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Abstract. Neural architecture search (NAS) aims to automate neural
network design process and has shown promising results for image clas-
sification tasks. Owing to combinatorially huge neural network design
spaces coupled with training cost of candidates, NAS is computationally
demanding. Hence, many NAS works focus on efficiency by constraining
the search to only network building blocks (modular search) instead of
searching for the entire architectures (global search), and by approxi-
mating candidates’ performance instead of expensive training. Modular
search, however, offers only partial network discovery and final archi-
tecture configuration such as network’s depth or width requires manual
trial and error. Further, approximating candidates’ performance incur
misleading search directions due to their inaccurate relative rankings. In
this work, we revisit NAS for end to end network discovery and guide the
search using true rankings of candidates by training each from scratch.
However, it is computationally infeasible for existing search strategies to
navigate huge search spaces and determine accurate rankings at the same
time. Therefore, we propose a novel search space and an efficient search
algorithm that offers high accuracy low complexity network discovery
with competitive search cost. Our proposed approach is evaluated on
the CIFAR-10, yielding an error rate of 4% while the search cost is just
4.5 GPU days. Moreover, our model is 7.3×, 3.7× and 5.5× smaller than
the smallest models discovered by RL, evolutionary and gradient-based
NAS methods respectively. ‡
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1 Introduction

Neural Architecture Search (NAS) is the task of automating the otherwise te-
dious and manual neural network design process and has the potential to truly
democratize the use of deep learning. Early NAS works based on reinforcement
learning (RL) and evolution [4,5,6,7] achieve impressive results for image clas-
sification tasks, but hundreds of days of search cost makes practical adaptation
of these methods infeasible. Therefore, follow up research has mostly focused
on accelerating NAS by transitioning from global to modular search spaces
[9,14], replacing discrete optimization algorithms with continuous search strate-
gies [14,15], and approximating candidate networks’ performance instead of ex-
pensive training [10,8,14,22,21]. We refer the reader to [20] for more details on
how NAS research has evolved.

The techniques adopted to speed up NAS, collectively, have greatly improved
the search efficiency i.e., from 22400 GPU-days of RL [4] to 4 or less GPU-days
of gradient descent [14,22], but lead to various trade-offs. For instance, NAS-
Net [9] proposes a cell-based (modular) search space instead of searching for the
entire architecture (global search) and many subsequent works have followed
this approach [14,22]. However, once a cell is discovered, the decision of total
number of cells to be stacked up (depth) or channels (width) needs manual trial
and error. This contradicts the original idea of NAS i.e., automatic network
discovery for a given dataset with minimal expert intervention. Moreover, [17]
shows that cell-based search spaces have narrow accuracy ranges such that even
a randomly sampled architecture performs quite well. Such restricted spaces,
although guaranteeing good and quick results, do not possess performance-wise
architectural diversity and hence do not allow application adaptive network de-
sign. Similarly, continuous search strategies [14,22] are coupled with parameter
sharing techniques, which leads to inaccurate search directions as discussed in
[20]. Therefore, we retreat to discrete search strategies for end to end network
discovery using global search spaces.

Searching an architecture for maximizing a given objective, for e.g., accuracy
on test dataset, requires evaluating relative rankings of candidate networks. Rel-
ative ranking is defined as how well or worst an architecture performs as com-
pared to others on the test dataset. But to determine rankings, networks need
to go through expensive training. Hence, various performance approximations
are proposed instead. For example, [10,8] suggest weight reusing, but it is un-
clear whether accuracy improvement is because of better discovered network or
because of inheriting pre-trained weights. Further, various performance predic-
tors have been proposed to speed up NAS [21], but we argue that guaranteed
true rankings of candidates can only be revealed by training each from scratch
and till convergence. However, it is computationally infeasible for existing search
strategies to navigate combinatorially huge search spaces and determine accu-
rate rankings at the same time. Therefore, to guide the search by true rankings,
we propose an efficient search framework. Our contribution can be summarized
as follows:
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– A minimal yet powerful search space allowing both macro i.e., depth and
width and fine grain micro i.e., operation and kernel search.

– A true rank guided search strategy for end to end high accuracy low com-
plexity network discovery with competitive search cost.

On CIFAR-10, our true rank guided NAS (TRG-NAS) discovers a 0.45M pa-
rameter model with an error rate of 4% and the search cost is just 4.5 days.
Our model is 7.3×, 3.7× and 5.5× smaller than the smallest models discovered
by RL [9], evolutionary [7] and gradient-based [15] NAS methods, respectively.
The remaining paper is organized as follows. Section 2 presents related work,
followed by the proposed methodology in Section 3. Experimental results are
discussed in Section 4 and conclusion in Section 5.

2 Related Work

Contrary to trending NAS approaches focused on efficiency, our work is more
closely related to early works focused on automating the design process as much
as possible. Naturally, these works use global search spaces and treat NAS as
a black box combinatorial optimization problem. We too have opted to revisit
global search spaces and discrete optimization problem. Therefore, closely related
works in terms of search space and search strategy are those of RL [4,5,10],
evolution [6,7,8,23], gradient [16] and SMBO [11,18]. Soon after the proposal
of searching in modular search spaces [9], the first work that revisits global
(macro) neural architecture search is that of [13]. More recent work is that of
[22] as it focuses on both micro and macro architecture search but it classifies
micro search as optimal operation within a modular block and macro search as
different choice of blocks, however it still manually stacks up the blocks to decide
the final architecture. The most closely related work that emphasizes end to end
network discovery with minimal human intervention and unconstrained search
is that of [23]. This work proposes automatically generated search spaces from
existing architectures, an evolutionary search algorithm and uses performance
approximations to speed up search. From candidates’ performance evaluation
perspective, NAS is lacking research on the effect of training candidates from
scratch as reported in [20], therefore only very early NAS works [4,5] are known
to have used complete training to evaluate candidates.

3 Methodology

Our approach addresses the main components of NAS; 1) Search Space, 2) Search
Strategy, and 3) Performance Estimation. In this section, we discuss our contri-
bution to each of these NAS components.

3.1 Search Space Design

A search space, or just space from here within, is defined as a set of net-
work variables from which various network configurations can be sampled. Ta-
ble 1 shows that majority of the existing spaces [4,5,10,11] are influenced by
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Table 1. Search Space Comparison: Our search space has lesser yet the most influential
network variables to choose from.

NAS Method Global Search Space Architectural Variables

Depth
(Layers)

Width
(Channels)

Operations
per Layer

Convolutional
Kernel

Strides
Pooling
Layers

Fully
Connected

Layers

Skip
Connections

NAS-RL[4] ✓ ✓ ✓ ✓ ✓ ✓
Meta-QNN[5] ✓ ✓ ✓ ✓ ✓ ✓
Large-scale Evolution[6] ✓ ✓ ✓ ✓ ✓
EAS[10] ✓ ✓ ✓ ✓ ✓ ✓
Genetic Programming CNN[7] ✓ ✓ ✓
NASH-Net[8] ✓ ✓ ✓ ✓
NASBOT[11] ✓ ✓ ✓ ✓ ✓ ✓ ✓
TRG-NAS(Ours) ✓ ✓ ✓ ✓

the early Conv-Pool-FC like architecture paradigm [1] and/or residual networks
[3]. Moreover, network depth, width and convolutional kernel size are the most
common network variables followed by convolution stride (Strides), skip connec-
tions, pooling layers and fully connected layers. Since, the number of possible
network configurations grow exponentially with the number of search variables
and their value ranges, we aim to setup the variables such that the resulting
space, when coupled with our search strategy, is combinatorially feasible to ex-
plore. However, just to make the search efficient, we cannot simply drop most of
the search variables. Otherwise, the resulting space cannot posses architecturally
diverse networks in terms of network performance and complexity. Therefore, we
aim to strike a balance between end to end network discovery, search space ex-
plorability, and wide ranged performance/complexity trade-off. Such a space can
better adapt to varying complexity tasks, by offering smaller networks for easier
tasks and relatively complex networks for harder ones, hence a step closer to the
original idea of NAS. Next, we discuss the optimisations done to create one such
search space.

Trimming Search Variables To start with, we can drop variables arising from
early Conv-Pool-FC like architectures [1] by leveraging FCN like networks [2].
Therefore, fully connected (FC) layers can be replaced by a global pooling layer,
and pooling layers can be replaced by convolutions with stride 2 for reducing
spatial dimensions of an image. Additionally, we can drop skip connections since
we are not explicitly seeking very deep networks. Hence, we trim down Fully
connected, Pooling layers, and Skip connections from Table 1.

Channels Search Reduction Table 1 shows that all methods search for width
(number of channels). This is done for each layer as in [4]. However, we limit
the search to only the initial layer and use a fixed rate of doubling the channels
whenever the spatial dimensions are halved as in [1,14]. This technique further
reduces the search complexity (discussed in the next section), but still allows
variable width architectural diversity. Therefore, we fix stride values of convolu-
tion layers to 1 for normal layers and 2 for when spatial dimensions are halved.
Hence, we further drop Strides from the search space.
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Performance/Complexity Trade-off We notice that existing global spaces
do not allow operation search whereas operation type such as separable, dilated
or plain convolution can allow significant architectural diversity and expressive-
ness. Although, we need a compact space but it should still maintain the original
idea of previously unseen architectures. Hence, we allow searching for Opera-
tion type as either separable or plain convolution. Operation choice coupled
with kernel choice of 3, 5 or 7 creates architectural variation for suitable wide
ranged accuracy/parameter-efficiency trade-off.

To this end, we propose a novel search space with depth ,width , operations,
and kernels variables, as shown in Table 1. This space is diverse in terms of
performance and network complexity. On CIFAR-10, out of 10 randomly sampled
networks from our space, the worst network achieves an accuracy of 88.7% and
the best 95.8%, as compared to the most widely adopted DARTS’ space, with
worst network achieving 96.18% and the best 97.56% from within 214 sampled
architectures by [17]. This shows that our global search has high variance in terms
of performance as compared to modular search space, hence, better discovered
architectures can be attributed to the superiority of the search strategy and not
to expertly crafted space.

Search Space Complexity The complexity of the space may vary significantly
depending on search bounds and increases exponentially with depth. For a depth
range of D, width range of W , number of operations O and number of kernels K,
and final discovered depth Df , the maximum possible number of architectures
Narch is given in Eq. 1.

Narch = (O ×K)Df ×D ×W (1)

If we limit the search depth from 4 to 15 layers, the number of channels from
16 to 64 with steps of 16, i.e., D = 12 and W = 4, O = 2 and K = 3, then
assuming Df = 15, the space as described above has approximately 2.25× 1013

candidate architectures. Alternatively, if we search for channels of each layer, W
will be also be raised to the power of Dmax and the resulting space will have
6.05 × 1021 architectures. The proposed trimmed and enhanced space is still
combinatorially huge but we set up the search variables such that our algorithm
can efficiently navigate it and discover good architectures. With search variables
explained, we can now formally define the search problem.

Search Problem Let Ltrain and Ltest denote the training and test loss, re-
spectively. These losses are determined by the network architecture x as well
as its weights θ. The goal for architecture search is to find x∗ that minimizes
the test loss Ltest(θ

∗, x∗), where the weights θ∗ associated with the architecture
are obtained by minimizing the training loss θ∗ = argminθ Ltrain(θ, x

∗). This
is a bi-level optimization problem with x as outer-level while θ as inner-level
optimization variable:

min
x∈X

Ltest(θ
∗(x), x) (2)
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s.t. θ∗(x) = argmin
θ

Ltrain(θ, x) (3)

where X = (D,W,O,K) | D ∈ [Dmin, Dmax],W ∈ Wmin + ne | n ∈ N0, e ∈ E,
O ∈ o1, o2,K ∈ k1, k2, k3. D, W , O and K determine network depth, width, op-
eration type and kernel size, respectively.

Performance Estimation Solving Equation 3 is the most expensive com-
ponent of NAS, hence many works have used some form of approximation
[10,8,14,21]. However, the true Ltrain of an architecture can only be revealed
by training from scratch and till convergence, hence we train each candidate to
accurately reflect its Ltrain and use its Ltest to confidently guide the search.

3.2 Search Algorithm

We introduce our search algorithm 1 specifically tailored to efficiently navigate
the search space. Details of algorithm 1 are presented below:

Macro Architecture Search Since the search complexity increases exponen-
tially with the number of layers, we first search for network depth. With numbers
of channels set to maximum, we let candidate models Grow layers in an attempt
to overfit the training data. Layers are added till they keep increasing accuracy
by L+

acc+(accuracy gain by adding layer). By increasing a layer, if the accuracy

does not drop below L+
acc−(accuracy drop by adding layer), we continue adding

layers. The depth search is terminated if either Dmax (upper bound of layers) is
reached or the accuracy drops below L+

acc− . Once the depth is found, we Prune

the number of channels until the accuracy drops below C−
acc−(accuracy drop by

decreasing channels). We empirically determine the threshold values for L+
acc+ ,

L+
acc− and C−

acc− to be 0.25, 0.15 and 0.5, respectively. This strategy gives the
algorithm enough flexibility to adjust to target dataset at a macro level, i.e.,
network depth and width. Moreover, splitting the search this way effectively re-
duces the right term of complexity in Eq. 1 to D′+W ′, where D′ is the number
of architectures evaluated when searching for depth and W ′ for width. At this
point, we have an architecture with Df and Wf which are the final number of
layers and channels respectively to be used in further search.

Micro Architecture Search Macro search adapts the architecture to a good
performance point. We subsequently try to fine-tune it with micro search for fine
grain architectural details i.e., operation type and kernel size at each layer. We
simply search operations and kernel sizes for each layer. The idea is to increase
learnable parameters only if it improves accuracy. To achieve this, we Replace
separable convolutions with plain ones and Update kernel sizes. Therefore, we
search for operations by evaluating Df architectures and learn Of i.e., operation
type at each layer, and for kernels by evaluating 2×Df architectures and learn
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Algorithm 1: TRG-NAS Search Algorithm

Input: Search bounds: Dmin, Dmax, Wmin, Wmax, Wres

Initialization:
L = Dmin, C = Wmax, O = Sep, K = 3× 3

1. Grow network L← L+ 1 while Acctest improves by L+
acc+

2. Prune network C ← C −Wres while Acctest drops no more than C−
acc−

3. Replace operations Oi ← Conv if improves Acctest

4. Update kernels Ki← [5× 5, 7× 7] if improves Acctest

Return architecture x and its weights θ

Kf i.e., kernel sizes per layer. At this point we have adapted an architecture for
the target dataset by evaluating only Nevaluated = 3×Df+D′+W ′ architectures
instead of the number shown in Eq.1.

Parameter Efficient Networks As shown in Algorithm 1, we initialize search
with minimum depth, maximum width, and all layers of separable convolutions
with kernel sizes of 3 × 3. This decision is reached by empirically evaluating
alternative initialization strategies where layers can initially be convolutions or
kernel sizes be 7× 7, as shown in Table 2. For example, for parameter efficiency,
when kernel size is initialized to 7 × 7, we decrease it to 5 × 5 and 3 × 3 if
the accuracy is retained. Similarly, since plain convolution is less parameter
efficient than separable, we replace it with separable if the accuracy is retained.
To single out the contribution of each strategy and for faster evaluation, we
sample 10 binary sub-datasets from CIFAR-10 instead of using the entire dataset
and record averaged accuracy and number of parameters. In Table 2, we show
that the best strategy is to start with smaller networks and add parameters
only if there is accuracy gain. This strategy significantly beats others in terms
of accuracy/parameter efficiency trade-off.

Table 2. Effect of different initialization strategies on search.

Initialization Strategy Conv-64-3x3 Conv-64-7x7 Sep-64-3x3 Sep-64-7x7

Accuracy (%) 97.85 97.35 97.96 97.73
Parameters (M) 0.65 0.64 0.23 0.90

4 Experiments

4.1 Dataset and Search Details

We use CIFAR-10 for our experiments. It contains 10 classes with 5000 training
and 1000 test images, respectively, for each class. We run search with Dmin=10,
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Dmax=20, Wmin=16, Wmax=72 and Wres=4. We use standard training settings
as in [14,23] and do not take advantage of well-engineered training protocols that
hide the contributions of the search strategy or search space [17]. In order to show
the true contributions of the proposed method, we follow NAS best practices as
suggested by [19,17]. During search, we train all candidate models for 600 epochs
using SGD with momentum of 0.9 and weight decay of 3e-4. We use an initial
learning rate of 0.025 annealed down to 0 using a cosine scheduler, batch size of
64 and cutout. The search experiments are carried on a single Nvidia Quadro
RTX 8000 GPU and the search cost is 4.5 GPU-days.

4.2 Results

Random Search and Relative Improvement: To show the effectiveness of
our search strategy, we first compare it with 10 Randomly Sampled archi-
tectures. In Table 3, we show that our approach achieves 2.95% less error with
0.25% fewer parameters on average. This clearly singles out the contribution of
our algorithm. Further, we use the Relative Improvement metric (RI) intro-
duced by [17], which is RI = 100× (Accm −Accr)/Accr, where Accm and Accr
represent the accuracy of search method and average accuracy of randomly sam-
pled architecture, respectively. According to [17], a good search strategy should
achieve an RI > 0 across different runs. Our method consistently achieves an
RI > 2 across 5 different search runs.

Comparison with state-of-the-art: Although our work is more closely re-
lated to discrete and global NAS methods, for the sake of completeness, we
compare against continuous and modular strategies too, as shown in Table 3.
Our approach achieves a 4% error rate with a small, 0.45M parameters model
in just 4.5 GPU-days. Given that the network discovery is end to end, and the
discovered architecture does not need further human intervention, the error rate
is competitive with both global and modular search methods. Further, our model
size is equal to that of DPP-Net [12] (0.45M), which is the smallest NAS discov-
ered model for CIFAR-10, but we achieve 1.84% better accuracy. Overall, our
approach offers a balanced trade-off of automatic network design, high accuracy,
low model complexity and practical search cost.

Ablation Studies: To study the effect of operations in search space, we run
search with and without operation variable. We use 10 different seeds for each
scenario and train candidates for 20 epochs for faster search. Searching with
operations, on average, yields 0.79% higher mean accuracy than searching with-
out operations i.e. 89.92% and 89.13%, respectively. This behaviour is expected,
since plain convolution increases learnable parameters as compared to separa-
ble. When searched for 600 epochs, the resulting best model without operations
achieves an accuracy of 95.82% as compared to 96% with operations.
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Table 3. Comparison with state-of-the-art NAS discovered architectures for CIFAR-10
dataset.

NAS Method
Test Err.

(%)
Params
(M)

Search Cost
(GPU-days)

Search
Space

Search
Algorithm

NAS-RL[4] 3.65 37.4 22400 Global RL
Meta-QNN[5] 6.92 11.2 100 Global RL
EAS[10] 4.23 23.4 10 Global RL
Large-scale Evolution[6] 5.40 5.4 2600 Global EA
Genetic Programming CNN[7] 5.98 1.7 14.9 Global EA
NASH-Net[8] 5.20 19.7 1 Global EA
Macro-NAS[23] 4.23 6.7 1.03 Global EA
RandGrow[13] 3.38 3.1 6 Global RS
Petridish[16] 2.83 2.2 5 Global Gradient
NASBOT[11] 8.69 N/A 1.7 Global SMBO
NSGA-NET[18] 3.85 3.3 8 Global SMBO

NASNet-A[9] 2.65 3.3 2000 Modular RL
pEvoNAS-C10A[24] 2.48 3.6 1.20 Modular EA
DPP-Net[12] 5.84 0.45 2 Modular SMBO
DARTS[14] 2.76 3.3 4 Modular Gradient
GDAS[15] 2.82 2.5 0.17 Modular Gradient
AGNAS[22] 2.46 3.6 0.4 Modular Gradient

Random (Ours) 6.95±2.18 0.77±0.70 - Global -
TRG-NAS (Ours) 4.00 0.45 4.5 Global Greedy

5 Conclusion

In contrast to the prevailing trend of modular search, which provides only par-
tial network discovery, we revisit global NAS and demonstrate that achieving
end-to-end network discovery with an affordable search cost is not only feasi-
ble but can also lead to low-complexity networks. Moreover, instead of attaining
performance gains using expertly crafted modules, our search space offers a wide
range of network architectures with varying performance capabilities. This not
only helps singling out the contribution of the search strategy in unveiling good
architectures but also allows it to potentially adapt to datasets of varying diffi-
culty. Hence, one promising avenue for future research lies in dataset adaptive
neural architecture search.
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