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Abstract—The deployment of beyond 5G and 6G network 

infrastructures will enable highly dynamic services requiring 

stringent Quality of Service (QoS). Supporting such 

combinations in today’s transport networks will require high 

flexibility and automation to operate near real-time and reduce 

overprovisioning. Many solutions for autonomous network 

operation based on Machine Learning require a global network 

view, and thus need to be deployed at the Software-Defined 

Networking (SDN) controller. In consequence, these solutions 

require implementing control loops, where algorithms running 

in the controller use telemetry measurements collected at the 

data plane to make decisions that need to be applied at the data 

plane. Such control loops fit well for provisioning and failure 

management purposes, but not for near real-time operation 

because of their long response times. In this paper, we propose a 

distributed approach for autonomous near-real-time flow 

routing with QoS assurance. Our solution brings intelligence 

closer to the data plane to reduce response times; it is based on 

the combined application of Deep Reinforcement Learning 

(DRL) and Multi-Agent Systems (MAS) to create a distributed 

collaborative network control plane. Node agents ensure QoS of 

traffic flows, specifically end-to-end delay, while minimizing 

routing costs by making distributed routing decisions. 

Algorithms in the centralized network controller provide the 

agents with the set of routes that can be used for each traffic flow 

and give freedom to the agents to use them during operation. 

Results show that the proposed solution is able to ensure end-to-

end delay under the desired maximum and greatly reduce 

routing costs. This performance is achieved in dynamic scenarios 

without previous knowledge of the traffic profile or the 

background traffic, for single domain and multidomain 

networks. 
 

Index Terms—Quality of Service Assurance, Flow Routing, 

Network Automation, Near-real-time control, Deep 

Reinforcement Learning, Multi-Agent Systems. 

I. INTRODUCTION 
 

RANSPORT networks need to be redesigned to support 

the expected large traffic dynamicity and stringent 

performance of beyond 5G (B5G) and 6G services. Such 

support requires increased levels of flexibility and 

automation, together with higher priority given to network 

optimization and cost efficiency [1]. As a result, solutions for 

autonomous network operation based on the application of 

Artificial Intelligence (AI) / Machine Learning (ML) have 
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been proposed in the last years (see, e.g., [2]) to implement 

data-driven closed control loops. Such solutions running in a 

centralized element, have the potential to greatly reduce 

operational costs by minimizing human intervention. Because 

of its global view, current network architectures rely on the 

Software Defined Networking (SDN) controller as the ideal 

component where decision making should be carried out, 

being this approach beneficial for many applications, like 

service provisioning, failure management, etc. In 

consequence, SDN control is being augmented with 

instantaneous data-driven decision-making [3]. 

However, precisely because of its centralized location, 

(near) real-time decision making does not fit well with SDN 

controllers. In particular, in the case that automation needs to 

deal with highly dynamic traffic conditions, centralized 

decision-making leads to poor resource utilization because of 

long response times. In this work, we focus on flow routing, 

where decisions need to be made near real-time to optimize 

resource utilization while ensuring the Quality of Service 

(QoS) of the flows. Note that traffic variations might create 

bottlenecks that impact on the end-to-end (e2e) delay, defined 

as the time required for transmitting flow traffic between the 

two border packet nodes. 

To minimize response time, as well as the amount of data 

to be conveyed from collection points to decision-making 

elements, AI/ML algorithms might be executed as close as 

possible to the data sources (contrarily to the centralized 

architecture of SDN). A possible solution is to use (Deep (D)) 

Reinforcement Learning (RL) [4], [5]. (D)RL has been 

proposed for solving problems that require real-time decision 

making, like the management of the capacity of packet links 

[6] or that of optical connections [7]. 

In our previous work [8], we proposed a distributed 

autonomous inter-domain flow routing based on DRL running 

in the packet nodes, following the concept of Multi-Agent 

Systems (MAS) [9]. MAS is a subfield of AI and it can be 

defined as a set of individual agents that share knowledge and 

communicate with each other in order to solve a problem that 

is beyond the scope of a single agent. In the scope of 

networking, we proposed that agent nodes make autonomous 

decisions near-real-time based on guidelines received from 

the SDN controller, thus liberating the SDN controller from 

near-real-time operations. That system autonomously routes 
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packet flows entering in the node considering the measured 

e2e delay, but without previous knowledge of traffic 

characteristics because of its ability to learn. 

The rest of the paper is organized as follows. Section II 

reviews the state of the art and summarizes the contributions 

of our work. Section III sketches the main concepts and 

challenging scenarios of the proposed DRL-based flow 

routing operation. Section IV details the flow routing agent, 

including the formal definition of the DRL engine, as well as 

the algorithms and procedures involved during provisioning 

and operation under the considered scenarios. Section V 

presents numerical results obtained by simulation to validate 

the aforementioned contributions. Finally, Section VI draws 

the main conclusions. 

II. RELATED WORK AND CONTRIBUTIONS 

The Open Shortest Path First (OSPF) protocol has been 

commonly used for intra-domain routing. Under OSPF, 

packets are routed through one or multiple equal-cost shortest 

paths (ECMP) to the destination, computed based on links 

weights that are set inversely proportional to links capacity 

[10]. Although OSPF works well for optimal general routing, 

links weights are static, so OSPF cannot avoid congestion 

during peak traffic under dynamic traffic scenarios. Many 

works have proposed solutions for Traffic Engineering (TE) 

that optimize link weights for minimizing network 

congestion, e.g., based on heuristics, as in [11]. Targeting at 

significantly lower execution times, which is of paramount 

importance in the case of highly dynamic traffic scenarios, 

other works have proposed ML techniques for TE 

optimization, like [12] and [13], where the use of DRL was 

proposed, and [14] that leverages MAS for distributed TE 

optimization. Multiprotocol Label Switching (MPLS) is 

another routing technology that can be combined with TE for 

traffic steering [16]. 

In the packet network, SDN provides a centralized flow 

control and can guarantee per-flow performance. SDN defines 

flow rules in the packet nodes that are applied to the incoming 

packets. Many approaches for flow routing in the centralized 

SDN controller can be found in the literature (see the survey 

in [15]). E.g., the authors in [17] proposed a RL-based routing 

algorithm for TE running on top of the SDN controller 

considering throughput and delay. In addition, the SDN 

approach can be used for developing solutions to ensure per-

flow performance, as in [18], where the authors focused on 

guaranteeing per-flow throughput and packet loss. Finally, 

regarding routing in multi-domain scenarios, the authors in 

[19] proposed a RL-based QoS-aware adaptive routing that 

works on top of a hierarchy of network controllers. 

Looking at B5G/6G networks, they are foreseen to be not 

only very dynamic, but also services will require stringent 

performance. A specific technique that can be implemented to 

facilitate meeting target performance of traffic flows is 

multipath, which can be realized by the end hosts at the 

Transmission Control Protocol (TCP) level, where several 

sub-flows are established to provide better resource utilization 

and increased throughput [20]. Intelligent schedulers assign 

packets to sub-flows based on the measured round-trip-time 

and throughput of each path (see e.g., the work in [21] based 

on DRL). Such strategy has been also explored for traffic 

flows. For instance, the authors in [22] proposed a RL-based 

for packet routing to optimize path cost and e2e delay, 

assuming a global view of the network and traffic matrix to 

decide global routing strategies. A load balancing policy was 

defined to characterize the distribution of the traffic over the 

best n paths. Some other works have targeted at controlling 

the traffic split ratio to multiple paths on top of the SDN 

controller (see, e.g., [23] and [24]). However, routing large 

flows over several paths might create packet out of order 

problems. To mitigate such negative impact, the authors in 

[25] proposed a RL-based scheme that routes the majority of 

the traffic flows using ECMP, selects some critical flows from 

the traffic matrix and reroute them using SDN to balance link 

utilization. 

Our approach is also based on the use of several paths to 

ensure per-flow QoS (specifically e2e delay) and assume the 

flows to be splitable, i.e., they consist of a large number of 

sub-flows, which can be routed independently. However, our 

proposal -also based on SDN- makes decisions in a distributed 

manner, which has benefits under highly dynamic scenarios 

where near-real-time routing decisions need to be made. Node 

agents make routing decisions based on the measured QoS of 

the paths that have been computed by the SDN controller. 

Specifically, in this paper, we extend our initial work in [8] 

and propose a comprehensive solution for near real-time 

DRL-based flow routing built on the principles of MAS 

operation. Two phases are considered: i) during flow 

provisioning phase, the SDN controller decides which routes 

(including the case where a single one is computed) can be 

used for the traffic of the flow and gives degrees of freedom 

to the agents to use one or a combination of them at any given 

time. Then, the flow rules enforcing those routes are installed 

in the involved nodes, so the packet node can forward any 

incoming packet that matches the rule. The source node 

receives also the performance required for the flow, e.g., the 

maximum e2e delay; and ii) during the flow operation phase, 

the agent at the source node decides dynamically the 

proportion of traffic of the flow that is sent through each of 

the interfaces that belong to the routes received from the SDN 

controller, targeting at meeting the target performance. Note 

that any other intermediate node will apply the rules already 

installed to the incoming packets. The agent at the source node 

changes the traffic proportion after receiving measurements 

of the achieved performance without further iterations with 

the SDN controller. In the case where the agent cannot meet 

the target performance, it will issue a notification to the SDN 

controller, so the latter can change the set of routes to be used 

for routing the traffic of the flow. As a result, the proposed 

architecture will relieve the SDN control plane from near real 

time operation and now focus on those activities that require 

long-term analysis and/or are hard to implement distributedly, 

like failure management [26]. Specifically, if the SDN 

controller needs to reconfigure the network, it can change the 

set of routes that can be used for every flow. 
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A key novel contribution of this paper is the design and 

evaluation of the DRL-based flow routing agent, responsible 

of managing the routing of a target flow. From the lessons 

learnt in [6], a number of modules and workflows are 

presented to allow efficient and robust DRL-based routing 

immediately after the flow is provisioned and operation starts. 

Note that the DRL engine is able to learn and improve actions 

as soon as it gets experience from operation. In this regard, 

the designed flow routing agent is able to learn not only how 

to better adapt flow routing to traffic changes but also, to 

understand how network state impacts on the QoS assurance 

of that flow. In particular, we propose solutions to deal with 

the presence of background traffic competing with the target 

flow for common capacity resources. We demonstrate that 

such learning works effectively without any measurement of 

the background traffic, even though it changes over time. 

Finally, we face multi-domain scenarios, where domains 

coordinate to assure the maximum e2e delay by ensuring per-

domain delay budgets. Due to congestion in one or more 

domains, the delay budget in others might need to be reduced 

to achieve the target e2e delay. Therefore, the proposed DRL-

based flow routing agent is designed to adapt to sudden and 

asynchronous changes in the delay requirement for the 

domain, while keeping robustness of operation. Inter-domain 

interfaces are proposed for the domains to share delay budgets 

among them. 

III. DISTRIBUTED NETWORK INTELLIGENCE FOR 

AUTONOMOUS FLOW ROUTING 

In this section, we first present the high-level architecture 

of the proposed solution for autonomous flow routing with 

QoS (delay) requirements. The delay experienced by a given 

traffic flow depends on the actual traffic volume not only of 

that traffic flow, but also of the other flows that use common 

packet links. Two cases are analyzed considering single 

domain and multi-domain scenarios. 

Let us first focus on the single domain. In a pure SDN-

based approach, packets in a flow follow the route computed 

by the SDN controller. Route selection can be performed at 

flow provisioning time based on the network topology and 

current network conditions. Let us assume that the SDN 

controller computes a set of allowable routes at packet flow 

provisioning time. Each route needs to meet the required 

maximum e2e delay (dmaxe2e) considering only static delay 

components, such as transmission and processing delay, as 

well as some traffic volume for that flow and other flows 

currently established in the network. A possible routing policy 

would be to use the route with the minimum delay for the 

packet flow. Once a route is selected, it does not usually 

change until some event occurs. This process requires high 

overprovisioning, i.e., poor resource utilization, since route 

selection needs to be performed considering the maximum 

traffic volume for the packet flows. Otherwise, if volumes 

exceed the value considered at provisioning time, such policy 

might result in high delay coming from the time that every 

packet has to spend in the queues in the packet nodes 

(queueing delay). Hence, reducing overprovisioning while 

guaranteeing that actual e2e delay (de2e) for the packet flows 

do not exceed dmaxe2e is a difficult task under dynamic traffic, 

since every output interface in the packet nodes operates at a 

different load. 

To deal with this, we propose the distributed intelligence 

architecture sketched in Fig. 1, where a single node and the 

centralized SDN controller are represented. Note that in such 

architecture, we are moving the intelligence from the 

centralized SDN controller to the nodes, thus resulting in a 

hybrid centralized SDN control with distributed network 

intelligence: i) coordination among agents is achieved by 

letting them to communicate with other agents at remote 

nodes to exchange observed data and/or models; ii) decision-

making is performed by every individual agent near real- time 

(sub-second to few second granularity) based on its own 

observed data, as well as on the data and models received 

from other agents; and iii) the SDN controller plane is 

responsible for the general coordination of the network, being 

in charge of generating the needed guidelines for the agents 

while leaving the desired degree of freedom for their 

autonomous operation. It is worth noting that this distributed 

architecture is aligned with current trends on monitoring and 

data analytics architectures for autonomous networking [3]. 

Fig. 2 represents an example of flow routing operation in a 

packet node. The packet node agent has received from the  
 

Node Agent

Guidelines
and Policies

In
te

lli
ge

n
ce

Observed data
and/or models

Control of degree of 
freedom

Multi-agent  
Coordination

SDN Control

Service Agent

Fo
rw

ar
d

in
g

P
la

n
e

Observed data
and/or models

Intelligence

 
Fig. 1. Proposed distributed intelligence. 
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Fig. 2. Example of distributed flow routing based on DRL. 
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Fig. 3. Example of operation under uncertain background traffic. 
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Fig. 4. Example of operation under varying dmax in multi-domain scenarios. 

 

SDN controller the required QoS and two possible routes with 

different utilization cost for a given traffic flow and it has to 

decide which route or combination of them allow to reach the 

committed QoS performance (i.e., do not exceed dmaxe2e), 

while minimizing some cost function. As represented in Fig. 

2, we assume DRL to implement a service agent for the traffic 

flow. The DRL agent consists of two inter-related blocks: i) 

the learning agent is in charge of learning the best actions to 

be taken based on the current state and the received reward; 

and ii) the environment that is in charge of computing the state 

based on the observed traffic and current combination of 

routes (proportions), as well as the obtained reward based on 

the measured e2e delay for the selected routes. Without loss 

of generality, we assume that the DRL agent operates under 

the life-cycle presented in [6], where models are pre-trained 

offline with generic data and refined during online learning, 

thus achieving both decision-making robustness and high 

performance from the beginning of flow operation. In Fig. 2, 

the traffic of the flow is routed through the two different 

output interfaces, and thus the flow follows different routes. 

Here, we assume that the traffic flow actually consists of 

multiple sub-flows, which are routed independently so the 

packets belonging to each sub-flow follow the same route. In 

the destination, the e2e delay is measured (e.g., using in-band 

telemetry) and some statistics are computed (e.g., maximum 

and weighted average) and sent to the node agents 

participating in the routing of the flow.  

It is worth mentioning that, in this example, the intelligence 

requirements of the node agent are simple if only the traffic 

volume of the flow varies with time. Such variation (e.g., 

typical daily patterns) can be modelled and consequently, 

predicted with sufficient accuracy. However, let us now 

present some challenging scenarios where learning is needed 

due to the variation of the traffic flow under-control and the 

network dynamicity. 

In the first scenario, we deal with changing traffic 

conditions of other packet flows using some of the links in the 

set of routes for the traffic flow under control. To illustrate 

this, Fig. 3 shows an example in a simple network with five 

packet nodes, where three packet flows are depicted: R1-R3, 

R1-R4, and R2-R3. Inner graphs in Fig. 3 illustrate possible 

traffic variation with time for packet flows R1-R4 and R2-R3. 

Let us assume that R1 has received from the SDN controller 

two possible routes for flow R1-R3, i.e., R1-R2-R3, with two 

hops, and R1-R4-R5-R3, with three hops. Initially, the 

shortest route can be selected and 100% of the traffic in the 

flow arriving in R1 is routed to R3 through the link R1-R2. 

Let us imagine that with such configuration R1 receives e2e 

delay measurements from R3 for flow R1-R3 which are under 

the given maximum for that flow. At some point in time, flow 

R2-R3 is established and the e2e delay of flow R1-R3 exceeds 

the maximum, so R1 needs to route part of the traffic of the 

flow through the second route that has a higher utilization 

cost, i.e., through R4. In this way, the traffic through the first 

route will reduce, which could result in reducing e2e delay. 

Later, traffic variation in the flows can result in delay 

variations, which will cause R1 to make new routing 

decisions, either to reduce delay or to minimize cost. 

The second challenging scenario is in multi-domain 

networks, where a packet flow traverses two different 

administrative domains. Examples, include access networks 

(fixed or mobile) and metro/core networks. Although the e2e 

traffic flow consists of two segments, one in each domain, 

dmaxe2e needs to be ensured. Even when each domain works 

under low to moderate load regime, delay fluctuations are 

produced as a result of traffic variations, which makes load 

also variable in time. In this case, the SDN controllers of each 

domain have received the required dmaxe2e for the traffic flow 

at provisioning time. It is worth noting that if both domains 

operate without any coordination among them, large capacity 

overprovisioning is required to absorb delay variations 

introduced not only by the own domain, but also by the other 

domains traversed by the flow. In view of that, we assume 

some sort of coordination among domains. An example is 

represented in Fig. 4. The SDN controller of domain 1 

dynamically gets the delay that can be ensured for the segment 

of the flow (dmaxD1) and share that value with the SDN 

controller of domain 2. In response, the SDN controller tunes 

the requirement of delay for the local segment (dmaxD2) so 

dmaxe2e is ensured. We expect that overprovisioning can be 

greatly reduced and e2e delay guaranteed by adjusting domain 

delay budgets dynamically. 

IV. DRL-BASED FLOW OPERATION 

In this section, we first formally describe the DRL engine 

behind autonomous flow routing. Next, we detail the 

procedures for the flow provisioning phase and the 

subsequent near real-time flow operation in single domain 

scenarios. Finally, extensions to deal with uncertainty of 

background traffic, as well as for multi-domain operation are 

presented. Table 1 summarizes the notation used in the rest of 

the paper. 



 5 

Table 1 Notation 

x(t) input traffic at time t. 

d(t) e2e delay measured at time t. 

s(t) state at time t. 

P Set of available routes for the flow. 

kp Capacity of route p. 

cp Cost of route p. 

yp(t) Traffic routed through route p at time t. 

ap(t) fraction of traffic to be routed through route p at time t. 

r(t) reward at time t. 

rdelay(t) reward component for the obtained delay at time t. 

rcost(t) reward component for the routing cost at time t. 

αdelay, 

αcost 

weights for the rewards in the multi-objective reward 

function. 

β fixed penalty for violating the maximum delay. 

dmax maximum delay to be ensured for the flow. 

xmax maximum traffic of the flow. 

xmax maximum number of routes for the flow. 

G(V,E) graph with the current network state, where V is the set 

of nodes and E the set of links connecting two nodes. 

A. DRL engine 

From the lessons learned from our previous work in [4], we 

selected Twin Delayed Deep Deterministic Policy Gradients 

(TD3) [5], among different DRL techniques. TD3 is an off-

policy DRL algorithm that uses a pair of critic Deep Neural 

Networks (DNN) and an actor DNN that is updated with some 

delay. Hereafter, we refer to the set of critic and actor DNNs 

that run inside the DRL engine as model. The model is in 

charge of dynamically and autonomously deciding which 

fraction of traffic is routed through each of the allowable 

routes P that can support the flow. 

During near-real-time operation, flow routing agents 

compute the state, the reward, and the actions periodically 

(e.g., 1 sec.). Let x(t) be the input traffic and d(t) be the e2e 

delay, measured at time t. State s(t)∈ℝ+ is defined as the input 

traffic scaled by the average capacity of the available routes 

P, where (kp) is the capacity of route p∈P. 

𝑠(𝑡) = 𝑥(𝑡) ·
∑ 𝑘𝑝𝑝∈𝑃

|𝑃|
 (1) 

Each action a(t)∈[0,1]|P| is a |P|-dimensional vector, where 

every component specifies the fraction of input traffic to be 

routed through route p. Then, let yp(t) be the traffic routed 

through p, i.e.: 

𝑦𝑝(𝑡) = 𝑎𝑝(𝑡) · 𝑥(𝑡) (2) 

The reward function r(t) should penalize those actions that 

resulted into poor QoS or increased network cost. In 

consequence, a multi-objective reward function with two 

reward components has been considered to account for the 

obtained delay (rdelay) and for the routing cost (rcost), being 

αdelay and αcost the weight of each component: 

𝑟(𝑡) = 𝛼𝑑𝑒𝑙𝑎𝑦 ∙ 𝑟𝑑𝑒𝑙𝑎𝑦(𝑡) + 𝛼𝑐𝑜𝑠𝑡 ∙ 𝑟𝑐𝑜𝑠𝑡(𝑡) (3) 

𝑟𝑑𝑒𝑙𝑎𝑦(𝑡) =  {−𝛽 −
𝑑(𝑡)

𝑑𝑚𝑎𝑥
, 𝑑(𝑡) > 𝑑𝑚𝑎𝑥

0, 𝑑(𝑡) ≤ 𝑑𝑚𝑎𝑥
 (4) 

𝑟𝑐𝑜𝑠𝑡(𝑡) = −𝑥(𝑡) ∙ ∑ 𝑎𝑝(𝑡) ∙
𝑐𝑝

𝑘𝑝
𝑝∈𝑃

 (5) 
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Fig. 5. DRL-based flow operation. 

Algorithm 1. Route computation algorithm. 

INPUT: G(V,E), req=<s, t, xmax, dmax, pmax> 

OUTPUT: P 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

Gaux(Vaux,Eaux) ← G 

for each e ∈ Eaux do 

if e.cap < xmax then Eaux.pop(e) 

P ← k-SP(Gaux, s, t) 

for each p ∈ P do 

p.dmin ← transmDelay(p) + qmin 

if p.dmin > dmax then P.pop(p) 

sort(P, <’dmin’,’similarity’>, ASC) 

return P[1..pmax] 
 

Considering that dmax needs to be ensured for the flow, the 

reward related to the obtained delay can be defined as follows, 

where β is a fixed penalty for violating the maximum delay. 

Finally, the reward component for the routing cost is related 

to the proportion of traffic sent through each of the routes, as 

well as to the ratio of cost (cp) and capacity: 

B. Flow provisioning 

Let us start with the very first procedure that is executed at 

flow provisioning time (Fig. 5). Upon the reception of a new 

flow provisioning request (req), the SDN controller runs 

Algorithm 1 to compute the set of allowable routes P. 

Algorithm 1 receives: i) the current network state, 

summarized in graph G(V,E), where V is the set of nodes and 

E the set of links, and ii) the request including source s and 

target t nodes, maximum traffic (xmax), delay to be 

guaranteed (dmax), and maximum number of allowed routes 

pmax. The algorithm first discards those links with residual 

capacity below xmax (lines 1-3). Next, the k-shortest path 

algorithm is used to compute k distinct routes on the resulting 

graph Gaux (lines 4-8). The minimum expected delay dmin 

(considering both transmission and minimum queuing and 

processing delay) is computed and used to discard those 

routes that cannot meet dmax. Finally, the remaining routes 

are sorted by multiple criteria. In this way, the returned set of 

routes includes those with expected high QoS, while 

providing high diversity, so agents can choose among  
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Fig. 6. Flow operation under traffic uncertainty. 

alternative options for near-real-time decision making. After 

route computation, relevant parameters to each p∈P, such as 

the routing cost and capacity are added, which are necessary 

for autonomous flow routing operation. Note that the 

complexity of Algorithm 1 is dominated by that of the k-SP 

algorithm. 

Next, the SDN controller initializes the flow routing agents, 

which contain the following modules (Fig. 5): i) the DRL 

engine as described in Section IV.A; ii) the sandbox domain, 

that contains pre-trained models and provides support for 

offline learning; and iii) the analyzer, in charge of evaluating 

the performance of models in operation and triggering model 

updating actions in case of poor performance. Once the flow 

manager is instantiated, the workflow (in Roman numerals) in 

Fig. 5 is executed. The topology G, the set of allowable routes 

P computed by Algorithm 1, and QoS requirement dmax are 

provided to the analyzer (labeled I in Fig. 5). Note that G also 

contains the maximum traffic volume for the background 

traffic that is expected for each packet link. Then, the analyzer 

requests to the sandbox domain an initial model (II). Without 

loss of generality, we assume that the initial model has been 

pretrained offline, reproducing a network with the same 

topology G and routes P as those requested. A generic input 

traffic, e.g., a sinusoidal daily pattern with some random 

variation [6], as well as constant background traffic according 

to configured maxima in G are also assumed. Note that to 

enable offline training, the specific traffic characteristics are 

not well known at that time. Therefore, the selection of the 

generic traffic must verify that pretrained models provide the 

committed performance when they enter into operation. 

Finally, the sandbox domain returns the initial model that will 

be loaded in the DRL engine before operation (III). 

C. Flow operation in single domain scenarios 

Fig. 5 details also the workflow for autonomous flow 

routing with delay requirements in a single domain scenario 

(Arabic numerals in Fig. 5). At every time interval t, input 

traffic x(t) and delay d(t) are collected from the source packet 

node agent and fed into the DRL environment (1). Note that 

x(t) can be directly measured at the source packet node, 

whereas d(t) is computed at the destination and sent to the 

source node agent. As previously introduced, the environment 

block is in charge of computing the current state s(t) and 

reward r(t) and sending them to the DRL agent (2), which is 

in charge of both learning and decision-making (3). Action 

vector a(t), with the fraction of traffic to be routed through 

each of the routes in P, is forwarded to the packet node agent 

(4). This agent is responsible of translating such proportions  
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Fig. 7. Detection of background traffic misconfiguration. 

into suitable packet node routing configuration and of 

configuring the routing tables. 

D. Flow operation under traffic uncertainty 

The pre-trained model that is loaded in the DRL engine in 

the provisioning phase is smoothly improved online from the 

decisions and actions performed during operation. However, 

the uncertainty in the input and, more important, the 

background traffic can lead to poor performance. For 

instance, if the maximum background traffic is significantly 

underestimated, large dmax violation can be produced, which 

cannot be corrected by online learning. Then, in order to 

overcome such issue, Fig. 6 details the proposed workflow 

that runs in parallel to DRL operation and is intended to 

improve autonomous operation under traffic uncertainty. 

Let us consider that every time the DRL takes and evaluates 

an action, it pushes tuple <x(t), d(t), a(t), r(t)> to the analyzer 

(labeled 1 in Fig. 6). At the same time, the monitoring data 

x(t) and d(t) are also fed to the sandbox domain to tune the 

offline platform according to real traffic and performance 

measurements. Then, the analyzer block evaluates the 

performance of the current model and, if needed, requests the 

sandbox domain to provide an update of the model with a 

different configuration for the background traffic (2). The 

offline trained model that better fits with the new scenario is 

provided (3) and fed to the DRL engine (4). 

The procedure of detecting poor performance due to 

background traffic misconfiguration (and how to correct it) is 

illustrated in Fig. 7. The figure shows three different cases of 

operation that can happen from the same initially offline 

trained model. Let us assume that the sandbox domain, once 

the model is trained, can compute the delay range [dlow, 

dhigh], for which 95%-percentile of delay (d95) is expected 

to oscillate. Without loss of generality, we consider that d95 

is computed every hour with the last 60 delay values measured 

each minute. Note that the delay range is computed by 

simulation as a result of autonomous routing actions and  
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Fig. 8. Flow operation in multi-domain scenarios. 
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Fig. 9. Network topology (a) and example of input traffic (b). 

considering the aforementioned traffic assumptions, i.e., 

sinusoidal input traffic and constant maximum background 

traffic. The behavior of d95 in the sandbox is illustrated in the 

left part of every figure (labeled offline), which stays within 

delay range, as expected. 

Fig. 7a shows a case where the DRL model has a valid 

performance during operation (right part of the figure). The 

measured d95 stays within the range, although it fluctuates 

more than that assumed during offline training (due to 

differences between real and simulated traffic and network 

state). Conversely, Fig. 7b shows a poor performance case 

induced by underestimation of the real background traffic, 

which produces large delay, thus violating dhigh. Note that, 

although in the example dmax is still guaranteed (not shown 

in the figure), it is identified as a poor performance case that 

will trigger model update assuming an increase of background 

traffic. Alternatively, Fig. 7c shows a case where the d95 stays 

below dlow, which is considered as an initial overestimation 

of background traffic. Here, new offline training with a 

reduction of maximum background traffic will be triggered. 

E. Flow operation in multi-domain scenarios 

Finally, in order to adapt the proposed autonomous 

operation to multi-domain scenarios, coordination between 

domains is implemented to satisfy the e2e delay requirement. 

Fig. 8 shows the workflow that implements such coordination. 

For the sake of simplicity, we assume the scenario in Fig. 4, 

where the flow under study crosses Domain 1 (D1) before 

entering reference domain D2. Recall that dmaxe2e need to be 

ensured and thus, autonomous operation in D2 needs to 

guarantee such requirement, considering the delay in the 

previous domain D1. 

Then, once operation starts, the controller of D1 

asynchronously notifies its maximum delay dmaxD1 to the 

network controller of Domain 2 (labeled 1 in Fig. 8), which 

computes the requirement for its domain segment as dmaxD2 

= dmaxe2e – dmaxD1 (2). This value is pushed to the flow 

routing manager, that will work to guarantee such updated 

dmaxD2 requirement. In particular, the analyzer asks to the 

sandbox domain for updating to the new dmax (3). The 

sandbox evaluates whether the current model can properly 

work with the new QoS requirement; otherwise, return a new 

model (4) to be loaded into the DRL engine (5). Since the 

sandbox stores monitored d(t) for a given history, it evaluates 

whether past d(t) measurements are below new dmax. If so, 

no model update is necessary; otherwise, a new model 

specifically trained for such new dmax is loaded. Note that, in 

both cases, continuous online learning will improve the model 

by learning from its routing decisions. 

V. RESULTS 

In this section, we firstly present the simulation 

environment used to validate the proposed methodology, 

models, and algorithms. Then, numerical studies are 

conducted to validate the proposed models and algorithms in 

Section IV on: i) a simple scenario with no background traffic 

in single domain networks; and ii) challenging scenarios 

considering known and uncertain background traffic, as well 

as multi-domain networks. 

A. Simulation setup 

For evaluation purposes, a Python-based simulator of the 

control plane containing the modules in Fig. 5 was 

implemented, which includes: i) a lightweight SDN 

controller; ii) the flow routing manager; and iii) the packet 

node agents. The flow routing manager includes a sandbox 

domain containing a set of models for different dmax values 

trained with a traffic profile following a sinusoidal average 

daily pattern and random variations following a Gaussian 

distribution. The data plane was accurately emulated using a 

simulator based on CURSA-SQ [27] that reproduces realistic 

traffic flow behavior. CURSA-SQ combines statistically-

based traffic flow generation and continuous G/G/1/k queue 

model based on the logistic function; multiple queuing 

systems can be numerically analyzed and related statistics can 

be computed, including queuing delay and packet loss. The 

accuracy of CURSA-SQ was assessed in [28], where delay 

and packet loss were compared to those obtained using the 

well-known NS-3 network simulator in complex scenarios. 

Regarding DRL models, a general epsilon-decay strategy 

was implemented in the TD3 method for balancing between 

exploration and exploitation, with decay factor equal to 

0.00125. Every DNN (actor and critic) consisted of two 

hidden layers with 100 neurons each implementing the 

rectified linear unit activation function. All DNNs were 

trained with the Adam optimizer with learning rate equal to 

0.001 in both actor/target actor and critics/target critics, and 

maximum replay buffer equal to 106 samples. A discount 

factor equal to 0.99 is used to balance between immediate and 

future rewards. Finally, we set up smoothing factor equal to 

0.005 for updating smoothly the actor/critic networks’ weight 

with the target actor/critics networks’ weight.  
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Fig. 10. Overall delay performance under the 

OPT routing cost scenario. 

Fig. 11. Detailed performance for configuration (0,1) (a), (1,0) (b), and (1,1) (c) under the OPT routing cost 

scenario. 
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Fig. 12. Delay and cost under different dmax and routing cost scenarios. 

Table 2 Route cost (cpi) for the selected scenarios 

Route OPT PROP ECMP 

p1 6 2 3 

p2 1 3 3 
 

In single domain scenarios, we consider the Spanish 

Telefonica’s core network topology in Fig. 9a, where all the 

interfaces are 100Gb/s. Upon the reception of a flow 

provisioning request (req), the SDN controller executes 

Algorithm 1 and obtains the set of allowable routes P. Once 

the provisioning of the flow routing agent finishes, the flow 

operation phase starts using the pre-trained offline model that 

better fits with req parameters. Operation was simulated by 

injecting realistic traffic according to the flow models used in 

[6]. We assume that the following flow provisioning request: 

<s=R1, t=R3, xmax=70Gb/s, dmax=0.15ms, pmax=2>. The 

following set P of allowable routes is computed: {p1: <R1, 

R2, R3>, p2:<R1, R4, R5, R3>} (see Fig. 9a), where 

kp1=kp2=100 Gb/s, being the delay due to transmission and 

processing 0.05ms and 0.1ms, for p1 and p2, respectively. Fig. 

9b shows an example of traffic for the flow during a typical 

day. For benchmarking purposes, the OSPF routing cost 

scenarios presented in Table 2 are studied, where: i) links 

weights are computed to the optimality (OPT) as a function of 

the maximum traffic for each origin-destination pair in the 

network; ii) links weights are inversely proportional to links 

capacity, as in classical OSPF (PROP); and iii) links weights 

have been changed so to both routes have the same cost 

(ECMP). Note that the route that provides the best expected 

QoS performance is p1 in all the scenarios. 

B. Flow provisioning and operation performance 

evaluation 

We firstly focus on evaluating the performance of the 

reward function detailed in eqs. (3)-(5). To this aim, we fix 

β=12 and compare, under the OPT routing scenario, three 

different optimization targets by defining different 

configurations of the tuple (αdelay, αcost), namely: (0,1) (cost 

minimization), (1,0) (delay assurance), and (1,1) (multi-

objective). Fig. 10 illustrates the overall performance after 5 

days of online operation under all three configurations in 

terms of maximum delay and average cost. In addition, Fig. 

11 shows the detail of the traffic sent thought every route and 

the delay along a typical day. It is worth highlighting that the 

DRL engine learned a model producing stable and good-

rewarded actions for all the considered configurations. 

We observe that the cost minimization configuration (0,1) 

achieves the best solution in terms of cost, but at the expense 

of largely violating dmax. Fig. 11a shows that traffic is fully 

routed through the cheapest p2. On the opposite side, the 

delay assurance configuration (1,0) finds a totally different 

solution, i.e., maximum delay stays below dmax, while 

remarkably increasing routing cost (Fig. 11b). This increment 

is due to the use of the most expensive p1, while reducing the 

traffic thought p2. Interestingly, the multi-objective 

configuration (1,1) achieves the best overall performance, 

since maximum delay is below dmax and cost is reduced up 

to 53% to that of configuration (1,0) (Fig. 10). The detailed 

results in Fig. 11c shows that the DRL engine learned to send 

more traffic to p2 without dmax violation and consequently, 

reducing costs. Therefore, we conclude that the proposed 

DRL-based method is able to converge to different solutions 

in order to achieve heterogeneous target optimization criteria. 

In view of the results, we validate the multi-objective 

configuration (1,1). 

Assuming the multi-objective configuration (1,1), let us 

now evaluate different scenarios for dmax, ranging from 0.3 

to 1 ms. Fig. 12 shows the maximum delay and average cost 

for several dmax and for the cost scenarios in Table 2. For 

benchmarking purposes, we plot the performance of a method 

consisting in assigning a posteriori the optimum proportion 

of traffic a(t) sent to every route that achieves maximum delay 

as close as possible to dmax with the minimum cost. Although 

this method cannot be applied in real operation (since it  
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Fig. 13. Comparison of DRL-based flow operation vs. OSPF routing under 

different routing cost scenarios. 
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Fig. 14. Performance in the presence of background flows for different ∆ 

configurations under the OPT routing cost scenario. 
 

Table 3 Summary of DRL-based flow operation vs. OSPF routing. 

 
Max. Delay 

(ms) 

% Time with 

excessive delay 
Avg. Cost 

Scenario DRL OSPF DRL OSPF DRL OSPF 

OPT 0.478 11.98 0 55.42 2.93 1 

PROP 0.485 11.93 0 36.6 2.23 2 

ECMP 0.488 0.551 0 8.89 3 3 
 

assumes perfect knowledge of long-term traffic evolution), it 

serves as reference for DRL performance evaluation 

purposes. The results in Fig. 12 show that DRL operation 

approaches optimum performance for low dmax 

requirements, which anticipates outstanding performance for 

those B5G/6G services targeting stringent QoS requirements. 

C. Evaluation under known background traffic  

Let us now evaluate the proposed DRL-based operation for 

flow R1-R3 (Fig. 9a) under known background traffic. To that 

end, on top of the previous traffic configuration, we added two 

new flows: R2-R3 with xmax=50 Gb/s and R1-R4 with 

xmax=35 Gb/s. Since the overall network load is higher and 

delay tends to increase due to larger queued traffic in the 

interfaces, we relaxed dmax from 0.15 to 0.5 ms for flow R1-

R3. Initial models trained with background traffic of the same 

xmax magnitude were obtained from the sandbox. Moreover, 

the expected delay variation range for the given background 

configuration and dmax are: [dlow, dhigh] = [0.375, 0.45]. 

During flow operation, we assume that the background traffic 

is constant and equal to xmax for both new flows.  

We compare the flow operation of the proposed DRL-based 

approach against using OSPF, under the three routing cost 

scenarios defined in Table 2. Fig. 13 presents the obtained 

performance, for the input traffic example in Fig. 9. Both the 

routing actions a(t) and the measured delay d(t) are shown. 

We observe that, as in the case with no background traffic 

shown in Fig. 11c, the DRL agent at the source node balances 

the traffic between p1 and p2 to guarantee dmax under all the 

routing cost scenarios. However, OSPF routing constantly 

routes packets over the shortest path(s), which translates into 

flow delay exceeding dmax during long periods. Table 3 

summarizes the obtained results, where we observe that OSPF 

exceeds dmax during significant periods of time. 

Interestingly, DRL-based operation, in addition to guarantee 

dmax, is able to minimize average cost. Specifically, cost is  
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Fig. 15. Routing actions and d95 performance. 

close or the same that the one with OSPF for PROP and 

ECMP scenarios, whereas under the OPT scenario, average 

cost is higher than with OSPF. The reason behind this 

performance is that the path that provides the best expected 

QoS performance, i.e., p1, is the most expensive one by far. 

D. Evaluation under background traffic uncertainty 

The good performance of the previous results could be as a 

result of having precise knowledge on background traffic 

volumes. To study that, two alternative scenarios are 

evaluated, where the difference between actual and expected 

background traffic (hereafter referred as ∆) is not zero. For 

this study, we assume traffic flow R1-R4 with xmax=20 Gb/s 

and focus on the OPT routing cost scenario from now on. Fig. 

14a shows the performance when xmax of the flows are 

perfectly estimated (∆=0 Gb/s), Fig. 14b shows the 

performance when xmax of flow R2-R3 is underestimated 15 

Gb/s (∆=-15 Gb/s), while Fig. 14c shows the performance 

when xmax of flow R1-R4 is overestimated 15 Gb/s (∆=15 

Gb/s). In light of the results, we conclude that DRL-based 

flow operation perfectly adapts to both cases, managing the 

routing of the flow accordingly to guarantee dmax with 

reduced routing cost. 

Fig. 15 summarizes the impact of ∆ in terms of mean route 

usage and d95, where range [dlow, dhigh] is highlighted in 

green. It can be confirmed that routing tends to use cheap path 

p2 when overall network load decreases and dmax can be 

easily accomplished. When ∆>15 Gb/s, d95 goes below dlow 

and consequently, a new model with lower background traffic 

should be loaded for operation (although dmax is largely 

guaranteed). On the opposite, when ∆<-20 Gb/s, d95 exceeds 

dhigh, which will trigger loading a model trained with larger  
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Fig. 16 Performance evaluation in multi-domain scenarios with time-varying background traffic. 

background traffic. Therefore, we conclude that the initial 

model is operative in a large range of background traffic 

estimation error. This is a very relevant result because it shows 

that only a prior approximate (not very accurate) knowledge of 

background traffic is enough to guarantee high performance of 

the DRL-based operation. 

E. Evaluation in multi-domain scenarios 

Last but not least, we focus on multi-domain scenarios and 

consider the scenario in Fig. 4. Specifically, we focus on the 

actions carried out in domain D2, which topology is assumed 

to be that of Fig. 9a; now, flow R1-R3 is the segment in D2 of 

e2e flow R1.A-R2.Z, where R2.B in Fig. 4 is R1 and R2.Z is 

R3. Let us consider dmaxe2e=1ms. 

As in the previous subsection, two background traffic flows 

R2-R3 and R1-R4 with xmax equal to 50 Gb/s and 20 Gb/s, 

respectively, are established in domain D2. However, to make 

the scenario more realistic and challenging, in this subsection, 

we assume that background traffic is not constant in time, but 

it fluctuates following a time-varying sinusoidal daily pattern. 

Therefore, the objective of this performance evaluation is two-

fold: i) to evaluate the workflow for multi-domain scenarios 

proposed in Section IV.E; and ii) to analyze the impact of time-

varying background traffic flows. 

Aiming at evaluating the aforementioned objective, we 

conducted simulations in the following way. First, and 

similarly to previous sections, the new flow segment R1-R3 

was set up in D2 at time t0 and a pre-trained initial model 

assuming constant background traffic and a given dmaxD2 was 

used for operation. This model is continuously improved 

through online learning; note that it now needs to learn the 

actual characteristics of the input traffic and those of the time-

varying background traffic. After some time in operation, at 

time t1 the model reaches a stable performance that cannot be 

significantly further improved. Then, at time t2, the D2 SDN 

controller receives an asynchronous notification from D1 SDN 

controller updating dmaxD1, which in turn triggers updating 

dmaxD2 and consequently, the proposed analysis and model 

update procedure is carried out. Then, operation continues with 

the new dmaxD2. Because of the changes, online learning might 

improve the model in operation, which will reach performance 

stability at time t3. 

Fig. 16 summarizes the main results of the simulations in 

terms of routing cost and delay measured at every of the 

abovementioned time instants. Specifically, Fig. 16a and Fig. 

16b show two cases, where dmaxD2 is relaxed (from 0.5 to 

0.75ms and from 0.25 to 0.75ms, respectively), whereas in Fig. 

16c and Fig. 16d dmaxD2 becomes more stringent (from 0.75 

to 0.5 and from 0.75 to 0.25, respectively). 

We observe that online learning improves initial pre-trained 

models even in the presence of time-varying background 

traffic, since routing cost is reduced in all the cases from t0 to 

t1, while dmaxD2 is guaranteed in the whole period [t0, t1]. In 

case of Fig. 16a and Fig. 16b, there was no change in the model 

in time t2 because of dmaxD2 relaxation and hence, 

performance in t2 equals that of t1. However, a new model was 

loaded when dmaxD2 was reduced in time t2, and which 

reduced maximum delay to guarantee the desired QoS 

performance from t2 on, as observed in Fig. 16c and Fig. 16d. 

Finally, note that regardless the case, the model was improved 

after dmaxD2 update, by increasing maximum delay and/or 

reducing routing cost. 

In view of these results, we can definitely validate the 

proposed methodology for DRL-based operation in the 

presence of time-varying background traffic flows and in 

multi-domain scenarios. 

VI. CONCLUDING REMARKS 

Distributed near real-time autonomous flow routing with 

QoS assurance has been proposed. The solution is based on 

multiple agents that are able to make decisions in a 

collaborative way. At provisioning time, the SDN controller 

provides the agents with a set or paths that can be used for 

routing the traffic flow, so the agents can make routing 

decisions using only those paths. Agents include a robust DRL 

engine to learn from the flow routing decisions with the 

objective to minimize routing costs while ensuring the 

committed QoS in terms of e2e delay. DRL management 

lifecycle was considered, where models are continuously 

improved for taking robust actions from the beginning of flow 

operation. 

The performance of the proposed DRL-based solution has 

been shown under several challenging scenarios. First of all, 

three different optimization targets were studied, i.e., cost 

minimization, delay assurance, and multi-objective, under the 

assumption of constant and known background traffic. The 

results showed that the multi-objective option was able to 

assure e2e delay and minimize flow routing costs, reducing 

them by 53% with respect to just considering delay assurance. 
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Results illustrated how the different options made near real-

time routing decisions on which proportion of traffic should be 

routing through each available path. Different delay 

configurations and cost scenarios were also studied, showing 

that the proposed solution achieves performance closed to the 

optimal one. 

For benchmarking purposes, the proposed DRL-based 

routing was compared against OSPF for three cost scenarios. 

The results showed DRL-based flow operation achieves target 

QoS with minimum cost in contrast to OSPF, which is unable 

to guarantee reliable and consistent flow QoS performance. 

Next, evaluation of the solution under background traffic 

uncertainty was carried out, where that traffic was constant and 

variable with time. The impact of background traffic 

estimation was analyzed and concluded that the DRL model in 

operation provided good performance on a large range of 

background traffic volumes over a nominal one, e.g., [-20, 15] 

Gb/s. This fact validates the adopted DRL management 

lifecycle, since it enables pre-training different DRL models in 

a sandbox domain for a small set of nominal background traffic 

volumes, while reducing the amount of model changes. 

Finally, the performance of our solution was evaluated in 

multi-domain scenarios, where the delay to be ensured in a 

domain can change as a result of the traffic conditions and the 

operation in other domains. In this case, model selection 

demonstrated to adapt agents’ operation in the event of a 

change in the delay to be ensured in the current domain. In 

addition, online learning was shown to improve even further 

the performance of the model in operation. 
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