their right/left end points

5 end_point_list = []

6 for window in floor.window_list:

7 end_point_list.append(window.right_end_point+REQUIREMENTS.

OUTER_PROFILE)

8 end_point_list.append(window.left_end_point -REQUIREMENTS.

OUTER_PROFILE)

9 for panel in floor.panel_list:

10 end_point_list.append(panel.right_end_point+REQUIREMENTS.

OUTER_PROFILE)

11 end_point_list.append(panel.left_end_point -REQUIREMENTS.OUTER_PROFILE

)

From this list, the function attempts to create pairings x, y (where x and y are members
of this list) in such a way that the following three conditions are satisfied:

1. x < y
2. |x − y| ≤ MAX_MODULE_LENGTH
3. |x − y| ≥ MIN_MODULE_LENGTH

This is implemented in Listing 20 shown below:

Listing 20. A snippet of the create_vertical_separations function.

1

2 #Main module separation algorithm

3 start_point = end_point_list [0]

4 module_separation.append(start_point)

5 for current_point in end_point_list:

6 current_length = current_point -start_point

7 if current_length <= max_mod_length and current_length >=

min_mod_length:

8 module_separation.append(current_point)

9 start_point = current_point
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10

11 floor.floor_module_separation = module_separation

12 return floor

13

So far, the algorithm acts on each floor: it places the panels then it places the modules
(i.e., the vertical separations). Once this is performed for each floor, we can combine them
to obtain a panel placement on the entire facade.

2.8. Generating Outputs

The output of the solar panel maximization algorithm generates a visual plot of the
entire facade. This is achieved using Matplotlib (see Figure 8).

It is also possible to generate a JSON file providing detailed information regarding the
2D coordinates of each module and panel in the facade. Currently, four different designs of
prefabricated modules are being used in the project as shown in Figure 9.

Figure 8. A typical facade with windows in red, and the layout of the added prefabricated modules
with solar panels in green and the registration area in yellow. The tiny squares determine the location
of the connectors or anchors.

Figure 9. Four prefabricated modules were designed in FreeCAD.
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Comparing the module and panel dimensions from the data generated by the algo-
rithm, the most appropriate design (out of the four available designs) is chosen. These four
designs are hard-coded using simply Python and FreeCAD tools. Now, the 3D projection
algorithm is applied and the already existing 3D model in FreeCAD now gets updated by
the solar panel modules as shown in Figure 10.

Furthermore, two Excel files are generated as well. One of them provides the connector
positions corresponding to each module and window in the facade. The other file provides
intricate details regarding the dimensions of each component of each module in the facade,
which are essential for robotic assembly. These data can also provide a total manufacturing
cost estimate for the project.

Figure 10. Output of the code described in this section RG1.2, that includes prefabricated layout
definition including solar panels and registration areas in the building model of demo-building in
Milan, Italy.

3. Addressing RG1.4 by Re-Configuring the Layout of the Prefabricated Modules

In the next step of the building renovation project, the engineering team visits the site
and obtains accurate measurements of the building. The technique used in the ENSNARE
project is based on using targets on the critical parts of the building, such as the location
of the connectors, windows, and other building edges. Once the engineering team has
measured the location of the targets (see Figure 11), the building model measurements
need to be readjusted, and accordingly, the layout of the prefabricated modules too.

Adjusting the layout of prefabricated modules manually is time-consuming work. The
Flowchart described in Figure 12 describes the automated steps to reduce this time.

Data pre-processing may be necessary depending on the structure and orientation of
the data provided. The pre-processing steps taken may include generating a transformation
matrix to multiply the provided data and transform it into a form compatible with the
algorithm. Additionally, it is important to note that the connector positions are provided,
rather than the actual window positions on the facade. As a result, it is necessary to
determine the correct window dimensions and positions before applying the algorithm.
This is achieved by subtracting or adding the connector offset length to the provided data
in order to derive the required positions and dimensions of windows.
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Figure 11. Capturing the real building images with AprilTags, which are located in the critical points
of the facade. Example of the demo building in Milan.

Figure 12. Flow-chart of the solution RG1.4. The inputs are shown in gray, the outputs in green, and
the steps required in yellow.

In order to generate the text file with correct information, the following functions
were implemented:

1. First, the data provided needed to be converted into 2D because otherwise the
algorithm cannot be applied. Hence, the slope of the facade is determined, along with
its width, height, and floors from the provided data. This is achieved through Listing 21
shown below:

Listing 21. A Python function which determines the facade slope.

1

2 def get_slope_width(panel_list):

3 reference_point_3d = [0.0, 0.0, 0.0]

4 x_value_ref = 0.0

5 y_value_ref = 0.0

6 z_value_ref = 0.0

7 y_value_list_floors = []

8 y_value_start = 0.0

9 for item in panel_list:

10 y_value = item[’y/m’]

11 if y_value > 0.0:
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12 y_value = 0.0

13 item[’y/m’] = 0.0

14 if abs(y_value - 0.0) < 1.0:

15 x_value_ref = item[’x/m’]

16 y_value_ref = item[’y/m’]

17 z_value_ref = item[’z/m’]

18

19 if y_value < y_value_start:

20 y_value_start = y_value

21 x_value_start = 0.0

22 if abs(x_value_start - item[’x/m’]) < 1.0:

23 top_most_point_x = item[’x/m’]

24 top_most_point_y = item[’y/m’]

25 top_most_point_z = item[’z/m’]

26 y_value_list_floors.append(abs(item[’y/m’]*1000))

27

28 point_1 = np.array(reference_point_3d)

29 point_2 = np.array ([ x_value_ref ,

30 y_value_ref ,

31 z_value_ref ])

32 point_3 = np.array ([ top_most_point_x ,

33 top_most_point_y ,

34 top_most_point_z ])

35

36 dist_hor = np.linalg.norm(point_1 - point_2)

37 fac_width = dist_hor * 1000

38

39 dist_vert = np.linalg.norm(point_1 - point_3)

40 fac_height = dist_vert * 1000

41

42 point_x = [point_1 [0], point_2 [0]]

43 point_y = [point_1 [2], point_2 [2]]

44 slope , intercept = np.polyfit(point_x ,point_y ,1)

45

46 groups = []

47 for item in y_value_list_floors:

48 if len(groups) == 0:

49 groups.append ([item])

50 continue

51 curr_group = groups [-1]

52 if all(abs(item - x) < 10 for x in curr_group):

53 curr_group.append(item)

54 else:

55 groups.append ([item])

56

57 floor_list = []

58 for floor_level in groups:

59 floor_list.append(mean(floor_level))

60

61 floor_list [0] = 0.0

62 floor_list [-1] = fac_height

63

64 return slope , fac_width , fac_height , floor_list

2. Then, the window list is generated, as shown in Listing 22, from the provided
data through the code shown below. Once this window and other important information
pertaining to the facade width, height, and floors have been obtained, the text file is
generated in order to apply the algorithm.

Listing 22. A Python function which generates a text file containing the list of windows.

1

2 def generate_window_list(window_info):

3 windows_list = []

4 for item in window_info:

5 individual_window_dict = {}

6 if item[’y/m’] > 0.0:

7 item[’y/m’] = 0.0
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8

9 perpendicular = abs(item[’y/m’])

10 point = [item[’x/m’], item[’z/m’]]

11 ref_point = [0.0, 0.0]

12 x_coord = math.dist(point , ref_point)

13 individual_window_dict["xy"] =

14 (x_coord *1000 , perpendicular *1000)

15 windows_list.append(individual_window_dict)

16

17

18 window_final_list = []

19 for chunk in chunker_longest(windows_list , 4):

20 chunk_list = list(chunk)

21

22 # sort out the x and y values of the

23 4 corner points of the window

24 x_coords = []

25 y_coords = []

26 for item in chunk_list:

27 x_coords.append(item[’xy’][0])

28 y_coords.append(item[’xy’][1])

29 x_coords.sort()

30 y_coords.sort()

31

32 # Take the window as the largest approximation

33 of all the corner points

34 if x_coords [0] >= x_coords [1]:

35 LBP_x = x_coords [0]

36 LTP_x = x_coords [0]

37 else:

38 LBP_x = x_coords [1]

39 LTP_x = x_coords [1]

40

41 if x_coords [2] >= x_coords [3]:

42 RBP_x = x_coords [2]

43 RTP_x = x_coords [2]

44 else:

45 RBP_x = x_coords [3]

46 RTP_x = x_coords [3]

47

48 if y_coords [0] >= y_coords [1]:

49 LBP_y = y_coords [0]

50 RBP_y = y_coords [0]

51 else:

52 LBP_y = y_coords [1]

53 RBP_y = y_coords [1]

54

55 if y_coords [2] >= y_coords [3]:

56 LTP_y = y_coords [2]

57 RTP_y = y_coords [2]

58 else:

59 LTP_y = y_coords [3]

60 RTP_y = y_coords [3]

61

62 # Calculating the corner points of the window

63 Left_Bottom_Point = [LBP_x , LBP_y]

64 Left_Top_Point = [LTP_x , LTP_y]

65 Right_Bottom_Point = [RBP_x , RBP_y]

66 Right_Top_Point = [RTP_x , RTP_y]

67

68 # Creating dictionary for each window

69 window_dict_single = {}

70 window_dict_single[’xy’] = Left_Bottom_Point

71 window_dict_single[’length ’] =

72 abs(Left_Bottom_Point [0] - Right_Bottom_Point [0])

73 window_dict_single[’height ’] =

74 abs(Left_Bottom_Point [1] - Left_Top_Point [1])

75

76 window_final_list.append(window_dict_single)
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77

78 return window_final_list

It must be said that the prefabricated module layout is as detailed as for being used
for manufacturing purposes, including profiles, enclosure boards, insulation and, of course,
solar panels (see Figure 13).

Figure 13. Building model and detailed prefabricated module layout of the demo-building in Milan.

4. Tests and Results of the Solutions

The main objective of the solutions was to reduce time. In order to test the efficiency
of the solutions, up to 10 residential buildings have been used to test the aforementioned
tools, as explained in Figure 14. Applying the algorithm takes a few minutes, depending
on the complexity of the building.

As an example, a complex residential building like the demo building in Milan, which
has approximately 3000 m² of building envelope was monitored. Defining the prefabricated
layout manually can take up to 1020 h (0.34 × 3000) according to previous manual tests [23].
With the solutions described in this paper, it can take about 25 min in each of the steps (RG
1.2 and RG 1.4).

With this technique, the arduous work of defining the layout of prefabricated modules
for facade renovation can be reduced to a minimum. By utilizing these tools, residential
building owners, promoters, and engineers can make informed decisions regarding the
installation of prefabricated modules with solar panels, thereby ensuring that the renovation
project is both economically viable and energy-efficient.
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Figure 14. Residential buildings where the tools were applied. In the columns in the left and center,
the initial inputs are shown, that is images of the building and the building models. In the column in
the right, the building models with the prefabricated module layouts are shown, that is, the output of
RG1.2 and RG1.4.
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5. Conclusions and Further Developments

The results described in this paper have successfully addressed the research gaps
RG1.2 and RG1.4. The time consumed for generating the prefabricated facade module
layout is minimal with a commercial and updated computer/processor.

The various tools and techniques introduced will help semi-automate the process of
making buildings more energy efficient. Future research will include:

1. Improving the optimization algorithm. Currently, there are certain facades where the
algorithm performs poorly. This can be circumvented by trying a different approach,
instead of the greedy approach as discussed in this paper. It is possible to re-formulate
this problem as an optimal packing problem [26,27].

2. As discussed before, the methods discussed in this paper have not been fully extended
to include more diverse building types, such as buildings with pitched roofs. This is
one possible avenue for further advancements.

As a final conclusion, it must be commented that the techniques described in this
paper will be integrated with an online tool that will include not only the techniques in
RG1.1, RG1.2, and RG1.3, but also energy calculations. All this will contribute to reducing
the energy consumption of the residential building stock. However, it must be said that
these automated procedures developed in RG1.2 and RG1.4 cannot exchange the experience
and knowledge of human designers. Aesthetic criteria, for instance, is not considered yet.
Therefore, the designs and layouts must always be supervised and, if needed, amended.
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