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Abstract 
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interTwin co-designs and implements the prototype of an interdisciplinary Digital Twin 

Engine (DTE). The DTE will be an open-source platform that includes software 

components for modelling and simulation to integrate application-specific Digital 

Twins (DTs). InterTwin’s WP7 will provide the aforementioned sets of software 

components, called thematic modules, for the use cases defined in WP4. This report 

describes the current status of the development of the thematic modules in the physics 
domain. 
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Executive summary 
This deliverable, D7.4, is a report on the status of the development of the thematic 

modules for the Digital Twin (DT) applications in the physics domain. It is a collective 

document written by the scientists developing these modules. The use cases served by 

these modules cover high energy physics, radio astronomy, and gravitational wave 

astronomy. The modules will be integrated into the Digital Twin Engine (DTE) that forms 

an important part of the interTwin project. Each module's functionality is described and 

contextualised by reference to the relevant DT and its use cases. Included is a technical 

summary of each software module that includes basic information such as its software 

licence and release notes. 
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1 Introduction 

1.1 Scope 

Previous reports identified the technical requirements that are important for the 

development of the thematic modules in WP7 [R1]. This deliverable is an update that 

summarises the development status of the physics thematic modules, which are needed 

to implement the physics domain DTs and realise the use cases of WP4. In WP7 the 

physics domain covers: 

● T7.1 Lattice QCD simulations and data management 

● T7.2 Noise simulation for radio astronomy 

● T7.3 GAN-based thematic modules for gravitational waves 

● T7.7 Fast particle detector simulation with GAN. 

1.2  Document Structure 

Section 2 describes the software components included in each thematic module and 

their purpose and role in the context of their corresponding use case. Section 3 

summarises the basic specifications for each software component listed in Section 2 and, 

where possible, includes links to more detailed technical and user documentation. Also 

included in this section for each component are their release notes and a short 

description of their future plans. Section 4 outlines the progress of the integration of the 

thematic modules with the other Work Packages in interTwin. 
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2 Thematic Modules Architecture for the 

Physics Domain 

2.1 T7.1 LQCD simulations and data management 

The purpose of T7.1 is to develop software to carry out Lattice QCD simulations and 

integrate it with software modules and data infrastructures being developed by other 

groups under the interTwin banner. Two software modules fall under this task, 

● normflow  

● openQxD. 

 

The openQxD1 simulation software is a C code that can be used to simulate QCD+QED (or 

QCD) quantum field theories [R2]. The code allows one to choose among a wide variety 

of temporal and spatial boundary conditions when configuring particle simulations. 

As described in D7.22 the more efficient analysis of lattice data would be facilitated by the 

adoption of a data sharing model following the data lake architecture being developed 

by WP5.2 [R1]. A testbed built along these lines is currently being operated at DESY and 

sample lattice data has been provided as part of the testing process. This will eventually 

involve the automatic copying of data and the integration of the FAIR principles into lattice 

data storage and retention policies. 

Improvements to the software development workflow are being made by the integration 

of the SQAaaS module being developed by WP6.2. Software quality assurance in this 

context involves making sure releases are tagged properly etc. The project is providing 

feedback to WP6.2 to expand and improve its utility. This is intended to be a springboard 

to the integration into the OpenQxD development framework of a CI/CD pipeline with 

unit tests. 

The software module normflow3, a ML inspired lattice DT also described in D7.2, is being 

developed for use case T4.1. The main idea behind the method of normalising flows is to 

build and train a neural network for mapping a theory of interest to another one that is 

easier to simulate, ideally to a theory in which the degrees of freedom are decoupled. 

Once such a map is found, one can efficiently draw many samples from the theory of 

interest. Work is currently ongoing on the construction of gauge-equivariant 

transformations and development of a model for SU(2) and SU(3) gauge theories in four 

spacetime dimensions. 

 

 

 
 

 
1 https://gitlab.com/rcstar/openQxD  
2 https://zenodo.org/record/8036997  
3 https://github.com/jkomijani/normflow  

https://gitlab.com/rcstar/openQxD
https://confluence.egi.eu/display/interTwin/Data+Samples+from+the+Use+Cases
https://gitlab.com/rcstar/openQxD
https://zenodo.org/record/8036997
https://github.com/jkomijani/normflow
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2.2 T7.2 Noise simulation for radio astronomy 

Task 7.2 aims to develop a framework for extracting pulsar signals from radio-

astronomical observatory data streams. It is a ML-based data-labelling system that reads 

the data flow coming from a radio telescope observing a pulsar. An important separate 

component is a DT of an astronomical source-telescope system (developed in T4.3), able 

to generate synthetic output signals identical to the data recorded by a real telescope.  

This includes both scientifically valuable data, simulating the path of pulsar signals from 

source to measurement by telescopes, and various interference and noise signals. In 

particular, types of the Radio Frequency Interference (RFI) signals, i.e. background noise 

emanating from devices such as cell phones or satellites, are modelled. The resulting DT-

generated data is to be used to train the ML data-classification tool. The DT is physics-

based: a set of the control parameters will allow adjustment of the output to different 

sources, detection instruments, and observing conditions.  

Although ultimately there will be two software modules (the labelling system and the 

physics-based DT), currently four modules are being developed, all under the umbrella 

designation of ML-PPA (Machine Learning-based Pipeline for Pulsar Analysis): 

● PulsarDT 

● PulsarDT++ 

● PulsarRFI_Gen 

● PulsarRFI_NN 

 

PulsarDT: physics-based DT, simulation of the propagation of pulsar signals from the 

source to antennas and generation of synthetic data – written in Python, to test 

algorithmic strategies for physical models of pulsars, interstellar medium, telescopes, 

interference, and noise, that will be later implemented in PulsarDT++. 

PulsarDT++: At the moment this is PulsarDT implemented in C++ plus a general test of 

architecture of the whole ML-PPA package. This is what is going to be the final production 

release (it will also include a C++ version of PulsarRFI_NN). 

PulsarRFI_Gen: empirical DT, generating “timeframes”, 2D images (time-frequency) of all 

possible types of telescope output observing a pulsar: pulses (scientifically relevant data), 

two different types (“narrow” and “broad”) of RFI signals, and “empty” frames, containing 

only noise. It creates these timeframes by mimicking available real data (based on the 

geometry of images, noise characteristics etc.) rather than generating them from the 

physical first principles as PulsarDT does. The purpose of this tool is to have enough 

training data for the ML classifier while the much more complicated physics-based DT is 

still being developed. 

PulsarRFI_NN: the ML classifier. It is a CNN-based tool for identification of various types 

of pulsar and RFI signals in the “timeframes”, 2D images (time-frequency). Just like 

PulsarDT it is also a Python-based testing ground for various algorithms that later will 

contribute to PulsarDT++. 

 

https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/pulsardtpp
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/pulsarrfi_nn
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A detailed overview of the current state of the project can be found in this document: 

https://gitlab.com/ml-ppa/gitlab-profile/-/blob/main/PUNCH_interTwin_project.pdf 

2.3 T7.3 GAN-based thematic modules to manage 

noise simulation, low-latency de-noising, and veto 

generation for gravitational waves 

Aim of this task is to develop the thematic module for the simulation of transient noise in 

the Virgo Interferometer using Generative Adversarial Networks (GANs) [R5]. Using 

interTwin software modules and infrastructures we plan to implement two subsystems: 

the Training DT (Digital Twin) subsystem and the Inference DT subsystem. These 

subsystems are operated by a DT Operator, which could be a person or an automated 

procedure (in a later stage) that operates the DT during data-taking. The DT Operator 

monitors the operations of the DT by checking relevant metrics on training convergence 

and inference accuracy.  

The Training DT subsystem is responsible for the periodical re-training of the DT model 

on a buffered subsample of most recent Virgo data. The DT model needs to be updated 

to reflect the current status of the interferometer, so continuous retraining of the GAN 

needs to be carried out. 

The main component of the Training DT subsystem is the Data Store. The Data Store is 

used to store data in the form of time-series originating from the Virgo strain channel and 

relevant auxiliary channels. The length of the buffer is currently under study, but we 

foresee to use about a one-month equivalent of data. The normal operating conditions 

of the Data Store is to act as a FIFO buffer, receiving an incoming stream of data from the 

interferometer. The DT Operator triggers the training of the GAN using data from the 

Data Store periodically or under certain conditions.   

The design of the Training DT subsystem comprises the following modules: 

● Data Store API. It allows the DT operator or other modules to interact with the 

Data Store. Upon receiving the “Training” event trigger, it sends a “Freeze” event 

to the Data Store, freezing the current data in the buffer, i.e. no new data will be 

written in the Data Store, and no data will be deleted. When the Data Store enters 

the “Frozen” condition, the Data Store API sends a “Frozen” event to the Pre-

processing module.  

● Pre-Processing module. The pre-processing module spawns upon reception of the 

“Frozen” event from the Data Store API. The pre-processing module reads data 

from the Data Store and builds time series of the appropriate length for training 

(using crop or join methods). It applies standard-preprocessing (de-noising) and 

q-transform to produce time-frequency spectrograms, and then turns them into 

2D images. The preprocessing functions are heavily based on the use of the 

Python package GWpy. 

● Training module. Python-based module that trains the GAN model and stores the 

model in the Model Catalog. 

 

https://gitlab.com/ml-ppa/gitlab-profile/-/blob/main/PUNCH_interTwin_project.pdf
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The Inference DT subsystem works in a similar way as the Training DT subsystem, but it 

processes a stream of incoming data, rather than using data from the buffer. The 

incoming data will contain time-series of the Virgo strain channel and the relevant 

auxiliary channels. The data will be pre-processed by the Pre-Processing module in order 

to produce images in the same format as those used by the training module. Inference is 

then applied using the latest GAN model retrieved from the Model Catalog. The aim of 

this component is to identify glitches and issue a decision about further processing (veto 

or denoising). 

2.4 T7.7 Fast particle detector simulation with GAN 

Task 7.7's goal is to develop the thematic module for the fast detector simulation using 

Generative Adversarial Networks (GANs) [R5]. This thematic module consists of two 

components: the simulation component that incorporates the Monte Carlo based 

simulation framework, Geant44 and the deep learning (3D Generative Adversarial 

Network -3DGAN [R4]) component, which will produce deep learning models based on a 

specified particle detector set up. These models are integrated and can be run during the 

simulation step. 

The two components will be linked together to support DT development in the context of 

WP4. More specifically, T7.7 is developing capabilities for T4.2 defined DT application that 

will enable the specific DT operator to: 

● use the Geant4 application to simulate particles passing through a specific 

detector setup (full/Monte Carlo-based simulation) 

● pre-process the simulated data 

● train a GAN model on the pre-processed simulated data, with specified model 

input conditions (e.g. particle’s entrance angle, initial energy, and type) 

● use the trained GAN model within the Geant4 application during the inference 

step (fast/ GAN-based simulation). 

A methodology that accelerates particle detector simulations, leveraging generative deep 

learning methods, has already been described and is available in deliverable 7.2 (D7.2) 

[R1]. Our methodology uses Geant4, a software toolkit for the simulation of the passage 

of particles through matter, and GAN, a class of machine learning frameworks for 

approaching generative AI. The technical requirements have been identified, defined, and 

reported in detail in D7.2. Moreover, the underlying challenges of detector simulation for 

CERN and the High Energy Physics (HEP) community, as well as the importance of 

developing a DT digital twin system that integrates simulation methods with machine 

learning, were analysed and described. 

This section provides a brief overview of CERN’s digital twin application of a detector 

simulation, as it has already been described in detail in deliverables 7.2 and 4.2 (D4.25). It 

describes the key steps, from particle simulations to event generation, and subsequent 

 
4 GEANT4: https://geant4.web.cern.ch/  
5 https://zenodo.org/record/8321134   

https://geant4.web.cern.ch/
https://zenodo.org/record/8321134
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data comparison with real data. The process is explained, highlighting the functionalities 

at each stage. Furthermore, it illustrates the flexibility in tuning the system to accurately 

represent various detectors’ responses. This explanation is designed to give readers an 

understanding of the entire workflow architecture, shedding light on current practices 

and potential areas of future improvement. It also opens the way for a deeper discussion 

on the challenges faced, decisions made, and future strategies in the ongoing 

development of this innovative simulation application. 

This application consists of two components, the component that incorporates the 

Geant4-based simulation framework and the deep learning component, which uses deep 

generative models based on a specified particle detector setup. The two components are 

encapsulated into two main workflows, the training workflow, and the inference 

workflow, as illustrated in Figure 1. Below, the application functionalities and their 

specifications included in each workflow are described. 

The Geant4 simulation toolkit, which consists of an important component of CERN’s 

application, performs particle physics simulations based on Monte Carlo (MC) methods. 

The training workflow design includes the following functionalities, which will run on HPC 

systems managed by Kubeflow containerized components. Geant4 simulates particle 

interactions, producing data based on a detector-specific configuration. The produced 

data consists of the energy measured by the detector sensors, the properties of the initial 

particle, such as its type, energy, and its trajectory angle with respect to the detector 

volume, and other metadata. The produced data, in ROOT format, will be stored at 

different data centres, with CERN currently serving as the primary storage site. The 

Geant4 application will run on HPC systems in a containerized environment. 

The data produced from the traditional Geant4 simulation in ROOT format requires 

conversion into the HDF5 format for further preprocessing before being input into the 

GAN model. This conversion is currently performed using a Python script. The converted 

data will then be stored at data centres. Following the ROOT to HDF5 format conversion, 

the HDF5 data is further pre-processed and transformed into numpy arrays, a process 

currently incorporated within the model training scripts. 

A GAN is trained [R4] on the pre-processed data, conditioned on specific input describing 

the properties of the particles. The data is retrieved from the storage space where they 

reside. Hyperparameter optimization (HPO) is also employed to improve model 

performance. During validation and HPO, the model-generated data and the Geant4 

simulated data distributions will both be visualised. Additional validation techniques are 

currently being explored. 

At the end, the training workflow stores the optimised models, selected based on 

validation results, and converts them into the ONNX format for use during inference. 

Currently, the transformation of the model architecture and weights is performed within 

a Python script. The model registry where the GAN models will be stored is managed by 

Task 6.5. 
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During inference workflow processes, the Geant4 application initiates a particle, guiding 

it through the detector until it reaches the bottleneck detector part (the calorimeter), at 

which the GAN model performs inference. This functionality will be incorporated within 

the Geant4 application, which of course requires the retrieval of the stored ONNX 

formatted models. The model's output undergoes a detector-specific transformation to 

convert it into a Geant4 suitable input: the 3D images that the model generates are 

mapped into the so-called "hits" data consisting of the position (x, y, z coordinates) in the 

detector (i.e. the sensors positions) and the corresponding energy measurements. 

The transformed data is used by the Geant4 framework to complete the process of 

generating events, simulating the passage of particles through the remaining 

components of the detector. Data distribution comparisons are drawn between the GAN-

generated data and real data (either derived from a traditional Geant4 simulation or data 

derived from accelerator test beams). These comparisons are essential for validating the 

efficacy and accuracy of the GAN-generated data. 

Finally, based on the results visualised, two possible workflows are proposed for 

simulation tuning. The model can either be re-inferred with different model input 

parameter values, provided these parameter values have been accounted for during 

model training. Alternatively, if a different value range of the conditional parameters is 

needed, the training workflow must be re-run from the beginning. These two possible 

workflows allow for greater flexibility and adaptability in tuning the detector's responses 

to various particle interactions. 

2.5  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Detailed graph representation of the training and inference workflows composition (as described above) 

of the fast particle detector simulation DT utilising 3DGAN approach 
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3 Components  

In this section basic information on the software components for each thematic module 

is summarised, and release notes and future plans are provided. 

3.1 T7.1 openQxD 

Component name openQxD 

Description Flexible code that implements advanced 

lattice simulation techniques on HPC 

systems. 

Value proposition  The base software component necessary 

to simulate quantum field theories with C* 

boundary conditions. 

Users of the Component  Expert users and Developers 

User Documentation https://gitlab.com/rcstar/openQxD/-

/tree/master/doc  

Technical Documentation https://gitlab.com/rcstar/openQxD/-

/tree/master/doc?ref_type=heads  

Responsible  RC* Collaboration 

Licence GPLv2  

Source code https://gitlab.com/rcstar/openQxD  

3.1.1 Release notes 

Notes are available in the repository6.  

3.1.2 Future plans 

The code will be evolved in the direction of embedding a proper CI/CD workflow for the 

software development process, and a FAIR data evaluation automated procedure in 

cooperation with WP6.  

3.2 normflow 

Component name normflow 

 
6 https://gitlab.com/rcstar/openQxD/-/blob/master/CHANGELOG   

https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD
https://gitlab.com/rcstar/openQxD/-/blob/master/CHANGELOG
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Description For applying the method of normalising 

flows as a generative model for lattice 

simulations. 

Value proposition  This package contains utilities for the 

implementation of normalising flows as a 

generative model using Pytorch.  

Users of the Component  Expert users and Developers 

User Documentation https://github.com/jkomijani/normflow_ 

Technical Documentation https://github.com/jkomijani/normflow_ 

Responsible  Javad Komijani 

Licence MIT 

Source code https://github.com/jkomijani/normflow_ 

3.2.1 Release notes 

This package contains utilities for the implementation of the method of normalising 

flows as a generative model for lattice field theory. The method of normalising flows is a 

powerful approach in generative modelling that aims to learn complex probability 

distributions by transforming samples from a simple distribution through a series of 

invertible transformations. It has found applications in various domains, including 

generative image modelling. Normflow currently supports scalar theories in any 

dimension, and we are extending the package to accommodate gauge theories. 

3.2.2 Future plans  

We plan to extend our work to the more physically relevant SU(2) and SU(3) gauge 

theories in four spacetime dimensions. We need to construct and train a neural network 

to map the link variables of a gauge theory to a theory with decoupled link variables. 

However, a naive transformation of the link variables may lead to a distribution that is 

not symmetric under gauge transformation. To avoid this problem one should construct 

a neural network that respects the gauge symmetry. We are currently working on the 

construction of neural networks that encode these gauge-equivariant transformations. 

3.3  T7.2 PulsarDT 

Component name PulsarDT 

Description Physics-based DT, simulation of the 

propagation of pulsar signals from the 

https://github.com/jkomijani/normflow
https://github.com/jkomijani/normflow
mailto:jkomijani@gmail.com
https://github.com/jkomijani/normflow
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source to antennas and generation of 

synthetic data – written in Python. 

Value proposition  The physics-based DT, to be used to 

generate synthetic data to train the ML 

classifier. This particular component is 

written in Python as a model of how the 

different aspects of the physics-based DT 

can be implemented, while its 

counterpart, PulsarDT++ implements 

what has already been well-established in 

the C++ production version.   

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsardt 

Technical Documentation https://gitlab.com/ml-ppa/pulsardt 

Responsible  ML-PPA collaboration 

Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsardt 

3.3.1 Release notes  

This is the first internal release. Assorted related materials, including Jupyter notebooks 

with use examples, are available at GitLab or will be added soon. For a wider context and 

theory behind the whole ML-PPA (including detailed explanations with regard to the 

status of each component) one should refer to the paper.  A brief description of the 

current functionality is as follows: users can specify a number of model parameters, like 

pulsar geometry, distance to Earth, noise characteristics etc. The program produces an 

image like this, including the timeframe time-frequency domain image as if seen by a 

telescope plus a mask, selecting only what corresponds to the pulsar data and excluding 

the noise:  

https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/pulsardt
mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/gitlab-profile/-/blob/main/PUNCH_interTwin_project.pdf
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Figure 2 - example of an image and mask pair 

3.3.2 Future plans  

The plans are to constantly build upon the current model. Ultimately the goal of this 

component is to supply its counterpart, PusarDT++, with algorithms and implementation 

strategies, so it is used as a testing ground and is constantly modified. In the near future 

the interstellar matter (ISM) and electronics noise models are to be replaced by more 

sophisticated ones. The telescope model, which is now assumed to be a single antenna 

setup, will be expanded to include antenna arrays. Further, more complexity will be 

added to the source, e. g. pulsars in double systems will be considered.   

3.4 T7.2 PulsarDT++ 

Component name PulsarDT++ 

Description Physics-based DT, simulation of the 

propagation of pulsar signals from the 

source to antennas and generation of 

synthetic data – written in C++. 

Value proposition  PulsarDT implemented in C++. This is 

going to be the production version of the 

whole ML-PPA package and will also 

include a C++ version of the ML-classifier 

(PulsarRFI_NN). 

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsardtpp 

Technical Documentation https://gitlab.com/ml-ppa/pulsardtpp 

Responsible  ML-PPA collaboration 

Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

https://gitlab.com/ml-ppa/pulsardtpp
https://gitlab.com/ml-ppa/pulsardtpp
mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
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Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsardtpp 

3.4.1 Release notes 

This is the first internal release. Assorted related materials, including Jupyter notebooks 

with use examples, are available at GitLab or will be added soon. For a wider context and 

theory behind the whole ML-PPA (including detailed explanations with regard to the 

status of each component) one should refer to the paper. This component is an efficient 

parallel-computing capable implementation of the whole ML-PPA, including the ML-

classifier and DT, a layered architecture with a Python-based user interface on the top of 

various modules containerized using Singularity. This version includes a C++ 

implementation of PulsarDT as its main module. 

3.4.2 Future plans  

Ultimately this component will contain the whole ML-PPA package, both the physics-

based DT (PulsarDT) and the ML-classifier (PulsarRFI_NN). Including stable versions of 

both plus a user interface is the main development goal at the moment, and then 

updating these two tools as the Python prototypes are updated. Another goal is to work 

on the efficient use of parallel computing. 

3.5 T7.2 PulsarRFI_Gen 

Component name PulsarRFI_Gen 

Description Empirical DT, generating “timeframes”, 2D 

images (time-frequency) with various 

classes of pulsar and RFI signals. This DT 

creates various types of telescope signals 

by mimicking available real data rather 

than generating them from the physical 

first principles as PulsarDT does.  

Value proposition  The purpose of this tool is to have enough 

training data for the ML classifier while the 

much more complicated physics-based DT 

is still being developed. 

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsarrfi_gen 

Technical Documentation https://gitlab.com/ml-ppa/pulsarrfi_gen 

Responsible  ML-PPA collaboration 

https://gitlab.com/ml-ppa/pulsardtpp
https://gitlab.com/ml-ppa/pulsardtpp
https://gitlab.com/ml-ppa/gitlab-profile/-/blob/main/PUNCH_interTwin_project.pdf
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/pulsarrfi_gen
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Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsarrfi_gen 

3.5.1 Release notes 

This is the first internal release. Assorted related materials, including Jupyter notebooks 

with use examples, are available at GitLab or will be added soon. For a wider context and 

theory behind the whole ML-PPA (including detailed explanations with regard to the 

status of each component) one should refer to the paper. The tool is well developed and 

already includes most of the functionalities that it should have. It can simulate a wide 

range of various 2D time-frequency “timeframes” very close to those that are produced 

based on real observations. 4 basic types of timeframes are generated: pulse, two kinds 

of radio-frequency interference and just noise, plus two basic types can be combined to 

create “hybrid” types. Each type can be finely tuned to produce output with different 

signal-to-noise ratios, noise characteristics, signal parameters etc. Timeframes, 

generated by this component, have already been successfully used to train the ML-

classifier, which then can classify the real data with high efficiency. So essentially this is a 

fully functional DT. 

3.5.2 Future plans  

The tool is already working as it should, with little space for improvement and additional 

functionality. It will be updated in the future, but there will probably be no drastic 

changes. Originally it was planned that only the physics-based DT (PulsarDT) would be 

added to the final production version of the ML-PPA package (PulsarDT++), but since 

PulsarRFI_Gen has already shown itself quite useful, it may also be added to PulsarDT++ 

as an alternative tool for production of training data for the ML-classifier.   

3.6  T7.2 PulsarRFI_NN 

Component name PulsarRFI_NN 

Description The ML classifier. It is a CNN-based tool for 

identification of various types of pulsar 

and RFI signals in the “timeframes”, 2D 

images (time-frequency). 

Value proposition  The main tool of the framework. 

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsarrfi_nn 

mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/gitlab-profile/-/blob/main/PUNCH_interTwin_project.pdf
https://gitlab.com/ml-ppa/pulsarrfi_nn
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Technical Documentation https://gitlab.com/ml-ppa/pulsarrfi_nn 

Responsible  ML-PPA collaboration 

Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsarrfi_nn 

3.6.1 Release notes 

This is the first internal release. Assorted related materials, including Jupyter notebooks 

with use examples, are available at GitLab or will be added soon. For a wider context and 

theory behind the whole ML-PPA (including detailed explanations with regard to the 

status of each component) one should refer to the paper. The main functionality of this 

component is assigning labels to 2D time-frequency “timeframes”. Each timeframe can 

be classified into one of the 4 main categories: pulse, two kinds of interference, or empty, 

i.e. just noise. To do this the tool must be first trained using either real data or that 

generated by either physics-based DT (PulsarDT) or empirical DT (PulsarRFI_Gen).  

Users are also supplied with Jupyter notebooks that illustrate the use of this component. 

3.6.2 Future plans 

This tool accomplishes its primary purpose. However, its performance when dealing with 

data with a low signal-to-noise ratio still needs to be improved, and that is going to be the 

focus of the development efforts in the near future. In particular, the ML approach is 

being changed (distributed training: HeAT, Horovod) and noise is to be handled more 

efficiently.  And in a more distant future the plans are for it to be able to classify much 

more than just 4 basic categories of data, ideally to detect physical properties of the signal 

and interference components. 

3.7  T7.3 GWpy 

Component name GWpy 

Description A python package for gravitational-wave 

astrophysics 

Value proposition  Standard functions for preprocessing of 

time series for GW data 

Users of the Component  Expert users and developers 

User Documentation https://gwpy.github.io/docs  

Technical Documentation https://gwpy.github.io/  

https://gitlab.com/ml-ppa/pulsarrfi_nn
mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
https://gitlab.com/ml-ppa/pulsarrfi_nn
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/gitlab-profile/-/blob/main/PUNCH_interTwin_project.pdf
https://gwpy.github.io/docs
https://gwpy.github.io/
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Responsible  Ligo and Virgo Collaborations 

Licence GPL-3.0-or-later 

Source code https://github.com/gwpy/    

3.7.1 Release notes 

GWpy is a stable and actively maintained package developed by the Ligo-Virgo-Kagra 

collaboration. It is a key dependency of the modules to be developed in the context of 

WP 7.3. WP specific packages have not been released yet. 

3.7.2 Future plans  

There is no released WP module and the functionalities developed so far, a proof of 

concept of the Preprocessing API and of the Training and Inference subsystems, are 

implemented in Jupyter notebooks7. The next step is to release a set of Python packages 

in a separate repo implementing the required functionalities and deploy the workflow via 

Docker containers. 

3.8 T7.7 3DGAN 

In this deliverable the machine learning (ML) model, 3DGAN, developed to be integrated 

into the simulation toolkit, is reported. In preparation for the integration of the 3DGAN 

model with the first version of the AI workflow toolkit, we have developed a 3DGAN 

version based on the PyTorch Lightning ML framework. Older previous versions also 

exist, which are based on the Tensorflow v1 and v2 framework. The model-AI workflow 

tool integration PoC can be found under the repository8. 
 

Component name 3DGAN (Deep Learning model for 

generation of images of calorimeter 

energy depositions) 

Description 3DGAN is a generative adversarial 

network approach that generates High 

Energy Physics (HEP) calorimeter output. 

Calorimeters are special HEP detectors 

that record particles through the 

measurement of the energies deposited 

by them [R4]. 

Value proposition  Detector simulations allow scientists to 

design detectors and perform physics 

analyses. The simulation toolkit that has 

 
7 https://github.com/interTwin-eu/DT-Virgo-notebooks  
8 https://github.com/interTwin-eu/itwinai/tree/41-integrate-cern-use-case/use-cases   

https://github.com/gwpy/
https://github.com/interTwin-eu/DT-Virgo-notebooks
https://github.com/interTwin-eu/itwinai/tree/41-integrate-cern-use-case/use-cases
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been developed and performs particle 

physics simulations based on Monte 

Carlo (MC) methods is Geant4. 

 

The detailed particle MC simulations are 

inherently slow. Simulations have a 

crucial role in HEP experiments, and at 

the same time are very resource-intensive 

from the computing perspective. 

Therefore, HEP community is highly 

motivated to explore fast alternatives, 

with deep learning based fast simulation 

being the most promising. 

 

3DGAN consists of a fast alternative to 

MC, with remarkable results in terms of 

speed up. 3DGAN was the first effort 

where the detector output was generated 

employing three dimensional 

convolutions, an approach for retaining 

correlations in all three spatial 

dimensions [R4]. 

Users of the Component  Expert Users and Developers 

User Documentation https://github.com/interTwin-

eu/DetectorSim-3DGAN/tree/main  

Technical Documentation https://github.com/interTwin-

eu/DetectorSim-3DGAN/tree/main  

Responsible  CERN  

Contacts: Kalliopi Tsolaki 

(kalliopi.tsolaki@cern.ch), Sofia 

Vallecorsa (sofia.vallecorsa@cern.ch)  

Licence MIT 

Source code https://github.com/interTwin-

eu/DetectorSim-3DGAN/tree/main  

3.8.1 Release notes 

The fast particle detector simulation with GAN thematic module consists of two 

inseparable components as we have already discussed in section 2.4, as well as in D7.2. 

These two components are the machine learning framework and the particle simulation 

framework. An implementation of the 3DGAN approach has been developed and a more 

detailed description follows. The 3DGAN component will be integrated into the particle 

https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
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simulation application. The code is available on GitHub and it has been tested and run on 

a single Linux node using GPU infrastructure. 

3DGAN is being trained to produce images similar to the ones that are produced by 

Monte Carlo simulations. As the calorimeter detectors consist of layers of cells, those cells 

are modelled as monochromatic pixelated images with the cell energy depositions being 

the pixel intensities. 3DGAN consists of 2 networks, a generator and a discriminator, the 

two networks compete with each other trying to optimise a loss function until the 

convergence point, where the discriminator won’t be able to distinguish the images 

generated by the generator from the real images. Each network is being trained using 3-

dimensional convolution layers to represent the 3 spatial dimensions of the calorimeter 

images. 

The generator network implements stochasticity through a latent vector drawn from a 

Gaussian distribution. The generator input includes the primary particle’s initial energy 

and the angle that it entered the detector, concatenated to the latent vector. The 

generator network then maps the input to a layer of linear neurons followed by 3D 

convolutional layers. The discriminator input is an image while the network has only 3D 

convolutional layers. Batch normalisation is performed between the layers and the 

LeakyRelu9 activation function is used for the discriminator layers while the Relu13 

activation function is used for the generator layers. The model’s loss function is the 

weighted sum of individual losses concerning the discriminator outputs and domain-

related constraints, which are essential to achieve high-level agreement over the very 

large dynamic range of the image pixel intensity distribution in a HEP task. The training 

of this model was inspired by the concept of transfer learning. Meaning that the 3DGAN 

was trained first for images in a limited energy range and after the GAN converged, the 

same trained model was further trained with the data from the whole available energy 

range. 

Currently, the 3DGAN training workflow consists of several other processes, the data pre-

processing process, the model definition, and training process. The validation and 

hyperparameter optimization processes are under research.  

The dataset used for studying and developing the 3DGAN model [R4] (public dataset) 

consists of calorimeter 3D images/arrays of energy depositions with shape 51x51x25, 

which represent the particle showers. These images were created from simulations 

performed with Geant4 software. The output of the Geant4 simulation is ROOT10 files, 

which need to be converted into a ML-friendly format HDF5 in order to train the model. 

The preprocessing is responsible for preparing (cleaning, scaling, etc.) and converting into 

a suitable format (HDF5 format) the simulated data created by Geant4 (ROOT format). It 

also encodes the input information such as the calorimeter’s geometry identifier, the 

energy of the primary particle initiating the shower, the angle at which the particle enters 

the detector, and also its type and/or initial position. The pre-processed data are then 

 
9 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)  
10 ROOT: https://root.cern/  

https://zenodo.org/record/3603086#.ZDhB8c5Byqi
https://root.cern/
https://www.hdfgroup.org/solutions/hdf5/
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://root.cern/
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passed to the GAN model (currently developed using Tensorflow v1 and v211 , as well as 

in PyTorch Lightning12) for training. The hyperparameter optimization (HPO) tuning 

processes will be used for searching for the best set of model hyperparameters (e.g. 

AutoML13, Optuna14 etc.). The validation process will verify the performance through a set 

of physics-motivated steps, both at single image quality level and at the sample level. 

Finally, the model will be converted into ONNX15 format and used for inference within the 

Geant4 application. 

During pre-processing, simulation inputs are defined and encoded, i.e. the detector 

geometry, the energy and angle of the incoming particle. The performance of the model 

will be evaluated during validation processes through the creation of histograms 

describing particle shower observables. Shower observables are among others, total 

energy distribution (sum of all cell energy deposits), cell energy deposits distribution, 

longitudinal profile which represents the energy deposited by a shower as a function of 

the depth of the calorimeter and lateral profile which represents the energy density 

distribution as function of the radius of the calorimeter. Moreover, the physics-based 

validation process will include accuracy verification of those key distributions' first 

moments and precise evaluation of the tails of distributions that usually require larger 

amounts of samples. The original data coming from Geant4 and the 3DGAN data 

distributions will be compared during this evaluation process. At inference time, a 

secondary validation will be performed by the Geant4 application to ensure that the fast 

simulation is accurate after mapping the inferred energies to positions in the calorimeter. 

Concerning the particle simulation framework component of our thematic module, there 

have been testbeds developed that are incorporating different ML models than the 

3DGAN. Therefore, our future efforts will focus on integrating the 3DGAN model in the 

simulation framework that uses the Geant4 environment. An example of the use of ML 

techniques for the fast detector simulation and how to incorporate inference libraries 

into Geant4 is the Par04 example developed by the Geant4 community and can be found 

on CERN Gitlab16. The ML model used in this example is a Variational Autoencoder (VAE), 

trained externally in Python on full Geant4 detector simulation response data.  

3.8.2 Future plans  

The development of the thematic module will continue, focusing on aspects such as 

parallel model training, hyperparameter optimization and model validation. Studies will 

be conducted on existing solutions for parallel training and hyperparameter optimization 

that will lead to the selection and implementation of the best solution based on the 

specific use case. In collaboration with the HEP community, different validation 

techniques will be studied with the goal to identify the technique most aligned to the 

 
11 Tensorflow: https://www.tensorflow.org/  
12 PyTorch Lightning: https://lightning.ai/  
13 AutoML: https://www.automl.org/automl/ 
14 Optuna: https://optuna.org/  
15 ONNX: https://onnx.ai/  
16 https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04  

https://www.tensorflow.org/
https://lightning.ai/
https://www.automl.org/automl/
https://optuna.org/
https://onnx.ai/
https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
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needs of the specific fast detector simulation use case. Moreover, we’ll continue with the 

integration of the 3DGAN model with the simulation framework, as well as with the 

integration of our thematic module with the other DTE modules, such as the AI workflow 

toolkit. 
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4 Summary of Integration Status 

4.1  T7.1 

A copy of the openQxD code is being tested with the SQAaaS module being developed in 

T6.2. A small test data set has been given to DESY for data lake testing within T5.2 and 

there will be further integration when the HPC storage at VEGA is integrated into the data 

lake testbed. The normflow package is standalone and is the entire software basis for the 

use case T4.1. We do anticipate potential integration with other WPs when the time 

comes to deploy simulations on larger systems. 

4.2  T7.2 

Currently there is no integration with other modules in development within interTwin. 

One of the main reasons for this is that most of our work in the first year was just a proof 

of concept roughly implemented in Python (three out of four currently released 

components are in Python and the main, C++ module is in its current form just a test of 

the overall architecture), so by necessity all of the work was done within our local group. 

However, as the work on the main production version progresses this year, we are 

planning to work on integration with the DTE core modules.  

4.3  T7.3 

At the moment there is no integration with the DTE core modules and the proof of 

concept runs on local resources at the INFN Torino computing centre. The main 

showstopper is the fact that the required input data, the auxiliary channels of the Virgo 

interferometer, is proprietary and work is in progress to publicly release a subset of those 

to be used in the integration activities. 

4.4  T7.7 

During the first year of the project there have been tests on running a previous version 

of 3DGAN model on the FZ Juelich resources provisioned in the framework of partnership 

between CERN and FZ Juelich under T6.5: AI workflow. Moreover, as a PoC the training 

process of our model has been integrated with the AI workflow DTE core module 

developed in T6.5, itwinai framework, and can be found under the following repository: 

https://github.com/interTwin-eu/itwinai/tree/dev . We remain in collaboration with 

our colleagues from CERN and the rest of interTwin partners to continue the DTE core 

modules integration efforts for the coming year.  
 

https://github.com/interTwin-eu/itwinai/tree/dev
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5 Conclusions 

The DTE’s physics thematic modules covering tasks T7.1, T7.2, T7.3, and T7.7 have been 

continuously developed and improved throughout the first year of the interTwin project. 

In an earlier report the scientists involved in the analysis activities of WP7 identified the 

technical requirements that are important for the development of the thematic modules, 

particularly as they relate to the use cases of WP4. Basic information about the 8 thematic 

modules currently under development in the physics domain have been presented in this 

report along with release notes and future plans. Some modules have stable releases 

with plentiful documentation such as the openQxD and GWpy modules. Others have 

unstable releases that are under development with some public documentation such as 

the 3DGAN, normflow, and Pulsar modules. T7.3 anticipates the creation of more WP-

specific modules in the future. New modules as well as updated versions of the ones 

presented here will be reported in the deliverable D7.8 “Final version of the thematic 

module for the physics domain”. 

The lack of integration with other WPs in some of the modules is largely due to the early 

stage of development most of the modules find themselves in. As the thematic modules 

develop and progress over the coming months towards production level running and 

deployment, they may become better situated to exploit the core module functions, 

which will have similarly progressed during that time frame. The DTE core modules 

developers have been receiving feedback and guidance from the physics (and 

environment) domain developers to ensure they have the functionality and flexibility 

developers require. This exchange of information is vital and should continue to be a 

priority moving forward. 
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