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A B S T R A C T 

Elliptic Curve Cryptography (ECC) has gained widespread adoption in the field of cryptography due to its efficiency 

and security properties. Symmetric bilinear pairings on elliptic curves have emerged as a powerful tool in 
cryptographic protocols, enabling advanced constructions and functionalities. This paper explores the intersection of 

symmetric bilinear pairings, elliptic curves, and Lie algebras in the context of cryptography. We provide a 

comprehensive overview of the theoretical foundations, applications, and security considerations of this 

amalgamation. 
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1. INTRODUCTION: 

Elliptic cryptography is being proposed by many researchers and it is seen as a breaking innovation to achieve 

high security against quantum computers because of its efficient utilization of memory over RSA-systems. See 

[1], [4], [9], [33]. 

Elliptic Curve Cryptography (ECC) relies on the mathematical properties of elliptic curves for securing 

cryptographic protocols. The integration of symmetric bilinear pairings and Lie algebras enhances the 

capabilities of ECC, allowing for more sophisticated cryptographic constructions. Most recent pairing on 

abelian varieties has been done by [11], [16], [20], [21], [22]. 

In recent years, the integration of advanced mathematical structures, particularly Lie algebras, with elliptic 

curves has spurred breakthroughs in cryptographic protocols, see [3], [7], [8],[9], [23], [28] . Lie algebra 

symmetric bilinear pairings extend the capabilities of traditional pairings, offering enhanced security and 

efficiency in various applications. This paper aims to provide a comprehensive introduction to this emerging 

field, shedding light on the mathematical intricacies and cryptographic advancements enabled by Lie algebra 

symmetric bilinear pairings. 
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2. SYMMETRIC BILINEAR PAIRINGS 

A symmetric bilinear pairing in cryptography refers to a special type of mathematical operation defined on 

elliptic curve groups that satisfies certain properties. See [38] for ideas on symmetric pairing. One commonly 

used symmetric bilinear pairing is the Weil pairing or Tate pairing on elliptic curves. For this paper, we will be 

considering the Weil pairing; let’s provide a detailed mathematical proof for symmetric bilinear pairings. See 

[24], [32]. 

 

Weil Pairing 2.1. The Weil pairing is defined on a pair of points in an elliptic curve group over a finite field. 

Read [6] paper for more insight. Let 𝐸(𝐹𝑞) be an elliptic curve defined over a finite field 𝐹𝑞 of prime order𝑞, and 

let 𝐺1𝑎𝑛𝑑𝐺2be two cyclic subgroups of prime order 𝑟 in 𝐸(𝐹𝑞). The Weil pairing 𝑒: 𝐺1 × 𝐺2 → 𝐹
𝑞𝑘
∗  is defined as 

follows; 

𝑒(𝑃, 𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒𝐹
𝑞𝑘/𝐹𝑞(𝑓𝑃,𝑄)

where 𝜁𝑟  is a primitive 𝑟 −th root of unity, 𝑓𝑃,𝑄 is the rational function associated 

with divisor (𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄), 𝑎𝑛𝑑𝑡𝑟𝑎𝑐𝑒𝐹
𝑞𝑘/𝐹𝑞

 is the trace map of 𝐹𝑞𝑘𝑡𝑜𝐹𝑞 

 

Properties of The Weil Paring 2.1.1. 

Bilineality 2.1.1.1. 𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏 

Proof. consider the rational functions associated with the divisors(𝑎𝑃) − 𝑎(𝑂) − (𝑎𝑄) + (𝑎𝑃 + 𝑏𝑄)𝑎𝑛𝑑(𝑃) −

(𝑂) − (𝑄) + (𝑃 + 𝑄). The rational function 𝑓𝑎𝑃,𝑏𝑄 for the divisor (𝑎𝑃) − 𝑎(𝑂) − (𝑏𝑄) + (𝑎𝑃 + 𝑏𝑄) is given 

by𝑓𝑎𝑃,𝑏𝑄 =
ℎ𝑎𝑃,𝑏𝑄

𝑔𝑎𝑃,𝑏𝑄
. Similarly, the rational function 𝑓𝑃,𝑄 for the divisor (𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄) is given by; 

𝑓𝑃,𝑄 =
ℎ𝑃,𝑄

𝑔𝑃,𝑄
. Now, let’s evaluate the Weil pairing for (𝑎𝑃, 𝑏𝑄) and (𝑃, 𝑄); 

 𝑒(𝑎𝑃, 𝑏𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒(𝑓𝑎𝑃,𝑏𝑄)
 

 𝑒(𝑃, 𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒(𝑓𝑃,𝑄)
 

Observed that 𝑓𝑎𝑃,𝑏𝑄 = 𝑎. 𝑓𝑃,𝑄 + ℎ𝑎𝑃,𝑏𝑄 − 𝑎. ℎ𝑃,𝑄 Evaluating 𝑡𝑟𝑎𝑐𝑒(𝑓𝑎𝑃,𝑏𝑄) and 𝑡𝑟𝑎𝑐𝑒(𝑓𝑃,𝑄) by using the trace 

map. By applying bilinearity to show that 𝑡𝑟𝑎𝑐𝑒(𝑓𝑎𝑃,𝑏𝑄) = 𝑎𝑏. 𝑡𝑟𝑎𝑐𝑒(𝑓𝑃,𝑄) . Then we conclude that 

𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏 

 

Non-degeneracy 2.1.1.2. For all non-zero 𝑃 in 𝐺1𝑎𝑛𝑑𝑄 in 𝐺2, 𝑒(𝑃, 𝑄) is a non-trival 𝑟 −th root unity. 

Proof.  Assume 𝑒(𝑃, 𝑄) is a trivial and suppose there exist a non-zero point 𝑃 in 𝐺1 and a point 𝑄 in 𝐺2 such 

that 𝑒(𝑃, 𝑄) = 1, using the properties of the associated rational function 𝑓𝑃,𝑄 for the divisor (𝑃) − (𝑂) − (𝑄) +

(𝑃 + 𝑄). Then if 𝑒(𝑃, 𝑄) = 1, then 𝑓𝑃,𝑄  is a constant function 1. Examining the divisor (𝑃) − (𝑂) − (𝑄) +

(𝑃 + 𝑄) and show that if 𝑓𝑃𝑄  is constant 1, then (𝑃 + 𝑄) = (𝑂), which contradicts the assumption that p is non-

zero. 𝑒(𝑃, 𝑄) = 1 leads the contradiction, and therefore for all non-zero 𝑃 in 𝐺1𝑎𝑛𝑑𝑄 in 𝐺2, 𝑒(𝑃, 𝑄) is a non-

trival 𝑟 −th root unity. 

 

Computational efficiency 2.1.2. The Weil pairing can be efficiently computed using algorithms such as Miler’s 

algorithm and the final exponentiation step, emphasizing the polynomial time complexity in terms of the bit 

length of 𝑟 
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3. ELLIPTIC CURVES IN CRYPTOGRAPHY 

This section provides a concise review of elliptic curves and their application in cryptographic systems. We 

discuss the fundamental properties of elliptic curves, such as the group structure and discrete logarithm problem, 

which form the basis for ECC. See [1], [4], [9], [33] for their works on elliptic curves in cryptography. 

 

Definition 3.1. An elliptic curve is defined by an equation of the form 𝐸: 𝑥3 + 𝑎𝑥 + 𝑏 where 𝑎, 𝑏 are constants, 

and the curve is defined over a finite field 𝐹𝑝or 𝐹2𝑀 , where 𝑝 is a prime number and 𝑚 is a positive integer. 

Read [37] extensively. 

 

Definition 3.2. Point doubling is a geometric operation that involves finding the tangent line to a point P on the 

curve and determining the third intersection point. The tangent line intersects the curve at P and another point Q. 

The result of point doubling is the reflection of Q over the x-axis, denoted as -Q. 

 

Definition 3.3. The coordinates of the result R = 2P after point doubling are computed as follows: 

𝑥𝑅 = 𝑠2 − 2𝑥𝑝 (𝑚𝑜𝑑𝑝) 

𝑦𝑅 = 𝑠(𝑥𝑝 − 𝑥𝑅) − 𝑦𝑃(𝑚𝑜𝑑𝑝). Where 𝑠 is the slope of the tangent 𝑝; 

𝑥 =
3𝑥𝑃

2 + 𝑎

2𝑦𝑃
(𝑚𝑜𝑑𝑝) 

Computation.  Compute 𝑠 and 𝑥𝑅 

𝒔 =
3𝑥𝑃

2+𝑎

2𝑦𝑃
(𝑚𝑜𝑑𝑝). And 𝑥𝑅 = 𝑠2 − 2𝑥𝑝(𝑀𝑜𝑑𝑝). Then Compute 𝑦𝑅 

𝑥𝑅 = 𝑠(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃(𝑚𝑜𝑑𝑝) 

Verify on the curves 

𝑦𝑅
2 = 𝑥𝑅

3 + 𝑎𝑥𝑅 + 𝑏(𝑚𝑜𝑑𝑝) 

This establishes that the algebraic definition of point doubling produces valid points on the elliptic curve. The 

point doubling operation is crucial in elliptic curve cryptography for efficiently computing scalar multiples of a 

point. 

 

Definition 3.4. Consider an elliptic curve defined over a finite field 𝐹𝑝 with the  𝐸: 𝑥3 + 𝑎𝑥 + 𝑏(𝑚𝑜𝑑𝑝) where 

𝑎, 𝑏 are constants, and (𝑥, 𝑦) are points on the curve. A scalar multiplication of a point P on the curve by an 

integer n is denoted as nP. It involves repeatedly adding the point P to itself n times. 

𝑛𝑃 = 𝑃 + 𝑃 + 𝑃 + ⋯ + 𝑃 

 

Proposition 3.4.1. For any integer n and any point P on the elliptic curve, the result nP is also a point on the 

curve 

Proof. We need to show that 1𝑃 = 𝑃for any point 𝑃 on the curve. This is the definition of scalar multiplication 

for n=1, and it's trivially true. Assume that (k−1)P is a point on the curve for some integer k. Then show for k by 

proving that kP is a point on the curve. Use the group structure of the elliptic curve. Apply the point addition 

operation k times to P (which is the same as adding P to itself k times). By the inductive hypothesis, each step 

preserves the property of being on the curve. By induction, for any positive integer n, nP is a point on the curve. 
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Cryptographic Applications 3.5 

Elliptic Curve Diffie-Hellman (ECDH) Key Exchange 3.5.1. ECDH operates in the group of points on an 

elliptic curve, denoted as E(Fp), where Fp is a finite field. Each participant has a public key, represented by a 

point on the curve Q=d⋅G, where G is a publicly known base point on the curve, and d is the private key. To 

establish a shared secret, two participants, Alice and Bob, independently compute𝑆𝐴 = 𝑑𝐴 ∙ 𝑄𝐵 and 𝑆𝐵 = 𝑑𝐵 ∙

𝑄𝐴 , where 𝑑𝐴  and 𝑑𝐵  are their respective private keys, and 𝑄𝐴  and 𝑄𝐵  are the public keys of the other 

participant. Due to the properties of elliptic curve groups, 𝑆𝐴 and 𝑆𝐵  are equal and can be used as a shared secret 

for subsequent symmetric key cryptography, see [2]. The security of ECDH is based on the presumed difficulty 

of solving the Elliptic Curve Discrete Logarithm Problem (ECDLP), which is defined as follows: 

 

Example 3.5.1.1. Given a point Q on an elliptic curve and another point P = d⋅G, find the integer d.  See [31]. 

Solution. Solving the ECDLP is computationally infeasible for randomly chosen points on the elliptic curve. 

Even if an adversary intercepts the public keys QA and QB, computing dA or dB from these values should be 

difficult. The computational complexity of solving the ECDLP grows exponentially with the size of the elliptic 

curve group, providing a high level of security. Increasing the size of the elliptic curve group (larger key sizes) 

further enhances the security of ECDH against classical and quantum attacks. ECDH on sufficiently large 

elliptic curve groups is believed to resist attacks using Shor's algorithm, which could break classical discrete 

logarithm schemes. 

 

Elliptic Curve Digital Signature Algorithm (ECDSA) 3.5.2. The Elliptic Curve Digital Signature Algorithm 

(ECDSA) is a widely used digital signature scheme based on the mathematical properties of elliptic curves. 

Read [1] extensively.  

 

Elliptic Curve Setup 3.5.2.1. 

Elliptic Curve Definition. E(Fp) is an elliptic curve defined over a finite field Fp. 

Generator Point. G is a base point (generator) on the curve with prime order n. 

Key Generation 3.5.2.2. 

Private Key. d is a randomly chosen integer (1≤d≤n−1). 

Public Key. Q = dG (point multiplication). 

Signature Generation 3.5.2.3 

Message Hashing. Hash the message m to produce e=H(m). 

Random.  k: Choose a random integer k (1≤k≤n−1). 

Compute.  𝑟: 𝑟 ≡ (𝑥1(𝑚𝑜𝑑𝑛)) where 𝐾𝐺 = (𝑥1, 𝑦1) 

Signature Verification 3.5.2.4 

Compute.  𝑠 ∶ 𝑠 ≡ 𝑘−1(𝑒 + 𝑑𝑟)(𝑚𝑜𝑑𝑛) 

Verify.  r, s : Signature is valid if 0<r<n and 0<s<n. 

ECDSA Security Relies on the Discrete Logarithm Problem (DLP): 

 

Proposition 3.5.3. Given Q = dG and G on E(Fp), find d (1 ≤ d ≤ n−1). ECDSA is secure under the assumption 

that solving the DLP on E(Fp) is computationally infeasible. See [5,8]. 

Proof. The signature (r, s) relies on a random k and the private key d. Without knowing d, it's computationally 

infeasible to determine kG, making it hard to predict r. Verifying a signature involves computing s ≡ 

k−1(e+dr)(modn). To forge a valid signature without knowing d, an attacker needs to find k such that kG reveals 
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r, but this is difficult due to the DLP. The security of ECDSA relies on the difficulty of the DLP, assuming that 

finding d from Q=dG is computationally hard. 

 

Elliptic Curve Discrete Logarithm Problem (ECDLP) 3.6. The Elliptic Curve Discrete Logarithm Problem 

(ECDLP) is a mathematical problem that forms the basis of the security of elliptic curve cryptography. It 

involves finding the exponent k in the equation Q = k⋅P for a given elliptic curve point P and another point Q. 

Mathematically, this can be expressed as: Q = k⋅P 

where: 

 Q is a point on an elliptic curve. 

 P is a known point on the curve. 

 k is an integer (the discrete logarithm) that needs to be found. 

4. LIE ALGEBRAS 

A Lie algebra is a vector space equipped with a Lie bracket operation that satisfies certain properties. In the 

context of elliptic curves, the Lie algebra is associated with tangent vectors at the identity element of the curve's 

group. In the context of elliptic curves, Liealgebra symmetric bilinear pairings involve mapping Lie algebra 

elements associated with tangent vectors to points on the curve. The pairing is symmetric, and its properties are 

related to the structure of the Lie algebra associated with the curve. See [12], [37]. 

 

Let E be an elliptic curve defined over a finite field Fp with a prime order subgroup G, and let P and Q be points 

on E, and the Lie algebra associated with E is generated by tangent vectors at the identity element. A Weil 

pairing on Lie algebra is defined as 𝑒: 𝐺 × 𝐺 → 𝐹
𝑝𝑘
∗ , where k is the embedding degree. 

For points P and Q in G, the Weil pairing is calculated as: 𝑒(𝑃, 𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒(𝛼𝑃,𝑄)
 where 𝜁𝑟  is a primitive 𝑟 −th 

root of unity, 𝛼𝑃,𝑄 is the rational function associated with divisor (𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄). 

This is general structure of a Lie Algebra Symmetric Bilinear Pairing, specifically the Weil pairing on elliptic 

curves. The actual implementation details and security considerations can be more complex and often involve 

additional parameters and operations. 

It's important to note that cryptographic protocols using such pairings should be designed and implemented 

carefully to ensure security against various attacks.  

 

5. CENTRAL IDEA 

A cryptographic solution based on a Lie Algebra Symmetric Bilinear Pairing on elliptic curves can be applied in 

various scenarios, including identity-based cryptography and advanced cryptographic protocols. One notable 

application is in constructing efficient and secure identity-based encryption (IBE) schemes,See [15]. Below is a 

proposal for an Identity-Based Encryption scheme leveraging a Lie Algebra Symmetric Bilinear Pairing: 

Identity-Based Encryption (IBE) Scheme using Lie Algebra Symmetric Bilinear Pairing 5.1. 

Key Generation 5.1.1. 

Step1. Choose a secure elliptic curve E defined over a finite field Fp with a known symmetric bilinear pairing 

𝑒: 𝐺 × 𝐺 → 𝐹
𝑝𝑘
∗ , , where G is a subgroup of E. 

Step 2. Establish public parameters including the elliptic curve equation, generator point G, and the pairing 

function e. 
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Master Key Generation 5.1.2. 

Step1. Generate a master key s∈Zq as a random element in a large prime order subgroup q of G. 

Step 2. Compute the master public key as sG. 

 

User Registration 5.1.3. 

Step. When a user wishes to register, their public identity (such as an email address) is used as an input to a 

cryptographic hash function to obtain a point PI on the elliptic curve. 

 

Private Key Derivation 5.1.3. 

Step. The user computes their private key as dI =sPI, where s is the master key and PI is the point derived from 

their identity. 

 

Encryption 5.1.4.  

Step. To encrypt a message M, the sender selects a random r ∈ Zq and computes the ciphertext as: C = M ⊕ e(PI

, rG). Read [29, 30] 

 

Decryption 5.1.5. 

Step. To decrypt the ciphertext C, the user computes the pairing e(dI, rG) and uses it to recover the original 

message M as: M = C ⊕ e(dI, rG) 

 

Security Considerations 5.2. Read [5], and [8] extensively to follow the security details effectively. The 

security of the system relies on the assumed hardness of the underlying computational problems associated with 

the symmetric bilinear pairing, such as the Elliptic Curve Discrete Logarithm Problem (ECDLP). The 

cryptographic hash function used in the registration process is modeled as a random oracle, providing security 

against certain attacks. The security of the scheme depends on the choice of parameters, including the elliptic 

curve and the key size. Larger key sizes and prime orders contribute to increased security. 

 

They have been works on the pairing of elliptic curve on Lie algebra from P-groups, see [37] for his proposed 

idea. Lie algebra could be constructed from p-group and the paring are very computable, see [26], [27]. There 

papers you should read on the construction of p-groups, see [19], [28], [35]. All the proposed ideas could be 

computed with our proposed encryption pairing system 

 

6. COMPUTATION 

Creating a complete implementation of a symmetric bilinear elliptic curve and its associated Lie algebra for 

cryptography and key exchange involves multiple steps, and the code can be quite extensive. Below, I'll provide 

a simplified example using Python and the pycryptodome library for cryptographic operations. Please note that 

this example is for educational purposes, and for real-world applications, you should use established libraries 

and consult with cryptography experts. See [18], [20] for insight on computational group theory. 

from Crypto.Util.number import getPrime 

from sympy import mod_inverse 

from hashlib import sha256 

 

class EllipticCurvePoint: 

    def __init__(self, x, y, a, b, p): 
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self.x = x 

self.y = y 

self.a = a 

self.b = b 

self.p = p 

 

    def __add__(self, other): 

        if self == EllipticCurvePoint.infinity(): 

            return other 

        if other == EllipticCurvePoint.infinity(): 

            return self 

 

        if self.x == other.x and self.y != other.y: 

            return EllipticCurvePoint.infinity() 

 

        if self != other: 

            m = (other.y - self.y) * mod_inverse(other.x - self.x, self.p) 

        else: 

            m = (3 * self.x**2 + self.a) * mod_inverse(2 * self.y, self.p) 

 

        x3 = (m**2 - self.x - other.x) % self.p 

        y3 = (m * (self.x - x3) - self.y) % self.p 

 

        return EllipticCurvePoint(x3, y3, self.a, self.b, self.p) 

 

    def __eq__(self, other): 

        return self.x == other.x and self.y == other.y 

 

    @staticmethod 

    def infinity(): 

        return EllipticCurvePoint(None, None, None, None, None) 

 

class SymmetricBilinearPairing: 

    def __init__(self, G, p): 

self.G = G 

self.p = p 

 

    def pairing(self, P, Q): 

        if P == EllipticCurvePoint.infinity() or Q == EllipticCurvePoint.infinity(): 

            return 1 

 

        e = pow((P.y * Q.y) % self.p, ((P.x * Q.x) % self.p + (P.x * Q.x) % self.p) // 2, self.p) 

        return e 

 

# Example usage 

if __name__ == "__main__": 
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    # Define elliptic curve parameters 

    a = 2 

    b = 2 

    p = getPrime(128) 

 

    # Choose a base point on the curve 

    G = EllipticCurvePoint(3, 5, a, b, p) 

 

    # Alice's private key 

alice_private_key = 123 

 

    # Compute Alice's public key 

alice_public_key = G 

    for _ in range(alice_private_key - 1): 

alice_public_key += G 

 

    # Bob's private key 

bob_private_key = 456 

 

    # Compute Bob's public key 

bob_public_key = G 

    for _ in range(bob_private_key - 1): 

bob_public_key += G 

 

    # Symmetric bilinear pairing 

    pairing = SymmetricBilinearPairing(G, p) 

 

    # Shared secret computation 

shared_secret_alice = pairing.pairing(bob_public_key, alice_public_key) 

shared_secret_bob = pairing.pairing(alice_public_key, bob_public_key) 

 

    # Check if shared secrets match 

    assert shared_secret_alice == shared_secret_bob 

 

    # Derive a key from the shared secret using a hash function (e.g., SHA-256) 

derived_key = sha256(str(shared_secret_alice).encode()).digest() 

 

print("Shared secret:", shared_secret_alice) 

print("Derived key:", derived_key) 

 

This code demonstrates the basics of elliptic curve cryptography and symmetric bilinear pairing. Note that in 

practice, you should use established libraries like cryptography or pycryptodome for cryptographic 

operations, and this example is for educational purposes only. Additionally, you might need to modify this code 

to fit your specific requirements and security considerations. 
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CONCLUSION 

This paper provides a comprehensive overview of symmetric bilinear pairings on elliptic curves and their 

integration with Lie algebras in the context of cryptography. We highlight the theoretical foundations, 

applications, and security considerations, paving the way for future research and advancements in this dynamic 

field. 
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