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2. Executive Summary 

The main goals of the statistical and predictions models in WP5 include clinical aspects, 
research aspects and technical aspects, as described below: 

● Clinical goal – Enable more informed treatment selection and patient management by 
using automatic data-driven analysis models derived from CAPABLE clinical and 
sensors data. These models can support users of the Decision Support System (DSS) as 
well as of the Virtual Coach System that are part of the AI framework in CAPABLE 
architecture. 

● Research goal – Advance the state-of-art methods and tools in predictive models and 
their interpretation for clinical practice. Specifically, we concentrate on multimodal 
models including imaging data that can benefit CAPABLE when imaging data will be 
accumulated in the future. 

● Technical goal - Use and contribute to open-source frameworks and tools to enrich 
the biomedical research community and foster collaboration. This supports making 
technical assets developed within CAPABLE, sustainable beyond the project pilot. 

 
The document is organized according to these three goals in the following way: 
Section 3 provides a brief overview of the AI framework and its components, healthcare 
professionals (HCPs)' needs for statistical-based decision support, and the implementation of 
these needs by corresponding components in the AI framework. 
Section 4 demonstrates the statistical analysis models performed on data collected from 
sensors (watches) provided to the CAPABLE pilot participants. It shows the correlation 
between the sensors time-series and the side effects that the patient encounters. The 
demonstration is presented as a video and includes all the steps in data analysis. Voice-over 
and a walk-through in this document explain all steps of the demonstration.  This section 
supports the clinical goal of the statistical and predictions models in WP5.  
Section 5 provides state-of-the-art multimodal models including clinical and imaging data to 
predict disease progression of kidney disease. This complements the prediction models done 
on the clinical data as described in previous deliverables and published paper (Barkan, 2022). 
It shows models that can be used in CAPABLE if additional multimodal imaging data is 
provided. This section supports the research goal of the statistical and predictions models in 
WP5.  
Section 6 describes our contribution to open source, specifically to the BiomedSciAI GitHub 
organization. It shows the creation of sustainable assets and our increasing contribution to 
the biomedical community. This section supports the technical goal of the statistical and 
predictions models in WP5.  
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3. Statistics-based decision component as a part of the AI 
framework 

The need for statistics-based decision components for HCPs and patients in the CAPABLE 
system was defined during the summarization of interviews and questionnaires in the 
Netherlands Cancer Institute (NKI) and in the Istituti Clinici Scientifici Maugeri (ICSM). There 
are two requirements involving statistics-based support (full details can be found in section 5 
of D2.1 (Peleg, 2020)): 

● HCPs are often involved in complex decision-making regarding treatment for patients. 
There is a need for supportive tools to facilitate this complex decision-making, for 
example, treatment choices, considering survival, and immune-related adverse 
events.  

● Patients indicated varying levels of satisfaction with the information currently provided 
by their respective healthcare professionals. Patients are interested in a wide range of 
topics, including their diagnosis, treatments, and side effects. 

 
The AI framework is part of the CAPABLE system architecture and was presented in D5.2 
(Gilboa-Solomon, 2021). The aim of the AI framework is to provide support for both patients' 
and physicians' needs. The framework is defined as a set of concepts, libraries, tools, practices, 
and methodologies that cover formal knowledge representation, logic-based reasoning, and 
machine learning techniques.  
 
The overview of the AI framework can be found in Figure 3.1. The components marked in red 
represent the WP5 components enhanced in previous deliverables while components marked 
in dark green line (in the bottom data-driven support) represent the specific components that 
were enhanced towards this deliverable. For this deliverable, we analyzed the pilot sensors 
data and created statistical population models that are described in section 4. We also 
analyzed UK Biobank data that includes large multimodal data with clinical, imaging and 
genomics information for patients with kidney disease. Using UK Biobank data, we created 
prediction models based on machine learning (ML) that predict kidney disease progression 
within five years. These state-of-the-art models can be used in CAPABLE when imaging data is 
available and may suggest to the physician and the patient how disease may progress and 
prepare for it. These ML-based prediction models are further described in section 5.  To create 
these models, we utilized and contributed to BiomedSciAI, and specifically to FuseMedML 
open source, as further described in section 6. 
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Figure 3.1: Overview of the AI framework and the new contributions. Components marked in 
dark green lines (in the bottom data-driven support) represent the specific components that 
we enhanced towards this deliverable.  
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4. Demonstration of data-driven statistical analysis of 
sensors data   

4.1. Overview 
To make the CAPABLE dashboard and app more informed and data-driven, it should be useful 
to analyze sensors data coming from watches provided to the patients of the CAPABLE pilot, 
specifically data such as SPO2 levels, blood pressure measurements, activity measurements 
and more. This could provide additional clinical decision aids and educational aids for 
discussing the diagnosis, treatments, prognosis, and side-effects if the smartwatch was a 
medical device. Unfortunately, up to date, the ASUS device provided to patients is not a 
medical device and, as such, it cannot be currently used to suggest actions to patients or 
doctors. 
 
As a matter of fact, it seems that the ASUS VivoWatch 5 purpose is to monitor a healthy 
person's heart metrics and training activity while doing sports rather than measuring illnesses 
and diagnosis of severe chronic diseases and their symptoms. As mentioned, the watch is not 
a CE-certified medical device and thus ASUS manufacturer notes the following in its 
documentation:  
(see https://www.asus.com/mobile-handhelds/wearable-healthcare/asus-vivowatch/asus-vivowatch-5-hc-b05/) 
• ASUS VivoWatch 5 is not a medical device and is not intended for diagnosing medical 
conditions. Measurement results are for reference only. 
• Do not adjust medication based on the measurement results from ASUS VivoWatch 5. Take 
medication as prescribed by your physician. Only a physician is qualified to diagnose and treat 
high blood pressure. 
Our recommendation is to use CE-certified devices for medical sensor data collection, 
such as Tyto (https://www.tytocare.com/products/tytohome). 
 
Thus, as a very important premise, we inform the reader that the analyses performed and 
described in the following have not been integrated into the CAPABLE system deployed at the 
hospital. The aim of the analysis has thus been purely research related. 
 
We analyzed the sensors time-series for ICSM and NKI pilots including measurement of 
anomalies and their correlation with side effects. We created a demonstration of all the steps 
of our analysis that can be found at: 
https://capable-project.eu/wp-content/uploads/2023/11/D5.7_Demo.mp4 

4.2. Data sources 
In this deliverable development period, we assigned ASUS smartwatch VivoWatch5 to collect 
essential time-series data during normal activity of the patients in the CAPABLE pilot. We 
collected sensors data from two pilots as described below. Note that the CAPABLE pilot is 
ongoing, and our analysis refers to data collected till October 15th, 2023. 

● ICSM pilot 
○ 53 watches were provided to ICSM patients. 

https://www.asus.com/mobile-handhelds/wearable-healthcare/asus-vivowatch/asus-vivowatch-5-hc-b05/
https://www.tytocare.com/products/tytohome
https://capable-project.eu/wp-content/uploads/2023/11/D5.7_Demo.mp4
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○ 2 patients dropped out. 
○ 4 watches were assigned for test. 
○ 3 watches did not gather any data until now. 
○ Total 44 watches collected data from real patients. 

● NKI pilot 
○ 27 watches were provided to NKI patients. 
○ 1 patient dropped out due to a rash on the wrist. 
○ 3 watches were not given to patients. 
○ 3 watches did not gather any data until now. 
○ Total 21 watches collected data from real patients. 

 
Each watch has a battery life for about 10-14 days of usage according to the tech specs 
mentioned by the ASUS manufacturer (https://www.asus.com/mobile-handhelds/wearable-
healthcare/asus-vivowatch/asus-vivowatch-5-hc-b05/techspec/). After that period, or 
probably earlier according to the usage intensity, the watch needs to be charged and will not 
collect patient data during charging. 
 
Each watch included the following three sensors to collect data: 

● G sensor - accelerometer and ambient temperature sensor 
● PPG (photoplethysmography) and ECG (electrocardiography) sensors  
● Built-in GPS sensor 

Each sensor can be turned off or on by the user. The watch reports sensor data once per 
minute when activated. 
 
The collected data from the sensors includes basic measurements such as:  

● Ambient temperature in Celsius 
● SPO2 level in blood 
● Estimate of the Blood pressure (BP) measures, systolic blood pressure (sys), diastolic 

blood pressure (dia), based on PPG and EEG 
● Heart Rate (HR) 
● Heart rate variability (HRV) measures - SDNN (standard deviation of intervals), RMSSD 

(root mean square of successive interval differences), LFP (low frequency power), HFP 
(high frequency power), and Stress (total score based on several HRV measures). 
Power is the signal energy found within a frequency band. 

● Activity – steps, calories, toss & turn 
● Sleep state – light, awake, deep, rapid eye movement (REM) sleep  

 
The smartwatch extracts the heart related features from ECG and PPG raw signals. We noticed 
that measures based on ECG or PPG alone are less accurate than considering both signals 
together. In fact, this is also documented in the ASUS manual. Thus, we considered only 
measures calculated using both ECG and PPG and extracted features from them for our 
analyses. 
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4.3. Demonstration of statistical analysis 
In this subsection, we illustrate the statistical analysis of collected sensors data to both analyze 
the quality of the sensors themselves and to analyze the benefits of the sensors in identifying 
clinically meaningful events e.g., worsening of medical conditions, or events that need urgent 
treatment such as life-threatening events. 
 
After first inspection of the sensor values, it seems that some sensors produced unrealistic 
values by any known measure of human beings (e.g., heart rate of 1 and 248, SPO2 levels 
higher than 100%). These values were defined as anomalies and were filtered out e.g., by 
setting the range for acceptable values of heart rate between 40-200. 
 
When working with filtered values, anomalies were defined on the following numerical 
features. Heart Rate Variability (HRV) anomalies were not defined as there are no acceptable 
criteria for values which represent a medical condition and are in academical consensus. 
Normal ranges and non-outlier were defined based on evidence in literature and feature 
definition. 

Table 4.3.1: Watch features and their normal and non-outlier range 

Feature Normal range Non outlier 
range 

BP_hr 60-100 40-200 

BP_sys <140 >=0 

BP_dia <90 >=0 

SPO2_value 95-100 0-100 

 
Next, patients/watches were ranked by the percentage of anomalous records they have out 
of the entire number of records per feature per watch. Watches with top anomalies in ICSM 
pilot are attached in the table below. The table shows the top data anomalies found, in which 
a feature is more than 30% of the time outside its normal range. Each major anomaly can be 
attributed to either: 

● Technical issue with the watch  
● Usage not according to watch manufacturer – either its positioning or proper wearing 
● Bug in the ASUS watch firmware/hardware 
● Environmental change (going outside, doing activity, charging the watch) 
● Real medical anomaly measurement of the patient wearing the watch 

 
Careful manual investigations of the watches and patient history is needed to understand 
what the cause of these anomalies is. 
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Table 4.3.2: Watches with top anomalies percentage in ICSM pilot 

 
Next, we tried to find correlations between the side effects that the patients reported in the 
clinical data and the sensor data anomalies found in the watches (after filtering out 
measurements errors). The table below shows the side effects that the patients reported in 
the ICSM pilot while wearing their watches. Note that no cardiovascular life-risking events 
were reported by the patients. 
 
Table 4.3.3: Reported side effects during watch usage in ICSM pilot 

watch feature min max 
anomalie
s total 

percen
t 

VivoWatch5-CAPABLE-0029 BP_hr 52 119 8 12 67% 

VivoWatch5-CAPABLE-0033 SPO2_value 1 121 654 1148 57% 

VivoWatch5-CAPABLE-0028 SPO2_value 1 114 1345 2668 50% 

VivoWatch5-CAPABLE-0029 SPO2_value 70 99 1049 2311 45% 

VivoWatch5-CAPABLE-0022 BP_dia 0 249 4 9 44% 

VivoWatch5-CAPABLE-0022 BP_sys 0 159 4 9 44% 

VivoWatch5-CAPABLE-0053 SPO2_value 2 111 200 452 44% 

VivoWatch5-CAPABLE-0034 SPO2_value 9 123 3148 7709 41% 

VivoWatch5-CAPABLE-0022 SPO2_value 1 127 5080 
1258

0 
40% 

VivoWatch5-CAPABLE-0030 BP_dia 1 104 74 185 40% 

VivoWatch5-CAPABLE-0025 SPO2_value 3 115 327 838 39% 

VivoWatch5-CAPABLE-0001 BP_hr 47 89 3 8 38% 

VivoWatch5-CAPABLE-0003 SPO2_value 1 110 871 2379 37% 

VivoWatch5-CAPABLE-0001 SPO2_value 1 126 1633 4779 34% 

VivoWatch5-CAPABLE-0020 SPO2_value 1 123 409 1203 34% 

VivoWatch5-CAPABLE-0047 SPO2_value 1 125 1554 4712 33% 

VivoWatch5-CAPABLE-0027 SPO2_value 1 127 2456 7784 32% 

VivoWatch5-CAPABLE-0001 BP_sys 0 157 3 10 30% 
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Event Num patients Patient’s watches 

Backache  6 41, 31, 29, 26, 30, 49 

Cough 5 29, 6, 17, 5, 20 

Diarrhea 13 3, 1, 31, 11, 25, 21, 5, 36, 20, 30, 34, 35, 54 

Fatigue 7 22, 28, 5, 27, 36, 35, 45 

Fever 5 3, 11, 33, 20, 30 

Headache 9 1, 9, 14, 26, 30, 36, 46, 47, 49 

Insomnia 2 36, 54 

Nausea 12 1, 3, 5, 20, 21, 25, 27, 30, 36, 31, 46, 54 

 
Regarding fatigue side effects, we found concurrency between fatigue reports and lower than 
normal SPO2 percentage more than 30% of the time on watches 22, 27, and 28. We saw that 
SPO2 sensor measurements are at a low level (most of the time below 95%) when fatigue side 
effects are reported. The figure below includes the SPO2 graph of watch 28 which has lower 
levels of SPO2 sometimes when fatigue is present. This patient reported fatigue side effects 
during the entire period (16/5/23-12/7/23). Additional plots of the entire time series of these 
3 watches 22, 27, and 28 appear in Annex 9.1.   
 
When counting all the watches, the correlation between fatigue and low SPO2 was not proved 
to be statistically significant. The intersection over union (IOU) for all the watches is 0.21. The 
Spearman correlation gave 0.08 (p-value=0.66). The Pearson correlation also gave the same 
results of 0.08 (p-value=0.66). 
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Figure 4.3: Watch 28 with SPO2 anomaly concurrent with fatigue side effect 

 
The following table presents the top anomalies found in the NKI pilot study in which a feature 
is more than 30% of the time outside the normal range. For this pilot, we didn’t have the 
reported side effects, as we didn’t get the permissions to see them. 
  
Table 4.3.4: Watches with top anomalies percentage in NKI pilot  

Watch feature min max anomalies total 
percen
t 

VivoWatch5-CAPABLE-NKI-
011 BP_dia 193 193 1 1 

100% 

VivoWatch5-CAPABLE-NKI-
005 SPO2_value 1 120 191 277 69% 

VivoWatch5-CAPABLE-NKI-
011 SPO2_value 1 126 226 439 

51% 

VivoWatch5-CAPABLE-NKI-
013 SPO2_value 92 97 2 4 

50% 

VivoWatch5-CAPABLE-NKI-
009 BP_sys 127 142 1 2 50% 
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VivoWatch5-CAPABLE-NKI-
008 SPO2_value 79 99 62 148 

42% 

VivoWatch5-CAPABLE-NKI-
019 SPO2_value 90 99 42 136 

31% 

 
We also analyzed the activity including total number of steps and calories during the period 
wearing the watch. The results of this analysis for both ICSM pilot and NKI pilot appear in 
Annex 9.2. We then calculated correlation between activity and heart rate as well as 
correlation between activity and SPO2. 
 

4.4. Results and Conclusions 
In this section we will summarize the functionality and benefits of ASUS VivoWatch 5 in 
general, and review in specifics each of the watch sensors in terms of which sensor data is 
useful or not useful for our analysis. We will consider the usefulness of each watch sensor 
separately. 
 

4.4.1. Temperature 

The ambient temperature sensor in the ASUS watch is not accurate to measure a patient core 
temperature and fever, as in many watches the temperature was irregular for more than half 
the time while no fever was reported. This could be explained by the fact that the temperature 
is an ambient temperature sensor – which means it measures the temperature outside the 
body rather than the patient’s core temperature. Therefore, the sensor is affected by the 
temperature outside, the watch hardware temperature, and the patient’s skin temperature. 
 
The figure below shows the temperature measurements over time. It seems that the 
temperature sensor measurements oscillate all the time with a standard deviation which is 
higher than needed to reliably measure a temperature. Therefore, the temperature goes 
beyond the normal range even though the patient is not sick. 
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Figure 4.4: Temperature sensor over time 

 
In other cases, the temperature data is sparse and has outliers which cannot be explained by 
the clinical data, but rather by change in the environment (charging, going outside). 
 
In conclusion, the ASUS watch ambient temperature is useless for the purpose of measuring 
a patient's core temperature. 
 

4.4.2. SPO2 oxygen saturation 

SPO2 measurements are not always accurate. However, we have seen that for 3 watches, 
SPO2 levels that go 30% or more of the time below the normal range were correlated with 
reports of fatigue. For other watches, either patients wearing them did not report fatigue or 
they reported fatigue but had normal SPO2 levels for more than 70% of the time (4 watches). 
 
In conclusion, the ASUS SPO2 level feature might be useful to identify fatigue events. 
However, more data needs to be gathered and analyzed regarding SPO2 level drop and side 
effects, to estimate its preciseness in terms of specificity/sensitivity for each clinical target. 
 

4.4.3. Activity correlation with heart rate and SPO2 

Getting a signal from ECG or PPG solely is not reliable enough. When using both ECG and PPG 
measurements that are taken intentionally by the patient, the data points become scarce but 
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accurate. Some watches don’t have such measurements or don’t have more than 1-3 
measurements a day. 
 
Correlation was calculated between activity (steps per day) and heart rate and SPO2. A 
negative correlation was found between activity and heart rate, and a positive correlation was 
found between activity and SPO2. These findings are in line with what is known from clinical 
practice. For ICSM: corr(activity, hr) = -0.2, p-value=0.33. For ICSM: corr(activity, SPO2) = 0.25, 
p-value=0.27. For NKI: corr(activity, hr) = -0.04, p-value=0.94. For NKI: corr(activity, SPO2) = 
0.38, p-value=0.52. The correlation is not considered strong and therefore the relation is not 
close to linear. However, its sign has more information than the absolute value, as we don’t 
necessarily seek a linear relation but rather the trend of any kind of function between these 
two features which the linear correlation test approximates.  
 
In conclusion, the activity measurement sensors reliably measure the patient activity while 
wearing the watch. It is useful for tracking the patient's fitness and daily behavior, which might 
be related to its current general health status, fitness, and mood. 
 

4.4.4. Heart rate, blood pressure and heart rate variability 

Heart rate and blood pressure sensor measurement are theoretically more exact when the 
patient initiates the measurement and activates both ECG and PPG sensors together for signal 
extraction. However, the number of such samples in our data is sparse and more 
cardiovascular clinical events or alternative devices for comparison are needed to conclude 
the exact utility and precision of those sensors. 
 
HRV is an emerging and relatively new field of research in the study of ECG and PPG heart 
signals. Its clinical significance and usefulness as a biomarker in measuring no life risking 
events, is not in academic consensus yet and therefore was not used in this report.  



                                      Refined framework and models of all prototypes based on accumulated data                                                              D5.7 
 

H2020-875052 Page 18 Public 

 

5. Multimodal prediction models for disease progression 

5.1. Overview 
Prediction models produce findings from the analysis that can be further applied to new 
patients to provide insights related to clinical treatment, such as disease progression, 
response to treatment, survival, and toxicity. 
 
Multimodal prediction models are considered state-of-the-art models that provide better 
performance than unimodal models (Rabinovici-Cohen, 2022). In previous deliverables, we 
explored unimodal prediction models learned from CAPABLE retrospective clinical data and 
published the results in a Frontiers paper (Barkan, 2023).  Towards this deliverable, we wanted 
to explore the contribution of multimodal models, and to investigate its potential benefits to 
CAPABLE when imaging data will be collected.  
 
We trained our models on UK Biobank which is a source of large multimodal data, and built 
models to predict the disease progression of chronic kidney disease (CKD). There were not 
many patients in UK Biobank with kidney cancer and multimodal data, so we chose CKD 
because it had many patients with multimodal data, and it relates to the ICSM pilot. As a 
matter of fact, there is a strong and bidirectional relationship between CKD and renal cancer, 
as illustrated in (Saly 2021), where we read “Chronic kidney disease can lead to the 
development of renal cell carcinoma via oxidative stress from a uremic milieu or an underlying 
cystic disease. Surgical management of renal cell carcinoma can lead to chronic kidney disease 
via reduced nephron mass or acute kidney injury events. Medical management of renal cell 
carcinoma can lead to acute kidney injury, which can lead to chronic kidney disease.” 
 
A paper that summarizes our work on imaging and clinical data as well as additional work on 
genomics data is in-progress.  

5.2. Data sources 
We trained our models on data from UK Biobank (https://www.ukbiobank.ac.uk/) using Neck-
to-Knee imaging scans as well as the clinical data for the same patients. The UK Biobank has 
data from about half a million patients; from which about 50,000 patients have magnetic 
resonance imaging (MRI).  
 
The MRI data includes scans taken with a Siemens Aera 1.5T device that acquired overlapping 
images in six stations covering the body from neck to knee. Each station has low resolution 
imaging of size 224x174x44 pixels. The kidneys are typically located in the second and third 
imaging stations. There are four types of sequences for each station depending on how the 
image scanning is configured, and these sequences are: water only (water), fat only (fat), in-
phase (in) and opposed-phase (opp). 
 
The clinical data includes demographics data: age, gender as well as Clinical Classifications 
Software (CCS) diagnosis codes from ICD-9/ ICD-10 that represent the multiple diagnosis that 
the patient has and the patient’s clinical condition. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/oxidative-stress
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5.3. Predictive models for chronic kidney disease 
In this subsection, we describe the study design and the various methods we used. 

 

5.3.1. Study Design and Patients Data  

Chronic kidney disease (CKD) is a condition where the kidneys are damaged and progressively 
lose their ability to filter blood. Generally, CKD patients progress over multiple CKD stages, 
often slowly and heterogeneously, from no disease (CKD 0) to mild kidney damage (CKD stages 
1 or 2) to severe kidney damage (CKD stages 3 or 4 or 5) to kidney failure and need for dialysis 
(CKD dial). 
 
In our work, we concentrated on two prediction tasks: 

● Prediction Task 1: Predict whether the patient with no CKD (CKD 0) will progress to 
severe CKD (CKD 3, 4, 5, dial) within five years. 

● Prediction Task 2: Predict whether the patient with no/light CKD (CKD 0, 1, 2) will 
progress to severe CKD (CKD 3, 4, 5, dial) within five years. 

We got similar results for Task 1 and Task 2, so we’ll mainly describe task 2. Annex 9.3 
describes some of the results for task 1. 
 
The figure below depicts the study design. We analyzed multimodal data including clinical and 
imaging data. Another team that we collaborated with also analyzed genomics data. The index 
date, namely the date when the prediction is done, is the date in which the imaging was taken.  
We also consider all the clinical data available at that index date: age, gender, and diagnosis 
codes that the patient had by that time.  
 

 

Figure 5.3.1: Study design 

 

5.3.2. Methods for the prediction models 

We split the clinical and MRI data into 5 folds and we performed 5-fold cross-validation. In 
that process, we iteratively selected a different validation fold and trained on the remaining 
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4 folds, resulting in 5 models validated on different folds. We then average the five models 
selected from the five-fold cross-validation. 
 
The overall method is depicted in the figure below. We create models for each modality alone 
and then ensembled the multiple models. We have five unimodal models: (1) a clinical model 
based on age and gender (2) a clinical model based on the CCS codes (3) an imaging model 
based on radiomics (4) an imaging model based on convolutional neural networks (CNN) (5) 
an imaging model based on visual transformer (ViT). For each model we extract features and 
then apply ML classifiers (XGBoost, Random Forest, Logistic Regression). We select the 
classifier that gives the best performance for selected features. 
 

 
Figure 5.3.2: Overall method 

 
As mentioned, there are three different imaging methods to analyze our imaging data: 
Radiomics, CNN and ViT. Each method provides a different set of features and thus enriches 
our overall model. Figure 5.3.3 below summarizes the three imaging methods.  
 
Radiomics is a quantitative approach to medical imaging. Its goal is to find associations 
between qualitative and quantitative information extracted from clinical images and clinical 
data by using analysis methods from the field of computer vision, information theory and 
statistics. For any radiomic approach, it is critical to define the volume of interest (VOI) in a 
three-dimensional (3D) volume from which the radiomics features will be calculated. Kidney 
3D segmentation to be used as VOI to extract radiomics were generated by a pretrained 
segmentation model (2.5D U-net) from previous research (Langner, 2020). Using the VOI, we 
then extracted all the supported features in the pyradiomics python package. 
 
For the CNN model, we used Video-resnet CNN (Tran, 2018) and adapted it to the kidney MRI 
that we had. Our image preprocessing included isotropic pixel-spacing, intensity range 
normalization, and discretization.  
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For the Vit model, we adapted the vision transformer (Dosovitskiy, 2020) to our kidney MRI 
data. We divided the data into consecutive patches that were then fed into the transformer 
followed by a multi-layer perceptome (MLP) to predict the score of the disease progression. 
 

 
Figure 5.3.3: MRI imaging method 

 
The ensemble model receives five scores per patient: two scores based on clinical data and 
three scores based on the MRI data. To improve generalization, we used different training 
seed initialization for the different models. We then examined several strategies for 
combining and ‘ensembling’ the models. However, we found that the most effective strategy 
used the mean value of all available scores per patient. 
 

5.3.3. Models’ evaluation and explanation 

The radiomics model gave the best unimodal results. The figure below shows the ROC curve 
for the five-fold cross-validation of the radiomics model. Logistic regression was found to be 
the best classifier for this kind of features. When averaging over the five cross-validation 
models, we get 0.745 area under the curve (AUC).  
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Figure 5.3.4: Radiomics model five-fold cross-validation ROC curve 

The results of the other unimodal models are in Annex 9.4.  
 
We also performed SHAP (Lundberg, 2017) analysis to explain the features that contributed 
to the radiomics model. SHAP considers all possible combinations of features with and without 
a specific feature to evaluate its contribution to the prediction. It reveals each feature 
importance and demonstrates how each feature of each patient affects the predictive model 
results. The figure below depicts the top radiomics features in descending order that had the 
most influence on the severe CKD prediction. A positive SHAP value for a feature means it 
leads the model to predict ‘severe-ckd’, while a negative value leads the model to predict ‘no-
severe-ckd’. The point’s color represents the values that each feature can take, including red 
for high values, blue for low values, and purple for values that are close to the average value. 
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Figure 5.3.5: SHAP explanation for the Radiomics model  

As mentioned, each MRI has four sequences: water (seq=0), fat (seq=1), in (seq=2) and opp 
(seq=3). We note that the most important features are from the water and fat sequences. 
This means that for our purposes, there is no need to do the extra two sequences in (seq=2) 
and opp (seq=3). Performing less scans can benefit the patient and reduce costs.  

The next figure shows the result of the ensemble model. We see that the multimodal 
ensemble model that combines all the unimodal models is better than each unimodal model 
alone and achieves 0.804 AUC. 
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Figure 5.3.6: Ensemble model ROC curve 

We also used the Delong test (Delong, 1988) to calculate the p-value when comparing the 
prediction of the individual models with those of the ensemble model. We received that the 
ensemble model is statistically better (p-value < 0.05) than each modality model alone. 

5.4. Conclusions 
Chronic kidney disease is a dynamic disease and making an accurate prediction whether the 
disease will progress within five years is challenging. Accurately predicting the future disease 
progression based on data available prior to treatment initiation could impact the treatment 
planning and selection. We have rich information collected from the UK Biobank including 
clinical information and MRI medical imaging. We introduce a multimodal prediction model 
that is based on clinical data and neck-to-knee MRI images taken prior to disease progression. 
We compared performance of models on different data elements and evaluated them by AUC. 
The results on cross-validation show that the multimodal ensemble model that leverages both 
the MRI and the clinical models offers improved results over the unimodal models. We then 
used interpretability methods to explain the model and identify important features for 
predicting disease progression.  
 
The results we obtained on the UK Biobank data can be used in the CAPABLE system when 
additional imaging data is aggregated. Recent state-of-the-art research shows that large 
foundation models can serve as pretrained models for new tasks achieving impressive results 
with only small data for the new task fine-tuning (Moor, 2023). This suggests that the models 
we created using the UK Biobank data can serve as pretrained models for CAPABLE and further 
fine-tuned for the CAPABLE tasks even with a small multimodal dataset. 
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6. Open-source contribution to BiomedSciAI open GitHub 
organization 

6.1. Overview 
Artificial Intelligence (AI) is leading the way in scientific advancements in biomedicine, holding 
the promise to enhance our lives and reduce healthcare costs. To accelerate scientific 
discovery in this intricate field, it is crucial to have frameworks and tools that foster 
collaboration among researchers and developers, enabling them to collaborate, reuse 
components, and reproduce results. 
 
The BiomedSciAI GitHub organization (https://github.com/BiomedSciAI) includes open-
source repositories to foster scientific discovery in biomedicine. It includes flexible 
frameworks and tools designed for easy collaboration, encouraging code reuse. It received 
significant recognition, reflected in over 950 GitHub stars, 183 forks, and close to 130,000 
downloads. The table below shows the various repositories in BiomedSciAI with various topics 
and modalities including clinical, imaging, pathology, genomics and more.  
 
Table 6.1: BiomedSciAI GitHub organization and its open-source repositories 

GIT Repository Description 

Causallib causal inference analysis  

FuseMedML deep learning framework 

Histocartography pathology data analysis   

DPM 360 clinical data analysis 

fuse-drug for drug discovery 

r-BRICS breaking chemical substructures 

MMMT Multi-modal models toolkit 

Geno4SD genomics data analysis 

 
As part of CAPABLE we reused and contributed to BiomedSciAI and especially to the 
FuseMedML repository that is further described in the next subsection. For example, we 
contributed the EHR transformer example - https://github.com/BiomedSciAI/fuse-med-
ml/tree/master/fuse_examples/multimodality/ehr_transformer. This example shows using a 
foundation model with FuseMedML to analyze EHR data. The foundation model was built with 

https://github.com/BiomedSciAI/fuse-med-ml/tree/master/fuse_examples/multimodality/ehr_transformer
https://github.com/BiomedSciAI/fuse-med-ml/tree/master/fuse_examples/multimodality/ehr_transformer
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a transformer (BERT) that can model long-range dependencies and capture complex patterns 
in sequential data such as the biomedical data. 
 
 
 

6.2. FuseMedML open source 
FuseMedML is an open-source project (https://github.com/BiomedSciAI/fuse-med-ml) 
released under the Apache-2.0 license and has dozens of contributors over the span of two 
years. It is part of the PyTorch Ecosystem (https://pytorch.org/ecosystem/), which is a large 
community with over 80 open-source projects including projects with thousands of stars and 
millions of downloads. 

FuseMedML employs a structured architecture with decoupled components that can be 
reused independently and thus enable easy adoption and low entry barrier. The core code is 
based on many popular open-source projects such as scikit-learn, PyTorch and PyTorch 
lightning. Furthermore, fuse comes with a rich collection of modular domain specific 
implemented components. This modularity also enables easy extension of the framework with 
additional functionally and to additional domains. 
Fuse is structured in three layers as depicted in the figure below. The bottom layer includes 
standalone basic components that can be reused independently by the other components. 
This includes fuse.data, a flexible data processing pipeline with functionalities such as 
augmentations and caching. The other standalone component is fuse.eval, a library for 
evaluating AI models including various metrics and methods for model comparison. The 
middle layer uses the bottom layer and consists of fuse.dl with implemented reusable deep 
learning components such as data loaders, backbone models and loss functions. 
The core technology of FuseMedML and its component packages is general, while domain 
specific functionality is contained in the top layer within extensions. These include fuseimg 
that extends the data package for processing of medical imaging from various modalities, 
fusedrug for therapeutic molecules generation, drug discovery and repurposing, and 
fuse_examples, a rich set of end-to-end examples based on open data. 
 

https://github.com/BiomedSciAI/fuse-med-ml
https://pytorch.org/ecosystem/
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                              Figure 6.1: BiomedSciAI FuseMedML conceptual architecture  

Users and contributors seeking more information about FuseMedML can refer to the 
associated JOSS paper (Golts, 2023) and a blog post published in the PyTorch ecosystem 
(Raboh, 2022). 
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7. Glossary 

AUC Area Under the Curve 

BP Blood pressure 

CCS Clinical Classifications Software  

DSS Decision Support System 

ECG  electrocardiography 

EHR Electronic Health Record 

HCP Healthcare Professional 

HR Heart rate 

HRV Heart Rate Variability 

ICSM Istituti Clinici Scientifici Maugeri hospital 

MRI   Magnetic Resonance Imaging  
NKI Netherlands Cancer Institute  

PPG  photoplethysmography 

SPO2 Oxygen saturation 

UI  User Interface 

VOI  Volume of Interest 
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9. Annexes 

9.1. Annex 1 – Sensors data: time series features  
The below figures plot the entire time series of watches 22, 27, and 28. We can see in the plot 
that there are periods when the watch stopped collecting data. This is probably when the 
watch was charged. We can see that many outlier values exist. We can also see that HR 
measurements based on ECG&PPG are scarce. 
 

 
Figure 9.1.1: Watch 22 from ICSM pilot - all sensors time-series 
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Figure 9.1.2: Watch 27 from ICSM pilot - all sensors time-series 

 

 
Figure 9.1.3: Watch 28 from ICSM pilot - all sensors time-series 
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9.2. Annex 2 – Sensors data: steps and calories  
The total number of steps and calories during the period wearing the watch was calculated 
for the ICSM pilot as seen in the table below. We averaged over the total number of days 
wearing the watch, and added median heart rate, SPO2, systolic and diastolic blood pressure. 
 
Table 9.2.1: ICSM pilot activity and median feature values 

Watch Days Steps/day 
Calories/da
y (cal/day) 

BP_hr 
(bpm
) 

BP_sys 
(mmHg
) 

BP_dia 
(mmHg
) 

SPO2 
percentag
e 

VivoWatch
5-
CAPABLE-
0001 158.37 3718.07 185.90 61.5 115.5 74 96 

VivoWatch
5-
CAPABLE-
0003 107.31 1859.41 92.92 88 97.5 56.5 97 

VivoWatch
5-
CAPABLE-
0005 148.60 124.43 5.99 68 129 74 97 

VivoWatch
5-
CAPABLE-
0006 180.87 1492.82 76.88 68 110 76 99 

VivoWatch
5-
CAPABLE-
0009 20.07 3283.38 163.51 77 122 78 98 

VivoWatch
5-
CAPABLE-
0011 127.35 6676.43 341.04 67 130 76 99 

VivoWatch
5-
CAPABLE-
0014 38.51 1663.09 81.74 64 116 77 99 

VivoWatch
5- 143.39 2164.14 108.54 78 123 79 97 
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CAPABLE-
0017 

VivoWatch
5-
CAPABLE-
0020 154.07 1172.27 58.33 69 114 74 97 

VivoWatch
5-
CAPABLE-
0021 204.28 3574.09 184.36 71 119 79 99 

VivoWatch
5-
CAPABLE-
0022 181.66 4676.88 234.43 69 140 90 96 

VivoWatch
5-
CAPABLE-
0025 148.23 246.77 12.26 83 114 82 98 

VivoWatch
5-
CAPABLE-
0026 139.86 1647.76 105.44 70 124 81  

VivoWatch
5-
CAPABLE-
0027 154.36 2899.22 144.93 62 116 72 98 

VivoWatch
5-
CAPABLE-
0028 122.44 1716.67 87.69 80 120 76.5 95 

VivoWatch
5-
CAPABLE-
0029 56.62 174.92 8.60 70.5 120 70 95 

VivoWatch
5-
CAPABLE-
0030 235.92 577.44 28.64 64 135 88 98 
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VivoWatch
5-
CAPABLE-
0031 147.82 318.35 15.88 78 120.5 82.5 99 

VivoWatch
5-
CAPABLE-
0033 98.84 1639.48 117.69 86 123 74 94 

VivoWatch
5-
CAPABLE-
0034 88.37 517.42 25.52 67 117 74 95 

VivoWatch
5-
CAPABLE-
0035 77.13 1376.67 68.41 72 128 85 97 

VivoWatch
5-
CAPABLE-
0036 119.97 5793.31 294.98 70 113 72 98 

VivoWatch
5-
CAPABLE-
0041 3.31 3205.34 159.68    99 

VivoWatch
5-
CAPABLE-
0046 48.67 3453.45 172.33 96 127 86 97 

VivoWatch
5-
CAPABLE-
0047 56.55 3871.70 192.98    97 

VivoWatch
5-
CAPABLE-
0049 38.67 3010.58 150.39 72.5 116 74.5 99 

VivoWatch
5-
CAPABLE-
0053 9.79 2032.40 101.19    95 
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The total number of steps and calories during the period wearing the watch was calculated 
for the NKI pilot as well and can be seen in the table below. We averaged over the total 
number of days wearing the watch, and added median heart rate, SPO2, systolic and diastolic 
blood pressure. 
 
 
Table 9.2.2: NKI pilot activity and median feature values 

Watch Days 
Steps/da
y 

Calories/da
y (cal/day) 

BP_hr 
(bpm) 

BP_sys 
(mmHg
) 

BP_dia 
(mmHg
) 

SPO2 
percentag
e 

VivoWatch5-
CAPABLE-NKI-
001 15.26 6754.59 326.98    98 

VivoWatch5-
CAPABLE-NKI-
002 11.97 1726.17 86.28    98 

VivoWatch5-
CAPABLE-NKI-
003 5.91 5442.36 271.20    99 

VivoWatch5-
CAPABLE-NKI-
004 

118.3
3 1287.97 64.67    99 

VivoWatch5-
CAPABLE-NKI-
005 6.03 5228.95 262.04    93 

VivoWatch5-
CAPABLE-NKI-
006 

115.3
1 451.25 23.21    99 

VivoWatch5-
CAPABLE-NKI-
007 

168.8
8 3828.66 199.56 83 115.5 74.5 99 

VivoWatch5-
CAPABLE-NKI-
008 24.65 964.55 48.49 64.5 130 82 96 

VivoWatch5-
CAPABLE-NKI-
009 18.39 1198.75 59.86 91.5 134.5 85 99 
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VivoWatch5-
CAPABLE-NKI-
010 

110.2
7 135.00 6.74 91 122.5 78.5 98 

VivoWatch5-
CAPABLE-NKI-
011 29.93 1068.45 52.19    95 

VivoWatch5-
CAPABLE-NKI-
012 46.28 3056.11 152.25    99 

VivoWatch5-
CAPABLE-NKI-
013 5.85 243.73 11.97    94.5 

VivoWatch5-
CAPABLE-NKI-
014 5.88 20628.96 1027.01    98 

VivoWatch5-
CAPABLE-NKI-
016 7.68 8704.06 468.26    97 

VivoWatch5-
CAPABLE-NKI-
017 94.48 2740.53 137.01    97 

VivoWatch5-
CAPABLE-NKI-
019 3.24 2863.22 143.58    96 

VivoWatch5-
CAPABLE-NKI-
020 1.76 2598.86 128.98    99 

VivoWatch5-
CAPABLE-NKI-
023 27.89 705.43 85.92    98 

VivoWatch5-
CAPABLE-NKI-
024 17.65 938.14 46.52    99 

VivoWatch5-
CAPABLE-NKI-
026 33.63 1167.82 61.14 79 120 79 99 
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9.3. Annex 3 – Multimodal prediction models for task 1 
Task 1 in our multimodal prediction models was to predict whether the patient with no CKD 
(CKD 0) will progress to severe CKD (CKD 3, 4, 5, dial) within five years. The figure below shows 
the result of the ensemble model for task 1. We see that the multimodal ensemble model that 
combines all the unimodal models is better than each unimodal model alone and achieves 
0.806 AUC. These are similar results to what we have seen for task 2. 

 
Figure 9.3.1: Ensemble model ROC curve for task 1 

We also used the Delong test (Delong, 1988) to calculate the p-value when comparing the 
prediction of the individual models with those of the ensemble model. We received that the 
ensemble model is statistically better (p-value < 0.05) than each modality model alone. Once 
again these are similar results to what we got in task 2. 
 

9.4. Annex 4 – Unimodal models results for task 2 
The figure below shows the results of the demographics clinical model based on age and 
gender as well as its SHAP analysis. Logistic regression was found to be the best classifier for 
this kind of features. When averaging over the five cross-validation models, we get 0.704 AUC. 
The SHAP figure reveals that the age feature was much more important than the gender 
feature and that older male people tend to have higher risk for disease progression. 
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Figure 9.4.1: Demographics clinical model ROC curve and SHAP explanation 

 
The figure below shows the results of the CCS clinical model based on CCS diagnosis codes. 
XGBoost was found to be the best classifier for this kind of features. When averaging over the 
five cross-validation models, we get 0.647 AUC.  

 
Figure 9.4.2: CCS clinical model ROC curve 

The figure below shows the results of the CNN imaging model. Random forest was found to 
be the best classifier for this kind of features. When averaging over the five cross-validation 
models, we get 0.652 AUC. We also added interpretation of the model by using GradCam 
algorithm to find the area in the image that contributed the most to the prediction. We see 
that areas in the kidney and areas in the heart contributed the most to the prediction. This 
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complies with what is known from clinical practice that heart disease is related to kidney 
disease. 

 

 
Figure 9.4.3: CNN imaging model ROC curve and GradCam explanation 

 
The figure below shows the results of the ViT imaging model. Logistic regression was found to 
be the best classifier for this kind of features. When averaging over the five cross-validation 
models, we get 0.659 AUC.  
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Figure 9.4.4: ViT imaging model ROC curve  
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