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1 1. Introduction

To date, three versions of the BASiCS model have been proposed (Catalina A. Vallejos, Marioni, and
Richardson 2015a) (Catalina A. Vallejos, Richardson, and Marioni 2016) (Eling et al. 2018). They differ in
how inference is performed (e.g. using different priors) and the type of downstream analysis that is enabled
by the model.

• Vallejos et al (2015) (Catalina A. Vallejos, Marioni, and Richardson 2015b): the original model
uses information from extrinsic spike-in molecules (e.g. those introduced by (External RNA Controls
Consortium 2005)) as control features to quantify technical noise. This enables the estimation of two
sets of cell-specific normalisation parameters (sj and ϕj) capturing technical (e.g. amplification biases)
and biological (e.g. mRNA content) systematic differences across cells (Catalina A. Vallejos et al. 2017).
A probabilistic decision rule (based on δi) was proposed to identify highly variable genes (HVGs) that
capture the major sources of heterogeneity within the analysed cells (Brennecke et al. 2013). HVG
detection is often used to perform feature selection, choosing the input set of genes for subsequent
analyses. A similar rule was developed to highlight lowly variable genes (LVGs) that exhibit stable
expression across the population of cells. These may relate to essential cellular functions and can assist
the development of new data normalisation or integration strategies (Lin et al. 2019).

• Vallejos et al (2016) (Catalina A. Vallejos, Richardson, and Marioni 2016): the model was extended
to enable differential expression analyses between two pre-specified groups of cells (e.g. different
experimental conditions or cell types). This is achieved by comparing the posterior distribution of
gene-specific parameters (µi and δi). While several differential expression tools were previously pro-
posed for scRNA-seq data (e.g. (Kharchenko, Silberstein, and Scadden 2014; Finak et al. 2015)), some
evidence suggests that these do not generally outperform popular bulk RNA-seq tools (Soneson and
Robinson 2018). Moreover, most of these methods are only designed to uncover changes in overall
expression, ignoring the more complex patterns that can arise at the single cell level (Lähnemann et
al. 2020). Instead, BASiCS embraces the high granularity of scRNA-seq data, uncovering changes
in cell-to-cell transcriptional variability. As noted by Catalina A. Vallejos, Richardson, and Marioni
(2016), the inverse relationship that is observed between mean expression and over-dispersion derived
from (bulk and) scRNAseq can affect the interpretation of such analyses. In particular, genes that are
differentially expressed between two groups of cells are likely to exhibit changes in both mean expres-
sion and variability, due to the inverse relationship between these two quantities. Thus, comparisons
of variability between populations must be restricted to genes that do not exhibit changes in mean
expression.

• Eling et al (2018) (Eling et al. 2018): the model was extended to account for the strong relationship
that is typically observed between gene-specific mean expression and over-dispersion estimates. Eling
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et al. (Eling et al. 2018) introduced a joint prior specification for these parameters. This joint
prior assumes that genes with similar mean expression (µi) have similar over-dispersion parameters δi.
Effectively, this shrinks over-dispersion estimates towards a global trend that captures the relationship
between mean and over-dispersion (Figure XX). This improves posterior inference for over-dispersion
parameters when the data is less informative (e.g. small sample size, lowly expressed genes) (Eling
et al. 2018). This information-sharing approach is conceptually similar to that performed by Love,
Huber, and Anders (2014) and others, where sparse data is pooled to obtain more reliable estimates.
The global trend is then used to derive gene-specific residual over-dispersion parameters ϵi that are not
confounded by mean expression. Similar to the DM values implemented in scran, these are defined as
deviations with respect to the overall trend (Figure XX). BASiCS also provides a probabilistic decision
rule to perform differential expression analyses between two pre-specified groups of cells (Catalina A.
Vallejos, Richardson, and Marioni 2016; Eling et al. 2018). Furthermore, the model was extended
using a horizontal integration framework to allow its use in the absence of spike-in genes. This is
useful for droplet-based scRNAseq protocols, given that it is not possible to ensure that each droplet
contains a specified quantity of spike-in molecules. In this horizontal integration framework, technical
variation is quantified using replication (Carroll 2005). In the absence of true technical replicates, we
assume that population-level characteristics of the cells are replicated using appropriate experimental
design. This requires that cells from the same population have been randomly allocated to different
batches. Given appropriate experimental design, BASiCS assumes that biological effects are shared
across batches, while technical variation leads to spurious differences between cells in different batches.
It is this version of the model that we focus on here, and that we recommend for most users. Previous
versions of the model are available within the package, but are primarily useful for reproducibility
purposes or for analysing datasets that contain spike-in genes.

1.0.1 Testing for changes in mean expression and over-dispersion

Differential mean and differential over-dispersion testing is done by computing the tail posterior propabilities
of the difference in mean expression or over-dispersion between two conditions (A and B) being larger than
an evidence threshold τ0 or ω0 Catalina A. Vallejos, Richardson, and Marioni (2016):
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If the tail posterior probability is larger than a given propability threshold αm or αd, the gene is considered
to be differentially expressed or differentially over-dispersed (Catalina A. Vallejos, Richardson, and Marioni
2016). The evidence threshold is usually fixed a priori and the probability threshold is defined to control
the expected false discovery rate (EFDR) to (e.g. 10%) (Newton 2004, Vallejos2016).

As described by Catalina A. Vallejos, Richardson, and Marioni (2016), estimates of the over-dispersion pa-
rameters δi are negatively correlated to mean expression µi. This indicates that in homogeneous populations
of cells, highly expressed genes tend to be less noisy than lowly expressed genes. Differential over-dispersion
testing is therefore confounded by mean expression changes. When assessing changes in over-dispersion δi,
only genes with no changes in mean expression are considered (see Catalina A. Vallejos, Richardson, and
Marioni (2016)).

1.0.2 Correcting the mean-variability confounding effect

Eling et al. (2018) extended BASiCS to account for the confounding effect between mean expression and
expression variability. For this purpose, we capture the relationship between mean and over-dispersion
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parameters by introducing the following joint prior distribution for (µi, δi)′:

µi ∼ log-Normal
(
0, s2

µ

)
, δi|µi ∼ log-tη

(
f(µi), σ2) .

The latter is equivalent to the non-linear regression model:

log(δi) = f(µi) + ϵi, ϵi ∼ tη(0, σ2),

where f(µi) represents the over-dispersion (on the log-scale) that is predicted by the global trend (across
all genes) for a given mean expression µi. Therefore, ϵi can be interpreted as a gene-specific residual over-
dispersion parameter. Positive values for ϵi indicate more variation than expected for genes with similar
expression level. Similarly, negative values of ϵi suggest less variation than expected (Eling et al. 2018).

In line with the probabilistic approach described above, we identified statistically significant differences in
residual over-dispersion for those genes where the tail posterior probability of observing a large difference
between ϵAi and ϵBi exceeds a certain threshold:

P(| ϵAi − ϵBi |> ψ0 | Data) > αR,

where ψ0 > 0 defines the minimum tolerance threshold. As a default choice, we assume ψ0 =
log2(1.5)/ log2(e) ≈ 0.41, which translates into a 50% increase in over-dispersion. The posterior probability
threshold αR is chosen to control the EFDR (e.g. 10%) (Newton 2004). To support interpretability of the
results, we exclude genes that are not expressed in at least 2 cells per condition from differential variability
testing.
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