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APPENDIX A
BELIEF COMPUTATION

The belief state for each node i ∈ Nt can be computed
recursively as

bi,t(si,t)
(a)
= P

[
si,t |

hi,t︷ ︸︸ ︷
oi,t, ai,t−1, oi,t−1, . . . , ai,1, oi,1, bi,1

]

(b)
=

P
[
oi,t | si,t, ai,t−1,hi,t−1]P[si,t | ai,t−1,hi,t−1

]

P
[
oi,t | ai,t−1,hi,t−1

]

(c)
=

Z(oi,t | si,t)P[si,t | ai,t−1,hi,t−1

]

P
[
oi,t | ai,t−1hi,t−1

]

(d)
=

Z(oi,t | si,t)
∑

s∈S bi,t−1(s)fN(si,t | s, at−1)

P
[
oi,t | ai,t−1hi,t−1

]

(e)
=

Z(oi,t | si,t)
∑

s∈S bi,t−1(s)fN(si,t | s, at−1)∑
s′,s∈S Z(oi,t | s′)fN(s′ | s, ai,t−1)bi,t−1(s)

.

(a) follows from the definition of bi,t (4); (b) is an expansion of
the conditional probability using Bayes rule; (c) follows from
the Markov property of Z (3); (d) follows from the Markov
property of fN (2); and (e) follows by definition of Z (3) and
fN (2). Computing the belief state through the expression in
(e) requires O(|S|2) scalar multiplications.

APPENDIX B
PROOF OF THEOREM 1

Solving (6) corresponds to solving Nt finite, stationary, and
constrained Partially Observed Markov Decision Processes
(POMDPs) with bounded costs and the average cost optimality
criterion. Since the POMDPs are equivalent it suffices to prove
the statement for a single POMDP.

It follows from (2) and assumption A that fN(s′ | s, a) > 0
for all t, s′, s, a. Given this property and assumption D, we
know that there exists a deterministic optimal strategy π⋆

i,t for
which the limit in (5) exists and which satisfies

π⋆
i,t(bi,t) ∈ argmin

a∈{W,R}

[
cN(bi,t, a) +

∑

o∈O
P [o|bi,t, a]V ⋆

i,t(bi,t+1)

]

(17)

for all bi,t and t ≥ 1 [1, Prop. 1], where cN(bi,t, a) is the
expected immediate cost of a given bi,t and V ⋆

i,t is the value
function [2, Thm. 7.4.1].

Each of the constrained POMDPs with infinite horizons
defined in (6) can be converted into a sequence of uncon-
strained POMDPs (Mi,k)k=1,2,... with horizon T = ∆R, where

ai,T = R ensures that (6b) is satisfied. This sequence is
equivalent to the original POMDP because

argmin
πi,t

[
lim

T→∞
Eπi,t

[
1

T

T∑

t=1

Ci,t | Bi,1 = pA

]]

(a)
= argmin

πi,t

[
lim

T→∞

1

T

(
Eπi,t

[ ∆R∑

t=1

Ci,t | Bi,1 = pA

]
+

Eπi,t

[ 2∆R∑

t=∆R

Ci,t | Bi,∆R
= pA

]
+ . . .

)]

(b)
= argmin

πi,t

[
lim

T→∆R

Eπi,t

[
1

T

∆R∑

t=1

Ci,t | Bi,1 = pA

]]
, (18)

where Ci,t is a random variable representing the cost of node
i at time t; (a) follows from linearity of E; (b) follows because
all elements inside the parentheses are equivalent, which
means that a strategy that minimizes one element minimizes
the whole expression.

Consider the threshold structure in (7). We know that a
strategy π⋆

i that achieves the minimization in (18) induces
a partition of [0, 1] into two regions at each time t: a wait
region Wt where π⋆

i (b) = W, and a recovery region Rt

where π⋆
i (b) = R. The idea behind the proof of (7) is to show

that Rt = [α⋆
t , 1] for all t and some thresholds (α⋆

t )t=1,...,T .
Towards this deduction, note that Wt and Rt are connected
sets [2, Thm. 12.3.4]. This follows because (i) the transition
and observation matrices are TP-2 [2, Def. 10.2.1] (it is a
consequence of assumptions A–C, and E); (ii) cN(si,t, ai,t)
(5) is submodular [2, Def. 12.3.2]; and (iii) cN(si,t, ai,t) is
weakly increasing in si,t for each ai,t.

As Rt is connected, 1 ∈ Rt ⇐⇒ Rt = [α⋆
t , 1]. Hence it

suffices to show that 1 ∈ Rt. We obtain from (17) that

1 ∈ Rt ⇐⇒ EBi,t+1

[
V ⋆
i,t+1(Bi,t+1) | Ai,t = R, Bi,t = 1

]
≤

EBi,t+1

[
V ⋆
i,t+1(Bi,t+1) | Ai,t = W, Bi,t = 1

]
.

Clearly

EBi,t+1 [Bi,t+1 | Ai,t = R, Bi,t = 1] ≤
EBi,t+1 [Bi,t+1 | Ai,t = W, Bi,t = 1] .

Further B′ ≤ B =⇒ V ⋆
i,t+1(B

′) ≤ V ⋆
i,t+1(B) for all i ∈ Nt

and t ≥ 1 [2, Thm. 11.2.1], which implies that 1 ∈ Rt for all
t (see Fig. 14).
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Fig. 14: Illustration of Thm. 1 and Cor. 1; the parameters for computing the
figures are listed in App. E.

APPENDIX C
PROOF OF COROLLARY 1

When ∆R → ∞, (6) reduces to a set of unconstrained
stationary and finite POMDPs, which means that there exists
an optimal deterministic stationary strategy for each node [1,
Prop. 1]. Such a strategy partitions the belief space into two
time-independent regions W and R, which means that the
recovery threshold α⋆ is time-independent (Thm. 1).

When ∆R < ∞, it follows from (17) that it is optimal to
recover node i ∈ Nt at time t iff

cN(bi,t,R) + EBi,t+1
[V ⋆

i,t(Bi,t+1) | at = R, bi,t] ≤
cN(bi,t,W) + EBi,t+1

[V ⋆
i,t(Bi,t+1) | at = W, bi,t]

⇐⇒ 1 ≤ ηbi,t +Wi,t(bi,t)

⇐⇒ bi,t ≥
1−Wi,t(bi,t)

η︸ ︷︷ ︸
α⋆

t

,

where Wi,t(bi,t) ≜ EBi,t+1
[V ⋆

i,t+1(Bi,t+1) | ai,t = W, bi,t] −
EBi,t+1

[V ⋆
i,t+1(Bi,t+1) | ai,t = R, bi,t]

Hence α⋆
t ≤ α⋆

t+1 iff Wi,t is non-increasing in t for all bi,t
and i. We prove this using mathematical induction on k =
T, T − 2, . . . , 1. For k = T − 1 we have Wi,T−1(bi,T−1) = 0
for all b and i. Next, for k = T − 2 we have

Wi,T−2(bT−2) = min
[
1 + EBi,T

[V ⋆
i,T (Bi,T ) | aT−1 = R],

EBi,T−1,Bi,T
[ηBi,T−1 + V ⋆

i,T (Bi,T ) | aT−2 = aT−1 =

W, bT−2]
]
−min

[
1− EBi,T

[V ⋆
i,T (Bi,T ) | aT−1 = R],

EBi,T−1,Bi,T
[ηBi,T−1 + V ⋆

i,T (Bi,T )

| aT−2 = R, aT−1 = W, bT−2]
]

(a)

≥ 0 = Wi,T−1(bi,T−2),

where (a) follows because E[B′ | at = W, b] ≥ E[B′ | at =
R, b] by definition (2).

Assume by induction that Wi,k(b) ≥ Wi,k+1(b) for k =
t, t + 1, . . . , T − 3 and all b and i. We will show that this
assumption implies Wi,k−1(b) ≥ Wi,k(b) for all b and i.

There are three cases to consider:
1) If Bk ∈ R both when ai,k−1 = W and when ai,k−1 = R,

then

Wi,k−1(bi,k−1) = EBk
[V ⋆

i,k(Bk) | ai,k−1 = W, bi,k−1]−
EBk

[V ⋆
i,k(Bk) | ai,k−1 = R, bi,k−1]

(a)
= EBk+1

[1 + V ⋆
i,k+1(Bk+1) | ai,k = R]−

EBk+1[1 + V ⋆
i,k+1(Bk+1) | ai,k = R]

(b)
= EBk+1

[V ⋆
i,k+1(Bk+1) | ai,k = R]−

EBk+1
[V ⋆

i,k+1(Bk+1) | ai,k = R]
(c)
= Wi,k(bi,k−1),

where (a) follows from (17).
2) If Bk ∈ W both when ai,k−1 = W and when ai,k−1 =

R, then

Wi,k−1(bi,k−1) = EBk
[V ⋆

i,k(Bk) | ai,k−1 = W, bi,k−1]−
EBk

[V ⋆
i,k(Bk) | ai,k−1 = R, bi,k−1]

(a)
= EBk,Bk+1

[ηBk + V ⋆
i,k+1(Bk+1) |

ai,k = ai,k−1 = W, bi,k−1]−
EBk,Bk+1

[ηBk + V ⋆
i,k+1(Bk+1) |

ai,k = W, ai,k−1 = R, bi,k−1]
(b)

≥ EBk+1
[V ⋆

i,k+1(Bk+1) | ai,k = ai,k−1 = W, bi,k−1]−
EBk+1

[V ⋆
i,k+1(Bk+1) | ai,k = W, ai,k−1 = R, bi,k−1]

(c)
= Wi,k(bi,k−1),

where (b) follows because E[B′ | a = W, b] ≥ E[B′ |
a = R, b] by definition (2).

3) If Bk ∈ R when ai,k−1 = W, and Bk ∈ W when
ai,k−1 = R, then

Wi,k−1(bi,k−1) = EBk
[V ⋆

i,k(Bk) | ai,k−1 = W, bi,k−1]−
EBk

[V ⋆
i,k(Bk) | ai,k−1 = R, bi,k−1]

(a)
= EBk+1

[1 + V ⋆
i,k+1(Bk+1) | ai,k = R]−

EBk,Bk+1
[ηBk + V ⋆

i,k+1(Bk+1) | ai,k = W, ai,k−1 = R]
(b)

≥ EBk+1
[1 + V ⋆

i,k+1(Bk+1) | ai,k = R]−
EBk+1

[1 + V ⋆
i,k+1(Bk+1) | ai,k = R]

(c)

≥ EBk+1
[V ⋆

i,k+1(Bk+1) | ai,k = R]−
EBk+1

[V ⋆
i,k+1(Bk+1) | ai,k = R]

(d)
= Wi,k(bi,k−1),

where (b) follows from (17).
The case where ai,k−1 = R =⇒ Bk ∈ R and ai,k−1 =
W =⇒ Bk ∈ W can be discarded due to Thm. 1 since
E[B′ | a = W, b] ≥ E[B′ | a = R, b], which means that if
Bk ∈ R when ai,k−1 = R, then Bk ∈ R also when ai,k−1 =
W. It follows by induction that Wi,t(b) ≥ Wi,t+1(b) for all t,
b, and i.

APPENDIX D
PROOF OF THEOREM 2

Solving (12) corresponds to solving a finite and stationary
Constrained Markov Decision Process (CMDP) with bounded

2
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Fig. 15: Example transition function for Prob. 2.

costs and the average cost optimality criterion. Assumption A
implies that the CMDP is feasible and assumption B implies
that the CMDP is unichain [2, Def. 6.5.1], which means that
there exists an optimal stationary strategy π⋆ for which the
limit in (10) exists [3, Thm. 8.4.5][2, Thms. 6.5.2–6.5.4].

By introducing the Lagrange multiplier λ ≥ 0 and defining
the immediate cost to be cλ(st) = st + λJst ≥ f + 1K we
can reformulate the CMDP as an unconstrained MDP through
Lagrangian relaxation [4, Thm. 3.7]. The optimal strategy in
the unconstrained MDP satisfies

π⋆
λ(st) ∈ argmin

a∈{0,1}

[
cλ(st) + ESt+1

[V ⋆
λ (St+1)]

]
, (19)

where V ⋆
λ is the value function [4, Thm. 3.6].

Since cλ(st) is non-decreasing in s it follows from as-
sumptions C and D that the MDP has an optimal threshold
strategy for any λ [2, Thm. 9.3.1][3, Prop. 4.7.3]. Further,
we know from Lagrangian dynamic programming theory that
there exists an optimal strategy in the CMDP which is a
randomized mixture of two optimal deterministic strategies of
the MDP with different Lagrange multipliers λ1 and λ2 (15)
[2, Thm. 6.6.2], [4, Thm. 12.7]. When combined, these two
properties imply Thm. 2.

APPENDIX E
HYPERPARAMETERS

Hyperparameters for the experimental results and figures
reported in this paper are listed in Table 1.

APPENDIX F
COMPUTATION OF MTTF AND RELIABILITY FUNCTIONS

The MTTF and the reliability function R(t) can be calculated
using numerical methods for Markov chains. Specifically, the
number of healthy nodes in the system can be modeled as
a Markov chain with state space S ≜ {0, 1, . . . , N} and
transition matrix P ∈ [0, 1]|S|2 . In this Markov chain, the
subset of states F ≜ {0, 1, . . . , f} ⊂ S represents the states
where service is unavailable. (f is a fixed tolerance threshold
and service is guaranteed if S ≥ f + 1 (Prop. 1).) When
calculating the MTTF, we assume that there are no recoveries,
which means that F is absorbing. As a consequence, the mean
time to failure (MTTF) can be defined as

E[T (f) | S1 = s1] ≜ E(St)t≥1
[inf {t ≥ 1 | St ∈ F} | S1 = s1] ,

i.e., the MTTF is the mean hitting time of F in the Markov
chain starting at s1 ∈ S.

Intrusion recovery parameters Values
Confidence levels Confidence levels for all figures were

computed based on the Student-t distribution
Fig. 5, Fig. 5, Fig. 12b, Fig. 6a, Fig. 6b pC1 = 10−5,pC2 = 10−3, k = 1

η = 2, O = {0, . . . , 9},
Z(· | 0) = BetaBin(n = 10, α = 0.7, β = 3),
Z(· | 1) = BetaBin(n = 10, α = 1, β = 0.7

Figs. 5–6 no recoveries, pU = 0, ∆R = 100, pA = 0.1, k = 1

Fig. 4, Fig. 12b pU = 2× 10−2, ∆R = 100, k = 1

Figs. 7-8 η = 2, pA = 0.1, pC1
= 10−5, pC2

= 10−3,
pU = 2× 20−2, k = 1,
Z(· | 0) = BetaBin(n = 10, α = 0.7, β = 3),
Z(· | 1) = BetaBin(n = 10, α = 1, β = 0.7,

Fig. 9 ϵA = 0.9, N = 10, f = 3,
see Fig. 15 for fS

Evaluation in §X pU = 2× 10−2, pA = 10−1, pC1
= 10−5,

pC2
= 10−3, ∆R = ∞, ϵA = 0.9,

smax = 13, η = 2, N1 = 3, f = min[N1−1
2

, 2]
fS estimated from simulations of Prob 1,
PO = CEM in Alg. 1

Fig. 13 η = 2, pA = 0.1, pC1
= 10−5, pC2

= 10−3,
pU = 2× 20−2, k = 1,PO = CEM in Alg. 1

MINBFT [5, §4.2] parameters
USIG implementation RSA with key lengths 1024 bits [6]
Texec, Tvc, cp, L 30 seconds, 280 seconds, 102, 103
PPO [7, Alg. 1] parameters
lr α, batch, # layers, # neurons, clip ϵ 10−5, 4 · 103t, 4, 64, 0.2,
GAE λ, ent-coef, activation 0.95, 10−4, ReLU
SPSA parameters [8, Fig. 1]
c, ϵ, λ,A, a,N, δ 10, 0.101, 0.602, 100, 1, 50, 0.2
M number of samples for each evaluation 50
Incremental pruning parameters [9, Fig. 4]
Variation, ϵ normal, 0
Cross-entropy method [10][11, Alg. 1]
λ (fraction of samples to keep) 0.15, 100
K population size 100
M number of samples for each evaluation 50
Differential evolution [12, Fig. 3]
Population size K, mutate step 10, 0.2
Recombination rate 0.7
M number of samples for each evaluation 50
Bayesian optimization [13, Alg. 1]
Acquisition function lower confidence bound [14, Alg. 1]
β, Kernel 2.5, Matern(2.5)
M number of samples for each evaluation 50
Linear Programming
Solver CBC [15]

TABLE 1: Hyperparameters.

By standard Markov chain calculations:

E[T (f) | S1 = s1]

=





0 if s1 ∈ F
1 +

∑

s′∈S\F

Ps1,s′E[T (f) | S1 = s′] if s1 ̸∈ F ,

which defines a set of |S| linear equations that can be solved
using Gaussian elimination.

Similarly, since the reliability function is defined as R(t) ≜
P[T (f) > t] = P[St > f ], we have from the Chapman-
Kolmogorov equation that

R(t) =
∑

s∈S\F

(
eTs1P

t
)
s
, (20)

where es1 is the s1-basis vector.

APPENDIX G
THE MINBFT CONSENSUS PROTOCOL [5, §4.2]

TOLERANCE is based on a reconfigurable consensus proto-
col for the partially synchronous system model with hybrid
failures, a reliable network, and authenticated communication
links (see §IV and Prop. 1). Examples of such protocols
include MINBFT [5, §4.2], MINZYZZYVA [5, §4.3], REMINBFT

3
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Fig. 16: Average throughput of our implementation of MINBFT during normal
operation [5, §4.2]; the error bars indicate the 95% confidence interval based
on 1000 samples.

[16, §5], and CHEAPBFT [17, §3]. Our implementation uses
MINBFT. Correctness of MINBFT is proven in [5, App. A].

MINBFT is based on PBFT [18] with one crucial difference.
While PBFT assumes Byzantine failures and tolerates at up
to f = N−1

3 failures, MINBFT assumes hybrid failures and
tolerates up to f = N−1

2 failures. The improved resilience
of MINBFT is achieved by assuming access to a trusted
component that provides certain functions for the protocol.
In particular, MINBFT relies on a tamperproof service at each
node that can assert whether a given sequence number was
assigned to a message. This service allows MINBFT to prevent
equivocation [19] and imposes a first-in-first-out (FIFO) order
on requests issued by clients. In TOLERANCE, the tamperproof
service is provided by the virtualization layer (see Fig. 2).

We extend the original MINBFT protocol [5, §4.2] to be
reconfigurable, where the reconfiguration procedure is based
on [20, §IV.B]. The different stages of the protocol are
illustrated in Fig. 17 and the throughput is shown in Fig. 16.
Our implementation is available in source files associated with
this document and hyperparameters are listed in Table 1.

APPENDIX H
DISTRIBUTIONS OF SYSTEM METRICS

Our testbed implementation of TOLERANCE collects hun-
dreds of metrics every time step. To measure the information
that a metric provides for detecting intrusions, we calculate
the Kullback-Leibler (KL) divergence DKL(ẐO|0 ∥ ẐO|s>0)
between the distribution of the metric when no intrusion
occurs ẐO|H ≜ Ẑ(· | Si = H) and during an intrusion
ẐO|C ≜ Ẑ(· | Si = C):

DKL(ẐO|H ∥ ẐO|C) =
∑

o∈O
ẐO|H log

(
ẐO|H

ẐO|C

)
.

Here o ∈ O realizes the random variable O (3), which
represents the value of the metric. (O is the domain of O.)

Figure 18 shows empirical distributions of the collected
metrics with the largest KL divergence. We see that the IDS
alerts have the largest KL divergence and thus provide the
most information for detecting the type of intrusions that we
consider in this paper (see Table 6).
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Dkl(ẐO|s=H ‖ ẐO|s=C) = 0.12

0 20 40

# Blocks read from disk
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