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Abstract. Three-dimensional (3D) retrieval of objects and models plays
a crucial role in many application areas, such as industrial design, med-
ical imaging, gaming and virtual and augmented reality. Such 3D re-
trieval involves storing and retrieving different representations of single
objects, such as images, meshes or point clouds. Early approaches con-
sidered only one such representation modality, but recently the CMCL
method has been proposed, which considers multimodal representations.
Multimodal retrieval, meanwhile, has recently seen significant interest
in the image retrieval domain. In this paper, we therefore explore the
application of state-of-the-art multimodal image representations to 3D
retrieval, in comparison to existing 3D approaches. In a detailed study
over two benchmark 3D datasets, we show that the MuseHash approach
from the image domain outperforms other approaches, improving recall
over the CMCL approach by about 11% for unimodal retrieval and 9%
for multimodal retrieval.

Keywords: 3D retrieval · Supervised learning · 3D data.

1 Introduction

In recent years, advances in three-dimensional (3D) modeling tools [16], 3D scan-
ning technology [10], and consumer devices with 3D sensors [3] have made it
easier to create, share, and access 3D large collections of content, influencing
various domains, from entertainment and gaming to healthcare [27], archaeol-
ogy [1], computer-aided design (CAD) [8] and autonomous systems [7]. A large
number of 3D models have now become available on the Web [17], where users
can freely download, modify and build upon 3D models that suit their require-
ments, which not only saves costs and time in product design but also enhances
product reliability and quality. Sifting through the vast number of available mod-
els to find the right one quickly and accurately is challenging, however. This is
where 3D model retrieval techniques come into play, allowing users to retrieve
models in a variety of ways, for example based on model class or model similarity.
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A fundamental issue for efficient 3D model retrieval at scale is the data repre-
sentation of the 3D models [6]. Figure 1 outlines the approaches considered in the
literature: voxels (data points on a grid in the model space); point clouds (data
points of interest in the model space); meshes (networks of triangles that approx-
imate the shape); and multi-view images that visually represent the model. Of
these, 3D mesh models stand out due to their capacity to capture intricate de-
tails and structural aspects. Recently, however, the CMCL method [11] combines
the latter three representation modalities into a unified representation, leverag-
ing the center information from each modality. This integration has resulted in
improved retrieval accuracy and robustness. Nevertheless, challenges remain in
representing and combining modalities due to the complexities inherent in 3D
data.

Multimodal representation has also recently received extensive attention in
the domain of image retrieval [19], [18]. While all images have a visual compo-
nent, that can for example be described using semantic feature vectors, some
collections may also have textual, temporal or spatial information that could
be combined in various ways for more accurate retrieval, depending on the in-
tended application. Early approaches considered cross-modal retrieval, typically
attempting to learn a unified feature space for the visual and textual modali-
ties, but more recently other approaches have considered the fusion of multiple
modalities, such as Label-Attended Hashing (LAH) [30] and MuseHash [18]. It is
therefore of interest to consider whether the approaches developed in the domain
of image retrieval could be applicable in the related, yet significantly different,
domain of 3D model retrieval.

The main contributions of this paper can be summarized as follows:

• We adapt state-of-the-art methods from the image retrieval domain to the
3D model retrieval domain.

• In a comparison with the state-of-the-art 3D retrieval methods using two
class-based retrieval benchmarks from the literature, we show that the Muse-
Hash approach generally performs best, improving recall over the CMCL
approach by as much as 11% for unimodal retrieval and 9% for multimodal
retrieval.

• Furthermore, we explore the performance of various combinations of the
3D mesh, point cloud, and visual (multi-view) modalities, showing that the
combining 3D mesh and visual modalities improves average precision over
3D meshes alone, while using all three modalities gives the best accuracy.

The remainder of this paper is organized as follows: Section 2 provides an
overview of the relevant state-of-the-art research in the domains of 3D model and
image retrieval. Section 3 then details how image retrieval methods are adapted
to 3D model retrieval. Section 4 presents and analyzes the experimental results
for both unimodal and multimodal retrieval, before concluding in Section 5.
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Fig. 1. Examples of different 3D data representations.

2 Related Work

2.1 Unimodal retrieval

Volumetric data representations (Figure 1) have been crucial in 3D data analysis
and retrieval, prompting the development of diverse techniques:

Voxels Divide 3D space into a grid, assigning values to voxels [12,23]. Common
in medical design, but computationally demanding for large data. Matu-
rana et al. [14] introduced a volumetric occupancy network called VoxNet to
achieve robust 3D object recognition. Wang et al. [24] proposed an Octree-
based CNN for 3D shape classification.

Multi-view images Capture 2D images for 3D reconstruction [21,22]. Useful
for diverse viewpoints, but quality relies on captured views. Lin et al. [13]
proposed two self-attention modules, View Attention Module and Instance
Attention Module for building the representation of a 3D object as the ag-
gregation of three features: original, view-attentive, and instance-attentive.

Point Clouds Depict objects using individual points, which is particularly ap-
plicable in robotic [21,22]. Sparse and irregular points pose challenges. Qi et
al. [2] introduced PointNet, a network architecture that effectively harnesses
unordered point clouds and offers a comprehensive end-to-end solution for
classification/retrieval tasks. DGCNN [25] employs dynamic graph convolu-
tion for point cloud processing, though challenges persist due to point cloud
sparsity and irregularity.



4 M. Pegia et al.

3D meshes Describe surface geometry with vertices, edges, faces [21,22]. While
they find applications in graphics and design, they also come with compu-
tational and storage complexities. MeshNet [6] transforms mesh data into a
list of faces, calculating two types of information for each face: a spatial vec-
tor based on center data and a structural vector using center, normal, and
neighbor information. These features are then merged using a multi-layer
perceptron. In contrast, MeshCNN [9] applies convolution and pooling op-
erations to mesh edges and the edges of connected triangles. When pooling
is needed, it collapses edges while preserving the overall mesh structure.

Each representation method has its strengths and drawbacks. Voxels offer
a structured approach for occupancy and property representation, but can be
resource-intensive. Multi-view images leverage multiple perspectives for recon-
struction, but accuracy depends on captured views. Point Clouds are storage-
efficient and precise, but sparsity and irregularity pose challenges. 3D Meshes
capture complex shapes and details, yet computational intensity and storage de-
mands are notable. Deciding between the aforementioned representations meth-
ods, depends on the factors like accuracy, efficiency, and suitability.

In our research, we empasize on mesh data, because they perform best due
to its rich information representation [11]. Specifically, for our unimodal exper-
imentation, we chose the most recent methods, MeshNet and MeshCNN as our
prefered candidates based on research [11].

2.2 Multimodal 3D Object Retrieval

The evolution of 3D data retrieval has spurred the exploration of multimodal ap-
proaches, which leverages diverse views to enhance accuracy and versatility. An
important development is the fusion of multiple 3D views, capitalizing on their
respective strengths in geometric precision and surface details. This integration
answers the call for more potent retrieval systems capable of capturing intri-
cate object traits while preserving precise shapes. By harmonizing these distinct
viewpoints, retrieval techniques gain proficiency in object recognition, proving
effective across an array of practical applications.

In a recent approach called Cross-Modal Center Loss (CMCL) [11], point
clouds, meshes, and multi-view images are integrated into a single unified frame-
work. Within this framework, multiple 3D modalities are combined to collectively
train representations and identify optimal features. Various loss functions, in-
cluding cross-entropy and mean-square-error, are employed to refine and enhance
the performance of this framework. However, it can be computationally inten-
sive due to the integration of multiple 3D modalities into a single framework,
potentially requiring significant computational resources. Moreover, Addition-
ally, CMCL’s performance can vary depending on the dataset, as it is sensitive
to the central characteristics of each modality.
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Fig. 2. Overview of abstract framework.

2.3 Multimodal Image Retrieval

Within the rich landscape of multimodal image retrieval methods for retrieval,
various strategies combining different modalities have been explored in the litera-
ture with more emphasis on hashing methods due to fast queries and less memory
consumption. For instance, there are methods like Discrete Online Cross-modal
Hashing (DOCH) [31], which creates high-quality hash codes for different data
types by using both the likeness between data points and their detailed mean-
ings. Fast Cross-Modal Hashing (FCMH) [26] adds an extra element to estimate
the binary code, making it better by reducing mistakes. Label-Attended Hash-
ing (LAH) [30] initially generates embeddings for images and label co-occurrence
separately. Following this, it employs a graph convolutional network (GCN) to
combine label features with image features, enhancing the model’s capabilities.
Nevertheless, it’s worth noting that LAH learns hash functions from specific real
data samples.

Based on a recent research [18], we choose to adapt MuseHash as the state-
of-the-art (SOTA) method and its competitor LAH [30] more suitable for 3D
retrieval due its effectiveness in other domain-specific datasets. MuseHash esti-
mates semantic probabilities and statistical properties during the retrieval pro-
cess, enhancing its performance in capturing meaningful relationships within the
data. It not only demonstrates its prowess in multimodal retrieval but also aligns
perfectly with the complexities of 3D data.

In our exploration, we compare MuseHash with CMCL to evaluate their
performance in multimodal query scenarios, ultimately solidifying MuseHash
as the prime candidate for adapting to 3D retrieval. Our study focuses on the
potential of volumetric retrieval, leveraging the flexibility and detail offered by
different representations of data. By exploring the challenges and opportunities
of 3D retrieval, we aim to advance the field using multiple modalities.

3 Methodology

To formally address the problem, we define the following scenario: Given a query
object denoted as Q and a database DB comprising a collection of 3D objects



6 M. Pegia et al.

represented using varying views, such as images and meshes, the fundamental
objective is to perform effective retrieval. This retrieval process aims to identify
objects within DB that share similarities with the query Q. The process involves
a meticulous analysis of the distinctive features characterizing Q and the sub-
sequent comparison of these features with corresponding attributes of objects
within DB to ascertain pertinent matches.

Figure 2 provides a visual representation of the conceptual framework that
underlies our research. This framework comprises three distinct phases: training,
offline, and querying. During the training phase, data is input into a specific
architecture, resulting in the generation of feature vectors. In the offline phase,
features are extracted from a retrieval set and subsequently stored in a database
for future reference. In the online phase, the architecture is applied to queries,
and relevant results are retrieved from the database. To visually distinguish
the areas where each studied model was applied, we’ve used an ochre color.
Additionally, the presence of a blue color indicates instances where the model
has a multimodal capability; otherwise, it is absent.

When it comes to 3D retrieval methods, both MeshNet and MeshCNN fall
under the category of unimodal mesh-based techniques. CMCL, on the other
hand, stands out as a cross-modal 3D retrieval method. It adopts a different
approach by concurrently learning a shared space for various features from dif-
ferent sources, utilizing MeshNet, DGCNN, and ResNet for mesh, point-cloud,
and image modalities, respectively.

In our adaptation of image retrieval techniques for 3D retrieval, we apply su-
pervised hashing methods within the architecture to generate hash code features.
Specifically, we’ve chosen LAH and MuseHash due to their proven effectiveness
across various data types, as emphasized in recent research by [18]. LAH, ini-
tially designed for unimodal image retrieval, learns hash codes by applying a
non-linear hash function to these mesh features using features from MeshNet.
MuseHash, on the other hand, leverages the same models as CMCL to extract
features from all modalities. Subsequently, MuseHash employs Bayesian ridge
regression to learn hash functions, mapping feature vectors to the Hamming
space, thereby enabling both unimodal and multimodal queries.

In our experiments, we transformed the different modalities into feature vec-
tors to prepare them for the hashing methods. For the visual modality, we con-
ducted an averaging process involving 180 multi-view image feature vectors ex-
tracted from ResNet50’s fc-7 layer, generating a 2048-D vector. As for the point
cloud and mesh modalities, we obtained 256-D vectors directly from the final
layers of DGCNN and MeshNet, respectively.

4 Experiments

In this section, we begin by describing the datasets used for evaluation and
providing an overview of the experimental setup. We then present detailed ex-
perimental results for a variety of modalities and hash code lengths.
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4.1 Datasets

The evaluation of our method and the comparison with existing SOTA methods
is done on the two publicly available datasets (Table 1):

BuildingNet_v0 The BuildingNet_v0 [20] provides high-quality annotations
and diverse building types (like church, palace etc.)

ModelNet40 The ModelNet40 [28] is a large-scale 3D CAD model dataset,
offering a wide range of object categories (like car, bottle, etc.).

Table 1. Two benchmark datasets used in experiments.

Ground Truth Collection Sizes

Dataset Labels Whole Retrieval Training Test

BuildingNet_v0 60 2000 1900 500 100
ModelNet40 40 12311 11696 4843 615

4.2 Experimental Settings

In our experiments, we evaluate the performance of two different types of meth-
ods using various metrics. Specifically, we consider the hashing methods, Muse-
Hash [18] and the LAH3 [30], where we examine the impact of different hash
code lengths (dc = 16, 32, 64, 128). For each volumetric method, we vary the
number of epochs (epochs = 10, 50, 100, 150) used for computing each metric.
We use the proposed training and testing size by the authors [28,20] for each
dataset as suggested by the authors.

We compare our approach with two state-of-the-art 3D mesh methods Mesh-
Net4 [6], MeshCNN5 [9], one cross-modal 3D retrieval method and CMCL6 [11]
in terms of mean Average Precision (mAP), precision at k (prec@k), recall at k
(recall@k), f-score at k (fscore@k), accuracy and training time.

In the paper, a 5-fold cross-validation methodology was employed in all of the
experiments for a more robust evaluation. We measured runtime of the experi-
ments per epoch or per hash code length. Additionally, all 3D retrieval imple-
mentations used big amounts of memory, while MuseHash uses a small amount
of memory (only some bits). In the following tables, the symbol ’*’ indicates
that MuseHash, has demonstrated statistical significance compared to the other
methods, as determined by a t-test.

3https://github.com/IDSM-AI/LAH
4https://github.com/iMoonLab/MeshNet
5https://github.com/ranahanocka/MeshCNN
6https://github.com/LongLong-Jing/Cross-Modal-Center-Loss
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Table 2. MAP results for ModelNet40 and BuildingNet_v0 with different code lengths
or number of epochs and mesh modality.

Dataset No. MeshNet MeshCNN CMCL Hash LAH MuseHash
Epochs [6] [9] [11] Length [30] [18]

ModelNet40

10 0.6801* 0.6726* 0.7097* 16 0.7811* 0.8010
50 0.6954* 0.6900* 0.7099* 32 0.7889* 0.8056
100 0.7091* 0.6711* 0.7103* 64 0.8001* 0.8101
150 0.6654* 0.6502* 0.6695* 128 0.8058* 0.8122

BuildingNet_v0

10 0.6201* 0.6007* 0.6511* 16 0.7629* 0.7723
50 0.6350* 0.6226* 0.6520* 32 0.7701 0.7791
100 0.6552* 0.6449* 0.6670* 64 0.7754* 0.7834
150 0.6550* 0.6501* 0.6623* 128 0.7821* 0.7883

4.3 Unimodal Retrieval Results

To study the performance of the multimodal approaches in unimodal situations,
we compare all the aforementioned methods using only the mesh queries over
the mesh modality. The results of those methods over the two datasets are given
in Table 2 and Table 3 for mAP and accuracy, respectively. In this scenario,
MuseHash outperforms all state-of-the-art methods.

Table 3. Accuracy results for ModelNet40 and BuildingNet_v0 with different code
lengths or number of epochs and mesh modality.

Dataset No. MeshNet MeshCNN CMCL Hash LAH MuseHash
Epochs [6] [9] [11] Length [30] [18]

ModelNet40

10 0.8091* 0.7511* 0.7916* 16 0.9221* 0.9431
50 0.8363* 0.8002* 0.8001* 32 0.9278* 0.9488
100 0.8422* 0.8101* 0.9791 64 0.9312* 0.9500
150 0.8490* 0.8091* 0.9895 128 0.9401 0.9510

BuildingNet_v0

10 0.7882* 0.7716* 0.7910* 16 0.9189* 0.9323
50 0.8025* 0.7922* 0.8001* 32 0.9207* 0.9344
100 0.8337* 0.8267* 0.8510* 64 0.9255* 0.9390
150 0.8405* 0.8373* 0.8601* 128 0.9345* 0.9401

The MuseHash algorithm performs better than other methods for different
hash lengths and epochs on both datasets. It shows the highest mAP and accu-
racy scores, highlighting its effectiveness for 3D retrieval tasks using only the
mesh view. Particularly on the BuildingNet_v0 dataset, MuseHash achieves
the best accuracy, surpassing other methods. Additionally, the CMCL approach
achieves top accuracy on the ModelNet40 dataset with more epochs, yet its mAP
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performance lags behind. This implies CMCL’s proficiency in classification but
potential challenges in organizing relevant retrieval results. Apart from that,
image retrieval methods can perform better in 3D retrieval task from current
SOTA 3D retrieval methods.

4.4 Multimodal Retrieval Results

For the multimodal case, we consider the combined utilization of point clouds,
meshes, and multi-view images. The results of these techniques for both mAP
and accuracy are detailed in Table 4 for ModelNet40 and BuildingNet_v0 dataset.

Specifically, the Table 4 highlights the mAP and accuracy results for Mod-
elNet40 dataset across different hash lengths, epochs, and query modalities.
MuseHash, demonstrates competitive performance in the majority of scenar-
ios. MuseHash exhibits a distinct advantage in accuracy when queries involve
both visual and point cloud modalities. While CMCL also exhibits competitive
results, MuseHash’s efficacy in handling diverse query modalities showcases its
adaptability and robustness across different data representations.

In addition, the multimodal variant of MuseHash, which incorporates both
mesh and image modalities, demonstrates substantial performance improvements
with longer code lengths (from 16 to 32), particularly for larger code lengths (64
and 128). However, further increasing the code length does not lead to significant
performance gains. This observation highlights an optimal code length range
where MuseHash excels in capturing intricate multimodal relationships.

According BuildingNet_v0 dataset (Table 4), MuseHash outperforms in all
multimodal cases the CMCL approach. In general, MuseHash has higher value
on mAP as the code length increases and reaches the highest value when it uses
visual and mesh view as a query and for code length 128.

4.5 Analysis of Runtime Requirements

The Figure 3 represents the training time (in minutes) for various methods,
including MeshNet, MeshCNN, CMCL, LAH and three variants of MuseHash,
across different training epochs or code lengths. Each line in the plot corresponds
to a specific method, and the x-axis represents the training time in minutes,
while the left y-axis the number of training epochs and the right y-axis the code
length used in the training process. The black and grey dotted lines correspond
to the values of each method for a specific epoch or code length, respectively.
Particularly, there are three variants of the MuseHash method (MuseHash1,
MuseHash2, and MuseHash3) evaluated for different code lengths, which corre-
spond to the use of mesh, mesh and visual, and mesh, visual and point cloud
view, respectively.

MeshNet and MeshCNN exhibit relatively shorter training times compared
to CMCL and MuseHash variants, with CMCL requiring significantly more time
for the same number of epochs. Among the MuseHash variants, ’MuseHash1’
consistently shows the shortest training time across different code lengths, mak-
ing it the most computationally efficient option. As the code length increases,
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Table 4. MAP and accuracy results for ModelNet40 and BuildingNet_v0 with dif-
ferent code lengths or number of epochs and query modalities.

Dataset Query No. CMCL[11] Hash MuseHash [18]
Epochs mAP Accuracy Length mAP Accuracy

M
od

el
N

et
40

Visual 10 0.6911* 0.9012* 16 0.8184 0.9501
Mesh 50 0.7010* 0.9045* 32 0.8201 0.9578

100 0.7122* 0.9091* 64 0.8234 0.9601
150 0.7415* 0.9129* 128 0.8212 0.9525

Visual 10 0.6710* 0.7661* 16 0.7712 0.9423
Point Cloud 50 0.6912* 0.7712* 32 0.7821 0.9489

100 0.7010* 0.7891* 64 0.7823 0.9510
150 0.7122* 0.7922* 128 0.7840 0.9517

Mesh 10 0.6910* 0.8992* 16 0.7882 0.9345
Point Cloud 50 0.7039* 0.9042* 32 0.7910 0.9422

100 0.7128* 0.9188* 64 0.7900 0.9577
150 0.7231* 0.9201* 128 0.7854 0.9611

Visual 10 0.7097* 0.7916* 16 0.8051 0.9611
Mesh 50 0.7099* 0.8001* 32 0.7976 0.9601

Point Cloud 100 0.7103* 0.9791 64 0.7923 0.9583
150 0.6695* 0.9895 128 0.7911 0.9550

B
u
il
d
in

gN
et

_
v0

Visual 10 0.6911* 0.8011* 16 0.7810 0.9423
Mesh 50 0.7010* 0.8091* 32 0.7912 0.9455

100 0.7122* 0.8123* 64 0.8010 0.9589
150 0.7415* 0.8231* 128 0.8091 0.9610

Visual 10 0.6801* 0.7938* 16 0.7701 0.9244
Point Cloud 50 0.6881* 0.7957* 32 0.7734 0.9301

100 0.6910* 0.8010* 64 0.7791 0.9451
150 0.7001* 0.8139* 128 0.7801 0.9510

Mesh 10 0.6761* 0.7810* 16 0.7610 0.9181
Point Cloud 50 0.6810* 0.7910* 32 0.7691 0.9201

100 0.6902* 0.8031* 64 0.7701 0.9221
150 0.6971* 0.8091* 128 0.7688 0.9200

Visual 10 0.6511* 0.7910* 16 0.7790 0.9021
Mesh 50 0.6520* 0.8001* 32 0.7800 0.8900

Point Cloud 100 0.6670* 0.8510* 64 0.7881 0.8991
150 0.6623* 0.8601* 128 0.7912 0.8920

all variants of MuseHash experience longer training times due to more complex
computations and increased memory demands. In summary, the Figure 3 com-
pares training times among different methods. MuseHash1 exhibits the shortest
training times initially, but as the code length increases, the training times be-
come longer.
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Fig. 3. Comparison of training times for all methods in minutes.

4.6 Discussion

Table 5 presents a comprehensive comparison of various methods based on Preci-
sion@k, Recall@k, and Fscore@k for k = 10, 25, 50 and for different code lengths
or number of epochs on the ModelNet40 dataset. Thus, the table provides a
detailed understanding of how well the retrieval methods rank and retrieve rel-
evant items. Moreover, the selected metrics shed light on the methods’ ranking
mechanisms and their capacity to capture pertinent data points among the top-k
results.

The methods are categorized into two groups: MeshNet, MeshCNN, and
CMCL, each evaluated for different numbers of epochs. Additionally, there are
the three predefined variants of the MuseHash (MuseHash1, MuseHash2, Muse-
Hash3) method and the LAH method evaluated for different code lengths.

Therefore upon careful observation, it is evident that multimodal approaches
excel in comparison to MeshCNN and MeshNet, revealing limitations in the ar-
chitecture or feature representation of the latter two methods when operating ex-
clusively within the mesh view.While CMCL occasionally achieves superior out-
comes, considering the trade-off between performance gains and training time,
MuseHash emerges as the more efficient choice. Additionally, MuseHash’s capa-
bility to incorporate multiple modalities (e.g., mesh and image) into a unified
hash code enhances its retrieval accuracy and diversity. The efficiency of Muse-
Hash becomes particularly valuable in scenarios with extensive datasets and
resource constraints, where fast and accurate similarity searches are paramount.
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Table 5. Comparison of all methods based on Precision at k (k = 10, 25, 50) for
different number of epochs or code lengths on ModelNet40 dataset

Method Variable Precision@k Recall@k Fscore@k

Epochs 10 25 50 10 25 50 10 25 50

M
es

h
N

et
[6

]

10 0.6510 0.6560 0.6410 0.6802 0.6533 0.6602 0.6653 0.6546 0.650
50 0.6810 0.6712 0.6678 0.7011 0.7051 0.7187 0.6909 0.6877 0.6923
100 0.6901 0.6854 0.6802 0.7029 0.7011 0.7089 0.6964 0.6932 0.6943
150 0.7010 0.6910 0.6824 0.7091 0.7123 0.7189 0.7055 0.7015 0.7002

M
es

h
C

N
N

[9
]

10 0.5822 0.5701 0.5623 0.5791 0.5607 0.5689 0.5806 0.6011 0.6178
50 0.6001 0.5803 0.5734 0.5998 0.6011 0.6183 0.5999 0.5905 0.5950
100 0.6245 0.6183 0.6002 0.6011 0.6190 0.6189 0.6126 0.6186 0.6094
150 0.6221 0.6112 0.6009 0.6005 0.6123 0.6230 0.6111 0.6117 0.6118

C
M

C
L

[1
1]

10 0.8290 0.7679 0.7142 0.9985 0.9943 0.9968 0.9011 0.8666 0.8321
50 0.8291 0.7687 0.7147 0.9883 0.9943 0.9968 0.9018 0.8671 0.8325
100 0.8298 0.7687 0.7149 0.9884 0.9944 0.9968 0.9019 0.8671 0.8326
150 0.8283 0.7677 0.7142 0.9865 0.9944 0.9968 0.9013 0.8665 0.8322

Code
Length 10 25 50 10 25 50 10 25 50

L
A

H
[3

0]

16 0.6190 0.6179 0.6242 0.9215 0.9243 0.9268 0.7405 0.7407 0.7460
32 0.6202 0.6287 0.6347 0.9383 0.9343 0.9461 0.7468 0.7516 0.7597
64 0.6298 0.6287 0.6349 0.9584 0.9444 0.9468 0.7601 0.7549 0.7601
128 0.6281 0.6271 0.6242 0.9265 0.9344 0.9468 0.7487 0.7505 0.7524

M
u
se

H
as

h
[1

8]
1

16 0.6412 0.6501 0.6623 0.9567 0.9689 0.9781 0.7454 0,7781 0.7898
32 0.6589 0.6620 0.6778 0.9612 0.9723 0.9612 0.7818 0.7877 0.8018
64 0.6601 0.6789 0.6801 0.9667 0.9712 0.9789 0.7845 0,7992 0.8026
128 0.6791 0.7123 0.7256 0.9701 0.9734 0.9601 0.7989 0.8229 0.8265

2

16 0.6571 0.6810 0.7020 0.9612 0.9723 0.9865 0.7806 0.8010 0.8203
32 0.6910 0.7001 0.7112 0.9546 0.9612 0.9667 0.8017 0.8101 0.8195
64 0.7662 0.7405 0.7156 0.9712 0.9781 0.9801 0.8566 0.8429 0.8272
128 0.8010 0.8588 0.8423 0.9865 0.9902 0.9923 0.8841 0.9198 0.9112

3

16 0.6480 0.6501 0.6589 0.9523 0.9678 0.9621 0.7712 0.7778 0.7821
32 0.6510 0.6678 0.6781 0.9678 0.9698 0.9512 0.7784 0.7910 0.7918
64 0.6782 0.6789 0.6834 0.9701 0.9700 0.9634 0.7983 0.7988 0.7996
128 0.7012 0.6910 0.6901 0.9701 0.9623 0.9603 0.8140 0.8044 0.8038
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5 Conclusion

In this paper, we have leveraged the state-of-the-art methods from image re-
trieval to the domain of 3D object retrieval. In particular, we have adapted
the recently proposed multimodal MuseHash method to support queries within
volumetric data. The MuseHash method exploits the inner relations between
different modalities. Our experiments show that MuseHash outperforms in most
cases three state-of-the-art methods in both unimodal and multimodal queries
across two different domain-specific benchmark image collections.
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