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Abstract

Hydrological droughts pose a persistent threat for cities and are increasingly studied. However, this is
rarely within a large-scale context, complicating comparisons between cities and potentially
hampering the most efficient allocation of resources in terms of drought risk adaptation and
mitigation. Here, we investigate global urban hydrological drought risk for 264 urban agglomerations
across all continents for both the present time and future projections. To derive risk profiles for each
agglomeration, we include components of: drought hazard (drought volume focusing on surface
water deficits), exposure (urban population), vulnerability (multivariate vulnerability index), and cost
(replacement of freshwater expenses). These components are dynamic in time, except for
vulnerability. Most agglomerations are projected to experience an increase in drought hazard,
exposure, and cost by 2050, with the most notable current and future hotspot being northern South
Asia (India & Pakistan). Also, the number of agglomerations with high risk increases, whereas the
number with lower risk decreases, indicating that high urban drought risk is increasing in scale over
time. Our results enable a better targeting of those agglomerations that need most urgent attention in
terms of drought risk solutions. It can also be used to identify agglomerations with similar drought
risk profiles that could be studied in conjunction and may benefit from cooperative drought risk
management strategies.

1. Introduction

Droughts are enigmatic in character (Mishra and Singh 2010), but despite their fuzziness, we can define the
essence of drought as a temporal deficiency of water at any stage in the hydrological cycle (e.g. lack of rain or
discharge) relative to the average climatic situation of the area where it occurs (Van Loon and Van Lanen 2013,
Van Loon 2015, WMO and GWP 2016). Although often associated with agricultural areas, droughts are also an
urban challenge (Singh et al 2021). In the past, several cities have experienced adverse impacts from droughts.
For example, Mexico City (2010), Sao Paulo (2015) and Cape Town (2015-2017) have all experienced severe
reductions in public water supply from (multi-year) droughts (Simpkins 2018). Past events like those show that
droughts affect cities either: (i) directly, by reducing public water or hydropower energy supplies, or (ii)
indirectly, for instance by increasing food prices; causing or aggravating poverty, supply-chain interruptions,
health issues, and social instability; and reducing water quality and industrial productivity (Grant et al 2013,
Hsiangetal 2013, Stanke etal 2013, Nobre et al 2016, Von Uexkull et al 2016, Van Lanen et al 2017, Desbureaux
and Rodella 2019, Zhang et al 2019, Ziervogel 2019, UNDRR 2021). For instance, during the Cape Town
drought, reservoir levels dropped to only 20% of their capacity and urban residents had to reduce their water
consumption by up to 50% (Simpkins 2018, Ziervogel 2019). In Bejing, Insufficient rain caused a deficit between
water demand and water supply of around 10 billion m® per year (Wang et al 2017). Current estimates suggest

© 2023 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/2515-7620/ad0210
https://orcid.org/0000-0002-8776-9896
https://orcid.org/0000-0002-8776-9896
https://orcid.org/ 0000-0002-6826-1974
https://orcid.org/ 0000-0002-6826-1974
https://orcid.org/0000-0002-4953-4527
https://orcid.org/0000-0002-4953-4527
https://orcid.org/0000-0002-0133-5924
https://orcid.org/0000-0002-0133-5924
https://orcid.org/0000-0001-9671-6537
https://orcid.org/0000-0001-9671-6537
https://orcid.org/0000-0001-7702-7859
https://orcid.org/0000-0001-7702-7859
mailto:Tristian.stolte@vu.nl
https://doi.org/10.1088/2515-7620/ad0210
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ad0210&domain=pdf&date_stamp=2023-11-14
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ad0210&domain=pdf&date_stamp=2023-11-14
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Environ. Res. Commun. 5 (2023) 115008 T R Stolte et al

that droughts will occur more frequently and/or with higher intensity in many regions around the globe due to
climate change (Arias et al 2021, UNDRR 2021), which could lead to a further aggravation of urban drought
impacts.

Droughts, like other natural hazards, pose a continuous threat to society, which is often referred to as
disaster risk. The risk is defined as the function of: (i) a hazardous event; (ii) the exposed elements to such an
event; and (iii) the vulnerability of those exposed elements to the hazard (UNDRR 2019). Disaster risk models
are used to assess spatial patterns and temporal trends in risk in order to inform policy and decision makers on
present and future disaster risk (Ward et al 2020). At the global scale, several drought risk assessments have been
performed by applying such models, but most do not explicitly consider cities or omit them completely. Instead,
their focus has often been on agricultural practices (e.g. Yin et al 2014, Guo et al 2016, Arnell et al 2018, Meza et al
2020, Haqiqi et al 2021), a set of specific economic sectors (e.g. Stahl et al 2016, Naumann et al 2021), or people
and income in general (i.e. population and GDP, e.g. Liu and Chen 2021, Carrao et al 2016, Winsemius et al
2018).

Although urban drought risk studies at the continental to global scale are not entirely absent (Giineralp et al
2015, Guerreiro et al 2018), they often use simplified measures of hazard and exposure and generally lack a
vulnerability component. For instance, Giineralp et al (2015) only look at the number of urban expansion
located in drylands, without considering actual water supply/demand or vulnerability for those urban regions.
Guerreiro et al (2018) do model the water supply, but do not account for the actual location of urban water
sources, nor do they incorporate vulnerability. The lack of risk components in these studies is not surprising, as
urban drought is a relatively new field and information on urban drought risk is scarce (Singh et al 2021), which
impedes comprehensive assessments of urban drought risk. Instead, global urban studies about water shortage
have focused primarily on water scarcity (McDonald et al 2014, Florke et al 2018, He et al 2021). Although water
scarcity and droughts can result in similar socioeconomic impacts, their nature is different, as water scarcity
refers to water shortage over the long term or as a system state (i.e. decades and longer), whereas droughts have a
temporary nature (i.e. days to several years; Van Loon 2015). Hence, cities that are not water scarce can still be
impacted by droughts (UNDRR 2021). Moreover, droughts can also aggravate water shortage in water scarce
regions and may cause additional impacts (UNDRR 2021). So we argue that a global urban drought assessment is
of added benefit to the existing global urban water scarcity studies.

As cities play an increasingly important role in dealing with global challenges, such as reducing disaster risk
and the impacts of climate change (UN 2017, Rosenzweig et al 2010), more urban-focused drought risk research
is essential to provide cities with the necessary information. Cities are also concentrated pools of exposed
elements to natural hazards including droughts (Pesaresi er al 2017, Gu 2019). Whilst cities cover only 2%-3% of
the Earth’s surface (Liu et al 2014), they are inhabited by over half of the world’s population, and this is projected
to increase to two-thirds by 2050. Moreover, roughly 80% of the global GDP is generated in cities (UN-

Habitat 2018). Nevertheless, regardless of the importance of cities in dealing with global challenges, drought has
so far received little attention in urban policy making (Cremades et al 2021, Singh et al 2021). Most urban data
and knowledge are currently unevenly distributed over regions and institutions (McPhearson et al 2016, Acuto
et al 2018), which makes it challenging to assess global patterns of urban drought risk and to compare the risk
between different cities. A global-scale urban drought risk assessment is required to aid policy makers, city
practitioners, and other urban-focused institutes to identify cities with the most urgent need for improved
drought risk management or to even put drought risk on the agenda of cities in the first place.

Our study aims to provide this global overview of urban drought risk by carrying out a global-scale analysis
for 264 urban agglomerations. The goal is to find global patterns of drought risk as well as the underlying
patterns of drought hazard, exposure, and vulnerability. We will focus on hydrological droughts, which relates
to deficits of streamflow and groundwater (Dracup et al 1980, Van Loon et al 2016), because the impacts of
drought on cities are mostly originating from either of these water sources. We will focus specifically on surface
water deficits, because groundwater modeling generally has more uncertainty than streamflow modeling (De
Graaferal 2015, Tangdamrongsub et al 2017). For the assessment, we develop an open-source framework to
identify hazard, exposure, and vulnerability indicators, and to provide a qualitative risk estimate. We perform
the assessment under both historical and future (2050) climate conditions, using a variety of climate and socio-
€Cconomic scenarios.

2. Methods

2.1. Overview

The flowchart in figure 1 provides a general overview of the five steps taken in this study, which relate to
simulating and assessing: (i) drought hazard; (ii) drought costs; (iii) exposure; (iv) vulnerability; and (v) risk,
following the risk framework of Kron (2005), and the IPCC (2014). We focus on 264 urban agglomerations
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Figure 1. Flowchart of the methodological steps.

distributed globally, based on data availability (section 2.4). Each urban agglomeration has one or multiple
surface water source locations from which it extracts its municipal water requirements for consumptive and
economic use (McDonald et al 2014, 2016). We assume that an agglomeration enters hydrological drought
conditions as soon as the water level at its source locations drops below a certain threshold. Thus, urban
hydrological drought, hereafter referred to as urban drought, is here defined as the water that an agglomeration
requires but which it cannot extract from its surface-water source locations due to climatologically drier
conditions than normal.

In step 1, to represent the hazard, we evaluate the drought volume for each agglomeration (section 2.2). We
use the City Water Map V2.2 (CWM; McDonald et al 2014, 2016) to derive the volume of urban surface water
withdrawals (i.e. the freshwater that is extracted at the source locations) (section 2.2.1). To derive the drought
threshold, we determine the variation in monthly streamflow at each source location (section 2.2.2), along with
the Water Stress Index (2.2.3) and the Environmental Flow Requirements (section 2.2.4). Using this threshold,
we can calculate the annual drought volume for each agglomeration (section 2.2.5). At step 2, to end up with a
more impact-based risk metric, we multiply the drought volumes with the replacement costs of freshwater to
create a proxy for urban drought costs, following several freshwater gaining measures of which unit costs are
available globally (increased reservoir storage, reuse, and desalination; section 2.3). Next, in step 3 we derive the
exposure by delineating each agglomeration and deriving its total population (section 2.4). For step 4, we gather
several vulnerability indicators and combine them into one index to add qualitative information on the
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agglomerations (section 2.5). Lastly, in step 5, all these components are combined into a risk metric (section 2.6).
The analysis is carried out for the time period 1971-2010 to derive the present situation. To assess the impact of
climate change and population growth, we perform the same analysis for the period 2031-2070, using two
combinations of Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs):
SSP1+RCP2.6 and SSP3+RCP6.0.

We took care to match the time periods of the different input data as much as possible, but not all data is
available for exactly the same historical and future time periods and some data may only partially overlap. One of
these data is the Water Stress Index, for which we argue that the difference in time (i.e. the average around 2014
for the Water Stress Index VS 1971-2010 for the other hazard data) is sufficiently small to enable comparison of
the data, since the WSI is only mutating significantly over decadal or longer time scales (Huang et al 2021).
Furthermore, we use cost data from different years, based on the most recent open source information available
(Straatsma et al 2020), and converted to 2005USD to enable comparison. Lastly, the indicators that we use to
compose the vulnerability index are from different sources and we use the most recent values for each city to get
the best estimate of the current state of a city’s vulnerability

2.2. Drought hazard

2.2.1. Urban surface water withdrawals

To determine a drought threshold for each agglomeration, we first need to assess their surface-water use. The
CWM provides a comprehensive overview of water-source locations for 534 urban agglomerations, including
surface-water withdrawal information for 291 agglomerations. This information is either based on annual
reports from the water utilities that serve the agglomeration or extracted from the websites of those water
utilities (McDonald et al 2016). Furthermore, McDonald et al (2014), (2016) connected each water-source
location to the outlet of its reservoir so that the streamflow at those locations represents the situation in the
reservoir. Since the water-use information is static and does not include information on inter- or intra-annual
variability and since there is no global information at city-level on how water use evolves over time, we set the
drought volume proportional to the streamflow below a threshold; for a given extraction point, a 20% drop in
streamflow below the threshold equals a 20% drop in extractions. In addition, we consider human and natural
water use when creating this threshold, the reason being that cities have to deal with competing water users, such
as agriculture (Florke et al 2018), and vegetation and animals (Pastor et al 2014).

2.2.2. Water supply (gridded monthly streamflow)

For each source location, the water use needs to be compared against the water supply in order to derive a
drought threshold. Water supply is defined as the total available streamflow. For this research, we require a
streamflow dataset that is: (i) naturalized, because we want to account for human and natural water needs, which
are taken relative to the normal hydrological situation; (ii) preferably at a relatively high resolution, since the
withdrawal locations are precisely defined; and (iii) based on observations, since we know the absolute
extraction volumes of each agglomeration, whereas modeled streamflow data can have a systematic bias in
absolute volumes (Zaherpour et al 2018). Considering these criteria, a suitable dataset would be the global 30
arcseconds gridded average streamflow data from FLO1K (Barbarossa ef al 2018). Note that FLO1K’s streamflow
is ‘semi natural’: on the one hand, FLO1K is the result of a neural network based on 6,600 observation stations
thatare not all in natural catchments, while, on the other hand, the authors still describe it as ... the discharge
that would occur if there were a natural watercourse.” (Barbarossa et al 2018).

FLO1K only provides annual streamflow data, so it cannot capture inter-annual drought variability, yet
hydrological conditions can vary strongly within a year (see e.g. Van Loon and Van Lanen 2012). We therefore
resample FLO1K to a monthly timestep using streamflow data from the PCRaster GLOBal Water Balance
model, PCR-GLOBWB. We use the PCR-GLOBWB streamflow data that were forced with observed climate
data at the resolution of 0.5° and at a daily timestep from the WATCH Forcing Data methodology applied to
ERA-Interim (WFDEI, Weedon et al 2014) data from the Inter-Sectoral Impact Model Intercomparison Project
2a (ISIMIP2a) simulation round (Sutanudjaja et al 2018). To resample FLO1K, we take the PCR-GLOBWB
streamflow and calculate the relative difference of each monthly mean against the annual mean for each year in
the historical time period (1971—2010). Subsequently, we apply those differences to the FLO1K annual mean
for that year, to derive FLO1K streamflow with monthly timesteps (equation (1)).

Qpia,m,y,c

QFLOI1K, m,y,c = *QEFLOIK y.c (1)

Qpia, V¢

Where: Qg o1k = streamflow from FLO1K; Q,;, = streamflow from PCR-GLOBWB forced with ISIMIP2a-
WEFDEI; m = calendar month; y = year; and ¢ = grid cell. Note that Qy;, ,. and Qg 01x,y,c denote the average
streamflow over all months in year y.
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Figure 2. Conceptual overview of the Environmental Flow Requirement calculation following the Variable Monthly Flow method.
Qgrr = streamflow at EFR conditions, M s = mean annual flow, My = mean monthly flow per calendar month.

2.2.3. Water stress index

Hydrological drought impacts are more likely to occur in highly water-stressed watersheds, i.e. watersheds with
ahigh use-to-availability ratio, as there is less buffer against a drop in streamflow. We therefore adjust the
drought threshold to the urban-focused Water Stress Index (WSI), following He et al (2021); equation (2):

Ww,p
Wwsty = . 2)
Wap

Where: Wyysp, =the WSl in river basin b (basins defined by Masutomi et al 2009); Wyy = total water withdrawals
of the combined irrigation, industrial, and residential sectors; W = total water availability in the form of runoff.
This index ranges between 0 (i.e. large quantities of water are available for use) and 1 (i.e. all the waterin a
watershed has been allocated to anthropogenic uses). Furthermore, He et al (2021) made the index urban
specific by accounting for the in- and outflow of water for the urban agglomerations in each catchment, as

defined by the CWM (McDonald et al 2014, 2016).

Future total water availability from He et al (2021) does not follow the same climate scenarios as those for the
other input data that we use. Hence, we derive the total water availability from daily 0.5° runoff data from PCR-
GLOBWSB from the ISIMIP2b simulation round. For the historical time period, this means that we take the
average value within a 20-year time window centered around the target year 2014 (2004-2023), which is the year
for which the total withdrawals are known. This methodology results in twelve WSI-values, one for each
calendar month, in the historical time period. For the future time period, see 2.2.6.

2.2.4. Environmental flow requirements

To account for natural water use, and to prevent overestimating water availability to the city (Gerten et al 2013),
we incorporate the Environmental Flow Requirements (EFR), which is defined as the volume of water that is
required to maintain the freshwater ecology in a watershed. EFR is often expressed as a fraction of the average
streamflow in a watershed (Pastor et al 2014). A large EFR means that a larger portion of the streamflow goes to
ecological maintenance, which entails a higher hydrological drought threshold for a given watershed, and thus
larger droughts compared to watersheds with alower EFR.

The EFR differs strongly in time and space (Poff and Zimmerman 2010, Pastor et al 2014), and requires large
amounts of input data to model. Therefore, global EFR estimates are generally based on a single threshold, but
these do not account for intra-annual differences because of data constraints. As a midway solution, we apply the
Variable Monthly Flow (VMEF; Pastor et al 2014) method, which requires only the mean annual and monthly
naturalized streamflow to calculate intra-annually varying EFR values. It distinguishes between low flow,
intermediate flow, and high flow seasons, and for each flow season, another formula is applied to determine the
EFR (Pastor et al 2014; figure 2). For example: if the mean monthly flow (Myg) is lower than 40% of the mean
annual flow (M »p), there is alow flow season, and the Qggy is set at 60% of the My Both M apand My are
based on the FLO1K-resampled streamflow and are taken over the historical time period (1971-2010). The VMF
method results in twelve Qggg values, one per calendar month, for each surface-water source location.
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2.2.5. Present drought volumes

To find the present drought hazard, all input data are used to calculate the annual average drought volume per
agglomeration over the historical period 1971-2010. For each agglomeration, surface-water source locations are
identified, and the corresponding Qgr 011, Wiwsp and Qggg values are collected in order to calculate a drought
threshold per calendar month (equation (3)).

~ 1971 -2010
chres,m,s = QFLO]K,m,s * (WWSI,m,s + QEFR,m,s) (3)

Where: Qypres,m.s = streamflow threshold below which drought occurs per calendar month () and surface-
water source location (s).

In the next step, for each source location, the resampled monthly time series of streamflow is compared
against these thresholds. If the streamflow for any given month drops below the threshold, drought conditions
occur, and the magnitude of the drought is expressed as the percentage of the water that is missing, relative to the
streamflow under normal climatic conditions (equation (4)).

max (chres,m,s - QFLOIK,m,y,S) 0)

Voere,my,s = ~1971—2010 “
QFLO]K,m,s

Where V.. is the relative drought volume.

The absolute drought volume of an agglomeration is determined by multiplying the relative drought volume
with the water withdrawal volume of that agglomeration at the source location. If an agglomeration has multiple
source locations, then the drought volumes are accumulated into one value. The drought volume per month is
subsequently aggregated in annual values for the historical time period, and averaged again to obtain one annual
average drought volume per agglomeration.

2.2.6. Climate change and future drought volumes

To assess the effect of climate change on hydrological drought in urban areas, we perform the same analysis for a
future time period between 2031-2070. We consider two future climate scenarios, using combinations of
Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs): SSP1+RCP2.6,
which is the low emission pathway with sustainable development; and SSP3+RCP6.0, which relates to a regional
rivalry pathway with a more national-oriented focus and under medium-high emissions (O’Neill er al 2014). The
data that we use does not allow for other RCP and SSP combinations, but we are confident that these scenarios
cover a sufficiently large range of possible drought risk futures. Note that the RCP scenarios refer to possible
future states of the climate, and that the SSPs refer to possible future socioeconomic trends (Riahi et al 2017). We
therefore use the RCP scenarios to simulate future hazard, the SSP scenarios to simulate future exposure, and the
combined scenarios to simulate future risk.

To maintain a consistent climatic baseline, the thresholds for both the historical as well as the future time
periods make use of the same mean streamflow per calendar month (Qf k), and the same corresponding
EFRs (Qgpg,m,s)- However, the WSI does change with time, to represent changes in socioeconomic development.
In practice, this means that future hazard conditions could be affected by either a change in: (i) surface water
supply, i.e. streamflow; (ii) total water availability, i.e. runoff; or (iii) total water withdrawals by the irrigation,
industrial, and residential sectors. Note that here the ‘industrial and residential sectors’ refers to the withdrawals
from He et al (2021) and not to those specifically for our agglomerations.

For these future thresholds, we require future streamflow, total water use, and total water withdrawal data.
Since FLO1K only reaches up to 2015, we require another streamflow dataset to extend beyond the historical
period. We apply a delta change factor to the resampled FLO1K streamflow data, using streamflow data from
PCR-GLOBWRB forced with ISIMIP2Db (Frieler et al 2017, Sutanudjaja et al 2018) bias corrected climate data,
including four different General Circulation Models (GCMs): GFDL-ESM2M; HADGEM2-ES; IPSL-CM5A-
LR; and MIROCS5 (Sutanudjaja et al 2018). We estimate future values for the FLO1K streamflow by first finding
the cells in FLO1K that intersect with those in PCR-GLOBWRB. Then, we take 1996-2005 as our baseline period
and calculate the relative differences between each future year (2031—2070) and the baseline period within
PCR-GLOBWSB for each calendar month. We then apply those differences to the FLO1K values in the baseline
period (equation (5)).

szb m,y
* 1996 —2005
QFLOlK,fut,WZ,}/ "=1996—2005 QFLO]K,m (5)
Qpl b,m

With: Qpro;k = the streamflow from FLO1K; Q,;, = streamflow from PCR-GLOBWRB forced with
ISIMIP2b.

Runoff data from the same ISIMIP2b-forced PCR-GLOBWB model are used to determine future total water
availability following the methods from section 2.2.3, but averaged over 2040-2060. Total water use is directly
derived from He etal (2021).
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Table 1. Measures that replace (produce or save) freshwater and their corresponding unit costs in 2005USD/m>. D}, and D, respectively are
the horizontal and vertical distance between the coastline and the agglomeration border in km. Drought solving capacity refers to the
percentage of the drought volume that each measure can solve.

Measures to replace lost Unit price [2005USD/m?] for the target Drought solving

freshwater agglomerations capacity [%] Unit price source

Increase surface-water 0.12—2.52 100 Ward etal (2010)
reservoir storage

Reuse urban-industrial / 0.30 50 Straatsma et al (2020)
residential water

Increase desalination 1.00 +0.0006" Dy, + 0.50*D,, 100 Straatsma et al (2020);

Zhou and Tol (2005)

2.3.Drought costs

2.3.1. Costs assessment

We convert the hazard indicator to the costs of drought to resemble the socioeconomic impacts of drought.
Although large-scale drought cost assessments are limited and no dominant approach exists, Logar and Van den
Berg (2013) compared drought cost assessment methods and argued that market valuation techniques are most
suitable to assess drought costs for different economic sectors and require relatively low amounts of input while
still holding a relatively high precision. Here we use the ‘market price method’ variant, in which the market price
of a product/service is multiplied by the quantity lost to, in this case, a drought Logar and Van den Berg (2013).
The product is in this case the water that needs to be gained from other sources in order to maintain business as
usual under drought conditions.

Studies have been conducted in the past that used the market price method to monetize water scarcity on the
global scale (Hughes et al 2010, Ward et al 2010, Straatsma et al 2020). They make use of several globally
applicable adaptation options that replace—i.e. produce, gather or save—lost freshwater. Globally applicable
unit costs of three of these adaptation measures were found in those studies that are also relevant to urban
drought impact mitigation (table 1). From these measures, we derive a drought cost range per agglomeration.
Note that all costs are in 2005USD, the same reference value as used in the SSP database.

2.3.2. Replacement costs calculations per measure

2.3.2.1. Increase surface water reservoir storage

The first measure, increasing surface-water reservoir storage, has a unit cost between $0.12/m’ and $2.52/m’,
depending on the region in which they are located and their characteristics. It includes a construction,
implementation, and maintenance component (Ward et al 2010). These costs were calculated by Ward et al
(2010), who used a relationship between a region’s mean slope and the unit cost per m” of 11 different reservoir-
size classes. The regions used were the so-called Food Producing Units (FPUs). We calculate the unit price per
agglomeration by first searching for the intersecting FPU per source location as well as the corresponding unit
cost of that FPU, and subsequently averaging the costs over all source locations to derive one unit price per
agglomeration.

2.3.2.2. Reuse urban industrial/residential water

The unit cost of the second measure, reuse of urban-industrial /residential water, is set to $0.30/ m?>. This price
includes the construction costs plus maintenance costs to maintain the measure through 2099 (Straatsma et al
2020).

2.3.2.3. Increase desalination

Increased desalination is composed of two parts. First, it has a constant component of $1.00/m? for the
desalination process itself. Second, it also has a variable component to reflect the transportation costs of the
water from the nearest surface salt-water body to the city border, which was set to $0.0006 /m> per km horizontal
transport and $0.5/m” per km vertical transport (Zhou and Tol 2005). We use the coastlines from Natural Earth
V4.1.0 (naturalearthdata.com) and the agglomeration borders from GHS-SMOD (Florczyk et al 2019; see 2.4.1)
to determine the horizontal distance as the crow flies. Furthermore, we use the SRTM Digital Terrain Model
V4.1 (Reuter et al 2007) to determine the vertical distance along the horizontal distance line. We consider both
uphill as well as downhill directions, as we assume that the brine (wastewater from desalination) needs to be
transported back to its source (Jones et al 2019). Even if the brine is processed locally, its disposal is still a costly
process, especially further inland (Brady et al 2005, Kesieme et al 2013), and this is not considered in the constant
cost component (Zhou and Tol 2005). This suggests that the total price of desalination is in any case likely to be
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larger than the constant component + uphill transportation costs only, which we argue to be reason to include
the additional transportation costs back to the coast.

2.3.3. Cost aggregation

Since there is no specific globally uniform order in which these measures should be applied, we use a scenario
approach to calculate the costs for each of these measures individually. The resulting minimum and maximum
costs are then used to compose a cost range per city. These cost ranges are standardized per agglomeration by
dividing them by the agglomeration’s current population. Furthermore, it is assumed that the additional
freshwater from increasing desalination or reservoir storage is sufficient to solve full drought volumes, since
these measures could provide vast amounts of water (Lehner et al 2011, Jones et al 2019). However, even though
there is no global estimate available of the potential for the reuse of urban-industrial /residential water
(Paranychianakis et al 2015), it is capped at 50%, since several researchers showed that most countries do not
have the potential to treat all of their wastewater (Anderson 2003, Paranychianakis et al 2015, Bauer et al 2020).
The drought costs are thus calculated with equations (6) and (7):

Vabs,a Vabs,a : :
(%)*Pruw + (%)*mln (Pirs> Pids)a & min (Pirs; Pruw> Pids) = Pruw

Vabs,a*min (Pirsa Pids)r & min (Pirs: PruW) Pids) = Pruw &

(6)

Cmin,a -

Vabs,a Vabs,a
(%)*Pruw + (%)*max (Pirs> Pids)> &max (Pirs, Buws Pids) = Buw

Vabs,a*rnaX (Pil‘5> Pids)’ & max (Pirs: PruW) Pids) = R‘uw &

%)

Cmax,a ==

With: Cyi, = minimum drought costs; Cy,.x = maximum drought costs; a = agglomeration; V s
= absolute drought volume; P;,; = unit price of increasing surface-water reservoir storage; P,,,,, = unit price of
reusing urban-industrial /residential water; P;;, = unit price of increasing desalination.

2.4. Exposure

Our exposure metric is the population totals within each agglomeration, as the CWM does not provide
information on the share of citizens that is connected to the municipal water supply system. We therefore
assume that all the residents in an agglomeration are potentially affected by drought, because freshwater is a
scarce, widely-used, and non-substitutable economic good (van der Zaag and Savenije 2006). Larger populations
lead to a smaller share of remaining water per capita, thereby increasing the drought risk. For the population
data, we use data from the 30 arcseconds gridded 2UP model, which includes both current population (2010) as
well as future projections towards 2050 under five different SSPs (Van Huijstee et al 2018). Agglomeration
borders are derived from the GHS-SMOD dataset (Florczyk et al 2019), which builds upon a physical definition
of a ‘city’ based on population totals and densities, following the new Degree of Urbanization (DEGURBA;
Dijkstra and Poelman 2014). A physical definition of a ‘city’ is preferred over an administrative one in global-
scale analyses, because the administrative borders are not consistently defined between different countries,
whereas physical ones are (UN-DESA 2019).

The CWM contains point locations of each agglomeration, but these have no spatial borders. To use the
physical-city definition, we link each CWM-agglomeration point to a GHS-SMOD agglomeration polygon,
which means that, for each GHS-SMOD border, we accumulate the total drought volume from all the
intersecting CWM points. To test the validity of merging agglomerations, we compared the 2010 population
from 2UP within each GHS-SMOD agglomeration with that from the CWM agglomerations (McDonald et al
2014; UN-DESA 2019), which shows that for 92% of the GHS-SMOD agglomerations, 2UP population totals
are in between halve or double the population of the CWM agglomerations (Supplementary figure S1). The
CWM consists of 534 agglomerations of which we keep 264 unique urban agglomerations after filtering on
agglomerations with surface water extractions, merging them in the GHS-SMOD borders, removing
agglomerations with either no available 2UP data or GHS-SMOD border, and splitting them on country borders
(supplementary figures S2 and S3).

2.5. Vulnerability

2.5.1. Indicator choice

To better estimate the agglomerations most at risk of a hydrological drought, we compose a vulnerability index
from a set of individual indicators to operationalize and quantify those characteristics that make urban
agglomerations susceptible to drought impacts. Creating an index is the most commonly applied method to
assess vulnerability for drought (UNDRR 2021). We provide one vulnerability value per city, but we
acknowledge that there is usually a large variability within cities (e.g. between different population groups).
However, the index approach is suitable to compare cities, which is part of the goal of this paper. We base our
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Table 2. Overview of the indicators and their variables for operationalization used in this study.

Indicator Variable Unit Year Weight
Access to clean water Unimproved/No Drinking Water % of population 2015 0.15
Poverty Poverty Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population) Most recent value between 1960-2020 0.14
Water quality Untreated Connected Wastewater % of population 2000-2010 0.15
Government Effectiveness Government ineffectiveness — 2020 0.15
Conflict & insecurity Number of conflicts Count Sum over 1989-2017 0.13
Sanitation Unimproved/No Sanitation % of urban population 2020 0.13
Groundwater depletion Groundwater table decline cm/year Average change over 1990-2014 0.14
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individual indicators on the work of Meza et al (2019), who listed and ranked a set of indicators based on the
experience of a group of drought experts from different regions and with different scopes. We deem an indicator
relevant if it scored equal to, or above, a relevance-score of 0.8 for drought experts with a general and a global
scope. Furthermore, to ensure that multiple facets of vulnerability are considered, we also make sure that we
include at least one indicator for the following set of commonly recognized vulnerability sub-dimensions:
‘Social’, ‘Economic’, ‘Infrastructure’, ‘Environmental’, ‘Governance’, and ‘Crime & Conflict’ (Gonzalez-Tanago
etal 2016, Hagenlocher et al 2019, Meza et al 2019). If there is no indicator that belongs to a specific sub-
dimension that fulfills the first criterion, then the best scoring indicator from Meza et al (2019) is chosen instead.
For each indicator a relevant and available variable was determined, partly based on an expert interview (see
Acknowledgements), resulting in the final set of indicators and variables in table 2.

2.5.2. Vulnerability index

To calculate the vulnerability index, we first determine a value for each indicator per agglomeration by
intersecting each agglomeration with the spatial unit of the indicator (i.e. national, sub-national, or city level).
Second, we sort the values such that the vulnerability increases with the indicator value. Third, we standardize
each indicator based on min-max normalization. Finally, each standardized indicator is given a weight, based on
the overall relevance score in Meza et al (2019, table 2), and is aggregated in the vulnerability index
(Supplementary table S1). Note that these weights are close to the weights that would be obtained with equal
weighting (1/7 = ~0.143), because the individual relevance scores from Meza et al (2019) are relatively close to
each other. Hence, the indicators have approximately the same relevance, although Access to clean water,
Government effectiveness, and Water quality are considered slightly more important.

Unimproved/No Drinking Water indicates which part of the population has to fetch water from
unprotected sources (Hofste er al 2019). This makes them vulnerable during drought as lower water levels
increase the density of pathogens in the water. Poverty denotes the percentage of people earning below living
standards (World Bank 2022). This limits them to undertake adaptations to drought and to financially respond
to drought damage. Untreated Connected Wastewater denotes the amount of water that flows through the
sewers without any level of treatment (Hofste et al 2019). Again, this increases pathogen concentrations in the
water during drought. Government effectiveness captures several governance-related indicators into one index
that measures the perception of the quality of, among others, public services, policy formulation and
implementation, and government credibility (Kaufmann et al 2011). It affects the efficiency in which a
government deals with drought (see for instance Simpson et al 2019). It is deemed especially suitable for cross-
country comparison at larger geographical scales (Kaufmann et al 2011). Number of conflicts shows the sum of
individual organized violent conflicts for a city (Sundberg and Melander 2013, Davies et al 2022). This is an
indication of the unrest and therefore the lack of cooperation on disaster risk reduction within a city.
Unimproved/No Sanitation refers to the amount of people that do not have access to more than very basic
sanitation structures (Hofste et al 2019, WHO and UNICEF 2021). Human feces can accumulate in the urban
environment during drought, causing potential health issues. Groundwater table Decline measures how much
the water table changes in groundwater sources (Hofste et al 2019). This decreases the capability to resort to
groundwater sources when surface water sources run dry. More information on the sources and acquisition of
this data can be found in supplementary table S2.

2.6. Risk

We derive the risk for the historical period (1971-2010) as well as for the future period (2031-2070) under the
SSP1+4+RCP2.6 and SSP3+RCP6.0 projections. We cannot attach an overall risk number on the absolute
drought risk per individual city, but by making combinations of costs and vulnerability categories we are able to
identify nine risk profiles. These profiles are based on the 33th (low), 66th (medium) and 100th (high)
percentiles of cost and vulnerability values. We use a trivariate map that is composed of (i) a bivariate choropleth
that shows these nine drought risk categories and (ii) a proportional symbol map that adds exposure. We then
assess the total number of agglomerations and their exposure within each risk category as well as their evolution
over time, to quantify the change in risk over time.

3. Results

3.1. Global patterns

Figure 3 shows our cities’ hazard, exposure and vulnerability distribution over the historical period, aggregated
into income categories: High income (HI), Upper middle income (UMI), Lower middle income (LMI), and
Lower income (LI) (Fantom and Serajuddin 2016). The average hazard is similar for HI, UMI, and LMI, but s,
within our set of cities, substantially lower for LI (figure 3(a)). Moreover, the range of the hazard is inversely
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Figure 3. City distribution over income groups for A: Hazard; B: Exposure; and C: Vulnerability. HI = High income; UMI = Upper
middle income; LMI = Lower middle income; LI = Low income. Sample size n is given between brackets for each income group.
Sample consists of all the cities inside the income group, but outliers (outside the interquartile range) are left out of the figure for
readability. There are 4 cities (2 in HI, 1 in UMI, and 1 in LMI) for which we have no data for vulnerability.

correlated with income in our data, which indicates that there is less variation in the hazard in LI than HI cities.
However, it should be noted that the LI group only has 12 cities which are all on the African continent in tropical
or temperate climates and this may limit the variability in this group. The most exposed cities are found in the
UMI and LMI groups, which are likely economic developing countries that rapidly grow in size or have grown in
size over the past years (figure 3(b); Bauch 2008). The vulnerability index shows an inverse trend with income in
our data. Our individual vulnerability indicators do likely favor higher income cities, as there is likely more
investment opportunities in for instance sanitation and water supply in wealthier cities (figure 3(c)). The
remainder of this chapter discusses the spatial distribution of the hazard, exposure and vulnerability. See the

supplement for more Figures on these components for the different time periods (Supplementary Figures $4, S5,
S6,S510,and S11).

3.2.Hazard

Our estimates shows that the median standardized urban drought hazard increases towards 2050 with 66%:
from ~8,000m3/year per 1000 citizens to ~10,000-13,000m3 /year per 1000 citizens (supplementary figure S7).
This increase is significant at p<0.05 following the Wilcoxon Sign-Ranked-Test (Wilcoxon 1945). In addition,
73% and 88% of the agglomerations have a projected increase in annual average drought volumes over time for
RCP2.6 and RCP6.0 respectively. Figure 4 presents this spatially and also shows the model agreement on the sign
of change—either an increase, decrease or no change. Note that the drought costs have the same factor change as
the drought hazard, since the unit costs remain static over time. With the methodology used in this study, an
agglomeration’s hydrological drought volume or costs can change with time if either the drought threshold or
the climate variability changes. This can be analyzed by looking at changes in (i) the WS (ii) the drought
frequency (i.e. the threshold exceedance frequency); and (iii) the drought intensity (i.e. the average threshold-
exceedance volume).

Based on our model, strong relative increases occur mostly in northern India, Pakistan, the Midwestern US,
eastern Brazil, and most of western Africa (figure 4). The drought hazard is already large in our historical
simulation for northern India and Pakistan and is thus projected to worsen in the future there, mostly with
>75% model agreement. We have found the biggest drought hazard in San Diego (United States); Los Angeles
(United States); and Quetta (Pakistan). Both San Diego and Los Angeles extract relatively large volumes of water
from several source locations—of which some are shared between them. The mean WSI for San Diego’s source
locations is close to 1, implying that most of the water at those locations is already assigned to a purpose.
Historically, the drought threshold is therefore exceeded 81% and 78% of the time for San Diego and Los
Angeles respectively, which mostly explains the large drought hazard. Quetta, the agglomeration with the third-
largest drought volume, has lower WSI values than San Diego and Los Angeles in the historical time period, but
this difference shrinks towards the future. Also, Quetta’s drought frequency increases towards 2050, which
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Figure 4. Spatial distribution of the factor change in the urban drought hazard for RCP2.6 (left half symbols) and RCP6.0 (right half
symbols), including model agreement on the direction of change (either—or +). An ‘inf’ factor change means that those
agglomerations are having 0 drought volume in the historical period, which becomes >0 in the future. The figure is distributed in
panels A-E to prevent clustering of points. A: North and Central America; B: South America; C: Europe, Africa, and West Asia; D:
Central, East and South Asia; E: Southeast Asia, and Oceania. Labeled agglomerations are discussed in more detail in the text.

altogether results in a doubling in drought volume under both RCPs for this agglomeration (supplementary
table S3).

On the other side of the spectrum, some agglomerations in parts of southern Africa experience a decrease in
hazard towards 2050 according to our model. We also observe this at the west coast of the US for some
agglomerations with large historical urban drought volumes (e.g. San Jose and Santa Barbara; figure 4). Five
agglomerations have no urban drought hazard in the historical situation: Manaus (Brazil), Monrovia (Liberia),
Helsinki (Finland), Kampala (Uganda), and Zhengzhou (China). From these, only Kampala remains free of
drought in 2050 for both RCPs. The low volumes are predominantly caused by the WSI, which is close to 0 for
these agglomerations. The drought frequency does not increase much towards 2050 in most of these
agglomerations, with Manaus having the highest threshold exceedance frequency with 10%. However, the
drought intensity rises strongly for Manaus and Zhengzhou, and it is therefore likely that the increase in drought
hazard is due to the local streamflow becoming either more erratic over time or overall less on average towards
2050 for these agglomerations (supplementary table S3).

Figure 4 also shows us that there is a larger model agreement for RCP6.0 compared to RCP2.6. This is
especially evident in the Midwestern US (e.g. Chicago and Detroit), where the strong increase in drought volume
is backed only by a 50% model agreement for RCP2.6. Here, the increase of two models outweighs the decrease
in the other two. This indicates that for some parts of the world our model identifies high levels of uncertainty in
future drought conditions, especially under RCP2.6 (supplementary figure S8). Strong changes in the hazard can
be found in arid agglomerations like Alexandria and Cairo. However, we should handle these cities with care,
because both FLO1K and PCR-GLOBWB show relatively large uncertainties in arid regions (Sperna-Weiland
etal 2010, Barbarossa et al 2018). Outside arid regions, Brazzaville (Republic of the Congo) shows a strong
decrease with factor changes of —18 (RCP2.6) and —33 (RCP6.0) due to a decrease in the frequency of drought
occurrences. Kozhikode (India) has strong positive factor changes of 13 (RCP2.6) and 34 (RCP6.0), mainly due
to an increase in the WSI (supplementary table S3).

3.3. Exposure and vulnerability

Our results indicate that exposure will increase over time for almost 97% of the agglomerations in SSP1, and for
91% of the agglomerations in SSP3 (supplementary figure S10). For SSP1, the top 20 agglomerations with the
largest increase in population are exclusively in Sub-Saharan Africa and central and western India. From the 2UP
population data, we find the largest increase in Kampala (x4.0; Uganda), which does not have any urban drought
hazard and is thus not exposed, followed by Dhanbad (x3.4; India) and Ouagadougou (x3.4; Burkina Faso). For
SSP3, all but one of the fastest growing agglomerations are again in Sub-Saharan Africa and Western Asia, with
the top 3 consisting of Kampala (x3.4), Lubumbashi (x2.7; Democratic Republic of the Congo), and
Ouagadougou (x2.7). Decreasing populations are mostly found in agglomerations across Europe and East Asia.
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Figure 5. Spatial distribution of the historical urban drought risk. See figure 4 for panel descriptions. X-marks denote no data.

Agglomerations with the largest vulnerability in our model can be found in similar regions (supplementary
figure S11). Here, agglomerations score high on large shares of untreated connected wastewater. Next to that,
most sub-Saharan African agglomerations score relatively high on the variables government ineffectiveness,
unimproved/no drinking water, and poverty. The large vulnerability in northern Indian agglomerations is
accompanied by large groundwater table declines. Agglomerations in Central and South Asia also have to deal
with relatively medium to high values for the government ineffectiveness variable. Thus, vulnerability profiles
differ amongst agglomerations with similar scores, although untreated connected wastewater and government
ineffectiveness are often the most influential in these cases. The least vulnerable agglomerations are in northern
and western Europe, the US, Australia, southern South America, and Japan.

3.4.Risk

Figure 5 shows the trivariate risk map for the historical situation (see supplementary Figures S12-13 for RCP2.6
and RCP6.0). The agglomerations that are arguably most at risk in our model are those located in Central and
South Asia. These have high vulnerability and medium/high drought costs, although they mostly fall in the
lowest three exposure classes (figure 6). The agglomeration in the highest categories of drought costs and
vulnerability, as well as with the largest exposure class (>10M), is New Delhi, which we therefore consider to be
the agglomeration most at risk from urban droughts, both historically as in the projected futures. In fact, New
Delhi has recently experienced several droughts with severe consequences (Bhardwaj 2019; Delhi News 2022).

In contrast, agglomerations in Europe, along the United States-Canadian border, and—to a lesser extent—
the remainder of Asia have low/medium vulnerability and costs alike and could be considered to have the lowest
urban drought risk according to our model. Other regions have low/medium vulnerability, but have to deal with
larger drought costs (North America, and the Mediterranean), or conversely have high vulnerability with low/
medium drought costs (Sub-Saharan Africa). These regions have a large share of agglomerations with
population totals exceeding 1M (figure 6), and are thus prone to shifting to the highest risk class if either the
drought costs or the vulnerability would increase. The most diverse region in terms of risk profiles is South
America, which includes agglomerations over the whole range of vulnerability classes and with low/medium
costs.

Towards 2050, spatial patterns stay mostly the same, but several agglomerations shift between drought risk
categories. Figure 6 shows that the share of agglomerations in the lowest cost class decreases, whereas the
number of agglomerations in the highest cost class increases. Yet, the medium/medium class has the largest
share of agglomerations (~30%) in all time periods and scenarios. Moreover, for almost all bivariate classes,
exposure increases towards 2050, as an increasing share of agglomerations will have a population exceeding 1M.
Yet, the share of agglomerations with low exposure remains larger in the high-cost classes than in the low-cost
classes. Lastly, figure 6 also shows that exposure is increasing with vulnerability.
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Figure 6. Number of agglomerations per bivariate risk category and their distribution over the exposure classes. Bottom: number of
agglomerations per bivariate class (maximum drought cost category—vulnerability category) for the different time periods and
scenarios. Colors refer to the bivariate color scheme in figure 5. Top: Share of agglomerations in each bivariate class and per exposure
category. Colors are specified in the legend.

4, Discussion

4.1. Assumptions and the way forward

In this study, we took a novel approach to get a first estimate of global urban drought risk. The results can be used
to make comparisons across cities and to find larger geographical trends of drought hazard/costs, exposure,
vulnerability and risk. A global-scale approach comes inevitably with several—sometimes major—assumptions
due to alack of data. We should therefore be careful in deriving detailed city-level implications from our model.
Here we discuss two main assumptions, how they likely influence our results, and how we can improve this in
future research.

In our analysis, we did not cover for groundwater abstractions in the hazard due to modeling complexities.
As such, it may be possible that agglomerations experience lower drought hazard than suggested in our results,
because they still have access to sufficient groundwater sources. Florke et al (2018) examined the urban
groundwater footprint—the ratio of urban water withdrawals from groundwater to the groundwater recharge
rate—and found that all cities (apart from some in Europe) are expected to have a higher footprint in the future
than they have now. In other words, these groundwater sources are increasingly stressed and may thus not be
sustainable in the long run. Yet, future research may yield more robust results when including groundwater, as it
is an important resource for cities (McDonald et al 2014).

Furthermore, we assumed constant withdrawal rates over time for each agglomeration, based on the CWM
data, but in reality these rates can change with several aspects, for example population, economic profiles, and
technology (McDonald eral 2011, Kuil et al 2019). Wada et al (2016) compared total withdrawals for several
global hydrological models that considered some of these aspects. They did this for different SSPs and water use
sectors, including the domestic and industrial sectors, which are the ones that potentially make use of the
municipal water supply as considered in the CWM (McDonald et al 2014 and 2016, personal correspondence).
They found that, by 2050, domestic water use could change by between +40% and +170% for SSP1, and
between +90% and +250% for SSP3, and that industrial water use could change between —40% and +100% for
SSP1, and between +45% and +120% for SSP3. Hence, if we were to account for these changing urban
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withdrawal rates as well as for the previous assumption on groundwater, the drought hazard would most likely
increase even further towards the future, compared to what we found in our own results. A potentially
promising avenue to explore this gap are the use of SSPs in future projections of socioeconomic circumstances
(Wilts et al 2021).

4.2. Implications for cities

The drought risk hotspots from this study can guide city-level or regional-scale studies on urban drought. Using
local information, such in-depth studies can further specify the drought hazard and population exposed, as well
as identify the most vulnerable parts of the local urban system. More specifically, as we have outlined in this
paper, cities need to inventory their water sources, map the variability in water, identify who is affected by
drought, and unravel the local complexities that make up their vulnerability. Furthermore, the urban drought
risk profiles can raise awareness to drought amongst cities and aid urban-focused transnational climate action
groups like C40 or R-Cities to identify cities in similar circumstances. It should also be noted that not only cities
that are currently experiencing large urban drought risk, but also the ones that are projected to experience
increased urban drought risk in the future require further attention. Altogether, such local-scale risk assessments
can in turn be used to find suitable adaptation options for specific cities.

What makes an adaptation option suitable depends for a large part on the vulnerability of the city to drought
and other hazards (De Ruiter et al 2020). Vulnerability in turn is considered highly dynamic and strongly
influenced by local circumstances (O’Brien et al 2007); thus the local context is critical when considering urban
drought adaptation options. Note that the measures that we used to proxy the drought costs are not always the
most optimal solutions, because they have several drawbacks, such as high energy intensities, ecological and
environmental damage, and land cover degradation (Ahmed and Anwar 2012, Gouldson et al 2015, Cremades
etal 2021, Singh etal 2021, Van Vliet et al 2021). Instead, it is recommended that cities adopt a mix of options,
distinguishing between: i) reactive adaptation, focusing on the immediate impacts from extreme weather,
without changing the city’s systems; ii) incremental adaptation, driving adjustments to the existing city systems,
building their resilience, while minimizing negative climate change impacts; and iii) transformational
adaptation, aiming to reduce the root causes of climate risks, by transforming the city’s systems into more just,
sustainable, or resilient states (European Environment Agency 2016). Thinking about transformational
adaptation strategies may help cities in identifying solutions that are sustainable in the long term and that offer
opportunities for co-benefits. Under the right political, institutional, and financial circumstances, certain
(transformative) adaptive measures can even provide an economic benefit (Gouldson et al 2015). Even ifan
adaptation measure is not profitable, Van den Bergh et al (2010) and Cartwright et al (2013) argue that we should
look beyond the economic consequences towards the ability of adaptation and mitigation measures to increase
our overall welfare and quality of life. Moreover, there is an increasing number of cities that have started to see
adaptation as an opportunity to increase their attractiveness as livable cities (European Environment
Agency 2016, Boon et al 2021).

Short-term actions that lead to quick economic gain may cloud long-term visions of politicians and planners
(Buurman et al 2017), regardless of the benefits discussed above. On a more positive note, cities are often praised
for their active response against climate change in general. Cities often have a mandate and relatively small
geographical area to operate on, making them more effective in handling climate change and pushing for action
than for instance nation states (Rozenzweig et al 2010, Johnson 2018). Cities do this both on their own or in one
of the many urban-focused climate action groups (see e.g. Haupt and Coppola 2019). Barriers remain in the
form of difficult integrations of climate related policies in other urban agendas and lacking support of national
governments (Gouldson et al 2015), but adaptation and mitigation are increasingly more intertwined in city
climate action plans (Grafakos et al 2019). There is extensive literature examining the co-benefits between
adaptation and mitigation and the need to move away from compartmentalizing approaches is well recognized
(Sharifi 2021).

5. Conclusion

In this study, we examined global urban drought risk in the present as well as under future projections. Using
drought hazard, costs, exposure, and vulnerability, we developed urban drought risk profiles for 264 urban
agglomerations and identified several hotspots around the globe, the most notable being Central and South Asia.
We found 3 key results:

+ We project that, towards 2050, hazard/costs increase for 73%-88% of our target agglomerations, and ...

+ ...that exposure increases for 91%-97%.
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+ Following our model, the number of agglomerations with high costs and medium exposure increases, whilst
agglomerations with low costs and low exposure reduce in number.

Our model therefore implies that urban drought risk will evolve from an already substantial threat now
towards an even bigger issue in the near future.

Our results also show that urban drought is not confined to specific geographical areas and that cities across
the globe should consider it as a serious threat to their functioning. Even cities that are currently not dealing with
drought may need to put urban drought on their agenda to prevent it from becoming an issue in a climatic and
socially changing future. Cities that already do consider drought as a threat, often deal with it in a reactive
manner without considering incremental or transformational options—which is both unethical (because of
human suffering) and more expensive (e.g. last minute imports from abroad, emergency aid). Cities need to act
on several fronts to reduce this risk; they need to improve their water management, reduce vulnerability, and
apply a balanced mix of reactive, adaptive, and transformative measures to minimize their urban drought risk
and to prevent large-scale social and economic consequences.

We have also identified several avenues for future research. One avenue is to use local-scale context and data
to investigate the cities from the hotspots identified in our research in more depth, for instance by applying a
downscaled version of our model. Such studies may benefit from the inclusion of groundwater, dynamic city-
level withdrawal rates, dynamic vulnerability indicators, information on water sources on a sub-city scale, and
local information on the replacement costs of freshwater.

We have demonstrated here that drought is not solely an agricultural issue, but also an urban one. Although
we estimate that urban drought risk increases for many cities in the next three decades, we also see traction in
urban drought research as well as in the influence of cities on the international disaster risk management stage. If
we maintain this momentum, we may still mitigate some of the urban drought risk to prevent worse impacts
than those already experienced in the recent past by cities like New Delhi and Cape Town.
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