
Time-Quality Tradeoff of MuseHash Query
Processing Performance

Maria Pegia1,3,
§ [0000−0003−2643−0028], Ferran Agullo

Lopez2,
§ [0000−0002−7276−2472], Anastasia Moumtzidou1[0000−0001−7615−8400],

Alberto Gutierrez-Torre2[0000−0002−5548−3359], Björn Þór
Jónsson3[0000−0003−0889−3491], Josep Lluís Berral García4,2[0000−0003−3037−3580],

Ilias Gialampoukidis1[0000−0002−5234−9795], Stefanos
Vrochidis1[0000−0002−2505−9178], and Ioannis Kompatsiaris1[0000−0001−6447−9020]

1 Information Technologies Institute - Centre for Research and Technology Hellas,
Thessaloniki, Greece {mpegia,moumtzid,heliasgj,stefanos,ikom}@iti.gr

2 Barcelona Supercomputing Center, Barcelona, Spain
{alberto.gutierrez,ferran.agullo}@bsc.es

3 Reykjavik University, Reykjavik, Iceland {mpegia22, bjorn}@ru.is
4 Universitat Politècnica de Catalunya, Barcelona, Spain josep.ll.berral@upc.edu

Abstract. Nowadays, massive quantities of multimedia data, such as
videos, images, text and audio, are generated by various applications on
smartphones, drones and other devices. To facilitate efficient retrieval
from these multimedia collections, we need (a) effective media repre-
sentation and (b) efficient indexing and query processing approaches.
Recently, the MuseHash approach was proposed, which can effectively
represent a variety of modalities, improving on previous hashing-based
approaches. However, the interaction of the MuseHash approach with ex-
isting indexing and query processing approaches has not been considered.
This paper provides a systematic evaluation of a set of state-of-the-art
approximate nearest neighbor search algorithms for image retrieval, when
applied to the MuseHash approach, providing quantitative comparison
results and evaluating the use of High-Performance Computing (HPC)
infrastructures. An extensive set of experiments on a benchmark aerial
dataset and on a real life-log dataset demonstrates the effectiveness of
employing hashing and ANN techniques with HPC, resulting in reduced
computational time.

Keywords: Approximate nearest neighbor · Information Search · Opti-
mization · High-Performance Computing.

1 Introduction

The nearest neighbor problem is fundamental problem in data mining and ma-
chine learning aiming to identify data points that are closest to a specific query

§Equal contribution

This is the accepted manuscript. The final publication will be available in the proceedings of the 30th International Conference on Multimedia Modeling (MMM2024)



2 M. Pegia et al.

point, using a defined distance metric. It is widely employed in retrieval tasks to
find the most similar data points to a given query, such as image retrieval.

Challenges in nearest neigbour method applications arise when dealing with
large-scale high-dimensional datasets, given the curse of dimensionality. As di-
mensionality or dataset size increases, the exact nearest neighbor search becomes
intractable. As a tractable alternative, Approximate Nearest Neighbor (ANN)
methods provide approximate solutions to the same problem with reduced com-
putational complexity. A popular approach to ANN search is hashing, by map-
ping data points to compact binary codes so that similar points have similar
codes. This allows for efficient retrieval by indexing and searching in the hash
code space. Hashing-based ANN methods, such as Locality-Sensitive Hashing
(LSH) [6] or Deep Hashing [13], are examples of efficient solutions when manag-
ing large-scale datasets. However, challenges remain in designing effective hash
functions, optimizing search efficiency, and balancing retrieval accuracy and com-
putational cost.

Researchers have proposed various solutions to these challenges, including the
design of effective hash functions tailored to specific data distributions, learning-
based methods for generating discriminative hash codes, and the utilization of
parallel computing or distributed systems for efficient search. Nevertheless, ex-
isting hashing methods often tend to balance storage and solution effectiveness,
whereas ANN methods focus on achieving a balance between efficiency and re-
sult accuracy. Combining these approaches can potentially provide a solution
that optimizes performance in terms of time, storage, and retrieval.

In this paper, we present a comprehensive analysis of query processing perfor-
mance of the MuseHash approach, a recent multimodal hashing approach to
media representation. Moreover, to the best of our knowledge, no study has ex-
plored the performance of multi-modal hashing methods as base for several ANN
approaches or their performance on HPC resources.

The main contributions of this paper are summarized as follows:

• Thorough examination of the advantages and limitations of existing ANN
methods as applied to MuseHash.

• Evaluation of the performance of classic methods and ANN with hashing
methods when utilizing HPC (multi-threading and GPUs).

• Analysis of the impact of HPC (multi-threading and GPUs) on retrieval
speed and efficiency through experimental evaluations.

After this study, we conclude that the MuseHash offers an effective and compact
representation to retrieve the data. Moreover, longer hash lengths provide better
results but are slower on CPU. When using GPUs, however, this drawback can
be addressed reaching speeds similar to using shorter hash lengths.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the relevant state-of-the-art ANN research in the field. Section 3



Analyzing MuseHash Query Efficiency with ANN and GPU 3

presents in short our approach, some ANN techniques used in this research and
the HPC approach. Section 4 showcases the experimental results, and finally,
Section 5 offers a concise summary with the conclusions.

2 Related Work

The nearest neighbor problem has been extensively studied in the field of com-
puter science and information retrieval for several decades [20]. It plays a crucial
role in various applications, including pattern recognition, data mining, image
retrieval, and recommendation systems. The goal is to efficiently find the most
similar data point(s) to a given query point in a dataset. On the other hand,
methods for finding the exact nearest neighbors seek the closest data point with
precision, ensuring accuracy but incurring significant computational costs, par-
ticularly when dealing with sizable datasets.

In recent years, there has been significant progress in developing Approximate
Nearest Neighbor (ANN) search algorithms [1], with approximate solutions while
expecting to maintain accuracy. This is a trade off between retrieval accuracy
versus faster query processing, making it suitable for large-scale datasets with
improved efficiency. The evaluation of ANN algorithms typically involves measur-
ing their retrieval accuracy and efficiency. Performance is commonly evaluated
using metrics like precision, recall, query time, and index construction time.
Moreover, benchmark datasets like MIRFlick25K [8] and NUSWIDE [5] have
been established to facilitate fair comparisons among different approaches [19].

Overall, the research on approximate nearest neighbor search algorithms has
made significant strides in balancing retrieval accuracy and computational ef-
ficiency [3], [18], [2], [16], [15], [14], [10], [7], [9]. These advancements
enable efficient similarity search in large datasets, making them applicable to a
wide range of domains and applications. However, there are still challenges to ad-
dress, such as improving the trade-off between accuracy and efficiency, managing
high-dimensional data, and developing robust solutions for dynamic datasets.

Furthermore, the exploration of hashing techniques to enhance existing ANN
methods has aimed to tackle challenges related to improving the trade-off be-
tween accuracy and efficiency, effectively handling high-dimensional data, and
creating resilient solutions for dynamic datasets [12] . By incorporating such
hashing techniques, ANN methods can improve the trade-off between accuracy
and efficiency, because they can handle high-dimensional data more effectively
and with less computational cost.

Moreover, work has been done to leverage current hardware capabilities, aside
from algorithmic improvements. For example, when dealing with data that can-
not be accommodated in memory, ANN methods like DiskANN [22] or SPANN [23]
propose to use data locality and fast disk storage (Solid State Disks (SSD)). Also,
multi-threading has been exploited in ANN, with examples such as SCANN [10],
or through threading parallelism at the level of query processing. This allows a



4 M. Pegia et al.

Fig. 1. Overview of this research.

machine to make use of all the available parallelism in the installed CPU, dras-
tically rising performance even though linear speed up is not warranted. On the
other hand, using Graphics Processing Units (GPUs) for computing has been
popularized specially in mathematical processing like Neural Networks. This is
also the case of ANN. SONG [24] algorithm has been specifically co-designed to
make use of GPUs, beating similar algorithms that are CPU-based.This high-
lights that when developing new ANN algorithms, it is advantageous to imple-
ment them efficiently while being mindful of the capabilities of the underlying
hardware.

3 Methodology

In the subsequent subsections, we present concise descriptions of the three main
components of our study (Figure 1): the MuseHash method (Section 3.1) (blue
blocks), the state-of-the-art ANN methods (green block) that have been inte-
grated into our research (Section 3.2), and the optimization techniques (orange
blocks) utilized for HPC infrastructure (Section 3.3). The synergy of these three
elements is pivotal in our research, with MuseHash providing a robust founda-
tion for multi-modal data management, state-of-the-art ANN methods endowing
us with advanced learning capabilities, and HPC optimization amplifying our
computational prowess. This amalgamation enables us to achieve exceptional
efficiency and performance, effectively addressing the challenge of longer hash
codes in shorter time frames while optimizing overall performance.

3.1 MuseHash

MuseHash [19] is an efficient indexing and retrieval algorithm designed for multi-
media data. It leverages a combination of modalities in its queries, such as visual
and temporal aspects, to deliver highly relevant results. The method comprises
three main phases: training, offline, and querying. In the training phase, hash
functions are generated from the training collection using Bayesian ridge regres-
sion. These functions map feature vectors from each modality to the Hamming



Analyzing MuseHash Query Efficiency with ANN and GPU 5

space. Affinity matrices are created based on ground truth labels, and semantic
probabilities are derived from these matrices. During the offline phase, features
are extracted from the retrieval set for each modality. Using the learned hash
functions, hash codes are computed and stored in a database, ensuring efficient
storage and retrieval of multimedia data. Finally, in the querying phase, hash
functions learned in the previous steps are applied to a given query. Unified hash
codes are generated from query-specific hash codes using the XOR operation.
The database is queried using Hamming distances, leading to the retrieval of top-
k relevant results. Overall, MuseHash combines supervised learning, Bayesian
regression, and Hamming distance-based retrieval to significantly enhance the
accuracy and efficiency of multimedia data retrieval.

3.2 ANN Methods

From the different distinguished state-of-art ANN methods, we select the fol-
lowing ones because of their diverse and complementary characteristics based on
the work of Aumúller et al. [1]: tree-based structures, graph-based structures,
pruning techniques, brute-force approaches and baseline methods.

Tree-based methods BallTree [3] is a tree-based data structure that uses
hyper-spheres to partition the data space and construct a tree hierarchy. CK-
DTree [18] extends the KD-tree algorithm to support nearest neighbor search in
multiple dimensions by using hyper-rectangles. Random Projection Tree (RPT)
methods, like Annoy (Approximate Nearest Neighbors Oh Yeah) [2], utilize ran-
dom projections to split data points and build index structures for fast approx-
imate nearest neighbor search. Annoy is particularly renowned for its simplicity
and efficiency in handling high-dimensional data. On the contrary, PyNNDes-
cent [16] employs randomized k-d trees, combining randomized partitioning and
nearest neighbor search to efficiently navigate the tree structure and find ap-
proximate nearest neighbors.

Graph-based methods The HNSW (Hierarchical Navigable Small World)[15]
organizes arranges the dataset into a hierarchical structure comprising small-
world graphs, enabling efficient approximate nearest neighbor search while main-
taining minimal memory usage. SW-graph (Small World Graph) [14] combines
the properties of a small-world graph and locality-sensitive hashing. It balances
retrieval accuracy and efficiency by exploiting the local and global structures of
the data.

Pruning methods SCANN (Scalable Nearest Neighbors) [10] utilizes locality-
sensitive hashing techniques for efficient approximate nearest neighbor search.
It offers both single-threaded and multi-threaded implementations, making it
suitable for large-scale datasets.

Brute-force methods Ball, KD-Tree, BruteForce, and BruteForce-BLAS [7],
which are simple and straightforward methods for solving the nearest neighbor
search problem. They involve calculating the distances between the query point
and all data points to find the closest neighbors. While these methods guarantee



6 M. Pegia et al.

accurate results, they can be computationally expensive, especially for large
datasets. BruteForce-BLAS improves efficiency by leveraging the BLAS library
for faster distance calculations. These brute-force approaches serve as baseline
algorithms for evaluating the performance of more advanced ANN methods.

Baseline methods Dummy Algorithm Multi-Threaded (Dummy-Algo-MT) [9]
and Dummy Algorithm Single-Threaded (Du-mmy-Algo-ST), offer simpler and
more generic implementations. Dummy-Algo-MT performs a multi-threaded brute-
force search, leveraging parallel processing for improved performance. Dummy-
Algo-ST is a single-threaded version that provides a basic implementation for
comparison. These baseline approaches serve as reference points to evaluate the
efficiency and effectiveness of more advanced ANN algorithms.

3.3 Performance and HPC scalability

In this subsection we define how the code is optimized to use the available hard-
ware as efficiently as possible. Our approach is driven by the usage of parallel
computation using multithreading and GPUs. This approach can also be ex-
tended to use multiple machines if the infrastructure is available.

Feature extraction The method to extract the features is used in the offline
and querying phases as show in Figure 1. For this particular step the most viable
optimization is to use GPUs with NVIDIA CUDA code as this part implies a
forward pass of a Neural Network. Moreover, multiple GPUs were used at the
same time as the feature extraction from each sample is independent. Including
4 GPUs implied a speed-up of 3.1x compared to just using 1 GPU. This is also
effective for use in the querying phase.

Retrieval In the retrieval phase, hashes have a high impact on performance.
On one side, the hashes provide a compact description of the multimodal in-
formation from each data point. This compact code can be then used to find
the similarities to other data points. The computations needed to compare these
hashes versus the complete multimodal information is lower as information is
compressed, therefore providing a faster way to find similar data points. Simi-
larly, the length of this hash also has an impact on performance as longer hashes
require more computation to be compared. Therefore there is a trade-off between
the representation accuracy of the data points given by the length of the hashes
and the actual performance in terms of queries per second.

To evaluate the methods we propose to use two different approaches: data paral-
lelism and query parallelism. The first approach is based on creating partitions
of the data so that it can be distributed to different processes to search. The
second approach is based in having the data accessible by a process pool and
whenever a new query is done, this query is assigned to one of these processes.

To evaluate the scalability of hash lengths with different methods the ANN
benchmark [1] was used and adapted to be used in a HPC SLURM based cluster.



Analyzing MuseHash Query Efficiency with ANN and GPU 7

In particular, modifications were added to execute several queries in parallel and
the cuML Python package was used to include the CUDA bruteforce approach.

4 Experiments

4.1 Datasets

In our multimodal retrieval case, we leverage the use of two distinct datasets:
the AU-AIR dataset [4] and the LSC’23 dataset [11]. These datasets provide us
with diverse modalities and rich content for performing comprehensive and ac-
curate retrieval. Table 1 present the way of splitting the dataset and its available
modalities.

Table 1. Two benchmark datasets used in experiments.

Ground Truth Modalities Collection Sizes

Dataset Labels Image Text Time Location Whole Retrieval Training Test

AU-AIR 8 32283 32183 2000 100
LSC’23 135 40926 40676 4000 250

AU-AIR The AU-AIR dataset consists of eight video clips recorded for aerial
traffic surveillance at a specific intersection in Aarhus, Denmark. The videos
were captured on windless days and exhibit varying lighting conditions due
to the time of day and weather. The dataset has a resolution of 1920x1080
pixels and comprises 32,823 frames extracted from the raw videos at a rate
of five frames per second to avoid redundancies.

LSC’23 The LSC’23 dataset was generated by an active lifelogger and spans a
duration of 18 months. This dataset is composed of three password-protected
files. The first file contains the core image dataset, consisting of wearable
camera images in fully redacted and anonymized form. These images, cap-
tured using a Narrative Clip device, have a resolution of 1024 × 768 pixels.
To respect privacy requirements, all faces, readable text, and certain scenes
and activities have been manually removed. Due to huge imbalance on the
dataset, we filtered the original dataset with using only the data that include
label information and with label frequency greater than 257. Therefore, out
of a total of 41,100, the preprocessed dataset used in our experiments com-
prises 40,926 data points.

In order to evaluate scaling of the ANN approaches, three other synthetic datasets
are randomly generated using the uniform distribution (i.e., each hash possible
has equal probability of being present) over all the space defined by the hash
length, simulating the MuseHash enconding. The training sizes are 28000, 112000
and 448000 samples with different hash lengths (32, 128, 512 and 2048) and 450
samples for testing (querying).



8 M. Pegia et al.

By evaluating our method separately on these distinct datasets, we can pro-
vide a comprehensive analysis of its performance in different retrieval scenarios.
This approach allows us to tailor our evaluation metrics and techniques to the
specific characteristics and challenges posed by each dataset. Additionally, it en-
ables us to highlight the strengths and limitations of our method in different
multimodal retrieval settings, contributing to a more thorough understanding of
its capabilities.

4.2 Experimental Settings

In our experiments, we assess the performance of MuseHash and ANN methods
using several evaluation metrics, including mean Average Precision (mAP), pre-
cision, recall, and f-score. The following feature vectors from each modality are
used as input representations for our evaluation:

Image 4096-D vector from the fc-7 layer of pre-trained VGG16 network5.

Textual 768-D vector from pre-trained BERT model6.

Temporal 191-D vector representation for LSC’23 and 203-D vector for AU-
AIR based on the work [19]. The first four coordinates of the temporal feature
belong to the 4 digits of the year, the next 12 digits to the one-hot-encoding
for month, the next 31 digits to the one-hot encoding for day, the next
24 to the one-hot-encoding for hours, the next 60 to the one-hot encoding
for minutes, the next 60 to the one-hot-encoding for seconds. It should be
noted that only the AU-AIR dataset has 12 last additionally digits, which
correspond to a binary encoding of microseconds.

Spatial 3-D vector representation. Each location corresponds to a 3-D vector
with values (altitude, longitude, altitude).

We compute hash codes using MuseHash for different bit lengths dc = 16, 32, 64,
128, 256, 512, 1024, 2048. Moreover, we conduct experiments using the features
of each modality as well as for different combination of hash codes.

4.3 Retrieval results using CPU

In our CPU experiments, we explore retrieval results using two datasets: AU-AIR
and LSC’23, which some of them shown in Figure 2, due to page limitation.

Regarding AU-AIR, it’s evident that incorporating additional modalities en-
hances precision and F-score. Additionally, as the hash code length increases,
the methods exhibit improved performance, reaching their peak at 2048. How-
ever, it should be noted that the queries/s decrease when increasing the hash
size. As far as LSC’23 is concerned, we observe that when textual information is

5https://github.com/Leo-xxx/pytorch-notebooks/blob/master/Torn-shirt-
classifier/VGG16-transfer-learning.ipy

6https://github.com/maknotavailable/pytorch-pretrained-BERT



Analyzing MuseHash Query Efficiency with ANN and GPU 9

Fig. 2. F-score values for ANN and bruteforce methods on AU-AIR (first row) and
LSC’23 (second row) datasets for 16 and 2048 bits considering only visual or textual
or combination of modalities.

incorporated, the precision and recall are enhanced. This observation aligns with
the success of textual queries using CLIP models in the VBS competition [17].
Using all available modalities also boosts retrieval results.

4.4 Scalability analysis of hashes and NN methods

In this section we experiment in different scenarios with the AU-AIR dataset
using MuseHash encoding and the three synthetic datasets and different meth-
ods. First, we explore the scalability options of the bruteforce algorithm as a
base reference and explore the trade-off of parallelizing the code by doing data
parallelism and query parallelism and also using GPUs. Second, we explore one
of the tree algorithms, ball trees, in order to understand their usability for the
hashing methods as they are known to be greatly affected by the curse of di-



10 M. Pegia et al.

Fig. 3. Comparison of bruteforce approaches (dataset used in parenthesis): 1) Data
parallelism (large), 2) Query Parallelism (AU-AIR), 3) Query parallelism (large), 4)
Query parallelism GPU (large). 5) Query parallelism GPU scaling speed-up (large).
Optimal scalability refers to the lineal scalability for CPU

mensionality [21]. Finally we experiment the scalability of PyNNDescent [16],
another tree-based algorithm, with the different hash lengths to study the scala-
bility of AAN methods with hashes and see if the curse of dimensionality affects
it. Each experiment is performed 5 times. Then the queries/s are averaged and
the error margins are calculated with the standard deviation. These experiments
were performed with a machine with 2 IBM Power9 8335-GTH @ 2.4GHz (20
cores, 4 threads/core), 512 GB of RAM and 4 NVIDIA V100 GPU with 16GB
RAM. For these experiments we have included GPU bruteforce from CuML and
CPU bruteforce from scikit learn.

Experiment 1: Bruteforce comparison In this experiment we focus on com-
paring different bruteforce approaches. Notice that these approaches are the
most computing intensive ones as they traverse all the dataset to find the exact
match. In particular we are interested in comparing the parallelization by data
(scanning the data with more than one process at the time) and query paral-
lelization (one query per process, multiple queries at the same time). In Figure 3
it can be seen that data parallelism (Figure 3.1) scales poorly when compared
to query parallelism (Figure 3.3) using the large dataset, even though bruteforce
is easily parallelizable. On large datasets, query parallelism is 2x faster than
data parallelism. Similar results are obtained with the other datasets as shown
in Figure 3.2 with the AU-AIR dataset. Query parallelism scales almost linearly
with respect to the number of processes for all the datasets.

Finally, GPU approach provides better results than the regular CPU multi-
process approach. For example, with one GPU the queries/s is the same that



Analyzing MuseHash Query Efficiency with ANN and GPU 11

Fig. 4. Comparison of bruteforce and ball tree (leaf size 100) respect to the dimensions
in the large synthetic dataset.

the best case with 32 processes. Moreover, GPUs provide almost the same speed
for each hash length. Figure 3.5 shows the speed up compared to the baseline.
Compared with the optimal scalability for CPU, the hash length 2048 shows
speed ups from 150x to 400x, showing that GPUs are adequate in general and
also desirable for long hash lengths.

Experiment 2: Ball tree vs Bruteforce Trees are a classic method to create
an index to find similar data faster than comparing all the dataset, however
they are limited. In the retrieval experiments, we saw that the ball tree can
be performant, however it has drawbacks. Here we compare a ball tree with
100 elements per leaf and the bruteforce without any kind of parallelism using
the large synthetic dataset. Ball trees suffer of the curse of dimensionality [21],
rendering them to be similar to bruteforce when a high number of dimensions
is used for the index, which is relevant when using longer hashes. As we can
observe in Figure 4, after including 8 dimensions the performance in queries/s
gets degraded to the level of the base bruteforce algorithm. This fact shows that
this kind of approach is not doable for big data dimensions, as is in the case of
the hashes.

Experiment 3: PyNNDescent Figure 5 shows the results of scaling PyN-
NDescent using multi-threading. It can be seen that for all the datasets the
algorithm scales well up to 8 processes for 32 and 128 hash lengths, then the
performance degrades. Longer hash sizes affect dramatically the performance of
the algorithm, however scaling with 8 threads usually provides between a 3x and
a 4x speed-up and after a given point the performance does not fall, therefore
confirming that PyNNDescent is better suited than Ball tree when using a big
number of dimensions.



12 M. Pegia et al.

Fig. 5. Scaling of PyNNDescent using CPU parallelism for the different hash lengths.
Average of queries/s with error margins for four different datasets: 1) AUAIR, 2) syn-
thetic small, 3) synthetic medium, 4) synthetic large. Execution of 2048 hash length
and 32 processes with the large dataset did not finish in a reasonable time (2 hours).

4.5 Discussion

In both datasets, we observed from Figure 2 that the Hnswlib, a fast approximate
nearest neighbor search method, outperformed other methods. What’s particu-
larly intriguing is that ANN methods consistently outshine brute-force scenarios
in terms of retrieval performance. This suggests the efficiency and effectiveness
of these ANN techniques in enhancing retrieval results across both AU-AIR and
LSC’23 datasets.

Regarding scalability, we have seen that longer hash lengths have a big impact
on the performance, establishing a trade-off between precision and speed. The
accuracy-performance trade-off is also seen in modern ANN methods, as shown
in Figure 5. For long hashes, GPUs show a promising way to avoid this trade-
off due to their capability of computing many data elements at the same time.
Moreover, query parallelism was shown to be better than data parallelism in
terms of performance and also in terms of adapting the retrieval procedure.
In general, scalable solutions can improve drastically the performance but this
scalability has to be studied for each approach applied as more hardware does
not directly correlate with more performance, as seen in the experiments.



Analyzing MuseHash Query Efficiency with ANN and GPU 13

5 Conclusion

In this paper, we examine the multi-modal hashing codes produced by Muse-
Hash as input for several state-of-the-art ANN methods and study their per-
formance on HPC infrastructure. On one hand, the usage of hashing enables
efficient searching similar data in a multi-modal space and using them over
ANN algorithms improve their efficiency reducing computing time by doing an
approximate search instead of an exhaustive one. Our experiments show the
effectiveness of combining MuseHash with state-of-the-art ANN methods, show-
casing Hnswlib as a top performer. Additionally, HPC resources can be used to
reduce the execution time by exploiting their capabilities. The scalability de-
pends on the approach and requires thoughtful consideration beyond hardware
scaling as tailoring the application to the actual resources is usually required.
Both CPU multithreading and GPUs can be leveraged to reduce execution time.
Particularly, in case of longer hashes, GPUs are shown to be effective, opening
a research path for future work by combining ANN with long enough hashes
that provide accurate results and using GPUs to enhance their efficiency and
response time.

Acknowledgment

This work was supported by the EU’s Horizon 2020 research and innovation pro-
gramme under grant agreements H2020-101070250 CALLISTO, H2020-101070262
WATERVERSE, H2020-101080090 ALLIES and the Spanish Ministry of Science
(MICINN), the Research State Agency (AEI) and European Regional Develop-
ment Funds (ERDF/FEDER) under grant agreement PID2021-126248OB-I00,
MCIN/AEI/10.13039/ 501100011033/FEDER, UE, Severo Ochoa Center of Ex-
cellence CEX2021-001148-S-20-3 and the Generalitat de Catalunya (AGAUR)
2021-SGR-00478.



14 M. Pegia et al.

References
1. Aumúller, M., Bernhardsson, E., Faithfull, A.: : A Benchmarking Tool

for Approximate Nearest Neighbor Algorithms. Information Systems (2019).
https://doi.org/10.1016/j.is.2019.02.006

2. Bernhardsson, E.: Annoy, https://github.com/spotify/annoy.
3. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library.

In: Similarity Searching and Applications, (2013).
4. Bozcan, I., Kayaan, E.: AU-AIR: A Multi-modal Unmanned Aerial

Vehicle Dataset for Low Altitude Traffic Surveillance. IEEE Interna-
tional Conference on Robotics and Automation (ICRA). https://doi.org/
https://doi.org/10.48550/arXiv.2001.11737 , (2020).

5. Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE:
a real-world web image database from National Uni- versity of Singapore.
ACM International Conference on Image and Video Retrieval (ICMR), 1–9.
https://doi.org/https://doi.org/10.1145/1646396.16464, (2009).

6. Durmaz, O., Bilge, H. S.: Fast image similarity search by dis-
tributed locality sensitive hashing. Pattern Recognition Letters. 361-369.
https://doi.org/https://doi.org/10.1016/j.patrec.2019.09.025, (2019).

7. Francis, M., Durme, B.: Fast exact fixed-radius nearest neighbor search based on
sorting. arXiv, https://doi.org/https://doi.org/10.48550/arXiv.1910.02478, (2019).

8. Huiskes, M. J., Lew, M.: The MIR flickr retrieval evaluation. Proceedings of the
1st ACM international conference on Multimedia information retrieval, 39–43.
https://doi.org/https://doi.org/10.1145/1460096.1460, (2008).

9. Geiger, M. J.: A multi-threaded local search algorithm and computer im-
plementation for the multi-mode, resource-constrained multi-project scheduling
problem. In: European Journal of Operational Research, vol. 256, 729-741,
https://doi.org/https://doi.org/10.1016/j.ejor.2016.07.024, (2017).

10. Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F., Kumar, S.: Ac-
celerating Large-Scale Inference with Anisotropic Vector Quantization. In: Inter-
national Conference on Machine Learning, https://arxiv.org/abs/1908.10396,
(2020).

11. Gurrin, C., Jónsson, B. Þ., Nguyen, D. T. D, Healy, G., Lokoc, J.,
Zhou, L., Rossetto, L., Tran, M.-T., Hürst, W., Bailer, W., Schoeff-
mann, K.: Introduction to the Sixth Annual Lifelog Search Challenge,
LSC’23. International Conference on Multimedia Retrieval (ICMR). 678–679.
https://doi.org/https://doi.org/10.1145/3591106.3592304, (2023).

12. Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.: Approxi-
mate Nearest Neighbor Search on High Dimensional Data — Experiments, Anal-
yses, and Improvement, IEEE Transactions on Knowledge and Data Engineering.
https://doi.org/10.1109/TKDE.2019.2909204, (2019).

13. Lu, J., Liong, V. E., Zhou, J.: Deep Hashing for Scalable Im-
age Search. IEEE Transactions on Image Processing. 2352 - 2367.
https://doi.org/https://doi.org/10.1109/TIP.2017.2678163, (2017).

14. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest
neighbor algorithm based on navigable small world graphs. Information Systems,
vol. 45, 61–68, (2014)

15. Malkov, Y., Yashunin, D..:Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs. arXiv,
https://doi.org/https://doi.org/10.48550/arXiv.1603.09320.

16. McInnes, L.: PyNNDescent, https://github.com/lmcinnes/pynndescent.

https://doi.org/10.1016/j.is.2019.02.006
https://github.com/spotify/annoy
https://doi.org/ https://doi.org/10.48550/arXiv.2001.11737 
https://doi.org/ https://doi.org/10.48550/arXiv.2001.11737 
https://doi.org/https://doi.org/10.1145/1646396.16464
https://doi.org/https://doi.org/10.1016/j.patrec.2019.09.025
https://doi.org/https://doi.org/10.48550/arXiv.1910.02478
https://doi.org/https://doi.org/10.1145/1460096.1460
https://doi.org/https://doi.org/10.1016/j.ejor.2016.07.024
https://arxiv.org/abs/1908.10396
https://doi.org/https://doi.org/10.1145/3591106.3592304
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/https://doi.org/10.1109/TIP.2017.2678163
https://doi.org/https://doi.org/10.48550/arXiv.1603.09320
https://github.com/lmcinnes/pynndescent


Analyzing MuseHash Query Efficiency with ANN and GPU 15

17. Lokoč, J., Andreadis, S., Bailer, W. et al. Interactive video retrieval in the age
of effective joint embedding deep models: lessons from the 11th VBS. Multimedia
Systems. https://doi.org/https://doi.org/10.1007/s00530-023-01143-5, (2023).

18. Narasimhulu, Y., Suthar, A., Pasunuri, R., China Venkaiah, V.: Ckd-Tree: An Im-
proved Kd-Tree Construction Algorithm. In: CEUR Workshop Proc., 2786, 211–218,
(2021).

19. Pegia, M., Jónsson, B. Þ., Moumtzidou, A, Gialampoukidis, I., Vrochidis, S.,
Kompatsiaris, I.: MuseHash: Supervised Bayesian Hashing for Multimodal Image
Representation, ACM International Conference on Multimedia Retrieval (ICMR),
https://doi.org/https://doi.org/10.1145/3591106.3592228, (2023).

20. Reza, M., Ghahremani, B., Naderi, H.: A Survey on Nearest Neighbor Search
Methods. In: International Conference on Very Large Data Bases. vol. 95, 0975-
8887, (2014).

21. Weber, R. and Schek, H. and Blott, S.: A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces, International Con-
ference on Very Large Data Bases. vol. 98, 194-205, (1998)

22. Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Krishnawamy, R.,
Kadekodi, R.: Diskann: Fast accurate billion-point nearest neighbor search on a
single node, Advances in Neural Information Processing Systems. vol. 32 (2019)

23. Chen, Qi, Zhao, B., Wang, H., Li, M., Liu, C. and Li, Z., Yang, M.m Wang, J.:
Spann: Highly-efficient billion-scale approximate nearest neighbor search. Advances
in Neural Information Processing Systems. vol. 34, 5199-5212 (2021)

24. Zhao, W., Tan, S., Li, P: SONG: Approximate nearest neighbor search on GPU.
2020 IEEE 36th International Conference on Data Engineering (ICDE), 1033-1044
(2020)

https://doi.org/https://doi.org/10.1007/s00530-023-01143-5
https://doi.org/https://doi.org/10.1145/3591106.3592228

	Time-Quality Tradeoff of MuseHash Query Processing Performance



