
 1

Abstract—The deployment of beyond 5G and 6G network

infrastructures will enable highly dynamic services requiring

stringent Quality of Service (QoS). Supporting such

combinations in today’s transport networks will require high

flexibility and automation to operate near real-time and reduce

overprovisioning. Many solutions for autonomous network

operation based on Machine Learning require a global network

view, and thus need to be deployed at the Software-Defined

Networking (SDN) controller. In consequence, these solutions

require implementing control loops, where algorithms running

in the controller use telemetry measurements collected at the

data plane to make decisions that need to be applied at the data

plane. Such control loops fit well for provisioning and failure

management purposes, but not for near real-time operation

because of their long response times. In this paper, we propose a

distributed approach for autonomous near-real-time flow

routing with QoS assurance. Our solution brings intelligence

closer to the data plane to reduce response times; it is based on

the combined application of Deep Reinforcement Learning

(DRL) and Multi-Agent Systems (MAS) to create a distributed

collaborative network control plane. Node agents ensure QoS of

traffic flows, specifically end-to-end delay, while minimizing

routing costs by making distributed routing decisions.

Algorithms in the centralized network controller provide the

agents with the set of routes that can be used for each traffic flow

and give freedom to the agents to use them during operation.

Results show that the proposed solution is able to ensure end-to-

end delay under the desired maximum and greatly reduce

routing costs. This performance is achieved in dynamic scenarios

without previous knowledge of the traffic profile or the

background traffic, for single domain and multidomain

networks.

Index Terms—Quality of Service Assurance, Flow Routing,

Network Automation, Near-real-time control, Deep

Reinforcement Learning, Multi-Agent Systems.

I. INTRODUCTION

RANSPORT networks need to be redesigned to support

the expected large traffic dynamicity and stringent

performance of beyond 5G (B5G) and 6G services. Such

support requires increased levels of flexibility and

automation, together with higher priority given to network

optimization and cost efficiency [1]. As a result, solutions for

autonomous network operation based on the application of

Artificial Intelligence (AI) / Machine Learning (ML) have

The research leading to these results has received funding from the

European Commission thought the HORIZON SNS JU DESIRE6G (G.A.

101096466), the MINECO UNICO5G TIMING (TSI-063000-2021-145) and

the MICINN IBON (PID2020-114135RB-I00) projects, and from the ICREA
Institution.

been proposed in the last years (see, e.g., [2]) to implement

data-driven closed control loops. Such solutions running in a

centralized element, have the potential to greatly reduce

operational costs by minimizing human intervention. Because

of its global view, current network architectures rely on the

Software Defined Networking (SDN) controller as the ideal

component where decision making should be carried out,

being this approach beneficial for many applications, like

service provisioning, failure management, etc. In

consequence, SDN control is being augmented with

instantaneous data-driven decision-making [3].

However, precisely because of its centralized location,

(near) real-time decision making does not fit well with SDN

controllers. In particular, in the case that automation needs to

deal with highly dynamic traffic conditions, centralized

decision-making leads to poor resource utilization because of

long response times. In this work, we focus on flow routing,

where decisions need to be made near real-time to optimize

resource utilization while ensuring the Quality of Service

(QoS) of the flows. Note that traffic variations might create

bottlenecks that impact on the end-to-end (e2e) delay, defined

as the time required for transmitting flow traffic between the

two border packet nodes.

To minimize response time, as well as the amount of data

to be conveyed from collection points to decision-making

elements, AI/ML algorithms might be executed as close as

possible to the data sources (contrarily to the centralized

architecture of SDN). A possible solution is to use (Deep (D))

Reinforcement Learning (RL) [4], [5]. (D)RL has been

proposed for solving problems that require real-time decision

making, like the management of the capacity of packet links

[6] or that of optical connections [7].

In our previous work [8], we proposed a distributed

autonomous inter-domain flow routing based on DRL running

in the packet nodes, following the concept of Multi-Agent

Systems (MAS) [9]. MAS is a subfield of AI and it can be

defined as a set of individual agents that share knowledge and

communicate with each other in order to solve a problem that

is beyond the scope of a single agent. In the scope of

networking, we proposed that agent nodes make autonomous

decisions near-real-time based on guidelines received from

the SDN controller, thus liberating the SDN controller from

near-real-time operations. That system autonomously routes

Sima Barzegar, Marc Ruiz, and Luis Velasco (luis.velasco@upc.edu) are
with the Optical Communications Group at Universitat Politècnica de

Catalunya, Barcelona, Spain.

Autonomous Flow Routing for Near Real-Time

Quality of Service Assurance

Sima Barzegar, Marc Ruiz, and Luis Velasco

T

 2

packet flows entering in the node considering the measured

e2e delay, but without previous knowledge of traffic

characteristics because of its ability to learn.

The rest of the paper is organized as follows. Section II

reviews the state of the art and summarizes the contributions

of our work. Section III sketches the main concepts and

challenging scenarios of the proposed DRL-based flow

routing operation. Section IV details the flow routing agent,

including the formal definition of the DRL engine, as well as

the algorithms and procedures involved during provisioning

and operation under the considered scenarios. Section V

presents numerical results obtained by simulation to validate

the aforementioned contributions. Finally, Section VI draws

the main conclusions.

II. RELATED WORK AND CONTRIBUTIONS

The Open Shortest Path First (OSPF) protocol has been

commonly used for intra-domain routing. Under OSPF,

packets are routed through one or multiple equal-cost shortest

paths (ECMP) to the destination, computed based on links

weights that are set inversely proportional to links capacity

[10]. Although OSPF works well for optimal general routing,

links weights are static, so OSPF cannot avoid congestion

during peak traffic under dynamic traffic scenarios. Many

works have proposed solutions for Traffic Engineering (TE)

that optimize link weights for minimizing network

congestion, e.g., based on heuristics, as in [11]. Targeting at

significantly lower execution times, which is of paramount

importance in the case of highly dynamic traffic scenarios,

other works have proposed ML techniques for TE

optimization, like [12] and [13], where the use of DRL was

proposed, and [14] that leverages MAS for distributed TE

optimization. Multiprotocol Label Switching (MPLS) is

another routing technology that can be combined with TE for

traffic steering [16].

In the packet network, SDN provides a centralized flow

control and can guarantee per-flow performance. SDN defines

flow rules in the packet nodes that are applied to the incoming

packets. Many approaches for flow routing in the centralized

SDN controller can be found in the literature (see the survey

in [15]). E.g., the authors in [17] proposed a RL-based routing

algorithm for TE running on top of the SDN controller

considering throughput and delay. In addition, the SDN

approach can be used for developing solutions to ensure per-

flow performance, as in [18], where the authors focused on

guaranteeing per-flow throughput and packet loss. Finally,

regarding routing in multi-domain scenarios, the authors in

[19] proposed a RL-based QoS-aware adaptive routing that

works on top of a hierarchy of network controllers.

Looking at B5G/6G networks, they are foreseen to be not

only very dynamic, but also services will require stringent

performance. A specific technique that can be implemented to

facilitate meeting target performance of traffic flows is

multipath, which can be realized by the end hosts at the

Transmission Control Protocol (TCP) level, where several

sub-flows are established to provide better resource utilization

and increased throughput [20]. Intelligent schedulers assign

packets to sub-flows based on the measured round-trip-time

and throughput of each path (see e.g., the work in [21] based

on DRL). Such strategy has been also explored for traffic

flows. For instance, the authors in [22] proposed a RL-based

for packet routing to optimize path cost and e2e delay,

assuming a global view of the network and traffic matrix to

decide global routing strategies. A load balancing policy was

defined to characterize the distribution of the traffic over the

best n paths. Some other works have targeted at controlling

the traffic split ratio to multiple paths on top of the SDN

controller (see, e.g., [23] and [24]). However, routing large

flows over several paths might create packet out of order

problems. To mitigate such negative impact, the authors in

[25] proposed a RL-based scheme that routes the majority of

the traffic flows using ECMP, selects some critical flows from

the traffic matrix and reroute them using SDN to balance link

utilization.

Our approach is also based on the use of several paths to

ensure per-flow QoS (specifically e2e delay) and assume the

flows to be splitable, i.e., they consist of a large number of

sub-flows, which can be routed independently. However, our

proposal -also based on SDN- makes decisions in a distributed

manner, which has benefits under highly dynamic scenarios

where near-real-time routing decisions need to be made. Node

agents make routing decisions based on the measured QoS of

the paths that have been computed by the SDN controller.

Specifically, in this paper, we extend our initial work in [8]

and propose a comprehensive solution for near real-time

DRL-based flow routing built on the principles of MAS

operation. Two phases are considered: i) during flow

provisioning phase, the SDN controller decides which routes

(including the case where a single one is computed) can be

used for the traffic of the flow and gives degrees of freedom

to the agents to use one or a combination of them at any given

time. Then, the flow rules enforcing those routes are installed

in the involved nodes, so the packet node can forward any

incoming packet that matches the rule. The source node

receives also the performance required for the flow, e.g., the

maximum e2e delay; and ii) during the flow operation phase,

the agent at the source node decides dynamically the

proportion of traffic of the flow that is sent through each of

the interfaces that belong to the routes received from the SDN

controller, targeting at meeting the target performance. Note

that any other intermediate node will apply the rules already

installed to the incoming packets. The agent at the source node

changes the traffic proportion after receiving measurements

of the achieved performance without further iterations with

the SDN controller. In the case where the agent cannot meet

the target performance, it will issue a notification to the SDN

controller, so the latter can change the set of routes to be used

for routing the traffic of the flow. As a result, the proposed

architecture will relieve the SDN control plane from near real

time operation and now focus on those activities that require

long-term analysis and/or are hard to implement distributedly,

like failure management [26]. Specifically, if the SDN

controller needs to reconfigure the network, it can change the

set of routes that can be used for every flow.

 3

A key novel contribution of this paper is the design and

evaluation of the DRL-based flow routing agent, responsible

of managing the routing of a target flow. From the lessons

learnt in [6], a number of modules and workflows are

presented to allow efficient and robust DRL-based routing

immediately after the flow is provisioned and operation starts.

Note that the DRL engine is able to learn and improve actions

as soon as it gets experience from operation. In this regard,

the designed flow routing agent is able to learn not only how

to better adapt flow routing to traffic changes but also, to

understand how network state impacts on the QoS assurance

of that flow. In particular, we propose solutions to deal with

the presence of background traffic competing with the target

flow for common capacity resources. We demonstrate that

such learning works effectively without any measurement of

the background traffic, even though it changes over time.

Finally, we face multi-domain scenarios, where domains

coordinate to assure the maximum e2e delay by ensuring per-

domain delay budgets. Due to congestion in one or more

domains, the delay budget in others might need to be reduced

to achieve the target e2e delay. Therefore, the proposed DRL-

based flow routing agent is designed to adapt to sudden and

asynchronous changes in the delay requirement for the

domain, while keeping robustness of operation. Inter-domain

interfaces are proposed for the domains to share delay budgets

among them.

III. DISTRIBUTED NETWORK INTELLIGENCE FOR

AUTONOMOUS FLOW ROUTING

In this section, we first present the high-level architecture

of the proposed solution for autonomous flow routing with

QoS (delay) requirements. The delay experienced by a given

traffic flow depends on the actual traffic volume not only of

that traffic flow, but also of the other flows that use common

packet links. Two cases are analyzed considering single

domain and multi-domain scenarios.

Let us first focus on the single domain. In a pure SDN-

based approach, packets in a flow follow the route computed

by the SDN controller. Route selection can be performed at

flow provisioning time based on the network topology and

current network conditions. Let us assume that the SDN

controller computes a set of allowable routes at packet flow

provisioning time. Each route needs to meet the required

maximum e2e delay (dmaxe2e) considering only static delay

components, such as transmission and processing delay, as

well as some traffic volume for that flow and other flows

currently established in the network. A possible routing policy

would be to use the route with the minimum delay for the

packet flow. Once a route is selected, it does not usually

change until some event occurs. This process requires high

overprovisioning, i.e., poor resource utilization, since route

selection needs to be performed considering the maximum

traffic volume for the packet flows. Otherwise, if volumes

exceed the value considered at provisioning time, such policy

might result in high delay coming from the time that every

packet has to spend in the queues in the packet nodes

(queueing delay). Hence, reducing overprovisioning while

guaranteeing that actual e2e delay (de2e) for the packet flows

do not exceed dmaxe2e is a difficult task under dynamic traffic,

since every output interface in the packet nodes operates at a

different load.

To deal with this, we propose the distributed intelligence

architecture sketched in Fig. 1, where a single node and the

centralized SDN controller are represented. Note that in such

architecture, we are moving the intelligence from the

centralized SDN controller to the nodes, thus resulting in a

hybrid centralized SDN control with distributed network

intelligence: i) coordination among agents is achieved by

letting them to communicate with other agents at remote

nodes to exchange observed data and/or models; ii) decision-

making is performed by every individual agent near real- time

(sub-second to few second granularity) based on its own

observed data, as well as on the data and models received

from other agents; and iii) the SDN controller plane is

responsible for the general coordination of the network, being

in charge of generating the needed guidelines for the agents

while leaving the desired degree of freedom for their

autonomous operation. It is worth noting that this distributed

architecture is aligned with current trends on monitoring and

data analytics architectures for autonomous networking [3].

Fig. 2 represents an example of flow routing operation in a

packet node. The packet node agent has received from the

Node Agent

Guidelines
and Policies

In
te

lli
ge

n
ce

Observed data
and/or models

Control of degree of
freedom

Multi-agent
Coordination

SDN Control

Service Agent

Fo
rw

ar
d

in
g

P
la

n
e

Observed data
and/or models

Intelligence

Fig. 1. Proposed distributed intelligence.

Traffic, delay,
Percentages

Learning Agent

Environment

RewardState Action

Packet Node Agent

Required
percentages

DRL-based Flow Routing

If 1

If 2

Flow
destination

Traffic

end-to-end
delay

Packet Node
Agent

delay

Flow source or
intermediate

SDN Control

QoS request
Available Interfaces (e.g.,
If1 and if2) for the flow

Routing
updates

Fig. 2. Example of distributed flow routing based on DRL.

 4

R2

R4 R5

R3R1

R1-R3

R2-R3

R1-R4

R1 Agent

R1-R4

R2-R3

Fig. 3. Example of operation under uncertain background traffic.

Domain 1 Domain 2

SDN Control
Domain 1

SDN Control
Domain 2

dmaxD1

dmaxe2e

dmaxD2
dmaxD1

R1.BR1.A

R1.C

R2.B

R2.C

R2.Z

Fig. 4. Example of operation under varying dmax in multi-domain scenarios.

SDN controller the required QoS and two possible routes with

different utilization cost for a given traffic flow and it has to

decide which route or combination of them allow to reach the

committed QoS performance (i.e., do not exceed dmaxe2e),

while minimizing some cost function. As represented in Fig.

2, we assume DRL to implement a service agent for the traffic

flow. The DRL agent consists of two inter-related blocks: i)

the learning agent is in charge of learning the best actions to

be taken based on the current state and the received reward;

and ii) the environment that is in charge of computing the state

based on the observed traffic and current combination of

routes (proportions), as well as the obtained reward based on

the measured e2e delay for the selected routes. Without loss

of generality, we assume that the DRL agent operates under

the life-cycle presented in [6], where models are pre-trained

offline with generic data and refined during online learning,

thus achieving both decision-making robustness and high

performance from the beginning of flow operation. In Fig. 2,

the traffic of the flow is routed through the two different

output interfaces, and thus the flow follows different routes.

Here, we assume that the traffic flow actually consists of

multiple sub-flows, which are routed independently so the

packets belonging to each sub-flow follow the same route. In

the destination, the e2e delay is measured (e.g., using in-band

telemetry) and some statistics are computed (e.g., maximum

and weighted average) and sent to the node agents

participating in the routing of the flow.

It is worth mentioning that, in this example, the intelligence

requirements of the node agent are simple if only the traffic

volume of the flow varies with time. Such variation (e.g.,

typical daily patterns) can be modelled and consequently,

predicted with sufficient accuracy. However, let us now

present some challenging scenarios where learning is needed

due to the variation of the traffic flow under-control and the

network dynamicity.

In the first scenario, we deal with changing traffic

conditions of other packet flows using some of the links in the

set of routes for the traffic flow under control. To illustrate

this, Fig. 3 shows an example in a simple network with five

packet nodes, where three packet flows are depicted: R1-R3,

R1-R4, and R2-R3. Inner graphs in Fig. 3 illustrate possible

traffic variation with time for packet flows R1-R4 and R2-R3.

Let us assume that R1 has received from the SDN controller

two possible routes for flow R1-R3, i.e., R1-R2-R3, with two

hops, and R1-R4-R5-R3, with three hops. Initially, the

shortest route can be selected and 100% of the traffic in the

flow arriving in R1 is routed to R3 through the link R1-R2.

Let us imagine that with such configuration R1 receives e2e

delay measurements from R3 for flow R1-R3 which are under

the given maximum for that flow. At some point in time, flow

R2-R3 is established and the e2e delay of flow R1-R3 exceeds

the maximum, so R1 needs to route part of the traffic of the

flow through the second route that has a higher utilization

cost, i.e., through R4. In this way, the traffic through the first

route will reduce, which could result in reducing e2e delay.

Later, traffic variation in the flows can result in delay

variations, which will cause R1 to make new routing

decisions, either to reduce delay or to minimize cost.

The second challenging scenario is in multi-domain

networks, where a packet flow traverses two different

administrative domains. Examples, include access networks

(fixed or mobile) and metro/core networks. Although the e2e

traffic flow consists of two segments, one in each domain,

dmaxe2e needs to be ensured. Even when each domain works

under low to moderate load regime, delay fluctuations are

produced as a result of traffic variations, which makes load

also variable in time. In this case, the SDN controllers of each

domain have received the required dmaxe2e for the traffic flow

at provisioning time. It is worth noting that if both domains

operate without any coordination among them, large capacity

overprovisioning is required to absorb delay variations

introduced not only by the own domain, but also by the other

domains traversed by the flow. In view of that, we assume

some sort of coordination among domains. An example is

represented in Fig. 4. The SDN controller of domain 1

dynamically gets the delay that can be ensured for the segment

of the flow (dmaxD1) and share that value with the SDN

controller of domain 2. In response, the SDN controller tunes

the requirement of delay for the local segment (dmaxD2) so

dmaxe2e is ensured. We expect that overprovisioning can be

greatly reduced and e2e delay guaranteed by adjusting domain

delay budgets dynamically.

IV. DRL-BASED FLOW OPERATION

In this section, we first formally describe the DRL engine

behind autonomous flow routing. Next, we detail the

procedures for the flow provisioning phase and the

subsequent near real-time flow operation in single domain

scenarios. Finally, extensions to deal with uncertainty of

background traffic, as well as for multi-domain operation are

presented. Table 1 summarizes the notation used in the rest of

the paper.

 5

Table 1 Notation

x(t) input traffic at time t.

d(t) e2e delay measured at time t.

s(t) state at time t.

P Set of available routes for the flow.

kp Capacity of route p.

cp Cost of route p.

yp(t) Traffic routed through route p at time t.

ap(t) fraction of traffic to be routed through route p at time t.

r(t) reward at time t.

rdelay(t) reward component for the obtained delay at time t.

rcost(t) reward component for the routing cost at time t.

αdelay,

αcost

weights for the rewards in the multi-objective reward

function.

β fixed penalty for violating the maximum delay.

dmax maximum delay to be ensured for the flow.

xmax maximum traffic of the flow.

xmax maximum number of routes for the flow.

G(V,E) graph with the current network state, where V is the set

of nodes and E the set of links connecting two nodes.

A. DRL engine

From the lessons learned from our previous work in [4], we

selected Twin Delayed Deep Deterministic Policy Gradients

(TD3) [5], among different DRL techniques. TD3 is an off-

policy DRL algorithm that uses a pair of critic Deep Neural

Networks (DNN) and an actor DNN that is updated with some

delay. Hereafter, we refer to the set of critic and actor DNNs

that run inside the DRL engine as model. The model is in

charge of dynamically and autonomously deciding which

fraction of traffic is routed through each of the allowable

routes P that can support the flow.

During near-real-time operation, flow routing agents

compute the state, the reward, and the actions periodically

(e.g., 1 sec.). Let x(t) be the input traffic and d(t) be the e2e

delay, measured at time t. State s(t)∈ℝ+ is defined as the input

traffic scaled by the average capacity of the available routes

P, where (kp) is the capacity of route p∈P.

𝑠(𝑡) = 𝑥(𝑡) ·
∑ 𝑘𝑝𝑝∈𝑃

|𝑃|
 (1)

Each action a(t)∈[0,1]|P| is a |P|-dimensional vector, where

every component specifies the fraction of input traffic to be

routed through route p. Then, let yp(t) be the traffic routed

through p, i.e.:

𝑦𝑝(𝑡) = 𝑎𝑝(𝑡) · 𝑥(𝑡) (2)

The reward function r(t) should penalize those actions that

resulted into poor QoS or increased network cost. In

consequence, a multi-objective reward function with two

reward components has been considered to account for the

obtained delay (rdelay) and for the routing cost (rcost), being

αdelay and αcost the weight of each component:

𝑟(𝑡) = 𝛼𝑑𝑒𝑙𝑎𝑦 ∙ 𝑟𝑑𝑒𝑙𝑎𝑦(𝑡) + 𝛼𝑐𝑜𝑠𝑡 ∙ 𝑟𝑐𝑜𝑠𝑡(𝑡) (3)

𝑟𝑑𝑒𝑙𝑎𝑦(𝑡) = {−𝛽 −
𝑑(𝑡)

𝑑𝑚𝑎𝑥
, 𝑑(𝑡) > 𝑑𝑚𝑎𝑥

0, 𝑑(𝑡) ≤ 𝑑𝑚𝑎𝑥
 (4)

𝑟𝑐𝑜𝑠𝑡(𝑡) = −𝑥(𝑡) ∙ ∑ 𝑎𝑝(𝑡) ∙
𝑐𝑝

𝑘𝑝
𝑝∈𝑃

 (5)

Environment

Agentmodel

Packet Node Agent

<G, P, dmax>

Sandbox
domain

x(t), d(t)

a(t)

s(t), r(t)

d(t)

DRL engine

Analyzer
model, dmax

Flow routing
manager

a(t)

1

2

3

4

SDN Control

model 1

model n

x(t)

Packet Node Agent

d(t)routing

request
(G, P, dmax)

model

I

II

III

Fig. 5. DRL-based flow operation.

Algorithm 1. Route computation algorithm.

INPUT: G(V,E), req=<s, t, xmax, dmax, pmax>

OUTPUT: P

1:

2:

3:

4:

5:

6:

7:

8:

9:

Gaux(Vaux,Eaux) ← G

for each e ∈ Eaux do

if e.cap < xmax then Eaux.pop(e)

P ← k-SP(Gaux, s, t)

for each p ∈ P do

p.dmin ← transmDelay(p) + qmin

if p.dmin > dmax then P.pop(p)

sort(P, <’dmin’,’similarity’>, ASC)

return P[1..pmax]

Considering that dmax needs to be ensured for the flow, the

reward related to the obtained delay can be defined as follows,

where β is a fixed penalty for violating the maximum delay.

Finally, the reward component for the routing cost is related

to the proportion of traffic sent through each of the routes, as

well as to the ratio of cost (cp) and capacity:

B. Flow provisioning

Let us start with the very first procedure that is executed at

flow provisioning time (Fig. 5). Upon the reception of a new

flow provisioning request (req), the SDN controller runs

Algorithm 1 to compute the set of allowable routes P.

Algorithm 1 receives: i) the current network state,

summarized in graph G(V,E), where V is the set of nodes and

E the set of links, and ii) the request including source s and

target t nodes, maximum traffic (xmax), delay to be

guaranteed (dmax), and maximum number of allowed routes

pmax. The algorithm first discards those links with residual

capacity below xmax (lines 1-3). Next, the k-shortest path

algorithm is used to compute k distinct routes on the resulting

graph Gaux (lines 4-8). The minimum expected delay dmin

(considering both transmission and minimum queuing and

processing delay) is computed and used to discard those

routes that cannot meet dmax. Finally, the remaining routes

are sorted by multiple criteria. In this way, the returned set of

routes includes those with expected high QoS, while

providing high diversity, so agents can choose among

 6

Sandbox domainDRL engine

Analyzer
model

Flow routing manager

SDN Control

model
2

1

<x(t), d(t), a(t), r(t)>
update(G)

4

3

1’

x(t), d(t)

Fig. 6. Flow operation under traffic uncertainty.

alternative options for near-real-time decision making. After

route computation, relevant parameters to each p∈P, such as

the routing cost and capacity are added, which are necessary

for autonomous flow routing operation. Note that the

complexity of Algorithm 1 is dominated by that of the k-SP

algorithm.

Next, the SDN controller initializes the flow routing agents,

which contain the following modules (Fig. 5): i) the DRL

engine as described in Section IV.A; ii) the sandbox domain,

that contains pre-trained models and provides support for

offline learning; and iii) the analyzer, in charge of evaluating

the performance of models in operation and triggering model

updating actions in case of poor performance. Once the flow

manager is instantiated, the workflow (in Roman numerals) in

Fig. 5 is executed. The topology G, the set of allowable routes

P computed by Algorithm 1, and QoS requirement dmax are

provided to the analyzer (labeled I in Fig. 5). Note that G also

contains the maximum traffic volume for the background

traffic that is expected for each packet link. Then, the analyzer

requests to the sandbox domain an initial model (II). Without

loss of generality, we assume that the initial model has been

pretrained offline, reproducing a network with the same

topology G and routes P as those requested. A generic input

traffic, e.g., a sinusoidal daily pattern with some random

variation [6], as well as constant background traffic according

to configured maxima in G are also assumed. Note that to

enable offline training, the specific traffic characteristics are

not well known at that time. Therefore, the selection of the

generic traffic must verify that pretrained models provide the

committed performance when they enter into operation.

Finally, the sandbox domain returns the initial model that will

be loaded in the DRL engine before operation (III).

C. Flow operation in single domain scenarios

Fig. 5 details also the workflow for autonomous flow

routing with delay requirements in a single domain scenario

(Arabic numerals in Fig. 5). At every time interval t, input

traffic x(t) and delay d(t) are collected from the source packet

node agent and fed into the DRL environment (1). Note that

x(t) can be directly measured at the source packet node,

whereas d(t) is computed at the destination and sent to the

source node agent. As previously introduced, the environment

block is in charge of computing the current state s(t) and

reward r(t) and sending them to the DRL agent (2), which is

in charge of both learning and decision-making (3). Action

vector a(t), with the fraction of traffic to be routed through

each of the routes in P, is forwarded to the packet node agent

(4). This agent is responsible of translating such proportions

d
el

ay

time

dmax
dhigh

dlow

offline operation

(a) Valid configuration

d
el

ay

time

dmax
dhigh

dlow

offline operation

(b) Background traffic underestimation

d
el

ay

time

dmax
dhigh

dlow

offline operation

(c) Background traffic overestimation

d95

d95

d95

Fig. 7. Detection of background traffic misconfiguration.

into suitable packet node routing configuration and of

configuring the routing tables.

D. Flow operation under traffic uncertainty

The pre-trained model that is loaded in the DRL engine in

the provisioning phase is smoothly improved online from the

decisions and actions performed during operation. However,

the uncertainty in the input and, more important, the

background traffic can lead to poor performance. For

instance, if the maximum background traffic is significantly

underestimated, large dmax violation can be produced, which

cannot be corrected by online learning. Then, in order to

overcome such issue, Fig. 6 details the proposed workflow

that runs in parallel to DRL operation and is intended to

improve autonomous operation under traffic uncertainty.

Let us consider that every time the DRL takes and evaluates

an action, it pushes tuple <x(t), d(t), a(t), r(t)> to the analyzer

(labeled 1 in Fig. 6). At the same time, the monitoring data

x(t) and d(t) are also fed to the sandbox domain to tune the

offline platform according to real traffic and performance

measurements. Then, the analyzer block evaluates the

performance of the current model and, if needed, requests the

sandbox domain to provide an update of the model with a

different configuration for the background traffic (2). The

offline trained model that better fits with the new scenario is

provided (3) and fed to the DRL engine (4).

The procedure of detecting poor performance due to

background traffic misconfiguration (and how to correct it) is

illustrated in Fig. 7. The figure shows three different cases of

operation that can happen from the same initially offline

trained model. Let us assume that the sandbox domain, once

the model is trained, can compute the delay range [dlow,

dhigh], for which 95%-percentile of delay (d95) is expected

to oscillate. Without loss of generality, we consider that d95

is computed every hour with the last 60 delay values measured

each minute. Note that the delay range is computed by

simulation as a result of autonomous routing actions and

 7

Sandbox domainDRL engine

Analyzer
model

Flow routing manager

model
3

update(dmax)

5

4

SDN Control D1 SDN Control D2

dmaxe2e

dmaxD1

dmaxD22
1

Fig. 8. Flow operation in multi-domain scenarios.

10

1

2

9

8

4

5

36

7

(a)

R6

R7

R8

R9

R10

R4

R5

R3

R2

R1

0

20

40

60

80

0 4 8 12 16 20 24

(b)

Hour of the day

p1p2

In
p

u
t

tr
a

ff
ic

 (
G

b
/s

)

Fig. 9. Network topology (a) and example of input traffic (b).

considering the aforementioned traffic assumptions, i.e.,

sinusoidal input traffic and constant maximum background

traffic. The behavior of d95 in the sandbox is illustrated in the

left part of every figure (labeled offline), which stays within

delay range, as expected.

Fig. 7a shows a case where the DRL model has a valid

performance during operation (right part of the figure). The

measured d95 stays within the range, although it fluctuates

more than that assumed during offline training (due to

differences between real and simulated traffic and network

state). Conversely, Fig. 7b shows a poor performance case

induced by underestimation of the real background traffic,

which produces large delay, thus violating dhigh. Note that,

although in the example dmax is still guaranteed (not shown

in the figure), it is identified as a poor performance case that

will trigger model update assuming an increase of background

traffic. Alternatively, Fig. 7c shows a case where the d95 stays

below dlow, which is considered as an initial overestimation

of background traffic. Here, new offline training with a

reduction of maximum background traffic will be triggered.

E. Flow operation in multi-domain scenarios

Finally, in order to adapt the proposed autonomous

operation to multi-domain scenarios, coordination between

domains is implemented to satisfy the e2e delay requirement.

Fig. 8 shows the workflow that implements such coordination.

For the sake of simplicity, we assume the scenario in Fig. 4,

where the flow under study crosses Domain 1 (D1) before

entering reference domain D2. Recall that dmaxe2e need to be

ensured and thus, autonomous operation in D2 needs to

guarantee such requirement, considering the delay in the

previous domain D1.

Then, once operation starts, the controller of D1

asynchronously notifies its maximum delay dmaxD1 to the

network controller of Domain 2 (labeled 1 in Fig. 8), which

computes the requirement for its domain segment as dmaxD2

= dmaxe2e – dmaxD1 (2). This value is pushed to the flow

routing manager, that will work to guarantee such updated

dmaxD2 requirement. In particular, the analyzer asks to the

sandbox domain for updating to the new dmax (3). The

sandbox evaluates whether the current model can properly

work with the new QoS requirement; otherwise, return a new

model (4) to be loaded into the DRL engine (5). Since the

sandbox stores monitored d(t) for a given history, it evaluates

whether past d(t) measurements are below new dmax. If so,

no model update is necessary; otherwise, a new model

specifically trained for such new dmax is loaded. Note that, in

both cases, continuous online learning will improve the model

by learning from its routing decisions.

V. RESULTS

In this section, we firstly present the simulation

environment used to validate the proposed methodology,

models, and algorithms. Then, numerical studies are

conducted to validate the proposed models and algorithms in

Section IV on: i) a simple scenario with no background traffic

in single domain networks; and ii) challenging scenarios

considering known and uncertain background traffic, as well

as multi-domain networks.

A. Simulation setup

For evaluation purposes, a Python-based simulator of the

control plane containing the modules in Fig. 5 was

implemented, which includes: i) a lightweight SDN

controller; ii) the flow routing manager; and iii) the packet

node agents. The flow routing manager includes a sandbox

domain containing a set of models for different dmax values

trained with a traffic profile following a sinusoidal average

daily pattern and random variations following a Gaussian

distribution. The data plane was accurately emulated using a

simulator based on CURSA-SQ [27] that reproduces realistic

traffic flow behavior. CURSA-SQ combines statistically-

based traffic flow generation and continuous G/G/1/k queue

model based on the logistic function; multiple queuing

systems can be numerically analyzed and related statistics can

be computed, including queuing delay and packet loss. The

accuracy of CURSA-SQ was assessed in [28], where delay

and packet loss were compared to those obtained using the

well-known NS-3 network simulator in complex scenarios.

Regarding DRL models, a general epsilon-decay strategy

was implemented in the TD3 method for balancing between

exploration and exploitation, with decay factor equal to

0.00125. Every DNN (actor and critic) consisted of two

hidden layers with 100 neurons each implementing the

rectified linear unit activation function. All DNNs were

trained with the Adam optimizer with learning rate equal to

0.001 in both actor/target actor and critics/target critics, and

maximum replay buffer equal to 106 samples. A discount

factor equal to 0.99 is used to balance between immediate and

future rewards. Finally, we set up smoothing factor equal to

0.005 for updating smoothly the actor/critic networks’ weight

with the target actor/critics networks’ weight.

 8

0

1

2

3

4

5

6

0

0.1

0.2

0.3

0.4

0.5

(0, 1) (1, 0) (1, 1)

Cost Maximum delay

params (αdelay, αcost)

M
a

xi
m

u
m

 d
e

la
y

[m
s]

C
o

st
[c

.u
.]

53%

dmax

0 4 8 12 16 20 24

a
(t

)
[%

]
D

e
la

y
[m

s]

Hour of the day

0

20

40

60

80

100

0

0.1

0.2

0.3

0.4

0 4 8 12 16 20 24 0 4 8 12 16 20 24

0
0.4

(a) (0, 1)

dmax

(b) (1, 0) (c) (1, 1)

p1
p2

Fig. 10. Overall delay performance under the

OPT routing cost scenario.

Fig. 11. Detailed performance for configuration (0,1) (a), (1,0) (b), and (1,1) (c) under the OPT routing cost

scenario.

100

200

300

400

500

0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5

Benchmark

RL

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.1 0.2 0.3 0.4 0.5

M
ax

. d
el

ay
 (

m
s)

A
ve

ra
ge

 C
o

st

dmax (ms)

(a) OPT (b) PROP

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.50.5 0.1

0.1
3

(c) ECMP

0.5 0.1

Fig. 12. Delay and cost under different dmax and routing cost scenarios.

Table 2 Route cost (cpi) for the selected scenarios

Route OPT PROP ECMP

p1 6 2 3

p2 1 3 3

In single domain scenarios, we consider the Spanish

Telefonica’s core network topology in Fig. 9a, where all the

interfaces are 100Gb/s. Upon the reception of a flow

provisioning request (req), the SDN controller executes

Algorithm 1 and obtains the set of allowable routes P. Once

the provisioning of the flow routing agent finishes, the flow

operation phase starts using the pre-trained offline model that

better fits with req parameters. Operation was simulated by

injecting realistic traffic according to the flow models used in

[6]. We assume that the following flow provisioning request:

<s=R1, t=R3, xmax=70Gb/s, dmax=0.15ms, pmax=2>. The

following set P of allowable routes is computed: {p1: <R1,

R2, R3>, p2:<R1, R4, R5, R3>} (see Fig. 9a), where

kp1=kp2=100 Gb/s, being the delay due to transmission and

processing 0.05ms and 0.1ms, for p1 and p2, respectively. Fig.

9b shows an example of traffic for the flow during a typical

day. For benchmarking purposes, the OSPF routing cost

scenarios presented in Table 2 are studied, where: i) links

weights are computed to the optimality (OPT) as a function of

the maximum traffic for each origin-destination pair in the

network; ii) links weights are inversely proportional to links

capacity, as in classical OSPF (PROP); and iii) links weights

have been changed so to both routes have the same cost

(ECMP). Note that the route that provides the best expected

QoS performance is p1 in all the scenarios.

B. Flow provisioning and operation performance

evaluation

We firstly focus on evaluating the performance of the

reward function detailed in eqs. (3)-(5). To this aim, we fix

β=12 and compare, under the OPT routing scenario, three

different optimization targets by defining different

configurations of the tuple (αdelay, αcost), namely: (0,1) (cost

minimization), (1,0) (delay assurance), and (1,1) (multi-

objective). Fig. 10 illustrates the overall performance after 5

days of online operation under all three configurations in

terms of maximum delay and average cost. In addition, Fig.

11 shows the detail of the traffic sent thought every route and

the delay along a typical day. It is worth highlighting that the

DRL engine learned a model producing stable and good-

rewarded actions for all the considered configurations.

We observe that the cost minimization configuration (0,1)

achieves the best solution in terms of cost, but at the expense

of largely violating dmax. Fig. 11a shows that traffic is fully

routed through the cheapest p2. On the opposite side, the

delay assurance configuration (1,0) finds a totally different

solution, i.e., maximum delay stays below dmax, while

remarkably increasing routing cost (Fig. 11b). This increment

is due to the use of the most expensive p1, while reducing the

traffic thought p2. Interestingly, the multi-objective

configuration (1,1) achieves the best overall performance,

since maximum delay is below dmax and cost is reduced up

to 53% to that of configuration (1,0) (Fig. 10). The detailed

results in Fig. 11c shows that the DRL engine learned to send

more traffic to p2 without dmax violation and consequently,

reducing costs. Therefore, we conclude that the proposed

DRL-based method is able to converge to different solutions

in order to achieve heterogeneous target optimization criteria.

In view of the results, we validate the multi-objective

configuration (1,1).

Assuming the multi-objective configuration (1,1), let us

now evaluate different scenarios for dmax, ranging from 0.3

to 1 ms. Fig. 12 shows the maximum delay and average cost

for several dmax and for the cost scenarios in Table 2. For

benchmarking purposes, we plot the performance of a method

consisting in assigning a posteriori the optimum proportion

of traffic a(t) sent to every route that achieves maximum delay

as close as possible to dmax with the minimum cost. Although

this method cannot be applied in real operation (since it

 9

0

20

40

60

80

100

0 4 8 12 16 20 24

0

20

40

60

80

100

0 4 8 12 16 20 24

0

20

40

60

80

100

0 4 8 12 16 20 24

0
0.1
0.2
0.3
0.4
0.5
0.6

0 4 8 12 16 20 24

0
0.1
0.2
0.3
0.4
0.5
0.6

0 4 8 12 16 20 24

a(
t)

 [%
]

D
el

ay
[m

s]

0
0.1
0.2
0.3
0.4
0.5
0.6

0 4 8 12 16 20 24

D
el

ay
[m

s]

Hour of the day
24 0 24 0

p1 (DRL)
p2 (DRL)
p1 (OSPF)
p2 (OSPF)

dmax

DRL
OSPF

(a) OPT (b) PROP (c) ECMP

Fig. 13. Comparison of DRL-based flow operation vs. OSPF routing under

different routing cost scenarios.

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0 4 8 12 16 20 24

0

20

40

60

80

100

a(
t)

 [%
]

(a) ∆=0 Gb/s

D
el

ay
[m

s]

p1
p2

0 4 8 12 16 20 24

(b) ∆=15 Gb/s

0 4 8 12 16 20 24

(c) ∆=-15 Gb/s

Hour of the day

dmax

24 0 24 0

Fig. 14. Performance in the presence of background flows for different ∆

configurations under the OPT routing cost scenario.

Table 3 Summary of DRL-based flow operation vs. OSPF routing.

Max. Delay

(ms)

% Time with

excessive delay
Avg. Cost

Scenario DRL OSPF DRL OSPF DRL OSPF

OPT 0.478 11.98 0 55.42 2.93 1

PROP 0.485 11.93 0 36.6 2.23 2

ECMP 0.488 0.551 0 8.89 3 3

assumes perfect knowledge of long-term traffic evolution), it

serves as reference for DRL performance evaluation

purposes. The results in Fig. 12 show that DRL operation

approaches optimum performance for low dmax

requirements, which anticipates outstanding performance for

those B5G/6G services targeting stringent QoS requirements.

C. Evaluation under known background traffic

Let us now evaluate the proposed DRL-based operation for

flow R1-R3 (Fig. 9a) under known background traffic. To that

end, on top of the previous traffic configuration, we added two

new flows: R2-R3 with xmax=50 Gb/s and R1-R4 with

xmax=35 Gb/s. Since the overall network load is higher and

delay tends to increase due to larger queued traffic in the

interfaces, we relaxed dmax from 0.15 to 0.5 ms for flow R1-

R3. Initial models trained with background traffic of the same

xmax magnitude were obtained from the sandbox. Moreover,

the expected delay variation range for the given background

configuration and dmax are: [dlow, dhigh] = [0.375, 0.45].

During flow operation, we assume that the background traffic

is constant and equal to xmax for both new flows.

We compare the flow operation of the proposed DRL-based

approach against using OSPF, under the three routing cost

scenarios defined in Table 2. Fig. 13 presents the obtained

performance, for the input traffic example in Fig. 9. Both the

routing actions a(t) and the measured delay d(t) are shown.

We observe that, as in the case with no background traffic

shown in Fig. 11c, the DRL agent at the source node balances

the traffic between p1 and p2 to guarantee dmax under all the

routing cost scenarios. However, OSPF routing constantly

routes packets over the shortest path(s), which translates into

flow delay exceeding dmax during long periods. Table 3

summarizes the obtained results, where we observe that OSPF

exceeds dmax during significant periods of time.

Interestingly, DRL-based operation, in addition to guarantee

dmax, is able to minimize average cost. Specifically, cost is

0.3

0.4

0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

dmax

dhigh

dlow

0%

20%

40%

60%

80%

100%

p1
p2

d
95

 [
m

s]

(a)

(b)

∆ [Gb/s]

100

80

60

40

20

0

M
ea

n
 a

(t
) [

%
]

Fig. 15. Routing actions and d95 performance.

close or the same that the one with OSPF for PROP and

ECMP scenarios, whereas under the OPT scenario, average

cost is higher than with OSPF. The reason behind this

performance is that the path that provides the best expected

QoS performance, i.e., p1, is the most expensive one by far.

D. Evaluation under background traffic uncertainty

The good performance of the previous results could be as a

result of having precise knowledge on background traffic

volumes. To study that, two alternative scenarios are

evaluated, where the difference between actual and expected

background traffic (hereafter referred as ∆) is not zero. For

this study, we assume traffic flow R1-R4 with xmax=20 Gb/s

and focus on the OPT routing cost scenario from now on. Fig.

14a shows the performance when xmax of the flows are

perfectly estimated (∆=0 Gb/s), Fig. 14b shows the

performance when xmax of flow R2-R3 is underestimated 15

Gb/s (∆=-15 Gb/s), while Fig. 14c shows the performance

when xmax of flow R1-R4 is overestimated 15 Gb/s (∆=15

Gb/s). In light of the results, we conclude that DRL-based

flow operation perfectly adapts to both cases, managing the

routing of the flow accordingly to guarantee dmax with

reduced routing cost.

Fig. 15 summarizes the impact of ∆ in terms of mean route

usage and d95, where range [dlow, dhigh] is highlighted in

green. It can be confirmed that routing tends to use cheap path

p2 when overall network load decreases and dmax can be

easily accomplished. When ∆>15 Gb/s, d95 goes below dlow

and consequently, a new model with lower background traffic

should be loaded for operation (although dmax is largely

guaranteed). On the opposite, when ∆<-20 Gb/s, d95 exceeds

dhigh, which will trigger loading a model trained with larger

 10

0

1

2

3

4

5

0

0.25

0.5

0.75

t0 t1 t2 t3
0

1

2

3

4

5

0

0.25

0.5

0.75

t0 t1 t2 t3

0

1

2

3

4

5

0

0.25

0.5

0.75

t0 t1 t2 t3

0

1

2

3

4

5

0

0.25

0.5

0.75

t0 t1 t2 t3

cost

maximum delay

R
o

u
ti

n
g

co
st

 [
c.

u
.]

D
e

la
y

[m
s]

t0: Traffic flow set up t1: Model w/ stable perf.
t2: D1 delay update t3: Model improved

Time instant

(a) dmaxD2 0.5->0.75 ms (b) dmaxD2 0.25->0.75 ms (c) dmaxD2 0.75->0.5 ms (d) dmaxD2 0.75->0.25 ms

Fig. 16 Performance evaluation in multi-domain scenarios with time-varying background traffic.

background traffic. Therefore, we conclude that the initial

model is operative in a large range of background traffic

estimation error. This is a very relevant result because it shows

that only a prior approximate (not very accurate) knowledge of

background traffic is enough to guarantee high performance of

the DRL-based operation.

E. Evaluation in multi-domain scenarios

Last but not least, we focus on multi-domain scenarios and

consider the scenario in Fig. 4. Specifically, we focus on the

actions carried out in domain D2, which topology is assumed

to be that of Fig. 9a; now, flow R1-R3 is the segment in D2 of

e2e flow R1.A-R2.Z, where R2.B in Fig. 4 is R1 and R2.Z is

R3. Let us consider dmaxe2e=1ms.

As in the previous subsection, two background traffic flows

R2-R3 and R1-R4 with xmax equal to 50 Gb/s and 20 Gb/s,

respectively, are established in domain D2. However, to make

the scenario more realistic and challenging, in this subsection,

we assume that background traffic is not constant in time, but

it fluctuates following a time-varying sinusoidal daily pattern.

Therefore, the objective of this performance evaluation is two-

fold: i) to evaluate the workflow for multi-domain scenarios

proposed in Section IV.E; and ii) to analyze the impact of time-

varying background traffic flows.

Aiming at evaluating the aforementioned objective, we

conducted simulations in the following way. First, and

similarly to previous sections, the new flow segment R1-R3

was set up in D2 at time t0 and a pre-trained initial model

assuming constant background traffic and a given dmaxD2 was

used for operation. This model is continuously improved

through online learning; note that it now needs to learn the

actual characteristics of the input traffic and those of the time-

varying background traffic. After some time in operation, at

time t1 the model reaches a stable performance that cannot be

significantly further improved. Then, at time t2, the D2 SDN

controller receives an asynchronous notification from D1 SDN

controller updating dmaxD1, which in turn triggers updating

dmaxD2 and consequently, the proposed analysis and model

update procedure is carried out. Then, operation continues with

the new dmaxD2. Because of the changes, online learning might

improve the model in operation, which will reach performance

stability at time t3.

Fig. 16 summarizes the main results of the simulations in

terms of routing cost and delay measured at every of the

abovementioned time instants. Specifically, Fig. 16a and Fig.

16b show two cases, where dmaxD2 is relaxed (from 0.5 to

0.75ms and from 0.25 to 0.75ms, respectively), whereas in Fig.

16c and Fig. 16d dmaxD2 becomes more stringent (from 0.75

to 0.5 and from 0.75 to 0.25, respectively).

We observe that online learning improves initial pre-trained

models even in the presence of time-varying background

traffic, since routing cost is reduced in all the cases from t0 to

t1, while dmaxD2 is guaranteed in the whole period [t0, t1]. In

case of Fig. 16a and Fig. 16b, there was no change in the model

in time t2 because of dmaxD2 relaxation and hence,

performance in t2 equals that of t1. However, a new model was

loaded when dmaxD2 was reduced in time t2, and which

reduced maximum delay to guarantee the desired QoS

performance from t2 on, as observed in Fig. 16c and Fig. 16d.

Finally, note that regardless the case, the model was improved

after dmaxD2 update, by increasing maximum delay and/or

reducing routing cost.

In view of these results, we can definitely validate the

proposed methodology for DRL-based operation in the

presence of time-varying background traffic flows and in

multi-domain scenarios.

VI. CONCLUDING REMARKS

Distributed near real-time autonomous flow routing with

QoS assurance has been proposed. The solution is based on

multiple agents that are able to make decisions in a

collaborative way. At provisioning time, the SDN controller

provides the agents with a set or paths that can be used for

routing the traffic flow, so the agents can make routing

decisions using only those paths. Agents include a robust DRL

engine to learn from the flow routing decisions with the

objective to minimize routing costs while ensuring the

committed QoS in terms of e2e delay. DRL management

lifecycle was considered, where models are continuously

improved for taking robust actions from the beginning of flow

operation.

The performance of the proposed DRL-based solution has

been shown under several challenging scenarios. First of all,

three different optimization targets were studied, i.e., cost

minimization, delay assurance, and multi-objective, under the

assumption of constant and known background traffic. The

results showed that the multi-objective option was able to

assure e2e delay and minimize flow routing costs, reducing

them by 53% with respect to just considering delay assurance.

 11

Results illustrated how the different options made near real-

time routing decisions on which proportion of traffic should be

routing through each available path. Different delay

configurations and cost scenarios were also studied, showing

that the proposed solution achieves performance closed to the

optimal one.

For benchmarking purposes, the proposed DRL-based

routing was compared against OSPF for three cost scenarios.

The results showed DRL-based flow operation achieves target

QoS with minimum cost in contrast to OSPF, which is unable

to guarantee reliable and consistent flow QoS performance.

Next, evaluation of the solution under background traffic

uncertainty was carried out, where that traffic was constant and

variable with time. The impact of background traffic

estimation was analyzed and concluded that the DRL model in

operation provided good performance on a large range of

background traffic volumes over a nominal one, e.g., [-20, 15]

Gb/s. This fact validates the adopted DRL management

lifecycle, since it enables pre-training different DRL models in

a sandbox domain for a small set of nominal background traffic

volumes, while reducing the amount of model changes.

Finally, the performance of our solution was evaluated in

multi-domain scenarios, where the delay to be ensured in a

domain can change as a result of the traffic conditions and the

operation in other domains. In this case, model selection

demonstrated to adapt agents’ operation in the event of a

change in the delay to be ensured in the current domain. In

addition, online learning was shown to improve even further

the performance of the model in operation.

REFERENCES

[1] Beyond 5G/6G KPIs and Target Values [white paper], 5GPPP,

v1, 2022.

[2] D. Rafique and L. Velasco, “Machine Learning for Optical

Network Automation: Overview, Architecture and

Applications,” J. of Optical Communications and Networking,

vol. 10, pp. D126-D143, 2018.

[3] L. Velasco, A. Chiadò Piat, O. González, A. Lord, A. Napoli, P.

Layec, D. Rafique, A. D'Errico, D. King, M. Ruiz, F. Cugini, and

R. Casellas, “Monitoring and Data Analytics for Optical

Networking: Benefits, Architectures, and Use Cases,” Network

Magazine, vol. 33, pp. 100-108, 2019.

[4] R. Sutton and A. Barto, “Reinforcement Learning: An

Introduction,” MIT Press, Cambridge, UK, 2nd ed., 2020.

[5] V. Francois-Lavet, P. Henderson, R. Islam, M. Bellemare, J.

Pineau, “An Introduction to Deep Reinforcement Learning,”

Foundations and Trends in ML, vol. 11, pp. 219-354, 2018.

[6] S. Barzegar, M. Ruiz, and L. Velasco, “Packet Flow Capacity

Autonomous Operation based on Reinforcement Learning,”

MDPI Sensors, vol. 21, pp. 8306, 2021.

[7] L. Velasco, S. Barzegar, D. Sequeira, A. Ferrari, N. Costa, V.

Curri, J. Pedro, A. Napoli, and M. Ruiz, “Autonomous and

Energy Efficient Lightpath Operation based on Digital

Subcarrier Multiplexing,” J. on Selected Areas in

Communications, vol. 39, pp. 2864-2877, 2021.

[8] S. Barzegar, M. Ruiz, and L. Velasco, “Distributed and

Autonomous Flow Routing Based on Deep Reinforcement

Learning,” in Proc. Int. Conference on Photonics in Switching

and Computing (PSC), 2022.

[9] M. Wooldridge, An introduction to multiagent systems, John

Wiley & Sons, 2009.

[10] J. Moy, “OSPF version 2,” The Internet Engineering Task Force,

Request for Comments 2328, 1998.

[11] B. Fortz and M. Thorup, “Internet traffic engineering by

optimizing OSPF weights,” in Proc. IEEE INFOCOM, vol. 2, pp.

519–528, 2000.

[12] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning

to Route,” in Proc. of ACM Workshop on Hot Topics in

Networks, 2017.

[13] P. Almasan, J. Suarez-Varela, B. Wu, S. Xiao, P. Barlet-Ros and

A. Cabellos-Aparicio, “Towards Real-Time Routing

Optimization with Deep Reinforcement Learning: Open

Challenges,” in Proc. Int. Conference on High Performance

Switching and Routing, 2021.

[14] G. Bernardez J. Suarez-Varela, A. Lopez, X. Shi, S. Xiao, X.

Cheng, P. Barlet, and A. Cabellos, “Multi-Agent System for

Traffic Engineering,” IEEE Transactions on Cognitive

Communications and Networking, vol. 9, 2023.

[15] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, J.

Arco, “A survey on machine learning techniques for routing

optimization in SDN,” IEEE Access, vol. 9, pp. 104582-104611,

2021.

[16] O. Pedrola, A. Castro, L. Velasco, M. Ruiz, J. Fernández-

Palacios, D. Careglio, “CAPEX study for Multilayer IP/MPLS

over Flexgrid Optical Network,” J of Optical Communications

and Networking, vol. 4, pp. 639-650, 2012.

[17] Y. Chen, A. Rezapour, W. Tzeng and S. Tsai, “RL-Routing: An

SDN Routing Algorithm Based on Deep Reinforcement

Learning,” Transactions on Network Science and Engineering,

vol. 7, pp. 3185-3199, 2020.

[18] O. Fares, A. Dandoush, and N. Aitsaadi, “OPR: SDN-based

Optimal Path Routing within Transit Autonomous System

Networks,” in proc. IEEE International Conference on

Communications, pp. 1058-1063, 2022.

[19] S. Lin, I. Akyildiz, P. Wang and M. Luo, “QoS-Aware Adaptive

Routing in Multi-layer Hierarchical Software Defined Networks:

A Reinforcement Learning Approach,” in proc. of Int. Conf. on

Services Computing (SCC), 2016.

[20] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, C. Paasch

(Eds), “TCP Extensions for Multipath Operation with Multiple

Addresses,” IETF RFC 8684, 2020.

[21] S. Lee and J. Yoo, “Reinforcement Learning Based Multipath

QUIC Scheduler for Multimedia Streaming,” Sensors, vol. 22,

pp. 6333, 2022.

[22] A. Mellouk and S. Hoceini, “Reinforcing State-Dependent N

Best Quality of Service Routes in Communication Networks,” in

Proc. Workshop on High Performance Switching and Routing,

2007.

[23] H. An, Y. Ji, N. Zhang, W. Hu, P. Yu and Y. Wang,

“Dynamically Split the Traffic in Software Defined Network

Based on Deep Reinforcement Learning,” in proc. Int. Wireless

Communications and Mobile Computing, 2020.

[24] J. Rischke, P. Sossalla, H. Salah, F. Fitzek and M. Reisslein,

“QR-SDN: Towards Reinforcement Learning States, Actions,

and Rewards for Direct Flow Routing in Software-Defined

Networks,” IEEE Access, vol. 8, pp. 174773-174791, 2020.

[25] J. Zhang, M. Ye, Z. Guo, C. Yen and H. Chao, “CFR-RL: Traffic

Engineering with Reinforcement Learning in SDN,” in J. on Sel.

Areas in Communications, vol. 38, pp. 2249-2259, 2020.

[26] S. Barzegar, M. Ruiz, A. Sgambelluri, F. Cugini, A. Napoli, and

L. Velasco, “Soft-Failure Detection, Localization, Identification,

 12

and Severity Prediction by Estimating QoT Model Input

Parameters,” Transactions on Network and Service

Management, vol. 18, pp. 2627-2640, 2021.

[27] M. Ruiz, F. Coltraro, and L. Velasco, “CURSA-SQ: A

Methodology for Service-Centric Traffic Flow Analysis,” J of

Optical Communications and Networking, vol. 10, pp. 773-784,

2018.

[28] A. Bernal, M. Richart, M. Ruiz, A. Castro, and L. Velasco, “Near

Real-Time Estimation of End-to-End Performance in Converged

Fixed-Mobile Networks,” Elsevier Computer Communications,

vol. 150, pp. 393-404, 2020.

