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1 Introduction

This file provides the code required to pre-process the scRNAseq datasets analysed in the F1000Research
BASiCS Workflow. In particular, we provide the code used to perform quality control for the presomitic and
somitic mesoderm cells extracted from Ibarra-Soria et al. (2018).

First, we load all necessary libraries:

library("SingleCellExperiment")
library("scater")
library("scran")
library("BASiCS")
library("ggplot2")
library("ggpointdensity")
library("biomaRt")
library("patchwork")
library("viridis")
library("readxl")
## set default theme for plots
theme_set(theme_bw())
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2 Download and load the data

The full dataset, described by Ibarra-Soria et al. (2018), is stored under the accession number E-MTAB-6153
on ArrayExpress and can be obtained from here. This workflows uses the processed data which consists of
2 files:

• rawCounts.tsv: matrix of raw expression counts (UMI-based) for all genes and cells.
• cellAnnotation.tsv: cell type labels identified by (Ibarra-Soria et al. 2018).

These will be downloaded into a downloads folder.

First, we download and load the rawCounts.tsv file (832.9 MB in size).

options(timeout = 10000)

# Check whether the 'downloads' directory exists. If not, create it.
if (!dir.exists("downloads")) {

dir.create("downloads", showWarnings = FALSE)
}

# Check whether the data was downloaded already
if (!file.exists("downloads/rawCounts.tsv")) {

website <- "https://www.ebi.ac.uk/"
folder <- "biostudies/files/E-MTAB-6153/"
file <- "rawCounts.tsv"
download.file(

paste0(website, folder, file),
destfile = "downloads/rawCounts.tsv"

)
}

# Load the downloaded file (this will take some time!)
raw_counts <- read.delim("downloads/rawCounts.tsv", header = TRUE)

These data consist of 20809 genes and 20819 cells, i.e. this is the raw data prior to the QC steps applied by
Ibarra-Soria et al. (2018).

Prior to using BASiCS, it is important to perform quality control to remove poor quality cells and to control
for potential heterogeneous substructure within the population of cells under study. In this case, (Ibarra-
Soria et al. 2018) has already characterised population structure using clustering techniques. Here, we will
use such information in order to define the cell populations to be use as the input for BASiCS.

The cluster labels identified in the original publication are then loaded ( cellAnnotation.tsv file; 883 KB
in size):

# Check whether the data was downloaded already
if (!file.exists("downloads/cellAnnotation.tsv")) {

website <- "https://www.ebi.ac.uk/"
folder <- "biostudies/files/E-MTAB-6153/"
file <- "cellAnnotation.tsv"
download.file(

paste0(website, folder, file),
destfile = "downloads/cellAnnotation.tsv"

)
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}
# Load the downloaded file
cluster_labels <- read.table("downloads/cellAnnotation.tsv",

sep = "\t", header = TRUE, stringsAsFactors = FALSE)

The table above contains annotation information for all 20819 cells.

The data contains information about the three samples from which the cells were extracted. This information
can help us to explore potential batch effects.

cluster_labels$sample <- as.factor(cluster_labels$sample)
table(cluster_labels$sample)

##
## 1.1 1.2 2
## 7731 8341 4747

The authors integrated the data from these three samples using the cellranger aggr program, which uses
downsampling to generate samples with similar depth.

Furthermore, the data contains the 20 major cell types identified by the authors. The number of cells per
cluster is displayed below:

table(cluster_labels$cellType, useNA = "ifany")

##
## amnion blood cardiac
## 770 2079 700
## endothelial extraembryonicEctoderm extraembryonicEndoderm
## 872 367 1876
## extraembryonicMesoderm forebrain foregut
## 1017 764 185
## mesodermProgenitors midHindbrain midHindgut
## 1696 1242 253
## mixedMesoderm neuralCrest neuralTube
## 2043 332 1128
## notochord pharyngealMesoderm placodes
## 85 743 1345
## presomiticMesoderm somiticMesoderm <NA>
## 1150 739 1433

Note that cellType is missing for 1433 cells. The latter correspond to cells discarded during QC by (Ibarra-
Soria et al. 2018). Such cells are labelled with a badQuality tag in cluster_label$cell. The QC used by
the authors consisted of filtering out cells for which less than 1,000 genes were detected or that had more
than 3% of reads mapped to mitochondrial genes. They also removed potential doublets defined as cells
for which expression of Xist and any of Kdm5d, Eif2s3y, Gm29650, Uty or Ddx3y (genes located in the Y
chromosome) was detected. 19386 were used by the authors in their analysis after applying this exclusion
criteria.

Note that the authors also identified some sub-structure within these main clusters. For example, they
identified two sub-types of presomitic mesoderm cells:
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# Extract sub-type cell labels (sample sub-index is removed)
cluster_labels$subCellType <- sub("_.*", "", cluster_labels$cell)
with(cluster_labels[cluster_labels$cellType == "presomiticMesoderm", ],

table(subCellType, cellType))

## cellType
## subCellType presomiticMesoderm
## presomiticMesoderm.a 875
## presomiticMesoderm.b 275

3 Select populations of interest

We selected the somitic ($n = $ 739) and pre-somitic mesoderm ($n = $ 1150) cells. This is an arbitrary
choice for illustration purposes only. The steps of this workflow could be applied to any other pair of cell
types.

# Identifies which cells are in the groups of interest
ind_som <- which(

cluster_labels$cellType == "somiticMesoderm" |
cluster_labels$cellType == "presomiticMesoderm"

)
# Selects the cells of interest from the raw counts and cluster-label metadata
raw_counts <- raw_counts[, ind_som]
cluster_labels <- cluster_labels[ind_som, ]

After selecting these cells, the distribution of the number of cells across samples is displayed below:

table(cluster_labels$cellType, cluster_labels$sample)

##
## 1.1 1.2 2
## presomiticMesoderm 452 455 243
## somiticMesoderm 290 289 160

4 Generating a SingleCellExperiment object

For pre-processing and visualisation purposes, we load the data into a SingleCellExperiment object. The
metadata will be stored in the colData slot.

droplet_sce <- SingleCellExperiment(
assays = list(counts = as(as.matrix(raw_counts), "dgCMatrix")),
colData = cluster_labels

)
# Delete the original table of raw expression counts as no longer needed
rm(raw_counts)
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5 Gene annotation using BioMart

Input data was annotated using Ensembl gene identifiers. To facilitate interpretation, it is often useful to
obtain a mapping from Ensembl gene IDs to gene symbols using the BioMart suite (http://www.biomart.org)
via the Bioconductor package biomaRt (Durinck et al. 2009). This can also be used to obtain gene-pathways
mappings and other metadata (e.g. gene length), useful for performing functional analysis of gene sets
identified in downstream analyses.

# Check if data storage folder exists and create it if needed
if (!dir.exists("rds")) {

dir.create("rds", showWarnings = FALSE)
}
if (!file.exists("rds/genenames.Rds")) {

# Initialize mart and dataset
ensembl <- useEnsembl(

biomart = "genes",
version = 104,
dataset = "mmusculus_gene_ensembl"

)
# Select gene ID and gene name
genenames <- getBM(

attributes = c("ensembl_gene_id", "external_gene_name", "gene_biotype",
"chromosome_name", "description"),

mart = ensembl
)
rownames(genenames) <- genenames$ensembl_gene_id
# Store information for future use
saveRDS(genenames, "rds/genenames.Rds")

}
# Load pre-downloaded gene annotation information
genenames <- readRDS("rds/genenames.Rds")

We add this information as rowData within the SingleCellExperiment object created above.

## Merge biomaRt annotation
rowdata <- data.frame(ensembl_gene_id = rownames(droplet_sce))
rowdata <- merge(rowdata, genenames, by = "ensembl_gene_id", all.x = TRUE)
rownames(rowdata) <- rowdata$ensembl_gene_id
# Sort to match the order in the original data
rowdata <- rowdata[rownames(droplet_sce),]
## Check if order is correct after merge;
stopifnot(all(rownames(rowdata) == rownames(droplet_sce)))
## add to the SingleCellExperiment object
rowData(droplet_sce) <- rowdata

For the remaining analysis, we will only focus on the 17,500 protein coding genes that are contained in the
data. These are selected below.

ind_pc <- which(rowData(droplet_sce)$gene_biotype == "protein_coding")
droplet_sce <- droplet_sce[ind_pc, ]
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6 QC and exploratory data analysis

In order to perform quality control (QC), we calculate some cell-specific summary statistics: the total number
of counts per cell (sum) and the total number of detected genes per cell (detected). These will be added
in the colData slot using the addPerCellQC() function from the scater package. Note that additional QC
metrics are often calculated (e.g. the percentage of reads mapped to mitochondrial reads). These are not
calculated here as the authors already applied relevant QC.

droplet_sce <- addPerCellQC(droplet_sce)

The distribution of these metrics per each cluster can be visualised as follows:

p_cell_qc1 <- plotColData(droplet_sce, y = "sum", x = "subCellType") +
geom_hline(yintercept = 25000, lty = 2, col = "red") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

p_cell_qc2 <- plotColData(droplet_sce, y = "detected", x = "subCellType") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

p_cell_qc3 <- plotColData(droplet_sce, y = "sum", x = "sample") +
geom_hline(yintercept = 25000, lty = 2, col = "red")

p_cell_qc4 <- plotColData(droplet_sce, y = "detected", x = "sample")

(p_cell_qc1 + p_cell_qc2) / (p_cell_qc3 + p_cell_qc4)
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Figure 1: Cell-level QC metrics stratified by cell sub-type and sample (before QC). For each cell cluster:
distribution of the total number of UMIs per cell (left) and the total number of detected genes per cell
(right).

As seen in Figure 1, the presomiticMesoderm.b sub-cluster is characterised by a substantially larger num-
ber of UMIs and detected genes. These cells have been highlighted by the authors as potential doublets.
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Therefore, as in the original publication, the entire sub-cluster will be removed from subsequent analyses.
For this workflow, we also apply an additional exclusion criteria to remove cells with more 25,000 UMIs as
potential doublets.

ind_retain <- colData(droplet_sce)$subCellType != "presomiticMesoderm.b" &
colData(droplet_sce)$sum <= 25000

droplet_sce <- droplet_sce[, ind_retain]

After applying this filter, the dataset contains 1595 cells: 871 in the presomitic Mesoderm group and 724 in
the somitic Mesoderm group.
The distribution of the total number of UMIs and detected genes after QC is shown in Figure 2.

p_cell_qc1 <- plotColData(droplet_sce, y = "sum", x = "subCellType") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

p_cell_qc2 <- plotColData(droplet_sce, y = "detected", x = "subCellType") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

p_cell_qc3 <- plotColData(droplet_sce, y = "sum", x = "sample") +
geom_hline(yintercept = 25000, lty = 2, col = "red")

p_cell_qc4 <- plotColData(droplet_sce, y = "detected", x = "sample")
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Figure 2: Cell-level QC metrics stratified by cell sub-type and sample (after QC). For each cell cluster:
distribution of the total number of UMIs per cell (left) and the total number of detected genes per cell
(right).

To further explore the underlying structure of the data, we perform global scaling normalisation using
scran and principal component analysis (PCA) of log-transformed normalised expression counts using scater.
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As seen in Figure 3, this analysis suggests the absence of strong batch effects. It should be noted that
the estimation of global scaling normalisation factors using scran is not strictly necessary in the BASiCS
workflow. Here, we only use it as part of the exploratory data analysis. Moreover, count-based models for
dimensionality reduction (e.g. (Townes et al. 2019; Lopez et al. 2018)) could be used as an alternative to
PCA, removing the need for log normalisation.

## Global scaling normalisation
droplet_sce <- computeSumFactors(droplet_sce, colData(droplet_sce)$subCellType)
## Obtain log-normalised expression counts
droplet_sce <- logNormCounts(droplet_sce)
## Run PCA
droplet_sce <- runPCA(droplet_sce)
## Plot first two PCs colour-coded according to cell-level metadata
p_type <- plotPCA(

droplet_sce,
ncomponents = c(2, 1),
colour_by = "subCellType"

) +
theme(legend.position = "bottom")

p_detected <- plotPCA(
droplet_sce,
ncomponents = c(2, 1),
colour_by = "detected"

) +
theme(legend.position = "bottom")

p_batch <- plotPCA(
droplet_sce,
ncomponents = c(2, 1),
colour_by = "sample"

) +
theme(legend.position = "bottom")

p_type + p_detected + p_batch

As seen inn Figure 3, the first principal component (which explains approximately 9% of the total variability)
captures the presomitic versus somitic Mesoderm structure of the data. The second principal component
(which explains approximately 3% of the total variability) is correlated with the number of detected features
per cell. We do not observe substantial batch effects driven by the animal of origin from which cells were
collected (although some minor differences are seen, due to differences in the number of detected genes).

In addition to cell-specific QC, we also recommend a gene filtering step prior to using BASiCS. The purpose
of this filter is to remove lowly expressed genes that were largely undetected through sequencing, making
reliable variability estimates difficult to obtain. Here, we remove genes that are not detected in at least 20
cells across all cells. This is to ensure a reliable estimate of variability, roughly in line with the sample size
requirements for the negative binomial distribution outlined in Lloyd-Smith (2007).

## Calculate gene-level QC metrics using scater
droplet_sce <- addPerFeatureQC(droplet_sce, exprs_values = "counts")
## Remove genes with zero total counts across all cells
droplet_sce <- droplet_sce[rowData(droplet_sce)$detected != 0, ]

## Transform "detected" into number of cells and define inclusion criteria
rowData(droplet_sce)$detected_cells <-

rowData(droplet_sce)$detected * ncol(droplet_sce) / 100
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Figure 3: First two principal components of log-transformed expression counts after scran normalisation.
Colour indicates the experimental condition (left), the number of detected genes (middle) and animal of
origin (right) for each cell.
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## Set detection threshold to detecting expression in at least 20 cells
detected_threshold <- 20
rowData(droplet_sce)$include_gene <-

rowData(droplet_sce)$detected_cells >= detected_threshold

## Plot gene-level metrics, highlighting those included for our analysis
plotRowData(droplet_sce,

x = "detected_cells",
y = "mean",
colour_by = "include_gene"

) +
xlab("Number of cells in which expression was detected") +
ylab("Average number of read counts across all cells") +
scale_x_log10() +
scale_y_log10() +
theme(legend.position = "bottom") +
geom_vline(

xintercept = detected_threshold,
linetype = "dashed",
col = "grey60"

)
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Figure 4: Average UMI-count for each gene is plotted against the number of cells in which that gene was
detected. Dashed grey lines are shown at the thresholds below which genes are removed.

## Apply gene filter
droplet_sce <- droplet_sce[rowData(droplet_sce)$include_gene, ]
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The final dataset used in subsequent analyses contains 1595 cells and 10862 genes. As the analysis will be
carried out separately for pre-somitic and somitic mesoderm cells, we create separate SingleCellExperiment
object for each group of cells. These datasets contain 871 and 724, respectively.

sce_psm <- droplet_sce[, colData(droplet_sce)$cellType == "presomiticMesoderm"]
sce_sm <- droplet_sce[, colData(droplet_sce)$cellType == "somiticMesoderm"]

These are then stored for their use in the main manuscript.

saveRDS(sce_psm, "rds/sce_psm.Rds")
saveRDS(sce_sm, "rds/sce_sm.Rds")

7 Session information

sessionInfo()

## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] readxl_1.4.3 viridis_0.6.4
## [3] viridisLite_0.4.2 patchwork_1.1.3
## [5] biomaRt_2.58.0 ggpointdensity_0.1.0
## [7] BASiCS_2.14.0 scran_1.30.0
## [9] scater_1.30.0 ggplot2_3.4.4
## [11] scuttle_1.12.0 SingleCellExperiment_1.24.0
## [13] SummarizedExperiment_1.32.0 Biobase_2.62.0
## [15] GenomicRanges_1.54.1 GenomeInfoDb_1.38.1
## [17] IRanges_2.36.0 S4Vectors_0.40.1
## [19] BiocGenerics_0.48.1 MatrixGenerics_1.14.0
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## [21] matrixStats_1.1.0 knitr_1.45
## [23] BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] tensorA_0.36.2 magrittr_2.0.3
## [3] ggbeeswarm_0.7.2 farver_2.1.1
## [5] rmarkdown_2.25 zlibbioc_1.48.0
## [7] vctrs_0.6.4 memoise_2.0.1
## [9] DelayedMatrixStats_1.24.0 RCurl_1.98-1.13
## [11] htmltools_0.5.6.1 S4Arrays_1.2.0
## [13] progress_1.2.2 curl_5.1.0
## [15] distributional_0.3.2 BiocNeighbors_1.20.0
## [17] cellranger_1.1.0 SparseArray_1.2.2
## [19] cachem_1.0.8 igraph_1.5.1
## [21] mime_0.12 lifecycle_1.0.3
## [23] pkgconfig_2.0.3 rsvd_1.0.5
## [25] Matrix_1.6-1.1 R6_2.5.1
## [27] fastmap_1.1.1 GenomeInfoDbData_1.2.11
## [29] shiny_1.7.5.1 digest_0.6.33
## [31] colorspace_2.1-0 AnnotationDbi_1.64.1
## [33] dqrng_0.3.1 irlba_2.3.5.1
## [35] RSQLite_2.3.3 beachmat_2.18.0
## [37] labeling_0.4.3 filelock_1.0.2
## [39] fansi_1.0.5 httr_1.4.7
## [41] abind_1.4-5 compiler_4.3.2
## [43] bit64_4.0.5 withr_2.5.1
## [45] backports_1.4.1 BiocParallel_1.36.0
## [47] DBI_1.1.3 highr_0.10
## [49] hexbin_1.28.3 MASS_7.3-60
## [51] rappdirs_0.3.3 DelayedArray_0.28.0
## [53] bluster_1.12.0 tools_4.3.2
## [55] vipor_0.4.5 beeswarm_0.4.0
## [57] httpuv_1.6.12 glue_1.6.2
## [59] promises_1.2.1 grid_4.3.2
## [61] checkmate_2.3.0 cluster_2.1.4
## [63] generics_0.1.3 gtable_0.3.4
## [65] hms_1.1.3 xml2_1.3.5
## [67] BiocSingular_1.18.0 ScaledMatrix_1.10.0
## [69] metapod_1.10.0 utf8_1.2.4
## [71] XVector_0.42.0 stringr_1.5.0
## [73] ggrepel_0.9.4 pillar_1.9.0
## [75] ggExtra_0.10.1 limma_3.58.1
## [77] posterior_1.5.0 later_1.3.1
## [79] dplyr_1.1.3 BiocFileCache_2.10.1
## [81] lattice_0.22-5 bit_4.0.5
## [83] tidyselect_1.2.0 locfit_1.5-9.8
## [85] Biostrings_2.70.1 miniUI_0.1.1.1
## [87] gridExtra_2.3 bookdown_0.36
## [89] edgeR_4.0.1 xfun_0.40
## [91] statmod_1.5.0 stringi_1.7.12
## [93] yaml_2.3.7 evaluate_0.22
## [95] codetools_0.2-19 tibble_3.2.1
## [97] BiocManager_1.30.22 cli_3.6.1
## [99] xtable_1.8-4 munsell_0.5.0
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## [101] Rcpp_1.0.11 dbplyr_2.4.0
## [103] coda_0.19-4 png_0.1-8
## [105] XML_3.99-0.15 parallel_4.3.2
## [107] ellipsis_0.3.2 assertthat_0.2.1
## [109] blob_1.2.4 prettyunits_1.2.0
## [111] sparseMatrixStats_1.14.0 bitops_1.0-7
## [113] scales_1.2.1 crayon_1.5.2
## [115] rlang_1.1.1 cowplot_1.1.1
## [117] KEGGREST_1.42.0
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