
 

UNIVERSIDAD COMPLUTENSE DE MADRID 

 

FACULTAD DE CIENCIAS FÍSICAS 

 

 

TESIS DOCTORAL 
 

Análisis de la formación temprana de las  
galaxias masivas con datos JWST y HST  

 
Analysis of the early stages in the formation of 

massive galaxies with JWST and HST data 
 

MEMORIA PARA OPTAR AL GRADO DE DOCTORA EN ASTROFÍSICA 

 

PRESENTADA POR 
Ángela García Argumánez 

 

DIRECTORES 
Pablo Guillermo Pérez González 

Armando Gil de Paz 
 

Madrid, 2023 









A toda mi familia, por ser
lo más bonito que tengo.





Agradecimientos

Quiero empezar agradeciendo a todas las personas que, de alguna forma u otra, han contribuido
a que haya podido llegar hasta aquí. Esta tesis no hubiese sido posible sin el apoyo y cariño que
he recibido a lo largo de mi recorrido académico. La contribución de todas estas personas ha sido
fundamental en este viaje y les estoy sinceramente agradecida por haber hecho posible este capítulo
de mi vida. Pido disculpas por adelantado por si omito a alguien que merezca estar en esta muestra
de agradecimiento.

Me gustaría empezar agradeciendo a mis dos directores de tesis por haberme guiado y acom-
pañado durante estos años, ya que sin ellos esta tesis no habría sido posible. En primer lugar,
a Pablo G. Pérez González, quien a pesar de su pésimo gusto en cuanto a equipos de fútbol, me
dio la oportunidad de llevar a cabo esta tesis. Le doy las gracias por su ayuda y orientación, por
su disponibilidad, por todas las oportunidades que me ha dado, por su experiencia y su amplio
conocimiento, los cuales han contribuido enormemente a mejorar significativamente la calidad de
este trabajo. En segundo lugar, doy las gracias a Armando Gil de Paz por su apoyo y su guía
durante toda la tesis, por sus excepcionales ideas y puntos de vista, por haberme ayudado a enten-
der los conceptos más díficiles con su infinita paciencia, por su optimismo y, sobre todo, por creer
siempre en mí.

Doy las gracias a mis profesores de la Sagrada Familia de Elda, pues todos ellos forjaron en
mí la base que me permitió posteriormente estudiar una carrera de ciencias. En especial, a Don
Mariano por enseñarme a amar las matemáticas, a Don Manuel Galindo, que al enterarse de que
iba a estudiar Física dedicó desinteresadamente su mes de julio a enseñarme, entre otras cosas,
a diagonalizar matrices para que llegase lo mejor preparada posible a la carrera, y, con especial
cariño, a Don José Luis Cremades, que fue la primera persona que se sentó a explicarme el sentido
de lo que era una derivada, que durante 4 años me dio la mejor formación posible y me enseñó a
amar la Química (casi) tanto como la Astrofísica.

Agradezco también a la Universidad Complutense de Madrid el haberme permitido realizar
esta tesis mediante la Ayuda Predoctoral UCM. En relación a la Facultad de CC. Físicas, estaré
eternamente agradecida a Lucas Pérez, por enseñarme que no hay asignatura difícil si se cursa con
él y por darme todas las oportunidades posibles para introducirme en el mundo de la investigación.
También me gustaría agradecer a María Lorenza Escudero y, especialmente, a Cristina García, por
acompañarme durante mis primeros pasos en la carrera investigadora, acogiéndome durante un
año con los brazos abiertos. A Juan Jiménez Castellanos, por el tiempo que dedicó en primero
para que aprendiese a programar, así como por su apoyo durante los momentos más difíciles de la
tesis. A Nicolás Cardiel, por mostrarme lo bonita que puede llegar a ser la Astrófica, y a Elisa de
Castro, por todo su apoyo y la ayuda ofrecida cuando me lesioné. Asimismo, agradezco de corazón
a Mariángeles Flechoso el haberme facilitado la etapa final de mi tesis con sus buenos consejos y
su voluntad para ayudar a los estudiantes. Y a Afri, por la simpatía y cercanía que siempre me ha
transmitido.

i



ii

También extiendo mi gratitud al resto del Departamento de Física de la Tierra y Astrofísica,
que me acogieron desde el principio como a una más. Especialmente, a todos los predocs y postdocs
que he tenido la suerte de conocer, con los que he compartido tan buenos momentos durante estos
años, pero que no me atrevo a enumerarlos por si me dejo alguno. A Belén Alcalde, por todos sus
consejos y por estar siempre dispuesta a ayudarme (eres un ser de luz), y a Rosi, con la que he
compartido tantos cafés y sufrimiento. Con especial cariño, doy las gracias a Antonio Verdet por
todas las risas cómplices y todo el apoyo que me ha mostrado durante estos cinco años cuando más
lo necesitaba. A Ainhoa Sánchez Penim, por haberme acompañado durante todo este tiempo como
amiga y haberme permitido conocer a sus dos grandes y merecidísimas alegrías surgidas durante
mi tesis.

Me gustaría agradecer también a Anna Ferré-Mateu su apoyo desinteresado y sus consejos
durante este último año. Y a José María Gavira, por sus interminables (y siempre interesantes)
correos, por haberme recordado lo bonita que puede ser la ciencia y por tener siempre una respuesta
a mis preguntas.

Merecen una mención especial aquí Alicia Chacón y Nuria de Miguel, con las que he compartido
tan buenos momentos desde que las conocí. Siempre echaré de menos los años que vivimos juntas
como una familia. También tengo que agradecer a Dani, Laura y Paloma, compañeros de sufrim-
iento y de alegrías. A Dani, por tener siempre una sonrisa, por muy mal que fuesen las cosas. A
Paloma, que aún después de tantos años, siempre descubro algo de ella que logra sorprenderme. No
cambies, por favor. Y a Laura, por todos los momentos compartidos en los que hemos intentado
arreglar juntas el mundo, y a quien me gustaría tener siempre cerca. A Juan y Pablo, quienes
lograron que la experiencia del máster fuera enriquecedora en todos los sentidos. Y a Juan Carlos
y a Javier, por todos los cafés compartidos, que espero que continúen.

Por supuesto, tengo que agradecer también a Carlos Moreno por sus largas llamadas para
ponernos al día y por su maravillosa forma de ser. Y a Néstor, que aunque nuestros caminos se
separaron, siempre me apoyó hasta el final y me ayudó a crecer como persona. A Irene, a quien
admiro, y quien se ha convertido en una persona muy importante en mi vida que espero tener cerca
durante mucho tiempo. Y, como no, a mi Moso, sin el cual no me hubiese imaginado hacer una
tesis, por nuestra “relación de alto contexto” y por todos los buenos momentos que aún nos quedan
por vivir juntos.

Por último, doy gracias a mis padres por creer en mí desde el principio y por darme siempre la
mejor educación posible, así como por permitirme alcanzar mi sueño de llegar a estudiar Astrofísica,
a pesar del esfuerzo económico que esto supuso. A ellos y a mis hermanos, les agradezco su apoyo
incondicional durante los momentos más duros. Especialmente, agradezco a mi hermana pequeña
Alicia que, pese a la distancia, siempre se ha mantenido cerca y a la cual admiro por su valentía.
También agradezco a toda mi familia de Elda el amor que me han dado durante todos estos años
y por ser los mejores en organizar fiestas. Allá donde voy os llevo siempre a todos en el corazón.
Quiero agradecer también a mi madrina Paqui y a mi padrino Jose, por haber estado siempre
pendientes de mí desde que nací. Por último, quiero terminar dando las gracias a Plasti, a quien
quiero con todo mi corazón, y quien a pesar de intentar desanimarme para que no hiciera la tesis,
ha estado a mi lado durante todo este tiempo, convirtiéndose en un pilar fundamental de mi vida
y cuidándome cuando más lo he necesitado. Gracias por haberme dejado recorrer este camino de
la mano contigo.



Contents

Summary vii

Resumen ix

List of Figures xi

List of Tables xxiii

1 Introduction 1

1.1 From structure formation to first stars . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Baryons in dark matter halos: formation of the first stars . . . . . . . . . . . 4

1.2 A global picture of how massive galaxies formed . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Massive galaxies: a two-stage formation scenario . . . . . . . . . . . . . . . . 8

1.3 A further glance: the James Webb Space Telescope . . . . . . . . . . . . . . . . . . . 10

1.3.1 Probing the early Universe with the James Webb Space Telescope . . . . . . . 11

1.3.2 Recovering the assembly history of galaxies via 2D SPS with JWST . . . . . 13

1.3.3 Open questions in galaxy formation . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Main objective of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Simulated data: the Illustris Simulation 17

2.1 Introduction to cosmological simulations . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The Illustris Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 The Illustris Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 The Illustris Simulation: general characteristics . . . . . . . . . . . . . . . . . 22

2.2.3 Galaxy formation model in Illustris . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Illustris halos and subhalos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



iv CONTENTS

2.2.5 Snapshots in Illustris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.6 Illustris predictions and comparison with observations . . . . . . . . . . . . . 28

2.3 Synthetic images in Illustris: the “mock ultra-deep fields” . . . . . . . . . . . . . . . 30

2.4 Massive galaxies at 1 < 𝑧 < 4 in Illustris: building the ground-truth galaxy SFH
from their stellar particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 On the representativeness of the sample of massive galaxies at 1 < 𝑧 < 4 . . . . . . . 35

2.6 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Observational data: the Hubble and James Webb Space Telescopes 39

3.1 The Hubble Space Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Scientific instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 HST cosmological fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The James Webb Space Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 JWST general characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Scientific instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Introduction to JWST cosmological surveys . . . . . . . . . . . . . . . . . . . 59

3.3 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Recovering Star Formation Histories: Stellar Population Synthesis in 2D 65

4.1 Stellar population synthesis modeling: an overview . . . . . . . . . . . . . . . . . . . 65

4.1.1 Basic ingredients of SPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Details of the SPS model used in this work . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 IMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Isochrones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Stellar spectra libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.4 SFH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.5 Dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Synthesizer code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 2D SPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS v

5 Probing the earliest phases in the formation of massive galaxies
with simulated HST+JWST imaging data from Illustris 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Illustris Simulation and synthetic deep-survey images . . . . . . . . . . . . . 80

5.2.2 Sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Photometric data from the Illustris simulation . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Photometric broad-band filters . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Photometric measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Ground-truth physical properties of each galaxy . . . . . . . . . . . . . . . . 90

5.4 Estimation of the SFH from 2D SED fitting . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Stellar populations synthesis modeling . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Estimating SFHs from HST+JWST photometry . . . . . . . . . . . . . . . . 96

5.5 Validation of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 Characterization of the earliest phases in the formation of massive galaxies . 98

5.6 Expectations for the derivation of the SFH of 𝑧 > 1 massive galaxies
with HST+JWST data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.1 When did massive galaxies begin to form? . . . . . . . . . . . . . . . . . . . . 100

5.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Earliest phases in the formation of massive galaxies at 1 < 𝑧 < 4 from
spatially-resolved Star Formation Histories 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 JWST imaging from CEERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 HST imaging from CANDELS/EGS . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Selection of the preliminary sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Estimation of photometric redshifts and preliminary stellar masses . . . . . . 117

6.3.2 Preliminary sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



vi CONTENTS

6.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.1 Photometry: measuring integrated and 2D SEDs . . . . . . . . . . . . . . . . 118

6.4.2 SPS modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.3 Massive galaxies and SFH from the 2D SED fits . . . . . . . . . . . . . . . . 124

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5.1 CEERS final sample of massive, 1 < 𝑧 < 4 galaxies: redshift and stellar mass 126

6.5.2 The first stages of the SFH in massive 1 < 𝑧 < 4 galaxies . . . . . . . . . . . . 126

6.5.3 On the potential impact of Pop III stars and non-universal IMF . . . . . . . 132

6.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions and Future Work 137

7.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Other combinations of parameters explored in the SED fits 141

B 2D-SPS method validation for a reduced number of filters 155

C Flashcards of CEERS galaxies 157

D Table of CEERS galaxies 269

E Table with formation times for CEERS galaxies 279

List of research publications 293

Acronyms 295

Bibliography 301



Summary

The most massive galaxies in the nearby Universe are generally quiescent and present relatively
old stellar populations. Understanding the origins of these massive galaxies, such as the Milky
Way and even more massive systems, and how they formed their stars is a primary objective in
astrophysics. The reason for this is that these galaxies hold very valuable information to unravel
the mysteries of cosmic evolution and the processes that govern how galaxies form and evolve.

Constraining the epoch in which these galaxies emerged and analyzing the early stages of the
stellar mass assembly in their likely progenitors at higher redshifts would represent an important
step forward in our comprehension of the complex process of galaxy formation and evolution. This
thesis presents a comprehensive study which combines cutting-edge observational capabilities with
a sophisticated analysis technique to investigate the first stages in the formation and stellar mass
assembly of massive progenitors at 1 < 𝑧 < 4 of these galaxies. This work not only addresses the
question of when they began to form their stellar populations but also compares the results with
predictions of current cosmological simulations to explore its potential limitations and revisions
required in their cosmological and/or galaxy formation models.

This research has been conducted by combining of the exceptional optical capabilities of the
Hubble Space Telescope (HST) and the unprecedented infrared capabilities of the James Webb Space
Telescope (JWST). Our dataset includes optical-to-NIR broad-band observations from the Cosmic
Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) with HST and the Cosmic
Evolution Early Release Science (CEERS) Survey with JWST. These cosmological surveys enable us
to access the spatially-resolved emission of a representative sample of massive galaxies at 1 < 𝑧 < 4.
Our approach is to combine the information provided by these stellar populations in two dimensions
(2D), derived from stellar population synthesis in 2D (2D SPS), and develop a methodology that
allows us to infer the first stages of their integrated star formation histories (SFHs) in a more
robust way than when only using integrated emission. This thesis can be divided into a first part
on the development and validation of our 2D-SPS methodology with simulated imaging data, and
a second part on the application of this 2D-SPS methodology to real JWST + HST observations.

The development of this 2D-SPS methodology has been performed using the Illustris numer-
ical simulation. Illustris is a large-scale hydrodynamical simulation which reproduces the general
relationships observed for galaxies at different redshifts. In addition, Illustris provides synthetic
images that imitate those of real cosmological surveys from JWST and HST. We use the latter
synthetic images from Illustris to develop and optimize our 2D-SPS methodology for inferring the
early stages of the SFH of a galaxy, built by combining the information of their spatially-resolved
stellar populations. The advantage of using Illustris is that we can access the individual simulated
particles that comprise each galaxy in the simulation, which provides us with the ground-truth
information regarding its formation and stellar mass assembly. This is crucial to test and evaluate
our 2D-SPS-derived SFHs, especially their first stages, with the ground-truth values provided by
the simulated particles belonging to the galaxies.

vii



viii Summary

One of the benefits of using Illustris is that, using its merger trees and tracking galaxies in time
down to 𝑧 = 0, we can select only massive 1 < 𝑧 < 4 galaxies which are bona-fide progenitors of the
most massive (𝑀★ > 1011 M⊙) local galaxies. We use this sample of massive 1 < 𝑧 < 4 progenitors
to test our 2D-SPS method and to study its effectiveness in recovering the first episodes of stellar
mass assembly from the SFH of these galaxies. For our analysis, we quantify the first stages of
stellar mass formation by calculating the formation times at which the galaxy formed 5%, 10%, and
25% of its stellar mass, computed directly from the corresponding SFH. We evaluate the goodness
of our estimations in terms of the accuracy, defined as the median relative difference between the
formation times measured and those obtained for the ground-truth extracted from Illustris. Our
method proves to be successful in recovering the formation times with a median accuracy below
5%. In addition, the comparison of the formation times inferred for our sample of Illustris massive
progenitors at 1 < 𝑧 < 4 with those of their descendants at 𝑧 = 0, together with those inferred of
the whole population of 𝑀★ > 1011 M⊙ galaxies at 𝑧 = 0, gives us information about the limitations
and biases we may also encounter in real (naturally magnitude-limited) observations.

With our 2D-SPS method already validated, we are ready to apply it to real massive galaxies
observed in the first epoch of JWST/CEERS observations executed in June 2022. These observa-
tions consist of six NIRCam pointings which overlap the majority of the CANDELS/EGS field, for
which HST data are already available. Our overall findings reveal that massive 1 < 𝑧 < 4 galaxies
in CEERS began its stellar mass assembly at very early ages of the Universe, challenging our pre-
vious assumptions regarding the formation of the first galaxies at high redshift, in line with other
recent JWST works. We compare our results from the predictions for massive galaxies in Illustris
and another state-of-art and improved simulation, the IllustrisTNG (The Next Generation). Both
simulations exhibit significant discrepancies regarding the cosmic times at which galaxies began to
form their stars when compared to the formation epochs of CEERS galaxies. Our results highlight
potential shortcomings in the current galaxy formation models of these simulations at early epochs.

The research of this thesis not only advances in our comprehension of the early formation
and assembly of the stellar mass in massive galaxies, but also provides observational constraints
for future cosmological and galaxy formation models, adding another small piece to the puzzle of
understanding of our cosmic origins.



Resumen

Las galaxias más masivas del Universo cercano suelen no mostrar formación estelar actualmente
y presentan poblaciones estelares relativamente viejas. Entender los orígenes de estas galaxias
masivas, tales como la Vía Láctea y sistemas aún más masivos y cómo formaron sus estrellas es
un objetivo primordial de la astrofísica. La razón es que estas galaxias contienen información muy
valiosa de carácter cosmológico y sobre los procesos que rigen cómo se forman y evolucionan las
galaxias.

Restringir la época en la que surgieron estas galaxias y analizar las primeras etapas de ensam-
blaje de la masa estelar en sus progenitores a mayores desplazamientos al rojo representaría un
importante paso adelante en nuestra comprensión del complejo proceso de formación y evolución
de las galaxias. Esta tesis presenta un estudio exhaustivo que combina capacidades observacionales
de vanguardia con una sofisticada técnica de análisis para investigar las primeras etapas en la for-
mación y ensamblaje de masa estelar de progenitores masivos a 1 < 𝑧 < 4 de estas galaxias. Este
trabajo no sólo aborda la cuestión de cuándo comenzaron a formar sus poblaciones estelares, sino
que también compara los resultados con las predicciones de las simulaciones cosmológicas actuales
para explorar sus posibles limitaciones y las revisiones necesarias de los modelos cosmológicos y/o
de formación de galaxias.

Esta investigación se ha llevado a cabo combinando las excepcionales capacidades del Telescopio
Espacial Hubble (HST, del inglés Hubble Space Telescoope) en el óptico y del Telescopio Espacial
James Webb (JWST, del inglés James Webb Space Telescope) en el infrarrojo. Nuestro conjunto
de datos incluye observaciones en imagen de banda ancha en el óptico e infrarrojo cercano de las ex-
ploraciones Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) con el
HST y Cosmic Evolution Early Release Science (CEERS) con el JWST. Estos sondeos cosmológi-
cos nos permiten acceder a la emisión espacialmente resuelta de una muestra representativa de
galaxias masivas a 1 < 𝑧 < 4. Nuestro enfoque consiste en combinar la información proporcionada
por estas poblaciones estelares en dos dimensiones (2D), derivada de la correspondiente síntesis de
poblaciones estelares en 2D (2D SPS), y desarrollar una metodología que nos permita inferir las
primeras etapas de sus historias de formación estelar (SFHs, del inglés Star Formation Histories)
de una manera más robusta que cuando sólo se utiliza la emisión integrada. Esta tesis puede di-
vidirse en una primera parte sobre el desarrollo y validación de nuestra metodología 2D SPS con
datos de imagen simulados y una segunda parte sobre la aplicación de esta metodología 2D SPS a
observaciones reales de JWST + HST.

Esta metodología 2D SPS se ha desarrollado y testado utilizando las predicciones del proyecto
Illustris, simulación hidrodinámica a gran escala que reproduce las relaciones generales observadas
para galaxias a diferentes corrimientos al rojo. Además, Illustris proporciona imágenes sintéticas
que imitan las de las exploraciones cosmológicas reales de JWST y HST. Utilizamos estas últimas
imágenes sintéticas de Illustris para desarrollar y optimizar nuestra metodología 2D SPS a la
hora de inferir las primeras etapas de la SFH global de una galaxia, construida combinando la
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información de sus poblaciones estelares espacialmente resueltas. La ventaja de utilizar Illustris
es que podemos acceder a las partículas simuladas individuales que componen cada galaxia dentro
de la simulación completa, lo que nos proporciona la información de partida sobre la formación
y ensamblaje de la masa estelar de las galaxias simuladas. Esto es clave para evaluar la calidad
(precisión y exactitud) de las SFHs derivadas mediante el método 2D SPS, especialmente en sus
primeras etapas, en comparación a los valores reales (ground-truth en inglés) proporcionados por
las partículas simuladas pertenecientes a las galaxias.

Una de las ventajas de usar Illustris es que, gracias a sus árboles de fusiones y al seguimiento
de las galaxias en el tiempo hasta 𝑧 = 0, podemos seleccionar únicamente galaxias masivas de
1 < 𝑧 < 4 que son progenitoras genuinas de las galaxias locales más masivas (𝑀★ > 1011 M⊙).
Utilizamos esta muestra de progenitores masivos 1 < 𝑧 < 4 para probar nuestro método 2D SPS
y estudiar su eficacia a la hora de recuperar los primeros episodios de ensamblaje de masa estelar
a partir de la SFH de estas galaxias. Para nuestro análisis, cuantificamos las primeras etapas de
formación de masa estelar calculando los tiempos en los que la galaxia formó el 5%, 10% y 25% de
su masa estelar, calculados directamente a partir de la SFH correspondiente. Evaluamos la bondad
de nuestras estimaciones en términos de su precisión, definida aquí como la mediana de la diferencia
relativa entre los tiempos de formación medidos y los obtenidos para del ground-truth extraído de
Illustris. Nuestro método consigue recuperar los tiempos de formación con una precisión media
inferior al 5%. Además, la comparación de los tiempos de formación inferidos para nuestra muestra
de progenitores masivos de Illustris a 1 < 𝑧 < 4 con los de sus descendientes a 𝑧 = 0, junto con los
inferidos para toda la población de 𝑀★ > 1011 M⊙ galaxias a 𝑧 = 0, nos proporciona información
sobre las limitaciones y sesgos que también podemos encontrar en las observaciones reales (limitadas
en magnitud de forma natural).

Con nuestro método 2D SPS ya validado, estamos listos para aplicarlo a galaxias masivas reales
observadas en la primera época de observaciones del JWST/CEERS ejecutadas en junio de 2022.
Estas observaciones consisten en seis apuntados NIRCam que cubren la mayor parte del campo
CANDELS/EGS, para el que ya se dispone de datos HST. Nuestros resultados revelan que las
galaxias masivas a 1 < 𝑧 < 4 en CEERS comenzaron su ensamblaje de masa estelar en edades
muy tempranas del Universo y lo hicieron de forma muy rápida, desafiando nuestras suposiciones
previas sobre la formación de las primeras galaxias a alto corrimiento al rojo, en línea con otros
trabajos recientes del JWST. En este sentido, comparamos nuestros resultados referentes a las
predicciones para galaxias masivas en Illustris con aquellos basados en la simulación mejorada de
última generación IllustrisTNG (del inglés The Next Generation). Ambas simulaciones muestran
discrepancias significativas respecto a los tiempos cósmicos en los que los precursores de las galaxias
masivas comenzaron debieron haber empezado a formar sus estrellas en comparación con la época
de formación de las galaxias observadas como parte de la exploración CEERS. Nuestros resultados
ponen de manifiesto posibles deficiencias en los actuales modelos de formación de galaxias incluidos
como parte de estas simulaciones en épocas tempranas o bien en el contexto cosmológico general
asumido por las mismas.

La investigación de esta tesis no sólo ha permitido avanzar en nuestra comprensión de la forma-
ción temprana y el ensamblaje de la masa estelar en galaxias masivas, sino que también proporciona
restricciones observacionales para futuros modelos cosmológicos y de formación de galaxias, aña-
diendo otra pequeña pieza al rompecabezas de la comprensión del origen de las galaxias en el
Universo.



List of Figures

1.1 Large-scale structure observed with 2dFGRS (left in blue) for ∼ 10, 000 galaxies in
the local Universe, which is reproduced by cosmological simulations such as the
Millennium Simulation (right in red). The Earth would be sitting at the apex of the
diagram. Credits: Adapted from Springel et al. (2006). . . . . . . . . . . . . . . . . . 2

1.2 Global picture of the Universe state and epochs from Big Bang to present day.
Immediately following the Big Bang, the Universe began to expand adiabatically.
This expansion cooled the Universe enough to enable electrons to recombine with
protons. The cosmos remained dark and neutral throughout the Dark Ages period
until the formation of the first stars at Cosmic Dawn, likely at 𝑧 ≈ 15 − 20. As the
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their adjacent intergalactic medium (IGM). This is the start of Cosmic Reionization,
with the Universe transitioning from mostly neutral (HI) to nearly entirely ionized
(HII). This transition phase is believed to have ranged from 12 ≲ 𝑧 ≲ 6 (from 0.35
to 1 Gyr in age of the Universe). The maximum cosmic star formation rate density
was reached at Cosmic Noon (∼ 2 − 3) when most of the stellar mass was formed
decreasing after 𝑧 ∼ 1 until now (Madau & Dickinson 2014). Credits: Figure adapted
from Robertson (2022) and NASA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 a) Minimum halo mass for star-formation as a function of redshift. The dotted line
marks the limit given by the Jeans mass (see text). Below these masses (yellow area),
the internal pressure of the system prevents the collapse. The dashed line marks the
locus where the cooling time of the system, 𝑡cool, equals the free-fall time, 𝑡free−fall. If
𝑡cool > 𝑡free−fall, the gas will not efficiently cool (pink area). If 𝑡cool ≪ 𝑡free−fall, the gas
will effectively cool, overcome pressure support, and collapse on a timescale given
by 𝑡free−fall (cyan region). Solid lines shows the halo mass vs. redshift for different
overdensities in which the halos are already statistically significant in abundance
(the lower the 𝜎, the more abundant). For halo masses below 104 M⊙, no cooling
is possible since their virial temperatures cannot be lower than of the CMB (gray
region). According to Bromm (2013), this simplified model is only valid for 𝑧 ≳ 20.
b) Schematic picture of the formation of the first stars and galaxies. The first stars
would be Pop III stars formed in 𝑀ℎ ∼ 106 M⊙ at 𝑧 ∼ 20 − 30. These low-mass halos
would be incapable of withstanding the intense negative feedback from Pop III stars
in order to form a second generation of stars and, thus, cannot be considered as
galaxies. First galaxies would be formed at 𝑧 ∼ 10 in ∼ 108 M⊙ halos, composed of
Pop II stars. Credits: Panel a) adapted from Bromm (2013). Panel b) adapted from
Cimatti et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.4 a) Two-stage formation scenario for massive galaxies (see details in the main text).
b) Schematic diagram of typical processes and morphological transformations that
massive galaxies can undergo. Credits: Panel a) adapted from Spiniello et al. (2021).
Panel b) extracted from Cimatti et al. (2020). . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Zoomed-in portion of dwarf galaxy Wolf–Lundmark–Melotte (WLM), in our galac-
tic neighborhood, observed with Webb/NIRCam and Spitzer/IRAC. A significant
improvement in spatial resolution is appreciated with Webb. The small left inset
shows the dwarf galaxy observed with VLT/OmegaCAM. The filters used to create
the color images are indicated inside the figures (color-coded with the corresponding
colors).Credits: NASA, ESA, ESO, CSA, STScI, Kristen McQuinn (Rutgers Univer-
sity), Alyssa Pagan (STScI) for image processing. . . . . . . . . . . . . . . . . . . . . 11

2.1 Modified figure from Vogelsberger et al. (2020). It shows an overview of some dark
matter-only (left) and hydrodynamical (right) simulations, both large-scale (bot-
tom) and zoomed-in simulations (top). Zoomed-in N-body simulations (top left):
Aquarius (Springel et al. 2008), GHALO (Stadel et al. 2009), Phoenix (Gao et al.
2012), ELVIS (Garrison-Kimmel et al. 2014), and Via Lactea (Diemand et al. 2008).
Zoomed-in hydrodynamical simulations (top right): NIHAO (Wang et al. 2015), Au-
riga (Grand et al. 2017), APOSTLE (Sawala et al. 2016), Latte/FIRE (Wetzel et al.
2016), and Eris (Guedes et al. 2011). Large-scale N-body simulations: Millennium
(Springel et al. 2005b), Millennium-II (Boylan-Kolchin et al. 2009), Millennium-
XXL (Angulo et al. 2012), Dark Sky (Skillman et al. 2014), and Bolshoi (Klypin
et al. 2011). Large-scale hydrodynamical simulations: Illustris (Vogelsberger et al.
2014a,b; Genel et al. 2014), EAGLE (Schaye et al. 2015; Crain et al. 2015), Illus-
trisTNG (Springel et al. 2018), Romulus25 (Tremmel et al. 2017), Simba (Davé et al.
2019), Massiveblack-II (Khandai et al. 2015), Horizon-AGN (Dubois et al. 2014). . . 19

2.2 Example of an Illustris merger tree for 𝑧 = 0 descendant of a galaxy from the main
high-redshift sample analyzed in García-Argumánez et al. (2023; see also Chapter 5).
The descendant at 𝑧 = 0 is highlighted with a cyan circle, while the considered
progenitor galaxy at 𝑧 ∼ 1 is marked with a green dotted circle. Bigger circle
sizes correspond to higher halo masses. The circles are color-coded by specific SFR
(sSFR). We show an RGB image for the 𝑧 = 0 galaxy generated by Torrey et al.
(2015). The two empty horizontal lines correspond to the corrupted snapshots 53
and 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Illustris deep survey images (or Illustris mock ultra-deep fields) from Snyder et al.
2017 (three images on top), with a zoomed-in region in Field C (cyan and yellow
squares). Each field is 2.8 arcmin a side. The HST Ultra-Deep Field is shown above as
a comparison. Credit: Adapted from https://archive.stsci.edu/hlsp/illustris. 31
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2.4 Distributions for redshift, stellar mass, SFR, and stellar half-mass radius for mas-
sive galaxies at 1 < 𝑧 < 4 in the catalogs of Illustris mock-ultra deep fields (filled
histograms). These catalogs only include galaxies brighter than g < 30.0 mag. With
unfilled histograms, we show the distributions for the 4,295 massive galaxies in the
snapshot 𝑧 = 1 (dotted) and the 232 massive galaxies in that at 𝑧 = 4 (dashed) of the
simulation (not necessarily appearing in the images). The histogram for 𝑧 = 1 has
been normalized so that its maximum coincides with that of the massive, 1 < 𝑧 < 4
galaxies in the images. Median and quartile values are shown at the top with seg-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Ground-truth SFH for Illustris-1_073_0141918 calculated from its stellar and
gas particles within 2 𝑟hm. The left panel shows the stellar mass density distribution
in this galaxy. Particles within 2 𝑟hm are located inside the green sphere. We show
as zoomed-in panels the same stellar mass density distribution (cyan rectangle on
top) and the gas mass density distribution (yellow rectangle at the bottom). For
stellar particles inside 2 𝑟hm, we load their formation and formation times. We make
of a histogram of the formation times (expressed as lookback times) and sum the
formation masses of the stars formed in each bin to generate the SFH. We force
the SFH to have an age equal to that of the first star formed in the galaxy. The
SFR at the origin of lookback time is calculated by summing the SFR values of gas
particles in the green sphere (marked with a blue star in the SFH figure). Finally,
we normalize the resulting SFH to recover the stellar mass of all the stellar particles
inside 2 𝑟hm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Schematic diagram of our sample of Illustris massive 1 < 𝑧 < 4 progenitors to be
analyzed in Chapter 5. We start from all the massive (circle) and non-massive (small
black dot) galaxies in the Illustris synthetic deep survey images which are located
at 1 < 𝑧 < 4 (between the two horizontal dashed lines on the left). Using Illustris
merger trees, we can follow the evolution of all the galaxies in the images at those
redshifts until 𝑧 = 0 (bottom dotted line). Those 𝑧 = 0 galaxies do not appear in
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sample of massive 1 < 𝑧 < 4 progenitors (circles with a blue star inside) is composed
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3.1 Hubble images. a) HST coupled to space shuttle Discovery during the third HST
servicing mission (SM-3A) in December 1999, with two astronauts in the front of the
image and the Earth in the background. b) Comparison between the core of M100
observed by HST before (left) and after (right) the spherical aberration was corrected
during the first servicing mission in December 1993. The left image, taken with the
original Wide Field and Planetary Camera 1 (WFPC-1), misses fine and faint details
owing to the starlight blur produced by the optical aberration in the primary mirror.
The right image was taken with the Wide Field and Planetary Camera 2 (WFPC-
2), installed during the servicing mission, and shows the significant improvement
produced by the corrective optics that compensated the aberration. c) HST cross
section that shows the Cassegrain design of the telescope and the path that light
follows when it enters the telescope until it reaches the instruments. d) HST field
of view after SM4 with the instruments entrance apertures in the focal plane as
they are projected on the sky. e) Wavelength ranges (in nm) covered by the current
scientific instruments in HST. Images credits: ESA/Hubble & NASA. . . . . . . . . 41

3.2 Modified figure from the ACS Instrument Handbook (Ryon 2022). HST total system
throughput as a function of wavelength for several HST instruments. The lines show
the maximum throughputs for each instrument at a given wavelength. Current op-
erating instruments are shown with solid lines, and replaced (WFPC2) or inoperable
(ACS/HRC, NICMOS) instruments with dashed lines. . . . . . . . . . . . . . . . . . 44

3.3 Throughput of ACS and WFC3 filters used in this thesis. WFC3 filters are shaded
inside, and their names have been boxed. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Sky coverage of CANDELS fields: GOODS-N (a), GOODS-S (b), UDS (c), EGS
(d), and COSMOS (e). Adapted figures from Barro et al. (2019), Guo et al. (2013),
Galametz et al. (2013), Stefanon et al. (2017), and Nayyeri et al. (2017), respectively.
Gray shaded zones represent CANDELS WFC3 F160W mosaic, where darker zones
correspond to deeper data, except for UDS, where WFC3 data are the hatched region
delimited by the red solid line and, ACS, inside the dashed red line. In EGS (d),
ACS data are the light blue larger shaded zone enclosing the WFC3 data in the
center (dark gray). See details in main text. . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Webb images. a) JWST from launch to L2. The position of Sun-Earth L2 is shown
on the top right. b) Front (left) and side (middle) view of JWST. Images show
how the Optical Telescope Element (OTE) and the Integrated Science Instrument
Module (ISIM) are separated from the spacecraft bus and are shaded from sunlight
by the sunshield. c) Comparison between JWST image quality (with MIRI) with
respect to that of Spitzer IRAC 8.0 µm. d) Schematic view of the optical design of
JWST, which is a three-mirror anastigmat with a primary mirror, secondary mirror,
tertiary mirror, and an additional fine steering mirror. e) Angles in which JWST can
rotate for observations. The inset shows the allowed rotation with respect to the axis
pointing to the Sun direction. Adapted figure from STScI. Credits: AURA/S. Lifson
for a), McElwain et al. (2023) for b) and d), NASA/ESA/CSA/STScI/JPL-Caltech
for c), STScI for e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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3.6 Scientific instruments and NIRCam images. a) JWST focal plane and field of view
of the scientific instruments (highlighted) and the FGS. Several observing modes for
the instruments are marked in different colors. b) NIRCam modules and field of
view for both the short wavelength (SW) and long wavelength (LW) channels. Both
channels can be simultaneously observed. c) Total system throughputs for NIRCam
broadband filters. The ones used in this work have been highlighted. The dark
gray bar in the middle is approximately the dichroic cutoff between the SW and LW
channels. Adapted figure from STScI.
Credits: STScI for all images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Comparison of the SED fit of a 𝑧 > 4 galaxy in the pre-JWST era (blue dots and green
model) and using new JWST CEERS data (orange dots and red model). The object
belongs to the CANDELS EGS photometric catalog (Stefanon et al. 2017). The blue
dots correspond to CANDELS HST photometry, together with 𝐾𝑠 band and the four
Spitzer/IRAC bands from the photometric catalog. The orange dots correspond to
new NIRCam photometric data. The SED-fitting-derived probability distributions
for stellar mass and redshift are shown as an inset (green for the CANDELS fit
and red for the JWST fit). The JWST SED fit significantly better constrains the
redshift and stellar mass distributions. An RGB postage stamp of the galaxy is
also shown (5′′ × 5′′), created with NIRCam F444W, F200W, and F150W images.
Credits: Adapted figure from Carnall et al. (2023). . . . . . . . . . . . . . . . . . . . 60

3.8 CEERS images. a) Layout of CEERS observations: whole program (top mid-
dle), June observations (bottom left), and December observations (bottom right).
b) CEERS NIRCam Epoch 1 color mosaic. We have highlighted and zoomed-in
four 1 < 𝑧 < 4 galaxies with M★ > 1010 M⊙. Credits: D. Kocevski for a), and
NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/R. Larson/Z. Levay for the
mosaic in b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Schematic diagram of the SPS modeling with the isochrones technique, extracted
from Conroy (2013). SSPs are built from an IMF, isochrone tables, and stellar
spectra libraries. These SSPs are combined with a parametrized SFH and chemical
enrichment and dust models to produce the CSP spectrum (see details in the main
text). The middle-left panels show an example of SFH parametrized by a time-
delayed exponential, i.e., 𝑆𝐹𝑅(𝑡) ∝ 𝑡 · 𝑒−𝑡/𝜏 , for two different star formation time-
scales: 𝜏 = 1 Gyr (black) and 𝜏 = 10 Gyr (red), and the corresponding assumption
on the evolution of the metallicity (below). The dust attenuation panel (middle
right) shows the attenuation law from Calzetti et al. (2000; red line) and the MW
extinction curve (Cardelli et al. 1989; O’Donnell 1994; in black). In the bottom
panel, the resulting SPS spectrum is shown before (blue) and after (red) applying
the dust model. Nebular emission is not included in these models. . . . . . . . . . . 67
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4.2 IMF comparison: Chabrier (2003) (red), Kroupa (2001) (blue), and the canonical
Salpeter (1955) (orange dashed) IMF. All IMFs have been normalized to recover
1 M⊙ when they are integrated from 0.1 M⊙ to 100 M⊙ (white area). The dotted
red and blue lines (in the gray shaded area) show the values of the Chabrier (2003)
and Kroupa (2001) IMFs, respectively, outside the range of initial stellar masses
considered in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 SEDs for SSP models in SB99 and BC03. Models have been created assuming a
Salpeter IMF (0.1 to 100 M⊙) for both SB99 (dotted) and BC03 (solid), for two
metallicities: 𝑍 = 0.004 (left panel) and 𝑍 = 0.020 (solar; right). Ages of 10 Myr,
100 Myr, 1 Gyr, and 5 Gyr are shown in different colors. . . . . . . . . . . . . . . . . 72

4.4 a) Double-burst SFH. The galaxy SFH (black solid) results from the combination
of an old population (orange dashed) and a young population (blue dashed), each
described by 𝑆𝐹𝑅(𝑡) ∝ 𝑡 𝑒−𝑡/𝜏 . The ages of the old and young population are 𝑡old =

4 Gyr and 𝑡young = 1 Gyr, respectively, and their time-scales, 𝜏old = 1.5 Gyr and
𝜏old = 100 Myr. This synthetic galaxy would be at 𝑧 = 1, with a stellar mass of
1010 M⊙, where the young burst accounts for 10% of this mass. b) Calzetti (2000)
attenuation law expressed as 𝐴λ/𝐴V as a function of wavelength. Two different values
for 𝑅V have been adopted: 𝑅V = 4.05 (Calzetti law; black solid) and the typically
adopted value of 𝑅V = 3.1 (gray dashed). . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Example of galaxy SFH recovered from the 2D-SPS modeling for an Illustris galaxy.
The black solid line shows the galaxy SFH obtained by adding together the individual
SFHs of the spatially-resolved SEDs (thin colored lines), for which a two population
SFH is assumed. The square inset shows an WFC3/F160W image of the galaxy.
The grid shows the regions from where these 2D SEDs have been measured (same
color code as used for their SFHs). The alternative galaxy SFH derived from the
integrated SED, measured inside the integrated aperture, is shown in dotted blue,
also assuming a two population SFH. The green solid line shows the ground-truth
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5.1 Left panel: Main Sequence plot for those galaxies at 1 < 𝑧 < 4 included in the mock
survey presented in S+17 which are progenitors of very massive galaxies (M★ > 1011

M⊙) at 𝑧 = 0. All progenitors are color-coded by redshift. In this chapter, we
concentrate on the analysis of the most massive progenitors (M★ > 1010 M⊙), which
are plotted with star symbols. The Main Sequence found for all the Illustris simulated
galaxies at different redshifts (Sparre et al. 2015) has also been plotted. Middle
panel: postage stamp images for some representative examples of our galaxies (size
2.5′′×2.5′′). These RGB images are created using ACS/F1814W, NIRCam/F200W,
and NIRCam/F277W asinh-scaled images as B, G and R filters, respectively. The
position of these galaxies in the left panel has been highlighted with a white dot
inside. Right panel: 𝑔 − 𝑟 color vs. stellar mass diagram for descendants at 𝑧 = 0
of all galaxies at 1 < 𝑧 < 4 (independently of their stellar mass) in the S+17 mock
survey images. Descendants of the final sample of 221 galaxies analyzed in this
chapter are plotted as stars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Histograms for our 1 < 𝑧 < 4 sample of 221 simulated galaxies: redshift (top left
panel), total stellar mass (top right), SFR (bottom left), and stellar half-mass radius
(bottom right). These properties have been extracted from the Illustris-1 database.
Median and quartiles are shown as segments on the top. . . . . . . . . . . . . . . . 83

5.3 Top panel: histogram for the radii of the photometric apertures of the 221 galaxies
in the final sample as a fraction of 2× 𝑟hm radius, the typical radius used by Illustris
to compare with observations. The cumulative fraction of galaxies in shown as
a red line. Bottom panel: histogram for the fraction of stellar mass enclosed by
the photometric apertures (blue filled histogram) and for a radius of 2× 𝑟hm (orange
hatched) with respect to the total stellar mass in the galaxy. In both cases, we neglect
neighboring galaxies. These total masses have been extracted from the simulated
particles belonging to each galaxy in the Illustris database. At the top of both panels,
we show the median and quartiles for each histogram. . . . . . . . . . . . . . . . . . 88

5.4 Postage stamp images (size 2.5′′×2.5′′) for one of our galaxies: Illustris-1_066_0000006
at z = 2.192 (Field A of S+17 images). This galaxy code stands for galaxy id 6 and
snapshot 66 (𝑧 = 2.21) in the Illustris-1 simulation. Left panel: Segmentation map,
with colored regions delimiting the galaxy (in orange), three nearby galaxies (green,
yellow, and red), and sky pixels (black). We also show the integrated photomet-
ric aperture (dark cyan solid line) and the starting aperture of 𝑟 = 2 × 𝑟hm used
to calculate the former (dotted line). Inside the integrated aperture, we show the
grid where the 2D photometry is measured: the cells that are finally kept for the
2D-SPS analysis are shown in cyan, cells discarded for not fulfilling the SNR and
surface brightness criterion as pink hatched squares, and cells discarded for not in-
cluding any pixel from the considered galaxy as white hatched squares. Middle panel:
WFC3/F160W image (already registered, PSF-matched, and sky noise-added) with
the integrated aperture. Right panel: WFC3/F160W image where the values of
the pixels from nearby galaxies have been masked by replacing them with the same
Gaussian sky noise distribution previously added to the images. We also show the
integrated aperture and the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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5.5 Stellar mass vs. redshift plot for galaxies in our sample, with values extracted from
the Illustris database. We show the stellar mass when considering all the particles
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CHAPTER1
Introduction

Our Milky Way, like most of other nearby massive galaxies, is not forming stars in a significant
way any more. This means that most of the stellar mass in these galaxies was formed in the
past. Gaining insights into the origins of local massive galaxies, such as the Milky Way and their
more massive counterparts, is crucial to achieving a full understanding of the complex process of
galaxy formation and evolution. The advent of new and more powerful observatories has given
us a glimpse into an increasingly early and more active star-forming Universe, allowing us to
probe galaxy populations at different redshifts and, when combined with numerical simulations,
have broaden our comprehension of the most important processes that govern how galaxies evolve.
Recently, the cutting-edge observational capabilities of NASA’s James Webb Space Telescope have
opened the door to look even further back, to even when the first galaxies are supposed to have
started forming their stars. At the same time, its exquisite data at intermediate redshifts makes
possible to analyze the most likely progenitors of local massive galaxies in an unprecedented way.
In this thesis, we concentrate on investigating the initial stages of stellar mass assembly in these
progenitors at high redshift with the aim to address the question of when nearby massive galaxies
began to form their stellar mass.

In this introduction, we first give a general overview of the evolution of structure formation
over cosmic time and the emergence of the first stars and galaxies in the Universe (Section 1.1).
After that, we concentrate on discussing the importance of massive galaxies for studying galaxy
formation and the possible scenarios for the formation of massive galaxies observed today such
as the Milky Way or even more massive (Section 1.2). Subsequently, we outline how the James
Webb Space Telescope is expected to shed light onto the formation of the first galaxies at very high
redshift and massive galaxies later in time (Section 1.3). Finally, we present the objectives to be
addressed in this thesis (Section 1.4).

1.1 From structure formation to first stars

The present-day Universe we observe today is highly structured and complex. As shown by redshift
surveys in the nearby Universe such as the two-degree-Field Galaxy Redshift Survey (2dFGRS) or
the Sloan Digital Sky Survey (SDSS), galaxies are not uniformly distributed in sky, but they tend
to be located in clusters and groups forming a filamentary large-scale structure. This large-scale
structure is commonly known as the “cosmic web” (Bond et al. 1996). Even early cosmologi-
cal simulations (Springel et al. 2006) already predicted that the large-scale distribution of dark
matter exhibited voids, walls, and filaments strikingly similar to those observed in the large-scale

1
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Figure 1.1: Large-scale structure observed with 2dFGRS (left in blue) for ∼ 10, 000 galaxies in the local
Universe, which is reproduced by cosmological simulations such as the Millennium Simulation (right in red).
The Earth would be sitting at the apex of the diagram. Credits: Adapted from Springel et al. (2006).

distribution of galaxies (Fig. 1.1). Thanks to these cosmological simulations (discussed further in
Chapter 2), we now know galaxies reside in the backbone of this cosmic web, formed by the clumpy
and filamentary dark matter distribution.

This highly structured Universe that we observe today contrasts the nearly homogeneous state
of the Universe at the very beginning. The latter can be inferred from the Cosmic Microwave
Background (CMB) radiation observed with the Planck satellite, which is the thermal relic from the
epoch of recombination, and which implies only tiny ripples imprinted on the density distribution
at those early times. The ultimate aim of Extragalactic Astrophysics and Cosmology is to establish
the physical mechanisms that connect the evolved state of the present-day Universe with the smooth
initial conditions observed from the CMB measurements.

The most favored (and simple) cosmological model that fits CMB data and predicts present-day
large-scale structure is the Λ-Cold Dark Matter (ΛCDM) cosmological model. This models consists
of a flat Universe with an accelerating expansion governed by the so-called “dark energy”, which
is commonly interpreted as due to a cosmological constant Λ the nature of which is still unknown.
Apart from dark energy, the other components of this model are matter and radiation. Matter
is composed of both baryons and dark matter. Dark matter consists of (still unidentified) weakly
interacting elementary particles with negligible random velocities at early times (hence “cold” dark
matter) which dominates the matter density of the Universe and, thus, the large-scale gravitational
forces. The present-day matter, vacuum energy, baryon and radiation density parameters, expressed
as a ratio of the critical density1 of the Universe (𝜌crit), are given by Ωm,0 = 𝜌m,0/𝜌crit = 0.3153,
ΩΛ,0 = 𝜌Λ,0/𝜌crit = 0.6847, Ωb,0 = 𝜌b,0/𝜌crit = 0.0493, and Ωrad,0 = 𝜌rad,0/𝜌crit = 9.2 × 10−5, respec-
tively, with a Hubble constant of H0 = 100 ℎ km s−1 Mpc−1 for ℎ = 0.6736 (Planck Collaboration

1The critical density is the average density of the Universe required for gravity to halt the expansion of the
Universe at an infinite time in a Universe without cosmological constant.
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Figure 1.2: Global picture of the Universe state and epochs from Big Bang to present day. Immediately
following the Big Bang, the Universe began to expand adiabatically. This expansion cooled the Universe
enough to enable electrons to recombine with protons. The cosmos remained dark and neutral throughout
the Dark Ages period until the formation of the first stars at Cosmic Dawn, likely at 𝑧 ≈ 15−20. As the first
galaxies grew in abundance, the Lyman continuum photons gradually ionized their adjacent intergalactic
medium (IGM). This is the start of Cosmic Reionization, with the Universe transitioning from mostly neutral
(HI) to nearly entirely ionized (HII). This transition phase is believed to have ranged from 12 ≲ 𝑧 ≲ 6 (from
0.35 to 1 Gyr in age of the Universe). The maximum cosmic star formation rate density was reached at
Cosmic Noon (∼ 2 − 3) when most of the stellar mass was formed decreasing after 𝑧 ∼ 1 until now (Madau
& Dickinson 2014). Credits: Figure adapted from Robertson (2022) and NASA.

et al. 2020). Although dark energy is the dominant component today, radiation was dominant in
the beginning and up to 𝑧 ≈ 3400, which was followed by an epoch dominated by matter until
𝑧 ≈ 0.3, at which the current dark energy era started.

Fig. 1.2 shows an schematic view of the different epochs of the Universe from Big Bang to present
day within this ΛCDM framework. By finding galaxies at the highest redshifts (i.e., searching for
the first galaxies) or exploring the initial phases of stellar mass formation in lower (intermediate)
redshift galaxies, as it will be done in this thesis, we should be able to gain insights into when, how,
and where the first stars (and galaxies) formed, and their contribution to Reionization. This is also
connected to structure formation throughout the Dark Ages and to Cosmology in general, on one
side, and to baryonic processes that give rise to the formation of the first stars, on the other. In
the following subsections, we give a general overview of the cosmic evolution of the early Universe,
describing from the Big Bang to structure formation in Section 1.1.1, and the evolution of baryons
and emergence of the first stars and galaxies in Section 1.1.2.

1.1.1 Structure formation

After the Big Bang, the Universe experienced a rapid inflationary epoch of exponential expansion
between 𝑡 ∼ 10−36 s and ∼ 10−34 s, known as “cosmic inflation”, and driven by the vacuum energy
density of an effective scalar field called “inflaton”. Inflation froze the quantum fluctuations present
in this scalar field (by causally disconnecting them as a consequence of the rapid accelerating
expansion) and grew them to larger scales. This led to the emergence of almost scale-invariant
primordial (presumably) gaussian density perturbations, whose power spectrum can be expressed
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as 𝑃prim(𝑘) ∝ 𝑘𝑛𝑠 , with 𝑛𝑠 ≈ 1. These nearly scale-invariant2 primordial density fluctuations are
reflected in the almost perfect isotropy of the Cosmic Microwave Background (CMB), located at
𝑧 ∼ 1100, with anisotropies in temperature of Δ𝑇/𝑇 ∼ 10−5, and whose measurements constrain
extremely well the initial conditions for structure formation.

After inflation, dark matter density fluctuations grew over time due to gravitational instabilities
(i.e., self-gravity makes overdense regions increase their density contrast over time, while this
contrast decreases in underdense regions). Baryons, however, were strongly coupled to the radiation
field before recombination, and radiation pressure prevented baryonic density fluctuations from
significantly growing. This, together with the fact that dark matter was (and is) more abundant,
made the formation of structures governed by dark matter. This coupling of baryonic matter to the
radiation field ended after recombination, after which baryons were able to fall into the potential
wells generated by dark matter.

As a dark matter overdensities grows, its self-gravity makes it expand more slowly than Hubble
expansion until, at some time, it stops expanding and begins to collapse on itself to form virialized
system supported by the kinetic energy of dark matter particles (which cannot be radiated away).
These gravitationally bound regions of dark matter that decoupled from Hubble expansion and
collapsed are called “dark matter halos” and are the basic units onto which baryonic matter collapses
(see below). The number density of halos with a given mass at each redshift, known as the
“halo mass function” (HMF), is predicted from the extended Press-Schechter formalism (Press
& Schechter 1974; Bond et al. 1991) and confirmed by the results of N-body simulations (e.g.,
Lacey & Cole 1994) and is a critical ingredient to establish the history of formation of galaxies
of different masses. At a fixed redshift, less massive halos are more abundant, since the number
density of halos decreases as mass increases. At a fixed mass, the number density of halos is higher
for lower redshifts. As a consequence of this, dark matter structures grow hierarchically, from small
systems that virialized first to large structures that form later, mainly as a result of mergers from
smaller systems, but also by the accretion of diffuse matter non-belonging to the halo.

1.1.2 Baryons in dark matter halos: formation of the first stars

Before recombination (at 𝑧 ≈ 1100), baryons where coupled to the radiation field, and radiation
pressure prevented them from falling into the potential wells generated by dark matter. This
coupling ended after recombination, and baryons were free to follow the spatial distribution of dark
matter, to fall into the dark matter halos and and to settle down in the inner parts of them in quasi-
hydrostatic equilibrium (i.e., where the pressure of the gas compensates the gravitational force).
Nevertheless, because of the different nature of baryons, these are subject to undergo physical
processes that dark matter does not suffer (e.g., dissipation, heating, cooling, or star formation),
which make baryons behave differently than dark matter when density overdensities are sufficiently
large. On large scales, the gravitational field created by dark matter dominates and the distribution
of baryons is similar to that of dark matter. In contrast, on smaller scales the balance between the
gas pressure and cooling will become important.

The process that leads to the formation of stars in the Early Universe is complex. Thus, in
order to form stars, the gas must first fall into an halo. For this to happen, the mass of the halo

2Actually, 𝑛𝑠 = 0.9965, according to Planck Collaboration et al. (2020)
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must exceed the Jeans mass, so that the potential well generated by dark matter is sufficiently
large to overcome gas pressure and enable gas to fall into the dark matter halo. But this Jeans
criterion is not enough for an halo to form stars. Once in the halo, the gas must be able cool
by radiative process in order to lose pressure support and collapse to eventually form stars. As
the halo collapses, frictional processes transform the potential energy of the gas into heat. In
a very simple approximation, the Rees–Ostriker–Silk criterion (Rees & Ostriker 1977; Silk 1977)
predicts that only gas with a cooling time (𝑡cool) shorter than its dynamical or free-fall timescale
(𝑡free−fall) will be able to easily collapse towards the center of the halo and become denser. On
the contrary, if the cooling time is longer than the free-fall time, this cooling will be inefficient,
the gas will rapidly become pressure supported and the collapse will slow down (see, e.g., Bromm
2013; Klessen & Glover 2023). Fig. 1.3a shows in which halo masses cooling will be effective (cyan
region) as a function of redshift of collapse assuming primordial gas of zero metallicity (𝑍 ≈ 0). The
yellow zone delimits the halos with masses below the Jeans mass, for which no gas has fallen into.
Apart from the Rees–Ostriker–Silk criterion (dashed line) and the Jeans mass (dotted) line at each
redshift, we must also consider the abundance of halos with a given mass at each redshifts. This
is marked by the solid lines in Fig. 1.3a. This line shows the relation 𝑀ℎ vs. 𝑧vir, that depends on
how likely a halo can arise from the gravitational collapse of a peak within the random (gaussian)
field of primordial density fluctuations. For a halo to be statistically significant, we must consider
the 3 − 4𝜎 peaks (or lower; Couchman & Rees 1986, since higher-sigma peaks are too rare to be
noticeable abundant and to have an impact on the cosmic history). From this simplified analysis
shown in Fig. 1.3a, one infers that star formation could first occur in 𝑀ℎ ∼ 106 M⊙ at 𝑧 ∼ 10 − 20
(see Bromm 2013). Although this figure is a simplification, this global picture has been confirmed
by simulations (e.g., Bromm et al. 2002; Yoshida et al. 2003).

Gas cooling in these high-redshift halos was different than that observed at lower redshift. The
primordial gas is metal-free and cannot be cooled via metal-line transitions or lines from other
heavier molecules as it does in chemical enriched regions. In the pristine gas, atomic hydrogen
and helium, formed in the Big Bang Nucleosynthesis, are efficient coolants at 𝑇 > 104 K. But at
𝑇 < 104 K, the main channel to cool the gas (up to ∼ 200 K) is the small amount (𝑛𝐻2/𝑛 ∼ 10−3)
of molecular hydrogen (Saslaw & Zipoy 1967; Peebles & Dicke 1968), and trace amounts of other
secondary molecules (e.g., deuterium, and HHe+). This molecular cooling allows the gas to reach
the densities needed for the formation of the first metal-free Population III (Pop III) stars (see
reviews of Greif 2015; Klessen & Glover 2023, and references therein). The formation of the first
stars marks the end of the cosmic “Dark Ages” (𝑧 ∼ 1110− 30; e.g., Dayal & Ferrara 2018).

As mentioned above, the first Pop. III of stars are thought to have formed in low-mass (𝑀ℎ ∼
106 M⊙) dark matter halos (called “minihalos”) that virialized at 𝑧 ∼ 20 − 30 (Couchman & Rees
1986; Tegmark et al. 1997; Schauer et al. 2019; Skinner & Wise 2020), and which correspond to
3− 4𝜎 peaks in the gaussian random field of primordial density perturbations (e.g., Tegmark et al.
1997). Although no direct observation of Pop III stars in the early Universe has been achieved,
according to simulations, Pop III stars are thought to be unusually massive (∼ 10 − 100 M⊙; Clark
et al. 2008, 2011; Stacy et al. 2010, 2016; Greif et al. 2012) due to the inefficient fragmentation in
the molecular cloud as a consequence of the relatively warm temperature of the collapse metal-free
gas (∼ 100 K vs. 10 K in low-redshift molecular clouds), with an initial mass function (IMF) that
tends to be top-heavy that has a nearly flat mass distribution above 10 M⊙ (Hirano et al. 2014,
2015; Stacy et al. 2016). Nevertheless, there is still much uncertainty regarding the final masses and
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IMF of Pop III stars (see Klessen & Glover 2023 for a review). Although the contribution of Pop
III stars in nearby galaxies is expected to be small, the actual fraction of the stellar mass budget
in this population is unknown, and their contribution is even more uncertain in higher redshift
galaxies.

Due to their large masses, Pop III stars were important UV emitters (Omukai & Palla 2003),
capable of ionizing their surrounding IGM. Therefore, the formation of these first stars marks the
beginning of the Epoch of cosmic Reionization (EoR; 𝑧 ∼ 30 − 6), which approximately spans from
the birth of these first Pop III stars, to when nearly all of the IGM is ionized (Bromm & Yoshida
2011; Zaroubi 2013; Wise et al. 2014; Stark 2016; Dayal & Ferrara 2018; Cooray et al. 2019). The
shallow potential wells in minihalos hosting these first Pop III stars makes them highly vulnerable
to their negative stellar feedback (Barkana & Loeb 2001; Bromm & Yoshida 2011), which prevents
a second generation of new stars from forming in them (Fig. 1.3b). Considering a galaxy as a
long-lived stellar system hosted by a dark matter halo (Bromm & Yoshida 2011) which is capable
of gravitationally retaining a significant fraction of its gas, these minihalos cannot be considered as
the bona-fide first galaxies. Instead, simulations show that ∼ 108 M⊙ dark matter halos at 𝑧 ∼ 10
were the hosts of the first galaxies (e.g., Wise & Abel 2007, 2008; Greif et al. 2008, 2010). These
halos were already sufficiently metal-enriched (from previous Pop III stars in minihalos) to form
low-mass Population II (Pop II) stars in a less bursty manner3 and massive enough to withstand
their feedback (see Fig. 1.3 b).

Pop III stars are the main contributors to the cosmic star formation history from their formation
at 𝑧 ∼ 30 until 𝑧 ∼ 15 − 20, when the contribution of the subsequent second generation of (slightly)
metal-enriched Pop II stars becomes dominant (see Klessen & Glover 2023, and references therein).
In fact, a recent a study by Hartwig et al. (2022) shows that although Pop III stars produce
individual ionized IGM regions in their surroundings, there will not be a significant accumulation
of ionizing background at large-scale until these individual regions start to overlap, and this event
takes place until considerably after Pop II stars have become the dominant source of ionizing
photons.

Observational advances in the last decade opened the door to start searching for galaxies at
the epoch of Reionization. Deep imaging surveys performed by space telescopes like Hubble Space
Telescope (HST) and Spitzer, in combination with other ground-based telescopes like Subaru, the
Very Large Telescope (VLT), or Keck have provided us with numerous samples of galaxies in the
EoR using several selection techniques (see, e.g., Dayal & Ferrara 2018, and references therein).
Among the latter, we can cite the Lyman break technique (to look for Lyman Break Galaxies;
LBGs), gravitational lensing, or the narrow-band Lyman Alpha technique (to look for Lyman Al-
pha Emitters; LAEs). These techniques have enabled Hubble to detect ∼ 1000 galaxy candidates
with photometric redshifts of 𝑧 ∼ 7 − 9 (∼ 750 − 550 Myr after Big Bang; e.g., Finkelstein et al.
2013). Follow-up spectroscopic confirmation with Keck, VLT and the Atacama Large Millime-
ter/submillimeter Array (ALMA) have confirmed ∼ 100 galaxies at 𝑧 ∼ 7, but only a handful
at 𝑧 > 8 (see Robertson 2022 for a review), with only one spectroscopically confirmed galaxy at
𝑧 = 11.1 (∼ 400 Myr after Big Bang; Oesch et al. 2016). This redshift frontier (𝑧 ∼ 8−10), set by the

3The IMF is thought to change from top-heavy to the regular bottom-heavy IMF observed today when a critical
metallicity of ∼ 10−6 − 10−4 𝑍⊙ is reached (Bromm et al. 2001; Schneider et al. 2002). Pop III stars are thought to
have formed from the primordial gas with 𝑍 ∼ 5 × 10−9 𝑍⊙ (according to the Big Bang Nucleosynthesis), and thus,
with a top-heavy IMF, unlike the observed Pop II stars, with 𝑍 ∼ 0.005 − 0.05 𝑍⊙ (Dayal & Ferrara 2018).
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a) b)

Figure 1.3: a) Minimum halo mass for star-formation as a function of redshift. The dotted line marks
the limit given by the Jeans mass (see text). Below these masses (yellow area), the internal pressure of
the system prevents the collapse. The dashed line marks the locus where the cooling time of the system,
𝑡cool, equals the free-fall time, 𝑡free−fall. If 𝑡cool > 𝑡free−fall, the gas will not efficiently cool (pink area). If
𝑡cool ≪ 𝑡free−fall, the gas will effectively cool, overcome pressure support, and collapse on a timescale given
by 𝑡free−fall (cyan region). Solid lines shows the halo mass vs. redshift for different overdensities in which
the halos are already statistically significant in abundance (the lower the 𝜎, the more abundant). For halo
masses below 104 M⊙, no cooling is possible since their virial temperatures cannot be lower than of the CMB
(gray region). According to Bromm (2013), this simplified model is only valid for 𝑧 ≳ 20. b) Schematic
picture of the formation of the first stars and galaxies. The first stars would be Pop III stars formed in
𝑀ℎ ∼ 106 M⊙ at 𝑧 ∼ 20 − 30. These low-mass halos would be incapable of withstanding the intense negative
feedback from Pop III stars in order to form a second generation of stars and, thus, cannot be considered
as galaxies. First galaxies would be formed at 𝑧 ∼ 10 in ∼ 108 M⊙ halos, composed of Pop II stars. Credits:
Panel a) adapted from Bromm (2013). Panel b) adapted from Cimatti et al. (2020).

limit of Hubble’s capabilities, is too low to provide a complete census of galaxies in the Reionization
Epoch and at higher redshifts, when the first galaxies and stars began to form. Nevertheless, JWST
is expected to expand this horizon of observability with the aim to better characterize the direct
relation between the formation of first galaxies and Reionization by providing a large number of
very high-redshift galaxies approaching those considered as the first galaxies (see Section 1.3).

1.2 A global picture of how massive galaxies formed

The study of massive galaxies at high redshift is fundamental for understanding and constraining
our models of galaxy formation and evolution and, therefore, the underlying cosmology and the
corresponding physical processes involved. Indeed, they are the most-likely progenitors of local
massive early-type galaxies (ETGs; e.g., Swinbank et al. 2006; Ricciardelli et al. 2010; Fu et al.
2013), the most massive systems we observe today, and which host ∼ 50 − 60% of the total stellar
mass in the Universe (e.g., Fukugita et al. 1998; Bell et al. 2003). Local ETGs are quiescent systems
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(i.e., with no significant ongoing-star formation) that completed their formation long ago in the
past (see reviews form Renzini 2006, and Blanton & Moustakas 2009, and references therein). In
addition, the “downsizing” scenario states that the most massive galaxies started and completed
their stellar mass formation earlier than less massive systems (e.g., Cowie et al. 1996; Heavens
et al. 2004; Pérez-González et al. 2005, 2008). This means that by studying the progenitors of local
massive galaxies we can access the earliest phases of star formation in the Universe. Furthermore,
the advantage of observing massive galaxies is that, because of their high luminosity, they are more
easily detected than lower-mass systems at any redshifts, which makes them ideal targets for galaxy
surveys at high redshift such as those being pursued with JWST.

In this thesis, we will consider as “massive” those galaxies with stellar mass 𝑀★ ≥ 1010 M⊙.
This definition encompasses galaxies slightly less massive than the Milky Way (whose stellar mass
is log(𝑀★/M⊙) = 10.71±0.09; Licquia & Newman 2015) and more massive galaxies, up to the most
massive ellipticals, with masses in the local Universe as high as log(𝑀★/M⊙) ∼ 12.5 (Erfanianfar
et al. 2019).

There are two different approaches to study of the formation of Milky Way-like and more
massive galaxies: 1) either to analyze in detail similar galaxies at 𝑧 = 0 in order to reconstruct their
SFHs over the 13.7 Gyr of present age of the Universe, or 2) to study the properties of galaxies that
lie at higher redshifts and try to establish evolutionary connections between progenitor galaxies
and their descendants (or progenitor/descendant relationships) at different redshifts, providing us
with a global picture of how galaxies have evolved through time. As discussed in Section 1.2.1,
the latter approach has been extensively studied with Hubble in the last twenty years by studying
galaxies at 𝑧 ≲ 4 with the aim to provide a global picture of how massive galaxies form and evolve
especially at early epochs for which the former approach provides very little information.

1.2.1 Massive galaxies: a two-stage formation scenario

The average size of massive galaxies at higher redshift is smaller than that of their local counterparts
of similar masses. This was first discovered by Daddi et al. (2005) for seven massive, quiescent,
early-type galaxies at 𝑧 ∼ 2, and confirmed in follow-up studies with larger samples (e.g., Trujillo
et al. 2007; van Dokkum et al. 2008, 2010, 2014; Whitaker et al. 2013; Tomczak et al. 2014).
These massive, compact, quiescent spheroids, commonly observed at 𝑧 ∼ 2− 3, are nicknamed “red
nuggets” and present typical effective radii of ∼ 1 kpc (Carollo et al. 2013; van der Wel et al. 2014), a
factor of ∼ 4 smaller than local quiescent galaxies of similar mass (Trujillo et al. 2007; van Dokkum
et al. 2008). This implies that they present stellar densities of up to ∼ 1 − 2 orders of magnitude
(e.g., van Dokkum et al. 2008; Szomoru et al. 2012).

The smaller galaxy size of early-type galaxies with increasing redshift for a fixed mass is also
found in star-forming galaxies (e.g., van der Wel et al. 2014), although the decrease in size with
increasing redshift is less steep. There is also observational evidence for the existence of compact,
star-forming galaxies at high redshift called “blue nuggets”4, whose masses and abundances are
compatible with being the progenitors of red nuggets (e.g., Barro et al. 2013, 2014; Williams et al.
2014; Bruce et al. 2014; Nelson et al. 2014). Such compact systems have not been found locally

4In this case, blue does not imply color, but a star-forming system. This is because a dusty star-forming galaxy,
with a redder color, still would be considered a blue nugget.
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a) b)

Figure 1.4: a) Two-stage formation scenario for massive galaxies (see details in the main text). b) Sche-
matic diagram of typical processes and morphological transformations that massive galaxies can undergo.
Credits: Panel a) adapted from Spiniello et al. (2021). Panel b) extracted from Cimatti et al. (2020).

yet (e.g., Trujillo et al. 2009; Taylor et al. 2010). In addition, the formation times of both massive,
low-redshift galaxies and red nuggets at higher redshift similar (e.g., Daddi et al. 2005; Carnall
et al. 2020).

Classically, there were two opposed models to explain the formation of spheroids or early-type
massive galaxies: “monolithic collapse” (based on gravitational collapse of a single protogalaxy)
and “hierarchical” (based on mergers). Nevertheless, those scenarios have been discarded in the
last two decades, based on the aforementioned observational data of galaxies at 𝑧 ∼ 2 − 3, together
with theoretical studies using cosmological simulations. These theoretical studies have analyzed the
formation and assembly of massive galaxies by reconstructing their full galaxy assembly histories
(e.g., De Lucia & Blaizot 2007). This kind of studies have provided strong evidence for a two-phase
evolutionary scenario (e.g. Naab et al. 2009; Oser et al. 2010) in which massive galaxies would have
formed most of their stellar mass at high redshift (𝑧 ≳ 2) via a first main dissipative phase of in-
situ star formation, followed by a secondary phase of multiple (dry) minor mergers that gradually
increase the galaxy size (also called ex-situ processes). As we will see below, these two phases (or
tracks) are not necessarily present in all galaxies.

The initial phase of rapid growth in this two-stage formation scenario is dominated by violent
in-situ star formation at 𝑧 ≳ 2 (Oser et al. 2013) in which galaxies form the bulk of their stars in only
the first billion years of cosmic time. In this phase, also known as the fast track, stars are formed
by highly dissipative gas rich processes like major mergers or violent disc instabilities, which can
result in the formation of a compact star-forming galaxy (i.e., the observed blue nuggets). Then,
as star formation is quenched, or at least progressively damped (Catalán-Torrecilla et al., 2017),
these systems would become massive, ultra-compact, passive galaxies (i.e., a red nugget). This is
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followed by a second and more extended phase in which they experience a series of intense minor
(dry) mergers with satellite galaxies that gradually extend their sizes and potentially transform
them into the more extended galaxies commonly observed today. The relative contribution of
this second phase seems to be more important in more massive galaxies. Recent studies based on
both semi-analytical and hydrodynamical simulations have confirmed and polished this two-phase
scenario by predicting the accreted stellar fractions of early-type galaxies and confirmed that the
fraction of accreted material increases with lower redshift and higher stellar masses (e.g., Lee & Yi
2013, 2017; Dubois et al. 2016; Rodriguez-Gomez et al. 2016; Davison et al. 2020; Pulsoni et al. 2021;
Remus & Forbes 2022). Interestingly, for a small fraction of early-type galaxies, this second phase
of accretion via minor mergers apparently did not take place. This is the case of the so-called “relic
galaxies” (Trujillo et al. 2009, 2014; Ferré-Mateu et al. 2015, 2017). These are ultra-compact and
massive galaxies which missed the accretion phase and passively evolved until present-day without
being disturbed. Thus, their stellar populations, formed in the early stages of the Universe, hold
very valuable information about the earliest phases of galaxy formation, although they are limited
in the local Universe by the little spectrophotometric evolution of stellar populations of ≥ 10 Gyr
of age.

The two-phase formation scenario is valid to explain the formation of local massive spheroids
and bulges, but also disc galaxies (Fig. 1.4a). In the above scenario, a disc can be formed in the
second phase of accretion around the bulge grown in the previous stage (see, e.g., Costantin et al.
2021). Another possibility is that the disc galaxy is formed from the beginning in the dark matter
halo. In this case, disc galaxies form when the gas in a halo conserves angular momentum during
collapse (i.e., does not transfer it to the dark matter). This is known as “dissipative collapse”
and allows the gas to settle into a rotating disc perpendicular to the angular momentum as it
collapses. For this to happen, the gas in the halo must have previously acquired a relatively high
angular momentum (like dark matter in the halo) from tidal forces of neighboring structures. Star
formation in this extended disc takes place from local instabilities of molecular clouds in the disc.
In either of the two formation cases, the survival of this disc will depend on the merger history of
the galaxy (e.g., major mergers might likely destroy or thicken it) and the environment (e.g., if the
disc galaxy enters a cluster, it will likely lose its disk due to environmental quenching). Fig. 1.4b
shows the main processes and morphological transformations that may occur during the formation
and assembly history of massive galaxies.

1.3 A further glance: the James Webb Space Telescope

As happened with Hubble when it was launched 32 years ago, the James Webb Space Telescope
(JWST; Gardner et al. 2006) is expected to revolutionize our comprehension of galaxy formation
and evolution (and many other fields in Astrophysics). This is primarily due to three outstanding
technical characteristics of JWST when compared to those of its precursors Hubble and Spitzer in
terms of:

1. Spatial resolution.

2. Depth.

3. Spectral range coverage.



1.3 A further glance: the James Webb Space Telescope 11

Figure 1.5: Zoomed-in portion of dwarf galaxy Wolf–Lundmark–Melotte (WLM), in our galactic neigh-
borhood, observed with Webb/NIRCam and Spitzer/IRAC. A significant improvement in spatial resolution
is appreciated with Webb. The small left inset shows the dwarf galaxy observed with VLT/OmegaCAM.
The filters used to create the color images are indicated inside the figures (color-coded with the correspond-
ing colors).Credits: NASA, ESA, ESO, CSA, STScI, Kristen McQuinn (Rutgers University), Alyssa Pagan
(STScI) for image processing.

These technical features and its implications are discussed further in Chapter 3. Briefly, we
emphasize here that before Webb, only HST was able to resolve different parts of distant galaxies.
Unfortunately, the wavelength coverage for imaging with HST was limited (up to ∼ 2 μm) and
unable to probe the rest-frame optical of very distant galaxies, leading to high uncertainties in the
parameters derived for their stellar populations due to the poor constrain of their Spectral Energy
Distributions (SEDs). This problem was usually overcome by extending the SED of galaxies with
Spitzer data in the mid-infrared (MIR). Nevertheless, those Spitzer-extended SEDs could only be
built for the integrated flux of galaxies (and not for regions within them) due to the poor spatial
resolution of Spitzer (∼ 10 times worse than that of Hubble at the same wavelength; see Fig. 1.5).
On the contrary, the unprecedented spatial resolution of JWST in the near-infrared (NIR) and
MIR, combined with its unmatched depth (up to 2 orders of magnitudes deeper than previous
observatories) and exceptional wavelength coverage (∼ 1 − 28 μm), allows us to combine its data
with those of HST and to study the spatially resolved emission of distant galaxies in the optical,
NIR, and MIR, and thus, providing unprecedentedly constrained photometric redshifts, stellar
masses, star formation rates, or star formation histories (SFHs) of these galaxies. In addition to
this, the exceptional imaging characteristic of JWST will be complemented with its spectroscopic
capabilities in a wide wavelength range.

1.3.1 Probing the early Universe with the James Webb Space Telescope

The majority of the highest-redshift galaxies identified to date are LBG, and thus, they are observed
based on their distinctive spectral discontinuity in the UV: the Lyman break. This consists in a
cutoff in the rest-frame spectrum below the Lyman-limit at 912 Å, which is caused by the almost
complete absorption at bluer wavelengths than this limit (effectively, below 1216 Å) by neutral
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hydrogen present at 𝑧 ≳ 6. Observationally, these galaxies are detected using a dropout technique
(the Lyman break technique) that consists in detecting galaxy with non-negligible integrated fluxes
at wavelengths redder than (1+ 𝑧) ×1216 Å, but with no detections blue-ward than this wavelength.
HST, because of its limited wavelength coverage, cannot detect 𝑧 ≳ 10 galaxies with this technique
(since their Lyman break is located at redder wavelengths than those covered by the reddest filters
of HST). Nevertheless, the unprecedentedly deep IR imaging provided by JWST at λ > 2 µm is
able to overcome this limitation inherent ti the use of HST, being able to observe galaxies at 𝑧 > 10,
possibly reaching 𝑧 ∼ 15, therefore probing the first few hundreds megayears after the Big Bang
(see Robertson 2022 for a review). In this way, JWST will provide us with more comprehensive
insights of galaxy formation beyond our current 𝑧 ∼ 8 − 10 frontier.

In this regard, there are still many uncertainties about the Dark Ages and how the Universe
became completely ionized in the Reionization era where JWST could do major contributions.
For instance, it is believed that the UV radiation from the first galaxies was the main cause for
Reionization, but observations show that galaxies nearby and at higher redshifts absorb most
of this radiation before it can even reach the IGM (Siana et al. 2010; Flury et al. 2022). The
timescale in which this Reionization occurred is also a matter of debate. To match observations,
it is necessary for galaxies at those high redshifts to ionize the IGM within approximately the first
700 Myr. Nevertheless, galaxies that emit enough ultraviolet radiation have not been found at those
distances yet and much of what we know about Reionization relies on the extrapolation of existing
trends at lower redshifts. The exceptional characteristics of JWST will help us understand these
issues regarding the cause of Reionization by observing galaxies when the Universe was younger
than 1 Gyr.

JWST will also open the door, for the first time, to study the extreme physical conditions of
very distant galaxies (in terms of their low metallicity, high density, accretion rates, or merger rates;
see reviews from Bromm & Yoshida 2011 and Stark 2016) or primordial Super-Massive Black Holes
(SMBHs). For instance, galaxies observed up to 𝑧 ∼ 8 − 9 provide evidence of Carbon and Oxygen
emission, although those heavy elements are not expected to be available in the ISM of galaxies at
those redshifts (Hutchison et al. 2019; Topping et al. 2021). JWST is expected to provide more
insight about these 𝑧 ∼ 8 − 9 galaxies through rest-frame optical spectroscopy, which will allow
measurements of their metallicities, star formation rates, or ionization properties. Regarding the
formation of the first Pop III stars, JWST is not sensitive enough to detect halos forming the
first Pop III stars in the Early Universe (see Klessen & Glover 2023, and references therein), but
it may be able to detect individual supermassive Pop III stars or small clusters of them through
gravitational lensing if they are highly lensed. Nevertheless, the probability of this occurring is
very small (Rydberg et al. 2013; Diego 2019).

Finally, with Webb we will also be able to validate the observed trends for 𝑧 ∼ 4 − 10 galaxies
and evaluate whether these still remain at higher redshifts. Among them, we can mention the rapid
decline in the cosmic star formation rate for 𝑧 > 9 (e.g.,Oesch et al. 2014, 2018), the increase in
steepness of the faint-end slopes for both luminosity and mass functions (e.g., Bouwens et al. 2015;
Song et al. 2016), or the increase in the stellar mass-halo mass ratio (e.g., Behroozi & Silk 2015;
Behroozi et al. 2019).
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1.3.2 Recovering the assembly history of galaxies via 2D SPS with JWST

From the observational point of view, the assembly history of a galaxy is imprinted on the properties
of its stellar populations. Significant observational work has been conducted in the last few years
(in the pre-JWST era) to study the stellar populations of the most massive galaxies at 𝑧 > 3 from
the integrated emission of photometrically-selected (and sometimes spectroscopically-confirmed)
samples through the use of the stellar population synthesis (SPS) technique (e.g. Glazebrook
et al. 2017, Alcalde Pampliega et al. 2019, Forrest et al. 2020a,b, Marsan et al. 2022 and references
therein). However, there are also spectroscopic and photometric studies that show that the physical
properties of galaxies present systematic trends both radially, mainly, but also azimuthally in the
local Universe (see, e.g., Di Matteo et al. 2013, Tacchella et al. 2015, Nelson et al. 2016, Wang et al.
2017, Ho et al. 2018, Sánchez-Menguiano et al. 2020, Abdurro’uf et al. 2022, Chamorro-Cazorla
et al. 2022, Bellardini et al. 2022). For these kinds of studies, the stellar population synthesis (SPS)
modeling in two dimensions (2D) has become an essential tool to derive these subgalactic-scale
resolved properties by analyzing their spatially-resolved emission. If applied to massive progenitors
at high redshift, this spatially-resolved analysis can provide further clues on the role of different
mechanisms (e.g., internal vs. external, secular vs. fast) on the evolution of massive galaxies, since
the different mechanisms proposed act at different scales and have a different impact as a function
of galactocentric distance (Dekel & Burkert 2014, Zolotov et al. 2015, Tacchella et al. 2015, 2016,
2018, 2019, Akhshik et al. 2022) and for different morphological components (e.g., Méndez-Abreu
et al. 2021, Johnston et al. 2022 for local galaxies, and Costantin et al. 2021, 2022 for higher-redshift
galaxies). This heterogeneity of the properties of stellar populations within galaxies may have as a
consequence a spatial variability in the SFH across different regions within a given galaxy, which
further highlights the need to analyze stellar populations in two dimensions in our case if we aim
at determining when galaxies began to form their stars.

Still, we cannot ignore that the main drawback of the stellar population synthesis is the intrinsic
degeneracies associated with the study of the emission from stars, even within individual pixels.
Indeed, limitations in the spectral resolution, wavelength coverage and/or signal-to-noise ratio
of the data, result in strong degeneracies in the parameter space of physical properties such as
age, star formation timescale, metallicity, or attenuation by dust. The correlations among these
parameters are more or less difficult to disentangle depending on the value of each specific parameter
(e.g., young ages, such as those expected in high-redshift galaxies, are less prone to some of these
degeneracies), as well as the mentioned observational errors and wavelength coverage (see, e.g.,
Gil de Paz & Madore 2002). The latter problems are especially difficult to tackle as we go to
higher redshifts and/or study less massive galaxies, since galaxies are generally too faint to reach
their continuum level with high spectral resolution. This makes the SPS analysis of progenitors
of massive nearby galaxies at high (or intermediate) redshift, ultimate goal of this thesis, rather
challenging, especially when aiming at statistically representative samples of galaxies. These large
samples are even harder to get when using spectroscopic (instead of photometric) data, which are
resource-demanding and therefore relatively scarce. In addition, due the technological limitations
of our observatories, it is hard to cover wide spectral ranges to account for different populations and
effects such as dust extinction or other degeneracies. In this regard, Webb will play an important
part in overcoming these issues, thanks to its unprecedented sensitivity, high spatial resolution,
wide wavelength coverage, sensitive to stars of different ages, and variety of spectral resolutions
(from spectroscopic 𝑅 ∼ 3000 to photometric 𝑅 ∼ 7 and spectro-photometric 𝑅 = 100).
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Therefore, JWST offers us for the first time a unique opportunity to analyze spatially-resolved
stellar populations at intermediate redshifts with spectral information from the rest-frame UV
to the optical or even NIR, in particular when combined with HST data. That combination of
circumstances allows us to explore for the first time the early epochs of star formation in galaxies
in a more robust way using a novel approach. Specifically, we are able to conduct this study from
a spatially-resolved analysis of the stellar populations in galaxies, at sufficiently high depths, and
by accessing rest-frame wavelengths that are sensitive enough to the evolution of the ages of the
stellar populations that we want to explore. In addition, we can also reach redshifts that are high
enough to improve the sensitivity of the modeling to the spectrophotometric evolution of the stellar
populations and, at the same time, with wavelength coverage from the rest-frame UV to the NIR
when combined with HST. This thesis aims at investigating the exceptional opportunity presented
by the combination of the aforementioned circumstances that have arisen from the arrival of JWST.

1.3.3 Open questions in galaxy formation

There are still many uncertainties regarding galaxy formation in the early Universe which are
mainly related to the fact that, before James Webb, it was not feasible to conduct observations at
the high redshifts that correspond to the end of the Dark Ages or the beginning of Reionization.
The lack of observational evidence of galaxies at the beginning of the Reionization epoch, with very
few of them confirmed belonging to this epoch, made it difficult to study the connection between
the appearance of these first galaxies and stars with the process of Reionization or, of particular
interest in this thesis, to constrain the epochs when those first galaxies appeared and how rapid they
assembled their stellar mass. The limitations in observational capabilities of previous observatories,
which were unable to directly detect a representative number of galaxies at high redshift (𝑧 ≳ 10),
together with the uncertainties in the complex process of galaxy formation, made it significantly
challenging to address the latter open questions in the pre-JWST era.

1.4 Main objective of this thesis

The main objective of this thesis is to address this lack of knowledge about the early stages of
galaxy formation and, more specifically, to answer the open question of when the first massive
galaxies appear in the Universe, which is directly related to the question of when massive galaxies
(like the Milky Way) began to form their stellar populations.

The approach followed in this thesis to address the latter question is to look further and fainter
in order to search for the most likely progenitors of local massive galaxies at different redshifts, and
subsequently analyze their stellar populations, especially their Star Formation Histories (SFHs).
Our strategy is to combine imaging data from JWST with already existing broad-band data from
HST, with the aim of extracting spatially-resolved SEDs of progenitors at high redshift of local
massive galaxies. The unprecedented wavelength coverage of JWST in the NIR will allow us to cover
the rest-frame emission in our galaxies from the UV to (at least) ∼ 1 µm, a wavelength range which
is particularly important to robustly constrain the properties of stellar populations. Furthermore,
the high spatial resolution of JWST (and HST) enables the measurement of spatially-resolved SEDs
for each galaxy and, thus, the derivation of their stellar population properties in 2D by applying a
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novel 2D-SPS method developed for this thesis. This determination of stellar population parameters
in 2D is essential for the identification of the evolutionary stages a galaxy can undergo regarding
the evolution of its stellar content and can help determine when its assembly began. In this thesis,
we will combine the information provided by the stellar population parameters in two dimensions
to recover realistic integrated galactic SFHs. The power of this method lies in the fact that the
observational characteristics of smaller regions within a galaxy are likely to be described by a less
complex SFH, making it possible to define their characteristics with fewer parameters than those
needed to describe the SFH of the entire galaxy as a whole. Therefore, by dividing the galaxy into
smaller regions and deriving the SFH for these regions, we are making the problem of recovering
the (more complex) integrated SFH of the galaxy simpler.

To address the main objective of the thesis and provide insight about when massive galaxies
began to form, we will concentrate on determining the earliest phases of the formation of massive
(𝑀★ ≥ 1010 M⊙) galaxies at 1 < 𝑧 < 4. These early stages of formation for these galaxies will be
inferred by analyzing their integrated SFHs built from their 2D-SPS analysis. For these massive
galaxies, very high quality and spatially-resolved data will be available with JWST and are already
available with HST. In addition, our redshift range (1 < 𝑧 < 4) includes the cosmic epoch known as
“cosmic noon”, at which the cosmic star formation rate density history peaked (𝑧 ∼ 2) and where
a considerable fraction of the local stellar mass was formed: about half of the present-day stellar
mass was formed by 𝑧 = 1.3 (see Madau & Dickinson 2014 for a review). Our findings study should
potentially help to identify the primary precursors of massive galaxies at cosmic noon, an epoch of
particular interest which will be broadly studied with JWST in the forthcoming years.

We divide this thesis work into three different parts:

1. The first part of this thesis is devoted to developing a method and to assessing the robust-
ness of using our 2D-SPS method on HST+JWST imaging data for determining the SFHs
of massive, 1 < 𝑧 < 4 galaxies, namely, the early stages (or onset) of their SFHs. For this,
our first objective is to establish a methodology and evaluate its performance using synthetic
deep survey images generated by cosmological simulations, in particular, the Illustris Sim-
ulation (Vogelsberger et al. 2014a,b; Genel et al. 2014). These simulated images, available
in the broad-band filters from HST and JWST, imitate the conditions of real surveys, and
thus, similar processing techniques can be applied to them. Moreover, the advantage of us-
ing simulations is that we can access the information of the simulated stellar particles that
compose each galaxy in the simulation (what we call the “ground-truth” in this thesis). This
information can be directly compared with the results inferred from our 2D-SPS analysis of
galaxies in the synthetic images. This is fundamental in order to constrain the ranges of the
input parameters for the SED fits that best recover the first formation stages in the SFH of
our massive galaxies. We also study whether the sample of massive galaxies at the considered
redshift are truly representatives of the actual progenitors of very massive galaxies at 𝑧 = 0,
regarding the SFH of these galaxies.

2. Once our methodology has been validated with Illustris, the second goal of this thesis is to
apply our 2D-SPS method to massive, 1 < 𝑧 < 4 galaxies observed with JWST (+ HST). By
the time the first part of the thesis was accomplished, some early JWST imaging data were
already available. In our case, we make use of the imaging data from the Cosmic Evolution
Early Release Science (CEERS) Survey, one of the first surveys to be conducted with JWST.
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These data are combined with previous HST data of the same region, namely, those from
the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The
aim of the second part of the thesis is to infer the formation times of massive galaxies at
1 < 𝑧 < 4 observed with HST + JWST imaging data by applying the already validated
2D-SPS methodology with Illustris. The formation times derived will allow us to address,
from the observational point of view, the fundamental open question of when massive galaxies
began to form stars.

3. Finally, and related with the latter point, the last of the objectives of these thesis is to
compare the formation times inferred for observed, high-redshift galaxies with the predictions
of cosmological simulations at those redshifts. Cosmological simulations have been fairly
successful at reproducing the properties of the local population of galaxies and, coarsely,
those at high redshift. However, these simulations rely on very scarce observational data
at high redshift. Our aim is to assess the validity of the predictions of these simulations in
the early Universe regarding galaxy formation and provide future simulations with new data
at these redshifts to better constrain their galaxy formation models and, possibly also, the
underlying cosmology.

The outline of this thesis work is as follows. In Chapter 2 we provide an overview of the Illustris
Simulation and describe which information we can extract from the simulation for our study to
conduct the aforementioned objectives. In Chapter 3, we present a detailed description of the
technical characteristics of Hubble and Webb, together with the characteristics of the cosmological
surveys to be used in this thesis work: CANDELS and CEERS. Details on our Stellar Population
Synthesis (SPS) modeling are provided in Chapter 4. In Chapter 5, we present the implementation
and evaluation of our 2D-SPS methodology using synthetic images of massive, 1 < 𝑧 < 4 galaxies
from Illustris (point 1 above). The last part of the thesis is included in Chapter 6. This chapter
describes how our 2D-SPS method is applied to CANDELS+CEERS massive galaxies observed at
1 < 𝑧 < 4, the SFHs and formation times inferred for these galaxies (point 2 above), and how the
latter compares with those of simulated galaxies in cosmological simulations (point 3). Finally, the
general conclusions of this thesis and future work are presented in Chapter 7.



CHAPTER2
Simulated data:

the Illustris Simulation

In this chapter, we describe the Illustris Simulation and discuss why it constitutes the ideal testbed
for the development and validation of our 2D SPS method for deriving the early stages in the
formation of massive, 1 < 𝑧 < 4 galaxies from HST + JWST observations. After a general introduc-
tion about cosmological simulations (Section 2.1), we present the Illustris Simulation (Section 2.2),
describe its general characteristics, and summarize the most relevant accomplishments of the sim-
ulation in reproducing galaxy population properties, highlighting its limitations. After that, we
present the Illustris synthetic deep survey images (Section 2.3) that will be used to develop our
2D SPS method (presented in Chapter 5), and from where we will derive our 2D SPS SFHs. Finally,
we focus on how we can extract information about massive, 1 < 𝑧 < 4 galaxies in the simulation,
and in particular, how this information can be used to build their ground-truth galaxy SFH (Sec-
tion 2.4), which will be compared with our 2D SPS SFHs derived from the Illustris synthetic images.

2.1 Introduction to cosmological simulations

In the past few decades, cosmological simulations have become an unquestionable tool to study
galaxy formation and evolution. The major advances in computational power, the improvements
in algorithms, and the better understanding of the physical process responsible for the shaping
and evolution of galaxies have allowed to reach a remarkable agreement between simulations and
observations over a very wide range of scales. An important aspect of these cosmological simulations
is that they try to model a representative part of the Universe (typically boxes of hundreds of
Mpc/ℎ) to produce a whole population of galaxies. Because of the richness of predictions these
calculations create, they are very useful for research in galaxy and structure formation, since they
allow to address some of the open questions discussed in Chapter 1, for which no observational
data is still available in some cases.

The aim of these simulations is essentially to bridge the early and smooth state of the Universe
observed in the Cosmic Microwave Background with the highly-complex and evolved state we
observe today. The fundamental idea that lies behind these cosmological simulations is simple:
the initial conditions of the simulation are set to match the initial state of the Universe, and after
implementing the models and laws of physics, the initial state is evolved forward in time. In modern
simulations, this is done by modeling the evolution of dark matter, dark energy and baryonic matter
over time. Finally, the output of the simulation is compared to real observations (at present time
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and different redshifts) and, in case of tensions between the two, the models and/or physical laws
of the simulation are refined. This comparison with observations is crucial not only to verify that
the implemented models are sufficiently good, but also, to better understand the physics of galaxy
formation itself. This can be done by studying, for instance, the impact of any specific mechanism
on the evolution of galaxies (e.g., the comparison of the output of the simulation for different
feedback recipes helps us to understand how feedback produced by SMBHs or supernovae shapes
the properties of galaxies).

Although cosmological simulations can also be used to study different cosmological models and
how these affect the properties of the populations of dark matter halos and galaxies (see, e.g., Angulo
& Hahn (2022) for a review of simulations with alternative models to cold dark matter), most of the
cosmological simulations are performed within the framework of the ΛCDM cosmological model. In
this sense, cosmological simulations have played an important role in testing and establishing this
model. The positive aspect of simulations is that both the fundamental parameters of ΛCDM and
the specific initial conditions used (i.e., the initial perturbation spectrum) are believed to be known
with high-accuracy. The main difficulty, however, is the simultaneous computation of the evolution
of dark matter and gas dynamics in time. For this, it is essential to (numerically) solve the coupled
system of partial differential equations that describe gravity and hydrodynamics. In the case of the
non-interacting dark matter particles, the collisionless Boltzmann equations coupled to Poisson’s
equation must be solved in an expanding Universe whose expansion is governed by the Friedmann
equations. For the modeling of the baryonic component, which is initially composed of gas alone,
this is typically described by assuming an inviscid ideal gas that follows the Euler/Navier-Stokes
equations (see Vogelsberger et al. 2020 for a review of the different numerical methods to solve
both the baryonic and dark matter component).

Despite the baryonic matter (e.g., stars and gas) only composes the ∼ 5% of the energy/mass
budget of the Universe in the ΛCDM paradigm (Planck Collaboration et al. 2020), the modeling
of ordinary matter is extremely challenging in cosmological simulations due to the large number
of physical processes that affect baryons and drive their evolution. As a consequence, the first
cosmological simulations could not directly address the evolution of this ordinary matter. Instead,
simulations had to be simplified to only account for dark matter. The most widely-used approach
for this consists in following the trajectories of dark matter particles which comprise an N-body
system: “N-body simulations”.

The predictions from these dark matter-only calculations are very important in the area of
large-scale structures and the study of the geometry properties of the cosmic web. Even early dark
matter-only simulations already predicted that dark matter was not completely homogeneously
distributed, but exhibited nodes, filaments, walls and voids and filaments that were compatible with
those seen in galaxy large-scale distributions (e.g., Springel et al. 2006). The Millennium simulation
(Springel et al. 2005b) is probably the most publicly successful dark matter-only simulation, but
other examples are also shown in Fig. 2.1 (left side), both zoomed-in (top panel) and cosmological
(bottom). Currently, the present-day dark matter-only simulations can effectively resolve many
orders of magnitude below those where galaxies are formed and where, according to cosmological
models in which dark matter is assumed to be a cold1 elementary particle, we should expect to find

1“Cold” refers to the velocity dispersion of dark matter particles at early times (𝑧 ∼ 3400), i.e., if dark matter
was composed of relativistic particles or not back then. For cold dark matter, negligible (non-relativistic) random
velocities are assumed.
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Figure 2.1: Modified figure from Vogelsberger et al. (2020). It shows an overview of some dark matter-only
(left) and hydrodynamical (right) simulations, both large-scale (bottom) and zoomed-in simulations (top).
Zoomed-in N-body simulations (top left): Aquarius (Springel et al. 2008), GHALO (Stadel et al. 2009),
Phoenix (Gao et al. 2012), ELVIS (Garrison-Kimmel et al. 2014), and Via Lactea (Diemand et al. 2008).
Zoomed-in hydrodynamical simulations (top right): NIHAO (Wang et al. 2015), Auriga (Grand et al. 2017),
APOSTLE (Sawala et al. 2016), Latte/FIRE (Wetzel et al. 2016), and Eris (Guedes et al. 2011). Large-
scale N-body simulations: Millennium (Springel et al. 2005b), Millennium-II (Boylan-Kolchin et al. 2009),
Millennium-XXL (Angulo et al. 2012), Dark Sky (Skillman et al. 2014), and Bolshoi (Klypin et al. 2011).
Large-scale hydrodynamical simulations: Illustris (Vogelsberger et al. 2014a,b; Genel et al. 2014), EAGLE
(Schaye et al. 2015; Crain et al. 2015), IllustrisTNG (Springel et al. 2018), Romulus25 (Tremmel et al. 2017),
Simba (Davé et al. 2019), Massiveblack-II (Khandai et al. 2015), Horizon-AGN (Dubois et al. 2014).
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dark matter halos (White & Frenk 1991; Bertone et al. 2005). For example, Wang et al. (2020),
assuming dark matter is a Weakly Interacting Massive Particle (WIMP), find a resolved population
of dark matter halos with masses2 ranging from 𝑀200 = 1015 M⊙ to 𝑀200 = 10−6 M⊙ (the Earth’s
mass). This is achieved by using a multi-zoom technique in which the size of the highest-resolution
region is only ∼300 pc across, with a particle mass of only ∼ 10−11 M⊙.

Computational advances, together with our better understanding to implement relevant phys-
ical models in the formation and evolution of galaxies, have enabled in recent years to develop
the so-called “hydrodynamical simulations”. Unlike previous semianalytical simulations, which are
based on a post-processing of pure dark matter-only simulations to predict the baryonic distribution
from a set of assumptions and recipes, hydrodynamical simulations model the baryonic component
from the beginning by solving the hydrodynamical equations and by following the baryonic parti-
cles evolution, together with dark matter. These hydrodynamical simulations are mainly focused
on the study of individual galaxies in detail (zoomed-in simulations; Fig. 2.1, top right), or on
large cosmological volumes (Fig. 2.1, bottom right), with typical resolutions in the kiloparsec scale
and 𝑀★ ∼ 106 M⊙. Since the resolution of current large-scale hydrodynamical simulations is in-
sufficient to resolve some of the smallest physical processes that affect the evolution of galaxies,
these simulations usually make use of customized sub-grid models to account for these unresolved
effects. Still, recent large-scale hydrodynamical simulations like The Illustris Project (Vogelsberger
et al. 2014a,b; Genel et al. 2014) or Evolution and Assembly of GaLaxies and their Environments
(EAGLE; Schaye et al. 2015; Crain et al. 2015) have proven to be successful in reproducing realistic
galaxy populations that reasonably reproduce several of scale relations and properties observed for
real galaxies.

In particular, in this thesis, we make use of the Illustris simulation, the largest large-scale
hydrodynamical simulation at the time it was released which yields a realistic galaxy population.
In addition, it also publicly offered synthetic galaxy images that resembled those of deep galaxy
surveys in different common HST and JWST broadband filters. This chapter aims at giving an
overview of the characteristics of this simulation, as well as discussing the reason it represents an
excellent scenario for implementing and testing new methods for the analysis of stellar populations
in 2D to be conducted with JWST.

2.2 The Illustris Simulation

2.2.1 The Illustris Project

The Illustris Project (Vogelsberger et al. 2014a,b; Genel et al. 2014) is a series of large-scale
N-body/hydrodynamical simulations, with different resolution levels and implemented physics, that
follow the evolution of a periodic cubic box of (106.5 Mpc)3 from 𝑧 ≃ 127 (∼ 12 Myr after the Big
Bang) until 𝑧 = 0. There are six primary simulations in the Illustris Project: three of them,
Illustris-(1,2,3), include hydrodynamics and the same full baryonic physics model, and three other
analogue dark-only simulations, Illustris-Dark-(1,2,3), use the same initial conditions of the former

2𝑀200 is the virial mass of the halo measured within a sphere centered at the potential minimum which encloses
a mean density 200 times the critical density of the Universe.
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Table 2.1: The Illustris Project large-scale simulation runs and some relevant numerical parameters.
Illustris-(1,2,3) are the hydrodynamical simulations and Illustris-Dark-(1,2,3) are their dark matter-only
analogs that have the same initial conditions but do not include the baryonic component.

Simulation name Description
Box volume

𝑁baryon / 𝑁DM
𝜖baryon*/𝜖DM** 𝑚baryon/𝑚DM

(Mpc3) (pc) (106 M⊙)

Illustris-1 full physics 106.53 2 × 1, 8203 ∼ 1.2 × 1010 710/1, 420 1.26/6.26
Illustris-2 full physics 106.53 2 × 9103 ∼ 1.5 × 109 1, 420/2, 840 10.1/50.1
Illustris-3 full physics 106.53 2 × 4553 ∼ 1.9 × 108 2, 840/5, 680 80.5/400.8
Illustris-Dark-1 only DM 106.53 1 × 1, 8203 710/1, 420 −/7.52
Illustris-Dark-2 only DM 106.53 1 × 9103 1, 420/2, 840 −/60.2
Illustris-Dark-3 only DM 106.53 1 × 4553 2, 840/5, 680 −/481.3

Notes:
* This is the softening length in physical units for baryonic particles at 𝑧 < 1. For 𝑧 ≥ 1, 𝜖baryon equals that of dark matter.
** The softening length of dark matter, 𝜖DM, is expressed in comoving units and is constant with redshift. For Illustris-1, this
corresponds to a softening length, in physical units, of 0.71 kpc for 𝑧 = 1, and of 0.28 kpc for 𝑧 = 4.

but do not include the baryonic component. All these simulations assume a ΛCDM cosmology with
cosmological parameters consistent with the Wilkinson Microwave Anisotropy Probe (WMAP)-9
(Hinshaw et al. 2013): Ωm = 0.2726, ΩΛ = 0.7274, Ωb = 0.0456, 𝜎8 = 0.809, 𝑛𝑠 = 0.963, and
𝐻0 = 100 ℎ km s−1 Mpc−1 with ℎ = 0.704, where ℎ is the present-day Hubble expansion rate, 𝑛𝑠 is
the spectral index of the primordial power spectrum, and 𝜎8 is the root mean squared amplitude
of the mass fluctuations inside spheres of 8ℎ−1 Mpc linearly extrapolated to 𝑧 = 0.

In Table 2.1 we show the main simulations of the Illustris Project, conducted all in the same box
of 106.5 Mpc a side. The highest-resolution and most complete simulation of the Illustris Project
in terms of physical modeling is Illustris-1, which is referred to as “the Illustris simulation” or,
simply, “Illustris”. Illustris-1 was the first large-scale hydrodynamical simulation that simulated
a representative portion of the Universe and produced a population of galaxies which successfully
reproduced the basic properties of the ones observed. Illustris-2 and Illustris-3 are two lower-
resolution versions of the Illustris simulation, with fewer resolution elements, and also higher particle
masses and lower spatial resolutions (see Table 2.1). These two simulations were mainly run for
resolution study purposes. In the case of the dark matter-only simulation runs, they can be useful
to study the impact of baryonic effects on the dark matter distribution. In this thesis, we will only
focus on the Illustris-1 simulation (hereafter, “Illustris”), the highest-resolution hydrodynamical
simulation of the Illustris Project, and the only large-scale hydrodynamical simulation that, at
time this thesis work began, provided synthetic deep survey images imitating mock HST and
JWST observations of the Illustris simulated galaxies (see Section 2.3). The latter condition was
the main reason for not using other (newer) simulations like IllustrisTNG (The Next Generation;
Springel et al. 2018; Naiman et al. 2018; Pillepich et al. 2018a; Nelson et al. 2018; Marinacci et al.
2018) simulation, the successor magnetohydrodynamical simulation of Illustris3.

3TNG model implements an enhanced version of the galaxy formation model from the original Illustris Project,
which integrates new physics (like the treatment of cosmic magnetism), numerical advancements, and refinements to
the original model (see the TNG presentation papers cited above for more information).
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The Illustris Project was publicly released (Nelson et al. 2015) and the available data products
can be found on https://www.illustris-project.org. We have downloaded Illustris data either
directly as raw files in HDF5 format or by using the web-based interface (API) that allows a wide
variety of user requests to extract the desired data. For this thesis, the total amount of data
downloaded in HDF5 format of ∼ 40 Gb (i.e., without considering those downloaded via the API).
To have an estimate of the impact of this project on the scientific community, by the end of 2022,
there were more than 230 published papers that made use in a direct way of any simulation from
the Illustris Project, and which can be consulted on their website.

2.2.2 The Illustris Simulation: general characteristics

The Illustris simulation (or Illustris-1) was run using the moving-mesh AREPO code (Springel 2010),
where a moving mesh is used to solve the inviscid Euler equations for hydrodynamics, and using a
Tree-PM scheme (Xu 1995) to calculate gravitational forces. The AREPO code uses an unstructured
Voronoi tesselation in which the mesh-generating points can freely move to easily represent the
geometry of the flow in a more flexible way. In addition, Illustris includes a galaxy formation
physics model (described in detail in Vogelsberger et al. 2013) comprised of a comprehensive set
of modules that take into account the most relevant and crucial astrophysical processes for galaxy
formation. This galaxy formation model includes, among other, the modeling of how stars and
SMBHs form, evolve, and how they affect their environments (e.g., in the shape of galactic winds
fueled by star formation or radio bubbles, or proximity effects caused by the radiation of Active
Galactic Nuclei, AGNs). In Section 2.2.3, we further discuss the implementation of these physical
models.

The different types of resolution elements in Illustris are: dark matter particles, gas cells, stellar
and stellar wind particles, and SMBHs. This simulation follows the evolution of 𝑁DM = (1, 820)3

dark matter particles and 𝑁baryon = (1, 820)3 initial4 baryonic elements, with a dark matter particle
mass of 𝑚DM = 6.26 × 106 M⊙ and an average mass for baryonic particles of 𝑚DM = 1.26 × 106 M⊙.
In addition to these types of particles, Illustris uses (1, 820)3 passive tracer particles to track the
flow of the baryonic mass in stars, gas and SMBHs (see Genel et al. 2013).

The spatial resolution achieved both for the dark matter or hydrodynamics and baryonic pro-
cesses is given by the softening length (𝜖). For dark matter particles, the softening length is kept
constant to 1.4 kpc in comoving units. Below this scale, gravitational forces cannot be resolved. For
baryonic particles (stars and SMBHs), the softening length equals that of dark matter for 𝑧 ≥ 1,
and 0.71 kpc in physical units for lower redshifts (see below). Gas cells have an adaptive softening
length that depends on the cell radius in the mesh, with an allowed maximum value of the softening
length equal to 0.71 physical kpc. The radius of gas cells is redefined by the mesh to prevent them
from exceeding a factor of two the maximum target gas mass of 1.26 × 106 M⊙, keeping them close
to this value. In addition, a regularization scheme for the mesh is applied that consists in steering
the mesh towards its central regions (Springel 2010; Vogelsberger et al. 2012, 2013), which results

4Although the number of dark matter particles is kept fixed with time, the number of baryonic particles does
change. In the beginning of the simulation, the number of baryonic elements (gas cells, in this case) is (1,820)3. This
number of gas cells will drop in time as stars and black holes are formed, but the total number of baryonic particles
(gas cells, stellar particles, stellar wind particles and black holes) will not be conserved due to the fact that gas cells
are redefined so that they do not exceed a factor of 2 the mean mass of the baryonic elements (i.e. the target mass).

https://www.illustris-project.org
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in a better spatial resolution in these central parts. The smallest gas cells at 𝑧 = 0 have a typical
radius of 48 pc, and the least massive cells, a mass of 1.5 × 104 M⊙.

Since the softening length for baryonic particles is constant in comoving units and equal to
that of dark matter for 𝑧 ≥ 1 (1.4 kpc), we can calculate the value of this softening length at each
redshift in physical units by multiplying it by the scale factor, 𝑎, where 𝑎 = 1/(1+ 𝑧). This results in
𝜖baryon = 0.71 kpc for 𝑧 = 1, and 0.28 kpc for 𝑧 = 4. This spatial resolution in Illustris-1 is similar to
that observed with HST and JWST for galaxies at those redshifts5 and higher than the size of the
smallest regions where we will measure SEDs on the images (∼ 0.18′′ a side, corresponding to 1.48
and 1.28 kpc for 𝑧 = 1 and 4, respectively) for all the considered redshifts. The latter condition,
which is fundamental in order to obtain robust measurements of the stellar mass distribution from
our 2D photometric analysis on Illustris images, is hardly fulfilled for Illustris-2 and definitely not
for Illustris-3, with worse resolutions (by a factor of 2 and 4, respectively) than Illustris-1 (see
Table 2.1).

When released, Illustris was one the largest cosmological hydrodynamical simulation in terms
of resolution elements (see Fig. 1 in Genel et al. 2014), being able to resolve 𝐿∗ galaxies with
∼ 105 elements and with spatial resolutions down to kiloparsec scales. This, together with the
improved physical implementations for the formation of stars and the evolution of baryons in
general (Section 2.2.3), made the Illustris simulation become the first large-scale hydrodynamical
simulation that produced a population of galaxies which successfully reproduced the basic properties
of the ones observed (see Section 2.2.6 for an overview of Illustris major accomplishments in this
matter). In addition, the Illustris volume is sufficiently big not to suffer major cosmic variance
(Genel et al. 2014).

2.2.3 Galaxy formation model in Illustris

The model for galaxy formation physics implemented in Illustris-(1,2,3) is described in detail in
Vogelsberger et al. (2013). This includes a set of sub-resolution models with relevant physical
processes that take place in the formation of galaxies at lower scales than the resolution scale in
the simulation:

• Radiative gas cooling (both primordial and metal-line cooling by heavy elements). Gas cooling
rates are calculated with self-shielding corrections (Rahmati et al. 2013) and as a function of
gas density, metallicity, temperature, the radiation field of AGNs and the uniform, redshift-
dependent, ionizing UV background (Katz et al. 1996; Faucher-Giguère et al. 2009).

• Interstellar medium model (ISM) and star formation. Illustris has a subgrid ISM model
consisting of a two-phase medium in which cold clouds lie in a tenuous hot phase. Star
formation takes place in high-density hydrogen gas following the Springel & Hernquist (2003)
implementation: when a gas cell reaches the hydrogen number density of 𝜌SF = 0.13 cm−3,
it stochastically produces a stellar particle on a time-scale that depends on the gas density:
𝑡★(𝜌) = 𝑡SF(𝜌/𝜌SF)−1/2, with a star formation time-scale of 𝑡SF = 2.2 Gyr, and following the

5Assuming a common pixel scale of 0.06′′/pix for both HST and JWST (see Chapter 3), this corresponds to a
spatial resolution of ∼ 0.49 kpc/pix (physical units) at 𝑧 = 1 and ∼ 0.43 kpc/pix at 𝑧 = 4.
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Kennicutt-Schmidt law (Kennicutt 1989). Each stellar particle in Illustris represents a single-
age stellar population (SSP) born with a Chabrier (2003) initial mass function (IMF), i.e., a
set of individual stars born simultaneously, where the sum of their individual masses (whose
distribution is given by the IMF) equals the mass of the stellar particle at its birth time.

• Stellar evolution and chemical enrichment. Stellar particles acquire the gas mass from which
they originated and then continuously decrease in mass as a result of their stellar evolution.
This stellar evolution is tracked by modeling Type I/II supernovae (SNeI/II) and the asymp-
totic giant branch (AGB), taking into account stellar mass-loss processes (gas recycling) that
return mass to the gas phase and enrich the surroundings of the stellar populations. The as-
sociated chemical enrichment in galaxies is traced by following the evolution of nine chemical
elements (H, He, C, N, O, Ne, Mg, Si, and Fe).

• Feedback. Stellar feedback is implemented in the form of kinetic galactic-scale winds driven
by SNe explosions (with 1.09 × 1051 erg each), where the metal loading of the winds can be
adjusted independently from the actual mass loading. The latter is necessary to reproduce
the stellar mass content of low-mass galaxies and their oxygen abundances in the gas (Zahid
et al. 2014). Feedback from SMBHs is included both in quasar and radio (bubbles) mode
(details in Springel et al. 2005a; Sijacki et al. 2007), depending the operation of each mode
on the accretion rate. A new implementation of radiative electromagnetic AGN feedback is
also included, which heats the surrounding gas and modifies its ionization state.

• SMBH seeding and growth. Illustris includes prescriptions for black hole seeding, accretion and
merging in which black holes are represented by collisionless, massive sink particles. Following
previous works (Sijacki et al. 2007; Di Matteo et al. 2005), black holes sink particles are placed
with a seed mass of 1.42 × 105 M⊙ in halos more massive than 7.1 × 1010 M⊙ which do not
contain a black hole particle already. These black holes particles increase their mass either
through the accretion of their surrounding gas or by mergers with other black holes.

Any mismatch between the Illustris predictions and the observations (see Chapter 6) might come
from limitations on the above assumptions and recipes. All the free parameters of the Illustris galaxy
formation model have physical meaning and physically plausible values, but their exact values have
not been observationally determined. That is the reason why the values for these free parameters
(namely, those of the feedback models) have been calibrated and tuned to roughly reproduce the
observed stellar mass function at 𝑧 = 0, the stellar mas-halo mass relation, and the history of cosmic
star formation rate density (SFRD). This calibration was performed using smaller-scale simulations
of 35.5 Mpc on a side (i.e., 27 times smaller in volume than Illustris; Vogelsberger et al. 2013).

2.2.4 Illustris halos and subhalos

Illustris uses a standard Friends-of-Friends (FoF) algorithm (Davis et al. 1985) to define halos
which is run on the dark matter particles, identifying halos with at least 32 particles. After that,
the baryonic particles are assigned to the same halo as that of their nearest dark matter particles.
Halos can contain zero or more subhalos. These subhalos can be considered as galaxies in case they
contain stellar particles, but subhalos with no stars are highly common at low masses. Subhalos
are found via the Subfind halo finder algorithm (Springel et al. 2001; Dolag et al. 2009), which uses
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an “unbinding” procedure that removes gravitationally unbound member particles from the halo.
The minimum particles limit for subhalos is 20. In case a halo hosts any subhalos, these subhalos
are classified into “central” (or “primary”; the most massive subhalo in the halo) and “satellite”
(or “secondary”; the rest, if they exist).

The halos and subhalos found in the simulation are provided by the FoF halo catalog and
the Subfind subhalo catalog, respectively. These catalogs provide different fields with information
about the halos/subhalos, such as masses at several radii (total or from the different simulated
components), sizes (e.g., the radius that encloses half of the mass for subhalos, or 𝑅200 and 𝑅500 for
halos), positions in the simulation volume, velocities, number of particles of each type belonging
to them, etc. At 𝑧 = 0, there are 7,713,601 FoF-halos with at least 32 particles and 4,366,546
individual subhalos (Vogelsberger et al. 2014b). Out of these subhalos at 𝑧 = 0, there are ∼ 40, 000
galaxies with at least 500 stellar particles in them. The most massive halo found in Illustris has
𝑀200 ≈ 2.4× 1014 M⊙, which means that the volume is not big enough to produce the most massive
halos found in the Universe like the Coma cluster (with 𝑀200 ≈ 2.7 × 1015 M⊙; Kubo et al. 2007).
Nevertheless, there are 10 halos in Illustris with 𝑀200 > 1014 M⊙ and 733 “Milky Way-like” halos
with 1012 M⊙ < 𝑀200 < 2 × 1012 M⊙ (Genel et al. 2014).

Finally, in order to reconstruct the assembly history of any given subhalo across snapshots,
Illustris offers two merger trees associated to the subhalo catalogs: SUBLINK (Rodriguez-Gomez
et al. 2015) and LHALOTREE (Springel et al. 2005a), where the latter is basically identical to that
of the Millennium simulation. Such merger trees are extremely useful, e.g., to identify and study
the properties of high-redshift progenitors of 𝑧 = 0 galaxies of a similar type (massive, quiescent,
etc.). As we show in Chapter 5, in this thesis we will make use of the Illustris merger trees in order
to track high-redshift galaxies forward in time to pinpoint their descendants at 𝑧 = 0. Fig. 2.2 shows
an example of a merger tree for the descendant at 𝑧 = 0 of the lowest-redshift galaxy considered in
García-Argumánez et al. (2023; see also Chapter 5). This progenitor galaxy (marked with a green
dotted circle) has a redshift of observation of 𝑧 = 1.04 in the Illustris synthetic images that we will
use in this work (see 2.3), and a total stellar mass of 𝑀★ = 1010.72 M⊙, while its descendant at 𝑧 = 0
(cyan circle) has a total stellar mass of 𝑀★ = 1011.14 M⊙.

2.2.5 Snapshots in Illustris

There are 136 snapshots (or instants of time) for which the output of the simulation has been
saved across time.6 These snapshots correspond to 136 different redshifts that span between 𝑧 = 0
(snapshot 135) and 𝑧 = 47 (snapshot 0). Snapshots are spaced according to the scale factor:
snapshots at 𝑧 > 3 are spaced with log(𝑎) ≈ 0.02, and with log(𝑎) ≈ 0.01 for those at 𝑧 < 3. Table 2.2
shows the full snapshot list with the equivalent redshifts, scale factors and corresponding ages of the
Universe. Snapshots include all the particles (and their associated fields) in the simulation volume,
together with the halo and subhalo catalogs found for each snapshot. Particles in every snapshots
are not organized by their spatial position in the simulation box, but they are sorted according to
their membership to their halos or subhalos. Both halos/subhalos and the particles belonging to
them can be downloaded. Each of these individual particles presents different information fields

6In practice, there are only 134 available snapshots in Illustris-1. This is because snapshots 53 and 55 were
corrupted and are not available for downloading.
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Illustris-1 subhaloID = 86190 at snapshot 135

Figure 2.2: Example of an Illustris merger tree for 𝑧 = 0 descendant of a galaxy from the main high-
redshift sample analyzed in García-Argumánez et al. (2023; see also Chapter 5). The descendant at 𝑧 = 0
is highlighted with a cyan circle, while the considered progenitor galaxy at 𝑧 ∼ 1 is marked with a green
dotted circle. Bigger circle sizes correspond to higher halo masses. The circles are color-coded by specific
SFR (sSFR). We show an RGB image for the 𝑧 = 0 galaxy generated by Torrey et al. (2015). The two empty
horizontal lines correspond to the corrupted snapshots 53 and 55.

which depend on the particle type (e.g., mass, coordinates, velocities for all particles, formation
masses or formation times for the stellar particles, SFR or density for the gas cells, instantaneous
mass accretion rate for black holes particles, etc.). A full listing of the available fields for each
particle type can be found in Nelson et al. (2015) or on the Illustris website7.

The information provided by the stellar particles belonging to a galaxy (at a certain snapshot)
can be used to build the SFH of the galaxy (or galaxy SFH) according to the simulation. This
galaxy SFH, directly built from the stellar particles of the galaxy, is what we will refer to as
ground-truth galaxy SFH. In Section 2.4, we describe how the ground-truth galaxy SFHs are built
by accessing the simulated particles of galaxies located in snapshots with 1 < 𝑧 < 4. The aim of
this work is to be able to successfully recover those ground-truth SFHs (especially their first stages)
when applying 2D SPS to the synthetic images of galaxies in Illustris (described in Section 2.3), i.e.,
to achieve that our galaxy SFH resulting from the 2D-SPS analysis on a certain galaxy resembles
as closely as possible the (initial parts of the) corresponding ground-truth SFH provided by their
stellar particles.

7https://www.illustris-project.org/data/docs/specifications/

https://www.illustris-project.org/data/docs/specifications/
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Table 2.2: Illustris snapshots with redshifts, scale factors and ages of the Universe. The relevant snapshots
for this thesis, with 1 ≲ 𝑧 ≲ 4, are highlighted with a gray shade.

Snapshot 𝑧 Scale factor Age [Gyr]
0 46.77 0.021 0.054
1 44.56 0.022 0.058
2 42.45 0.023 0.062
3 40.64 0.024 0.066
4 38.71 0.025 0.071
5 36.87 0.026 0.076
6 35.12 0.028 0.082
7 33.61 0.029 0.087
8 32.01 0.030 0.093
9 30.48 0.032 0.100
10 29.03 0.033 0.108
11 27.64 0.035 0.116
12 26.44 0.036 0.123
13 25.17 0.038 0.132
14 23.96 0.040 0.142
15 22.81 0.042 0.153
16 21.81 0.044 0.163
17 20.76 0.046 0.175
18 19.75 0.048 0.188
19 18.79 0.051 0.201
20 17.96 0.053 0.215
21 17.09 0.055 0.231
22 16.25 0.058 0.248
23 15.45 0.061 0.266
24 14.76 0.063 0.283
25 14.03 0.067 0.304
26 13.34 0.070 0.327
27 12.67 0.073 0.351
28 12.04 0.077 0.376
29 11.50 0.080 0.401
30 10.92 0.084 0.431
31 10.37 0.088 0.463
32 10.00 0.091 0.486
33 9.84 0.092 0.497
34 9.39 0.096 0.529
35 9.00 0.100 0.560
36 8.91 0.101 0.568
37 8.45 0.106 0.610
38 8.01 0.111 0.655
39 7.60 0.116 0.703
40 7.24 0.121 0.750
41 7.01 0.125 0.782
42 6.86 0.127 0.805
43 6.49 0.133 0.864
44 6.14 0.140 0.927
45 6.01 0.143 0.954
46 5.85 0.146 0.989
47 5.53 0.153 1.061
48 5.23 0.161 1.139
49 5.00 0.167 1.205

Snapshot 𝑧 Scale factor Age [Gyr]
50 4.94 0.168 1.223
51 4.66 0.177 1.312
52 4.43 0.184 1.398
53 - - - 𝑎

54 4.01 0.200 1.577
55 - - - 𝑎

56 3.71 0.212 1.728
57 3.49 0.223 1.854
58 3.28 0.233 1.990
59 3.08 0.245 2.134
60 3.01 0.249 2.195
61 2.90 0.257 2.289
62 2.73 0.268 2.438
63 2.58 0.280 2.596
64 2.44 0.290 2.745
65 2.32 0.302 2.902
66 2.21 0.312 3.047
67 2.10 0.322 3.198
68 2.00 0.333 3.356
69 1.90 0.344 3.521
70 1.82 0.354 3.669
71 1.74 0.364 3.823
72 1.67 0.375 3.983
73 1.60 0.384 4.120
74 1.53 0.395 4.291
75 1.47 0.405 4.438
76 1.41 0.414 4.590
77 1.36 0.424 4.747
78 1.30 0.434 4.908
79 1.25 0.445 5.074
80 1.21 0.453 5.210
81 1.15 0.464 5.384
82 1.11 0.473 5.528
83 1.07 0.482 5.674
84 1.04 0.491 5.824
85 1.00 0.501 5.977
86 0.99 0.503 6.015
87 0.95 0.513 6.172
88 0.92 0.520 6.292
89 0.89 0.530 6.455
90 0.85 0.540 6.622
91 0.82 0.550 6.791
92 0.79 0.558 6.921
93 0.76 0.569 7.096
94 0.73 0.577 7.230
95 0.70 0.588 7.412
96 0.68 0.597 7.550
97 0.64 0.608 7.737
98 0.62 0.617 7.880
99 0.60 0.626 8.024

Snapshot 𝑧 Scale factor Age [Gyr]
100 0.58 0.635 8.171
101 0.55 0.647 8.369
102 0.52 0.656 8.520
103 0.50 0.665 8.672
104 0.48 0.675 8.827
105 0.46 0.685 8.983
106 0.44 0.694 9.141
107 0.42 0.704 9.301
108 0.40 0.714 9.463
109 0.38 0.725 9.626
110 0.36 0.735 9.791
111 0.35 0.742 9.902
112 0.33 0.753 10.071
113 0.31 0.763 10.240
114 0.29 0.774 10.412
115 0.27 0.785 10.585
116 0.26 0.793 10.701
117 0.24 0.804 10.877
118 0.23 0.816 11.054
119 0.21 0.823 11.173
120 0.20 0.835 11.353
121 0.18 0.847 11.534
122 0.17 0.855 11.656
123 0.15 0.867 11.839
124 0.14 0.876 11.963
125 0.13 0.888 12.149
126 0.11 0.901 12.336
127 0.10 0.910 12.462
128 0.08 0.923 12.652
129 0.07 0.931 12.779
130 0.06 0.945 12.971
131 0.05 0.954 13.100
132 0.03 0.967 13.294
133 0.02 0.977 13.424
134 0.01 0.991 13.620
135 0.00 1.000 13.751

Notes:
𝑎 Snapshots 53 and 55 are not availa-
ble because they were corrupted.
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2.2.6 Illustris predictions and comparison with observations

Even though the physical galaxy models in Illustris were tuned to roughly match some observed
global relations (see Section 2.2.3), many other additional observables are also reproduced by the
simulation both in the local Universe (Vogelsberger et al. 2014a,b) or regarding the basic properties
of high-redshift galaxies (Genel et al. 2014). Below, we give an overview of the most relevant accom-
plishments of Illustris in reproducing the structure formation and galaxy populations properties.

2.2.6.1 Large-scale structure and impact of baryons on dark matter

Large-scale structure. The distribution of dark matter of Illustris reproduces the well-known
cosmic web. This is shown in the Illustris panel in Fig. 2.1 (bottom right quadrant), where the dark
matter density at 𝑧 = 0 (shown on the left) gradually transforms into gas density (on the right),
which follows the gravitational field created by dark matter at large scales. The figure is centered
on the most massive cluster in Illustris (𝑅200 = 1.26 Mpc and 𝑀200 = 2.4 × 1014 M⊙).

Impact of baryons on the power spectrum and on the halo mass. Theoretical models that
connect the present-day 𝑃(𝑘) to the initial power spectrum are usually based on dark matter-
only simulations. Nevertheless, Illustris predicts a non-negligible, scale-dependent impact of the
baryonic effects on the dark matter distribution on larger scales than usually assumed caused by
AGN outflows and gas cooling processes (Vogelsberger et al. 2014a). Baryonic processes also affect
the individual halo masses: halos with ∼ 1011 M⊙ (close to the mass scale where star formation
is more efficient) are ∼ 10% more massive in Illustris than in its dark matter-only analog, while
the masses of less and more massive halos are reduced because of the feedback processes (up to
20 − 30% at the lowest and highest masses, ∼ 108.5 and ∼ 1014.5 M⊙, respectively).

Halo mass function. The theoretical prediction of the halo mass function is usually based on
N-body simulations and usually ignores baryon effects on dark matter (e.g., Tinker et al. 2008).
Nevertheless, Illustris finds the halo mass function is reduced by the baryonic component at very
low and high halo masses (up to ∼ 30% at both ends), where the feedback processes are stronger.

2.2.6.2 Reproducing galaxy population properties

Galaxy morphologies. Illustris population of galaxies shows a wide range of morphologies, from
elliptical galaxies to star-forming disks and irregular galaxies (Vogelsberger et al. 2014a,b; Snyder
et al. 2015). The resolution in 𝑀★ ≳ 1010−11 M⊙ galaxies (with ∼ 104−105 stellar particles) is enough
to study galaxy morphologies or internal kinematic (Vogelsberger et al. 2014b). In addition, the
morphological evolution in Illustris up to 𝑧 = 5 galaxies is in very good agreement with several
observed trends (Genel et al. 2014). Snyder et al. (2015) present a comprehensive study of Illustris
massive galaxies at 𝑧 = 0, finding that while 𝑀★ ∼ 1011 M⊙ galaxies have comparable 𝑔-band sizes
to those observed, 𝑀★ ∼ 1010 M⊙ galaxies present too large half-light radii (by a factor of ∼ 2)

Galaxy luminosity and stellar mass functions. Illustris galaxy luminosity and stellar mass
functions (GLF and GSMF, respectively) agree reasonably well with observations (Vogelsberger
et al. 2014b) over the probed ranges (𝑀★ ∼ 109 to 1012.5 M⊙ and 𝑀𝑟 ∼ −15.0 to −24.5). However,
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Illustris GLF slightly overestimates the number of bright (and massive) galaxies as a consequence
of insufficient AGN feedback, and Illustris GSMF overpredicts slightly too many low mass (poorly
resolved) galaxies at 𝑀★ ≲ 109 M⊙, as well as in the most massive end (𝑀★ ≳ 1011−12 M⊙). The
GSMF also agrees in general with observations for redshifts up to 𝑧 = 7 (Genel et al. 2014), despite
the free parameters in Illustris physical model were calibrated to roughly reproduce the GSMF at
only 𝑧 = 0. Nevertheless, there are some tensions with observations, especially at lower redshifts
where, e.g., the number of 𝑀★ ≳ 1011 M⊙ is overestimated for 𝑧 ≲ 1.5 or that Illustris overshoots
the number of low-mass (𝑀★ ≲ 1010 M⊙) galaxies for 𝑧 ≲ 2. The latter also happens for 𝑧 ≳ 4,
but for less massive galaxies (𝑀★ ≲ 109 M⊙). This probably denotes the need for an additional
suppression of SF both for the least and most massive galaxies.

Cosmic SFRD history. By construction, the cosmic SFRD history for Illustris (Vogelsberger
et al. 2014b) is in agreement with observations up to 𝑧 ∼ 10, even with the lower limits beyond
𝑧 ∼ 8 (Ellis et al. 2013a; Oesch et al. 2014). However, at 𝑧 < 1 the Illustris SFRD does not decrease
as fast as observations and slightly overestimates the present-day SFRD by 0.15 − 0.45 dex (Genel
et al. 2014) due to an insufficient AGN feedback at these recent epochs, namely the radio-mode
AGN feedback in ∼ 1011−12 M⊙ halos (main contributors to the SFRD at those lower redshifts).

Baryon conversion efficiency from the gas to the stellar phase. The baryon conversion efficiency
(or SF efficiency) is very dependent on both the feedback and cooling processes implemented in the
simulation, and plays an important role to reproduce the GLF and GSMF. Illustris baryon conver-
sion efficiency at 𝑧 = 0 is in reasonable agreement with observations (within the 1𝜎 uncertainties),
and reproduces the fact that the SF efficiency is maximum (reaching values of ∼ 20− 30%) around
halo masses close to those of the Milky Way (𝑀200 ∼ 1012 M⊙), while it is significantly reduced (by
several orders of magnitudes) at lower and higher masses as a consequence of the SN and AGN
feedback. The evolution with redshift of the stellar to halo mass relation for 𝑧 ≲ 3 agrees with the
common points of observations from Moster et al. (2010) and Behroozi et al. (2013), such as that
the peak of the baryon conversion efficiency moves towards higher masses as redshift increases.

Galaxy star-forming main sequence. Illustris reproduces the observed tight relation between the
SFR and stellar mass (“star forming main sequence”, SFMS) up to 𝑧 = 4 for 𝑀★ > 109 M⊙ galaxies
(Sparre et al. 2015). This SFMS is consistent with observations for 𝑧 = 0 and 𝑧 = 4, but presents a
significant lower normalization at intermediate redshifts (𝑧 = 1 and 𝑧 = 2) mainly owing to the use of
too unsophisticated feedback models. Illustris also has a paucity of strong starbursts (i.e., galaxies
located significantly above the SFMS) at all redshifts, probably caused by an insufficient spatial
resolution in the simulation but also, by a relatively too stiff equation of state for the Illustris star
formation model in the ISM. In spite of that, the scatter of the Illustris SFMS (∼ 0.27 dex) is in
very good agreement with that of observations (typically 0.21 − 0.39 dex; Behroozi et al. 2013).

Satellite galaxies around massive halos. The stellar mass content and spatial distribution of
satellite galaxies in massive halos in Illustris agrees with observations (Genel et al. 2014). Illustris
reproduces the monotonic increase of the baryonic conversion efficiency for satellite galaxies as halo
mass increases and the galaxy number densities profiles for satellite galaxies at 0.15 < 𝑧 < 0.40.

Environment and mass quenching. In agreement with Peng et al. (2010) observations, the
fraction of Illustris red galaxies is bigger for larger stellar masses and for higher galaxy overdensities
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(Vogelsberger et al. 2014b) as a consequence of “mass quenching” and “environment quenching”8.
Illustris also reproduces how the SFR of star-forming galaxies does not depend on the galaxy
overdensity (i.e., a higher environment increases the probability of a galaxy quenching and becoming
redder, but does not affect the SFR of star-forming galaxies).

Metallicity and HI content in galaxies. Illustris reproduces the observed relation between the
metallicity in galaxies and their stellar mass (“stellar mass-metallicity relation”; Gallazzi et al. 2005;
Woo et al. 2008; Kirby et al. 2013), including the flattening above 𝑀★ ≈ 1011 M⊙ (Vogelsberger
et al. (2014a)). As in observations, Illustris also reproduces the decreasing trend for the HI to
stellar mass ratio as the galaxy stellar mass increases.

2.3 Synthetic images in Illustris: the “mock ultra-deep fields”

The realistic galaxy morphologies observed in Illustris galaxies, together with the fact that the
evolution of these galaxies is followed from relatively soon after the Big Bang, and that Illustris
reproduces reasonably well the properties of galaxy populations at different redshifts, enables the
construction of synthetic images that resemble those from real deep survey observations such as, e.g.,
the Hubble Ultra Deep Field (HUDF; Beckwith et al. 2006a, Oesch et al. 2010b, Ellis et al. 2013b,
Koekemoer et al. 2013a, Illingworth et al. 2013a). In fact, Illustris was the first hydrodynamical
simulation that constructed faithful deep UDF-like images9 (Vogelsberger et al. 2014a), and this
was possible due to the high-resolution and large volume of the simulation. Other examples of
synthetic images created from the Illustris simulation are shown in, e.g., Torrey et al. (2015) for
individual galaxy images or Snyder et al. (2017) for mock deep survey-like observations.

In this thesis work, we will make use of the Illustris synthetic deep survey images, also called
the Illustris “mock ultra-deep fields” (Snyder et al. 2017), and downloadable via MAST10. These
synthetic images resemble those of real deep galaxy surveys and are available in a broad range of
broad-band filters, such as those onboard HST and JWST, among other observatories. Each of
the three synthetic deep survey images, with 2.8′ × 2.8′ in size, corresponds to a different field,
labeled as Field A, B, and C. Those fields are shown in Fig. 2.3, together with a comparison with
the HST eXtreme Deep Field (XDF; Illingworth et al. 2013b). Both of them are surprisingly
similar regarding the characteristics of the population of galaxies shown (e.g., galaxy colors, sizes,
morphologies, etc.).

8In mass quenching, AGN feedback in massive halos heats and/or expels the available star-forming gas in the
galaxy and causes the galaxy to get redder due to stellar population aging. In environment quenching, the denser
environment mainly affects low massive galaxies which are deprived from their gas by ram pressure as they fall into
larger halos.

9In fact, there already existed similar synthetic images generated from semianalytical models before Illustris (e.g.,
Kitzbichler & White 2007; Henriques et al. 2012). Nevertheless, since one of the objectives of this thesis is to analyze
the spatial distribution of stellar populations (from real broadband-based observations), for the calibration of our
method it is important to use synthetic images that are as close to reality as possible, especially regarding the spatial
distribution of baryonic matter in galaxies. In this regard, images generated from hydrodynamical simulations (based
on the stellar particles distribution in each galaxy), will be more realistic than those produced by semianalytical
models (based on certain assumptions or recipes applied to the post-processing of the dark matter-only distribution).

10https://archive.stsci.edu/prepds/illustris/

https://archive.stsci.edu/prepds/illustris/


2.3 Synthetic images in Illustris: the “mock ultra-deep fields” 31

Figure 2.3: Illustris deep survey images (or Illustris mock ultra-deep fields) from Snyder et al. 2017 (three
images on top), with a zoomed-in region in Field C (cyan and yellow squares). Each field is 2.8 arcmin a
side. The HST Ultra-Deep Field is shown above as a comparison. Credit: Adapted from https://archive.
stsci.edu/hlsp/illustris.

As described in Snyder et al. (2017), each of these three deep survey images has been created by
applying the lightcone technique proposed in Kitzbichler & White (2007) to the periodic Illustris-
1-simulation volume. This technique is based on replacing distant volume in the simulation with
the output from an earlier cosmic time. It consists in first replicating the periodic cubic volume
simulation until a desired comoving distance is reached and tracing a lightcone across all the
simulation replications. Then, the output time of the simulation that fills the lightcone volume is
varied as a function of the comoving distance, i.e., the distant volume in the lightcone is replaced
with the output from an earlier cosmic time in the simulation. The three different survey images
used in this work have been generated using the same lightcone geometry with three different
orientations. Each of these lightcones contains unique galaxies in the simulation up to 𝑧 ∼ 18 with
no repetition, although some of these galaxies can be repeated between the three different fields.

Finally, to generate the synthetic images, the information from the simulated particles in the
lightcones at each redshift (see, e.g., Torrey et al. 2015) is processed using stellar population
synthesis (SPS) models and the spectral synthesis code SUNRISE (Jonsson 2006; Jonsson et al.
2010). These SPS models (described in Chapter 4) are able to assign a spectrum to each stellar
particle belonging to a galaxy depending on its characteristics, in particular, its age, mass and
metallicity (which are first projected to the hypothetical cameras). To generate spectra, Starburst99

https://archive.stsci.edu/hlsp/illustris
https://archive.stsci.edu/hlsp/illustris
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Figure 2.4: Distributions for redshift, stellar mass, SFR, and stellar half-mass radius for massive galaxies
at 1 < 𝑧 < 4 in the catalogs of Illustris mock-ultra deep fields (filled histograms). These catalogs only include
galaxies brighter than g < 30.0 mag. With unfilled histograms, we show the distributions for the 4,295
massive galaxies in the snapshot 𝑧 = 1 (dotted) and the 232 massive galaxies in that at 𝑧 = 4 (dashed) of
the simulation (not necessarily appearing in the images). The histogram for 𝑧 = 1 has been normalized so
that its maximum coincides with that of the massive, 1 < 𝑧 < 4 galaxies in the images. Median and quartile
values are shown at the top with segments.

stellar population models (Leitherer et al. 1999) were assumed, and a Kroupa (2001) IMF. Dust
absorption is included in the images assuming a simple birth cloud plus diffuse dust model (Charlot
& Fall 2000). This models the total effects of dust at our wavelengths of interest, without requiring
expensive dust radiative transfer simulations for the entire fields. The spectrum of all stellar
particles in the galaxy is then convolved with the transmission function of different broadband
filters to calculate spectral energy distributions (SEDs). For the generation of these SEDs, common
broadband filters from widely-used observatories are used, such as those from HST or JWST,
although the latter was not even still launched at the time the images were produced.

Each of the Illustris mock ultra-deep fields has an associated catalog which includes all the
galaxies in the survey image with rest-frame g-band apparent magnitude brighter than g < 30.0
mag. Those catalogs will be used in this thesis to select our sample of massive, 1 < 𝑧 < 4 galaxies in
Illustris (see Chapter 5). In total, the three catalogs include 19,347 galaxies, out of which 388 are
massive (𝑀★ ≥ 1010 M⊙) galaxies lying at 1 < 𝑧 < 4. Fig. 2.4 shows the distribution for the redshift,
total stellar mass, SFR, and stellar half-mass radius11 of these massive, 1 < 𝑧 < 4 galaxies wich
appear in the catalogs associated to the images (filled histograms). As a comparison, we include
the distributions of all massive galaxies in the simulation (not necessarily in the synthetic images)
from the snapshots corresponding to 𝑧 = 1 (snapshot 85; dotted) and 4 (snapshot 54; dashed), with
4,295 and 232 massive galaxies, respectively.

The advantage of using Illustris synthetic images is that we can compare our results derived from
applying our 2D-SPS method on them (namely, the galaxy SFHs) with the reference or ground-
truth values from the simulation (i.e., those provided by the particles information for each galaxy).
This makes Illustris the ideal tool to test potential procedures to be applied in real galaxy images
and it is, precisely, the purpose for what we use Illustris in this thesis (see Chapter 5). In the
following section, we show how we can extract from the simulation the (ground-truth) information
provided by the simulated particles in galaxies at different snapshots (see Section 2.2.5) and show
an example of how we can use that data to build the ground-truth SFH for a galaxy.

11The stellar half-mass radius, 𝑟hm, is the radius that contains half of the total stellar mass of the galaxy.
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2.4 Massive galaxies at 1 < 𝑧 < 4 in Illustris: building the
ground-truth galaxy SFH from their stellar particles

For this thesis work, we will focus only on Illustris massive galaxies from the snapshots with
1 ≲ 𝑧 ≲ 4 (highlighted in gray in Table 2.2). At 𝑧 ≈ 1 (snapshot 85) and 𝑧 ≈ 4 (snapshot 54),
the number of galaxies with at 500 stellar particles is 39,016 and 10,344, respectively, out of which
4,295 and 232 have a total stellar mass above 𝑀★ ⩾ 1010 M⊙ (the stellar properties for these massive
galaxies at 𝑧 = 1 and 𝑧 = 4 were shown as the unfilled histograms in Fig. 2.4). Apart from the total
mass12, Illustris also provides estimates for the stellar mass (and other stellar quantities) within
other radii13, such as the stellar half-mass radius (i.e., the radius enclosing half of the total stellar
mass of the galaxy; 𝑟hm), or twice this radius (2 𝑟hm). For the latter radius, the number of galaxies
in the simulation with stellar mass 𝑀★ ⩾ 1010 M⊙ within 2 𝑟hm is 3,700 for 𝑧 ≈ 1 (snapshot 85) and
144 for 𝑧 ≈ 4 (snapshot 54).

Since papers often compare results based on observations with what Illustris predicts for galaxies
within 2 𝑟hm, here we will show an example of how the ground-truth galaxy SFH can be built
from the information provided by the simulated particles in the galaxy located within this radius.
Consider, for instance, the Illustris galaxy located at snapshot 73 (𝑧 = 1.60) with subhalo ID
141918 (labeled as Illustris-1_073_0141918 in this work). According to their simulated particles
at this snapshot, this galaxy has a stellar mass within 2 𝑟hm (and in total) of 𝑀★ = 1010.76 M⊙
(𝑀★ ⩾ 1010.89 M⊙) and a star formation rate14 (SFR) of 34.0 M⊙/yr (46.6, M⊙/yr).

To build the ground-truth SFH of this galaxy, we first load from the Illustris database all
the simulated stellar particles (and gas particles) belonging to it. By accessing the positions of
these particles, we discard all of them which are located at a larger radius of the galaxy center
than 2 𝑟hm. For the remaining stellar particles (within 2 𝑟hm), we load their formation times or
ages (by accessing their GFM_StellarFormationTime field) and their initial masses at the moment
of formation (with the GFM_InitialMass field). The formation times of the stellar particles are
converted to lookback times (measured from the galaxy redshift) in order to build a histogram for
these lookback times of formation ages. We assume time bins for the formation ages of 25 Myr up
to a lookback time of 1 Gyr, and 250 Myr afterwards. Then, for each bin in this histogram, we
load the formation masses of the stars inside the bin and sum them to have an estimate of how
much stellar mass was formed per lookback time bin. We convert the latter to a SFR (in M⊙/yr)
by dividing the mass formed in lookback time bin by the width of the bin. For each SFR value
calculated in this way, we assign its corresponding lookback time value, which coincides with the
lookback time at the center of its bin.

We modify this galaxy SFH at both ends of lookback time so that 1) the age of the SFH
coincides with that of the stellar particle that first formed in the galaxy 2) and also to include the
instantaneous SFR at the redshift of observation (i.e., when the lookback time equals zero). In the
first case, this is done by extending (or modifying) the SFH at the furthest lookback times with

12The total mass of the galaxy is the sum of the mass of all stellar particles that belong to it.
13In those cases, the stellar mass is computed as the mass of the stellar particles which are closer to the galaxy

center than the corresponding radius.
14The SFR within 2 𝑟hm is calculated as the sum of the SFR field value associated to the gas particles in the galaxy

which are closer to its center than 2 𝑟hm (or all its particles, for the total SFR).
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Figure 2.5: Ground-truth SFH for Illustris-1_073_0141918 calculated from its stellar and gas particles
within 2 𝑟hm. The left panel shows the stellar mass density distribution in this galaxy. Particles within 2 𝑟hm
are located inside the green sphere. We show as zoomed-in panels the same stellar mass density distribution
(cyan rectangle on top) and the gas mass density distribution (yellow rectangle at the bottom). For stellar
particles inside 2 𝑟hm, we load their formation and formation times. We make of a histogram of the formation
times (expressed as lookback times) and sum the formation masses of the stars formed in each bin to generate
the SFH. We force the SFH to have an age equal to that of the first star formed in the galaxy. The SFR
at the origin of lookback time is calculated by summing the SFR values of gas particles in the green sphere
(marked with a blue star in the SFH figure). Finally, we normalize the resulting SFH to recover the stellar
mass of all the stellar particles inside 2 𝑟hm.

that corresponding to the formation of the first star and a SFR of 0. This marks the age of the
galaxy. In the second case, the SFR of the galaxy at the redshift of observation is computed by
considering all the gas particles in the galaxy within 2 𝑟hm and adding together their instantaneous
SFR values (SFR field in these gas particles). This SFR value, assigned to a zero lookback time,
is then added to the SFH calculated above. Finally, after the latter two steps, the galaxy SFH
is normalized so that its integral over cosmic time (until the redshift of observation) recovers the
stellar mass within 2 𝑟hm. The resulting galaxy SFH after this normalization is our ground-truth
galaxy SFH (in this case, within 2 𝑟hm). Fig. 2.5 shows the ground-truth galaxy SFH (in green) for
Illustris-1_073_0141918, together with the stellar mass and gas mass distribution within the
considered 2 𝑟hm (marked as a green sphere in the figure).

Although in the above example we have calculated the ground-truth galaxy SFH within 2 𝑟hm,
the galaxy SFH can be computed from particles located within any other considered distance. In
Chapter 6 we do use 2 𝑟hm to calculate the ground-truth SFHs for some samples of Illustris galaxies,
but in Chapter 5, the ground-truth galaxy SFHs will be built by considering only particles within
a radius equal to that of the galaxy photometric aperture on the synthetic images (to make the
comparison of this ground-truth SFH with the 2D-SPS-derived SFH more fair). This will be further
discussed in the corresponding chapters.
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2.5 On the representativeness of the sample of massive galaxies
at 1 < 𝑧 < 4

As commented in Chapter 1, this thesis aims at advancing in our comprehension of the early stages
of formation of the most massive galaxies in the local Universe (with 𝑀★ > 1011 M⊙) by analyzing
the stellar populations of massive (𝑀★ > 1010 M⊙) galaxies at 1 < 𝑧 < 4, which are thought to be
their most likely progenitors. Nevertheless, observationally it is not possible to actually know which
galaxies at 1 < 𝑧 < 4 will evolve to a very massive galaxy at 𝑧 = 0. Therefore, doubts may arise as
to whether our sample of massive galaxies at 1 < 𝑧 < 4 is truly representative of the actual sample
of progenitors of very massive galaxies at 𝑧 = 0. Since we are interested in the early stages of the
SFH, it is essential to demonstrate that by analyzing a sample of massive galaxies at 1 < 𝑧 < 4
we are able to recover a representative SFH of the most massive galaxies in the local Universe.
This will be analyzed in detail in Section 5.6, where the results of applying our 2D-SPS method
to Illustris synthetic images (see Section 2.3) are discussed. However, we give here the reader a
preview of how this can be done in general and how it will be carried out specifically in our case.

The advantage of using Illustris is that we can use its merger trees to follow the evolution of
any of its simulated galaxies along its snapshots to the local Universe. Therefore, in Illustris we
are able to distinguish whether a massive galaxy at a given redshift will evolve into a very massive
galaxy at 𝑧 = 0. As we will see in Chapter 5, this will allow us, starting from the galaxies that
appear in the Illustris deep survey images, to construct a sample of massive galaxies at 1 < 𝑧 < 4
that are bona-fide progenitors of a very massive galaxy at 𝑧 = 0. Fig. 2.6 shows a schematic diagram
of how the sample of Illustris massive progenitors at 1 < 𝑧 < 4 (represented by circles with blue star
inside) is built. To do this, we start from all galaxies in the Illustris deep survey images at 1 < 𝑧 < 4
(illustrated by the region between the two horizontal gray lines on top), and select those galaxies
in the images which 1) are massive, and 2) evolve into a very massive galaxy at 𝑧 = 0. This will
be our main 1 < 𝑧 < 4 sample considered in Chapter 5. The 𝑧 = 0 descendants of galaxies in our
sample are shown with an orange square with a star inside (on the 𝑧 = 0 horizontal dotted line at
the bottom). Massive galaxies at any redshift independently of their descendants are represented
with a circle, non-massive galaxies with a small black dot, and very massive galaxies at 𝑧 = 0 with
a square. We caution the reader that the descendants at 𝑧 = 0 of galaxies in the images (located
on the bottom 𝑧 = 0 horizontal line) do not appear in the Illustris images but are available in the
simulation.

As shown in Fig. 2.6, the 𝑧 = 0 descendants of our sample of massive progenitors at 1 < 𝑧 < 4
can have other progenitors which are not included in our sample, which may have an impact on
the SFH of these 𝑧 = 0 descendants. The first thing to evaluate is whether the 2D-SPS-derived
SFH of our sample of massive progenitors at 1 < 𝑧 < 4 in the images (circles with blue star inside)
can recover the first stages of the ground-truth SFH of their 𝑧 = 0 descendants (orange squares in
Fig. 2.6). In addition, since these 𝑧 = 0 descendants are only a subset of all the 𝑀★ > 1011 M⊙
galaxies at 𝑧 = 0 in the Illustris simulation (all squares in Fig. 2.6), we will also compare our results
with those predicted by the whole population of very massive galaxies at 𝑧 = 0 in Illustris.

Finally, to mimic what we get in real observations, we will build a final sample composed of all
massive galaxies at 1 < 𝑧 < 4 in the images (regardless of the stellar mass of their descendants at
𝑧 = 0). This second sample would consist of all the circles in Fig. 2.6 between the 𝑧 = 1 and 𝑧 = 4
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Figure 2.6: Schematic diagram of our sample of Illustris massive 1 < 𝑧 < 4 progenitors to be analyzed in
Chapter 5. We start from all the massive (circle) and non-massive (small black dot) galaxies in the Illustris
synthetic deep survey images which are located at 1 < 𝑧 < 4 (between the two horizontal dashed lines on
the left). Using Illustris merger trees, we can follow the evolution of all the galaxies in the images at those
redshifts until 𝑧 = 0 (bottom dotted line). Those 𝑧 = 0 galaxies do not appear in the images. Galaxies with
𝑀★ > 1011 M⊙ at 𝑧 = 0 are represented by a square. Our sample of massive 1 < 𝑧 < 4 progenitors (circles
with a blue star inside) is composed of massive 1 < 𝑧 < 4 galaxies in the images which end up as a very
massive galaxy at 𝑧 = 0. The descendants at 𝑧 = 0 of this sample are shown with orange squares with a star
inside. These 𝑧 = 0 descendants can have other progenitors different from those considered in our 1 < 𝑧 < 4
sample. On the right, we layout the conditions fulfilled by galaxies in our sample of 1 < 𝑧 < 4 progenitors
(top) and by their 𝑧 = 0 descendants (bottom).

dashed lines (with and without a star inside). We will evaluate whether the (realistic) analysis
of this latter sample of all 1 < 𝑧 < 4 massive galaxies in the images can recover the SFH of very
massive galaxies at 𝑧 = 0. This will be done by applying our 2D-SPS method to the images of
these massive 1 < 𝑧 < 4 galaxies and directly comparing the results inferred from their SFHs with
those inferred for our initial sample of massive progenitors at 1 < 𝑧 < 4. Since in real observations
we cannot assure whether a massive galaxy at high redshift will evolve into a very massive in the
nearby Universe, this analysis is important in order to prove whether the sample of all massive
galaxies at 1 < 𝑧 < 4 in the images can truly yield a representative SFH of the bona-fide progenitors
of very massive galaxies at 𝑧 = 0, which is the ultimate goal of this thesis.
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2.6 Final considerations

As it has been shown in this chapter, the Illustris simulation constitutes a perfect scenario to test
and improve our possible techniques to be applied in real galaxy observations. This is mainly due
to the complete population of galaxies that Illustris is able to generate, which reproduce many of
the observed relations both locally and at higher redshifts, and the available synthetic deep survey-
like images it provides. As it will be shown in Chapter 5, Illustris synthetic deep survey images
will be used to develop our 2D-SPS method (to be applied on real deep survey images). This will
be done by comparing our 2D-SPS galaxy SFHs, derived from our 2D-SPS analysis on Illustris
synthetic images, to the ground-truth galaxy SFHs built from the simulated particles belonging to
each galaxy.

It is true that, as commented in Section 2.2.6, Illustris presents some tensions between its
predictions and observations. These tensions suggest, mainly, the need to improve the existing
physical models, but they may also be due to the lack of more sophisticated models of physical
processes that are not taken into account. Certainly, cosmological simulations do not include
all the physics that is potentially relevant at all times, but only a subset of this physics can be
included. For example, magnetohydrodynamics, cosmic rays, dust or neutrino physics are usually
neglected, and Illustris is not an exception in this sense. In addition, a fully rigorous treatment of
SMBH is a pending matter not only in the Illustris simulation, but also in the rest of cosmological
simulations. The growth and energy liberation of SMBHs cannot be done ab initio and are very
coarsely parametrized (see Section 2.2.3). This is mainly due to the fact that the coupled evolution
of dark matter, galaxies and SMBHs is a physical problem that links many different scales together.
To simulate this in an ab initio is unfeasible to be done even with the best codes, since only a range
of scales can be addressed and simulated at any given time.

It is worth mentioning, however, that the differences between the Illustris-simulated and the
observed Universe are not a concern for us and our intended use of the simulation, which is primarily
to use Illustris as a test scenario for our techniques. The only thing to keep in mind is that any
scientific results we obtain from the Illustris-simulated galaxy population may not be strictly the
same as those derived from real observations (e.g., the exact time values at which massive, high-
redshift galaxies began to form may vary). This is applicable to Illustris or any other similar
simulation. Precisely, the results we derive from applying the same techniques to HST+JWST
observations (shown in Chapter 6) will aim to highlight possible discrepancies from those predicted
by simulations (Illustris, in our case) and which of the known limitations listed above are most
critical and also what subgrid physics should be changed and in what direction. This will contribute
to improve our understanding of the currently accepted models of galaxy formation, which may
need to be refined if indicated by observations.





CHAPTER3
Observational data:

the Hubble and James Webb Space Telescopes

Space: the final frontier. Here we present the voyages of the Hubble and James
Webb Space Telescopes. Their continuing mission: to explore strange new
worlds. To seek out new life and new distant galaxy populations. To boldly
probe where no one has reached before!

— Jean-Luc Picard (modified), Star Trek: The Next Generation

Space telescopes offer imaging capabilities infeasible to be reached nowadays from ground-based
telescopes thanks to the fact that they are diffraction-limited and that they are not subject to light
absorptions from the Earth’s atmosphere. The Hubble Space Telescope, launched in 1990, was a
revolution in its time. Its 2.4 m primary mirror unveiled a more galaxy populated Universe than we
thought, giving us access from the UV to ∼1.7 µm to a previously unknown population of galaxies.

With the recent launch of the James Webb Space Telescope, which has large 6.6 m primary
mirror, we now have access to NIR and MIR wavelengths with unprecedented spatial resolution
and sensitivity. The gains of Webb over other previous infrared space telescopes such as Spitzer
are several: the collecting area of Webb is ∼50 times larger than that of Spitzer, allowing, e.g.,
a significantly higher angular resolution (on the order of 10) and sensitivity (>50), especially at
longer wavelengths (Rigby et al. 2022a). The main limitation of Spitzer, with a 0.85 m aperture,
was resolution: its point-spread function (PSF) had a full-width high maximum (FWHM) of ∼6′′
at 24 µm. In contrast, Webb provides sub-arcsec resolution up to 28 µm, in addition to other
non-imaging capabilities that neither Hubble nor Spitzer have.

Webb’s exceptional characteristics, together with its wide spectral coverage in the infrared, not
only allow us to expand the frontier of the universe we can observe, but, combined with previous
Hubble data at shorter wavelengths, allow us to improve the determination of stellar parameters
in intermediate- and high-redshift galaxies by better constraining their SEDs. The latter, due to
Webb’s high angular resolution (similar to that of Hubble in the visible), is possible for both the
integrated and spatially-resolved emission of galaxies (Webb in the NIR, like Hubble in the optical,
has PSFs with FWHM ≲ 0.2′′). Since the physical angular scale in 1 < 𝑧 < 4 galaxies ranges from
approximately 8 to 7 kpc/arcsec, this implies that both Hubble and Webb data can be used if we
aim at studying the stellar populations of 1 < 𝑧 < 4 galaxies in the subkiloparsec scale, providing
a wider wavelength coverage if both telescopes are combined.

39
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3.1 The Hubble Space Telescope

Conceived in the 1940s and initially called the Large Space Telescope, the Hubble Space Telescope
was named in 1983 after the astronomer Edwin Powell Hubble (1889–1953). The project officially
began in 1977 when it was approved by the United States Congress (Garner 2022a). It was a col-
laboration between the National Aeronautics and Space Administration (NASA) and the European
Space Agency (ESA), which had joined the project in 1975 and contributed by providing the solar
panels and the Faint Object Camera (FOC). Although the telescope was already assembled in 1985,
its launch was delayed due to the explosion of the space shuttle Challenger. On 24 April 1990, it
was finally launched onboard the space shuttle Discovery with five astronauts from the Kennedy
Space Center in Cape Canaveral, Florida. It was deployed the following day, thanks to the help of
the shuttle crew, who guided the telescope from the shuttle to its orbit above the Earth.

Unfortunately, soon after it was launched, it was discovered that the primary mirror of the
telescope suffered from spherical aberration due to a flaw in the manufacturing of the mirror (Garner
2019). This primary mirror, which had been ground 2.2 µm too flat in its outer edge, made HST
return images significantly less clear and sharp than expected. The good news was that HST had
been designed to be periodically visited by astronauts to be repaired and upgraded. Therefore, the
first space shuttle mission was programmed to compensate the optical aberration. In the meantime,
since replacing the primary mirror was not feasible, corrective optics and replacement instruments
were designed and constructed, and computer image reconstruction techniques were used on the
observed images to partially mitigate the effects produced by the flaw.

In 1993, it took place the first space shuttle mission to HST, named Servicing Mission 1 (SM-
1). During this mission, a more powerful camera with built-in corrective optics, the Wide Field
and Planetary Camera 2 (WFPC2), replaced the first-generation camera, the WFPC1. For the
other HST instruments onboard, the spherical aberration was corrected by installing the Corrective
Optics Space Telescope Axial Replacement (COSTAR) instrument, which had several corrective
mirrors that countered the aberration produced by the primary mirror and allowed HST to observe
at its diffraction limit, with an angular resolution below 0′′.1. Fig. 3.1b shows an HST image of
M100 before and after SM-1. In total, there have been five HST servicing missions, from 1993 to
2009. Fig. 3.1a shows a picture taken during the Servicing Mission 3A (SM-3A), in which HST was
brought again to operation after having been in dormancy mode for approximately a month due
to the failure of the fourth of its six gyroscopes. During this mission, all gyroscopes were replaced
and a more powerful main computer was installed, apart from new insulation, a new transmitter,
a more advanced solid-state data recorder, and some other equipment.

These space shuttle missions have been essential to keep the observatory running with state-of-
art instruments for more than 30 years, and it is expected to continue operating until the late 2020s,
maybe, beyond. During this time, HST has proven to be one the of most scientifically productive
astronomy projects in history, with observations in almost every research area in astrophysics,
covering galaxies, stars, comets, nebulae, outer planets and satellites, exoplanets, etc. Among the
most famous achievements from HST observations, we can mention the measurement by SNIa of
the accelerated expansion of the Universe (awarded the 2011 Nobel Prize), the confirmation of the
existence of SMBHs in galaxy cores, measurements of the composition of exoplanet atmospheres,
or the observation of distant galaxies in the Hubble Deep Field.
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Figure 3.1: Hubble images. a) HST coupled to space shuttle Discovery during the third HST servicing
mission (SM-3A) in December 1999, with two astronauts in the front of the image and the Earth in the
background. b) Comparison between the core of M100 observed by HST before (left) and after (right) the
spherical aberration was corrected during the first servicing mission in December 1993. The left image, taken
with the original Wide Field and Planetary Camera 1 (WFPC-1), misses fine and faint details owing to the
starlight blur produced by the optical aberration in the primary mirror. The right image was taken with
the Wide Field and Planetary Camera 2 (WFPC-2), installed during the servicing mission, and shows the
significant improvement produced by the corrective optics that compensated the aberration. c) HST cross
section that shows the Cassegrain design of the telescope and the path that light follows when it enters the
telescope until it reaches the instruments. d) HST field of view after SM4 with the instruments entrance
apertures in the focal plane as they are projected on the sky. e) Wavelength ranges (in nm) covered by the
current scientific instruments in HST. Images credits: ESA/Hubble & NASA.
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3.1.1 General characteristics

HST is a Cassegrain reflector with two hyperbolic mirrors: a 2.4 m primary mirror and a smaller
30.5 cm secondary mirror. The hyperbolic shape of both mirrors makes HST a Ritchey-Chrétien
variant of standard Cassegrain telescopes (with parabolic mirrors), which prevents Hubble from
suffering comatic aberration and allows it to obtain sharper images. When the aperture door is
open, light enters the telescope and is collected and reflected by the primary mirror towards the
secondary mirror, suspended ahead (see Fig. 3.1c). This secondary mirror reflects the light back
though a hole in the primary mirror to reach the guidance and science instruments. Both mirrors
are made of glass, which is coated with aluminum in order to provide reflectivity. On top of the
aluminum, a coated magnesium fluorite layer protects the mirrors from oxidation and increases
their UV reflectivity (Garner 2022b).

The size of the observatory is 13.3 m× 4.2 m (approximately a school bus) and weighed ∼10,800 kg
when it was launched (∼12,200 kg after its last servicing mission). It is located at a circular Low
Earth Orbit with an altitude of roughly 535 km and an inclination of 28.5 degrees to the equa-
tor. Traveling at a speed of ∼27,000 km/h, it completes every orbit in approximately 95 minutes
(Belleville 2022) powered by its two solar panels and the batteries that allow HST to operate even
when the Earth blocks the sunlight.

Hubble rotates thanks to the combination of four internal reaction wheels and four magnetic
torquers. The reaction wheels, located near the center of gravity of HST, are used to reorient
the telescope (using Newton’s third law) and point to the different targets based on the schedule
provided by the Operations Control Center. The magnetic torquers can create magnetic fields
which interact with that of the Earth, pushing or pulling HST towards it, and helping HST rotate.
To detect the movement of the telescope, three high-precision gyroscopes (out of the six it carries)
are typically used to measure its rate and direction of motion. In addition, Hubble has three Fine
Guidance Sensors (FGSs), two of which are used for the pointing of the telescope and lock it
on target (with an absolute pointing error of less than 0.′′01). The third FGS can be used for
astrometric measurements. Communications are received and transmitted through two high-gain
antennas on HST (Garner 2022c).

Hubble can observe from ∼100 nm to 2.4 µm, but it is primarily optimized to observe in UV and
optical wavelengths. In Section 3.1.2, we briefly discuss the current scientific instruments onboard
HST, focusing on the instruments used for this thesis.

3.1.2 Scientific instruments

HST is equipped with different scientific instruments that provide both spectroscopy and high-
resolution imaging from the ultraviolet to near-infrared wavelengths. Currently, the scientific in-
struments onboard which are still operating are the following:

• The Advanced Camera for Surveys (ACS)

• The Wide Field Camera 3 (WFC3)

• The Cosmic Origins Spectrograph (COS)
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• The Space Telescope Imaging Spectrograph (STIS)

• The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) − inactive since 2008

• Fine Guidance Sensors (FGSs)

ACS and WFC3 are the HST main cameras, which can be combined to provide high resolution
imaging of a wide field over a wide wavelength coverage. Although both cameras are equipped with
a comprehensive set of filters that span a broad range of wavelengths, ACS is usually selected for
visible observations, while WFC3 usually observes UV and NIR. COS and STIS are the primary
HST spectrographs. SITS is a very versatile instrument that provides high-resolution UV-to-
NIR spectroscopy of spatially-resolved sources, while COS focuses on providing UV-spectroscopy
of extremely deep and faint sources. In addition to COS and STIS, the NICMOS instrument,
currently inactive, was another spectrograph that provided both imaging and spectroscopy in the
NIR. Finally, the FGSs on HST are three interferometers that, apart from being used to help in
the pointing of the telescope by locking HST on guide stars, one of the FGSs can sometimes be
used for precise astrometric measurements (e.g., relative positions of stars, changes in brightness,
or for resolving double-star systems). Fig. 3.1d schematically shows the location and the field of
view of the scientific instruments in HST focal plane. The wavelength coverage covered by these
instruments is shown in Fig. 3.1e.

For this thesis, we make use of the two main HST imaging instruments, ACS and WFC3, which
provide UV-to-NIR photometric measurements in a wide range of filters. In Section 3.1.2.1, we
describe the ACS instrument based on the on the ACS Instrument Handbook (Ryon 2022). WFC3
is described in Section 3.1.2.2, based on the WFC3 Instrument Handbook (Dressel 2022).

3.1.2.1 The Advanced Camera for Surveys (ACS)

The Advanced Camera for Surveys (ACS) is a third-generation HST instrument installed in 2002
(SM-3B) to replace the former most-used HST camera, WFPC2. Still today, ACS continues to be
an excellent tool for high-resolution imaging in UV and optical bands.

ACS originally included three different channels of observations: the Wide Field Channel
(WFC), the High Resolution Channel (HRC), and the Solar Blind Channel (SBC). These channels
were primarily optimized for different tasks: WFC for wide deep field imaging (from visible to
NIR), HRC for high-resolution imaging (from near-UV to NIR), and SBC for solar-blind UV imag-
ing. In addition to imaging, ACS was designed to provide additional capabilities with the three
different channels, such as grism and prism low-resolution spectroscopy (SBC and HRC), imaging
polarimetry (WFC and HRC), and coronography (HRC). Unfortunately, WFC and HRC suffered
a malfunction in 2007. SM-4 in 2009 was able to repair the WFC, but HRC could not be restored
and is no longer operating. The SBC was unaffected and continues in operation together with the
WFC. Some general characteristics of the three ACS channels are shown in Table 3.1. In this thesis,
we only make use of observations taken by the WFC channel, highlighted in gray in this table.

Regarding the ACS filters, they are located in three different filter wheels. Two of these wheels
were shared by WFC and HRC, and the other is used by the SBC. Figure 3.2 shows the HST
maximum total system throughput for several HST instruments as a function of wavelength. It can
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Table 3.1: General characteristics of the ACS channels. Observations for this thesis have been taken by
the WFC channel, highlighted in gray.

Wide Field Channel High Resolution Channel Solar Blind Channel
(WFC) (HRC; unusable since 2007) (SBC)

Wavelength coverage (nm) 350−1,100 170−1,100 115−170
Field of View (arcsec2) 202 × 202 29 × 26 34.6 × 30.5
Plate Scale (arcsec2/pix) ∼ 0.05 × 0.05 ∼ 0.028 × 0.025 ∼ 0.034 × 0.030
Pixel Size (µm2) 15 × 15 21 × 21 25 × 25
Image format (pix2) 2 × 2,048 × 4,096 1,024 × 1,024 1,024 × 1,024

Reference: ACS Instrument Handbook (Ryon 2022)

Figure 3.2: Modified figure from the ACS Instrument Handbook (Ryon 2022). HST total system throughput
as a function of wavelength for several HST instruments. The lines show the maximum throughputs for each
instrument at a given wavelength. Current operating instruments are shown with solid lines, and replaced
(WFPC2) or inoperable (ACS/HRC, NICMOS) instruments with dashed lines.
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Figure 3.3: Throughput of ACS and WFC3 filters used in this thesis. WFC3 filters are shaded inside, and
their names have been boxed.
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Table 3.2: Broadband ACS/WFC filters used in this thesis.

Filter Central wavelength𝑎 FWHM𝑏

Description
name (nm) (nm)
F435W 433.0 93.7 Johnson 𝐵

F606W 592.2 232.2 Broad 𝑉
F775W 769.3 151.1 SDSS 𝑖
F814W 804.5 185.8 Broad 𝐼

F850LP 903.1 120.7 SDSS 𝑧

Notes:
𝑎 The provided central wavelenghts, unless otherwise stated, corre-
spond to the pivot wavelength: 𝜆pivot ≡

∫
𝑇 (𝜆) 𝑑𝜆∫

𝑇 (𝜆) 𝑑𝜆/𝜆2 , where 𝑇 (𝜆) is
the filter transmission.
𝑏 The width of the filter is calculated as the difference between the two
wavelengths at which the transmission of the filter is half maximum.
References: ACS Instrument Handbook (Ryon 2022) and the Spanish
Virtual Observatory (SVO; https://svo.cab.inta-csic.es/)

be seen the significant improvement of the ACS/WFC throughput with respect to its precursor, the
WFPC2. ACS/WFC also presents a higher transmission in the optical wavelengths when compared
to that of the WFC3. In particular, for this thesis, we use the broadband filters from the ACS
which are shown in Table 3.2. Figure 3.3 shows the transmission curves for these filters.

3.1.2.2 The Wide Field Camera 3 (WFC3)

The Wide Field Camera 3 was installed during Servicing Mission 4 in 2009, also with the aim
to replace the WFPC2. Designed to last until the end of HST mission, WFC3 presents excellent
imaging capabilities, combining a wide wavelength coverage (200 nm−1.7 µm), high sensitivity, and
a wide field of view. This makes WFC3 the suitable instrument for multi-wavelength surveys for
which both a wide field of view and a wide spectral coverage (down to 200 nm) are required. In
addition to high resolution imaging, WFC3 offers low resolution (𝑅 ∼ 70−130) slitless spectroscopy
in three different ranges (190 − 450, 800 − 1,150, and 1,075 − 1,700 nm).

WFC3 has two independent channels which are sensitive to different wavelengths: the UVIS
channel, which can observe UV and visible wavelengths (200 − 1000 nm), and the IR channel, for
NIR wavelengths (800−1, 700 nm). These channels cannot be used simultaneously, but they can be
sequentially used. Fig. 3.1d schematically shows the location of the field of view of both channels
in the HST focal plane. In this figure, it can be seen that the UVIS detectors consist of two
4, 096× 2, 051 pixel CCDs (UVIS 1 and UVIS 2), which are joined together to form a 4, 096× 2, 051
array with a separation of ∼ 31 pixels (or 1.2 arcsec) that can be filled using dithering techniques.
Table 3.3 shows some general characteristics of these channels. We have highlighted in gray the IR
channel, for it is the one used in this thesis.

https://svo.cab.inta-csic.es/
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Table 3.3: General characteristics of the WFC3 channels. Observations for this thesis have been taken
with the IR channel, highlighted in gray.

UVIS IR
Wavelength coverage (nm) 200−1,000 800−1,700
Field of View (arcsec2) 162 × 162 136 × 123
Plate Scale (arcsec2/pix) 0.04 × 0.04 0.135 × 0.121
Pixel Size (μm2) 15 × 15 18 × 18
Image format (pix2) 2 × 2,051 × 4,096 1,014 × 1,014

Reference: WFC3 Instrument Handbook (Dressel 2022)

Table 3.4: Broadband WFC3 filters used in this thesis

Filter Central wavelength𝑎 FWHM𝑏

Description
name (nm) (nm)
F105W 1055.0 291.7 Wide Y
F125W 1248.6 300.5 Wide J
F140W 1392.3 394.1 Wide JH gap
F160W 1537.0 287.5 WFC3 H

Notes:
𝑎 The provided central wavelengths, unless otherwise stated, correspond
to the pivot wavelength: 𝜆pivot ≡

∫
𝑇 (𝜆) 𝑑𝜆∫

𝑇 (𝜆) 𝑑𝜆/𝜆2 , where 𝑇 (𝜆) is the filter
transmission.
𝑏 The width of the filter is calculated as the difference between the two
wavelengths at which the transmission of the filter is half maximum.
References: WFC3 Instrument Handbook (Dressel 2022) and the Span-
ish Virtual Observatory (SVO; https://svo.cab.inta-csic.es/)

As shown in Fig. 3.2, WFC3 covers a wide spectral range due to the large number of filters with
which it is equipped. Each channel provides its own set of broad-, intermediate, and narrow-band
filters, together with low-dispersion grisms: 47 filters and 1 UV grism in the UVIS channel (allocated
in 12 filter wheels), and 15 filters and 2 grisms in IR channel (one filter wheel). Fig. 3.3 shows the
throughput of the WFC3/IR filters used throughout this thesis, and their general characteristics
are shown in Table 3.4.

3.1.3 HST cosmological fields

Cosmological fields are observations of the sky sufficiently wide and deep to include a large number
of galaxies within the field, which allows us to study their properties in a statistical way. Without a
doubt, the excellent capabilities of HST for observing deep cosmological fields were clearly proven

https://svo.cab.inta-csic.es/


3.1 The Hubble Space Telescope 47

in 1995, when HST observed an apparently empty region of ∼ 5.3 arcmin2 in the Big Dipper with
the WFPC2 (filters 𝑈300, 𝐵450, 𝑉606, and 𝐼814) and for a total exposure of 10 days. The result of
this was the Hubble Deep Field North (HDFN; Williams et al. 1996) or, originally, the Hubble
Deep Field (HDF), which stunned the extragalactic scientific community due to the large number
of galaxies it contained and the different morphologies they presented, providing a considerable
amount of information regarding their evolution and first stages. Follow-up observations in different
wavelengths of this region, both photometrical and spectroscopic, soon made the HDFN become
one of the best observed extragalactic region in the sky, with more than 3,000 galaxies detected. In
1998, the Hubble Deep Field South (HDFS; Williams et al. 2000) was observed in the southern sky,
but the impact of this field was considerably smaller mainly because it was difficult to be observed
from ground-based telescopes, due to the presence of stray light from several very bright stars close
to the field.

In 2003, ACS observed the Hubble Ultra Deep Field (HUDF; Beckwith et al. 2006b), which
was publicly released in 2004. The HUDF contained more than 10,000 galaxies, it was twice larger
(∼ 3′.4×3′.4) than the HDFN and one magnitude deeper, reaching 𝑚AB ≈ 29 in the observed filters
(𝐵435, 𝑉606, 𝑖775, and 𝑧850). In 2009, after WFC3 was installed on HST, the HUDF was observed
with three WFC3 NIR filters (𝑌 , 𝐽, and 𝐻), reaching 𝑚AB ≈ 28.5 (HUDF09, Bouwens et al. 2011),
which allowed the exploration of higher-redshift galaxies. In 2012, the deepest image ever taken
(by then) was released: the HST eXtreme Deep Field (XDF; Illingworth et al. 2013b), a 2′.3 × 2′
image centered on the HUDF and observed in nine optical and NIR filters, combining 10 years of
ACS and WFC3 observations, and reaching 𝑚AB ≈ 30.

The scientific success from the original HDF images motivated the scientific community to
conduct additional multi-wavelength surveys with Hubble, which were often overlapped with obser-
vations from other observatories. Examples of these first HST surveys are the Great Observatories
Origins Deep Surveys (GOODS; Giavalisco et al. 2004), the Galaxy Evolution from Morphologies
and SEDs (GEMS; Rix et al. 2004), or the Cosmic Evolution Survey (COSMOS; Scoville et al.
2007). In this thesis, we make use of the Cosmic Assembly Near-infrared Deep Extragalactic
Legacy Survey (CANDELS; Grogin et al. 2011; Koekemoer et al. 2011), which, as described in
Section 3.1.3.1, is built upon previous observations of some of the HST cosmological surveys.

3.1.3.1 CANDELS

The installation of the WFC3 on HST in 2009, with its excellent spatial resolution and sensitivity
in the NIR wavelengths, made possible to conduct deep galaxy surveys able to observe faint and
distant objects undetected until then with previous instruments. An example of one these surveys
was the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin
et al. 2011; Koekemoer et al. 2011), a multi-wavelength 902-orbit legacy project that was designed
to study galaxy formation and evolution over 𝑧 ∼ 1.5− 8, thanks to the combination of deep WFC3
and parallel ACS observations, together with ancillary data from other observatories.

The survey consists of five well-studied sky regions that cover ∼ 800 arcmin2 (∼0.22 deg2), a
sufficiently large area to mitigate cosmic variance and to include a comprehensive sample of galaxies
(∼250,000 galaxies observed). These sky regions are: the Cosmic Evolution Survey (COSMOS;
Scoville et al. 2007), the Extended Groth Strip (EGS; Davis et al. 2007), the GOODS-North and
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Table 3.5: CANDELS fields: sky positions and references.

Field Right Ascension Declination Area References References
name (J2000) (J2000) (arcmin2) for original field for CANDELS catalogs

EGS 14h 17m 00s +52◦ 30′ 00′′ 206 Davis et al. (2007)
Stefanon et al. (2017);

also Santini et al. (2015)
COSMOS 10h 00m 28s +02◦ 12′ 21′′ 216 Scoville et al. (2007) Nayyeri et al. (2017)
GOODS-N 12h 36m 55s +62◦ 14′ 11′′ 171 Giavalisco et al. (2004) Barro et al. (2019)

GOODS-S 03h 32m 30s −27◦ 48′ 20′′ 170 Giavalisco et al. (2004)
Guo et al. 2013;

also Dahlen et al. (2013)
and Santini et al. (2015)

UDS 02h 17m 37.5s −05◦ 12′ 00′′ 202
Lawrence et al. (2007); Galametz et al. (2013);
Cirasuolo et al. (2007) also Santini et al. (2015)

References: Stefanon et al. (2017) for EGS, Nayyeri et al. (2017) for COSMOS, Barro et al. (2019) for GOODS-N,
Guo et al. (2013) for GOODS-S, and Galametz et al. 2013 for UDS.

GOODS-South fields (GOODS-N and GOODS-S, respectively; Giavalisco et al. 2004), and the
UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-deep Survey field (UDS; Lawrence et al. 2007;
Cirasuolo et al. 2007). The reason for choosing these fields was the large amount of ancillary data
they presented (covering from the near-UV to the far-IR; see Grogin et al. 2011). For instance,
all of them have associated deep imaging observations by Spitzer/IRAC 3.6 µm and 4.5 µm in the
Spitzer Extended Deep Survey (SEDS; Ashby et al. 2013). Table 3.5 shows the sky positions and
areas of the five CANDELS fields.

In terms of depth, CANDELS is divided into 2 regions: CANDELS/Deep & Wide. CAN-
DELS/Deep covers ∼ 125 arcmin2 region within GOODS-N and GOODS-S, with a 5𝜎 limiting
magnitude of 𝐻 = 27.7 mag. CANDELS/Wide includes GOODS, the Extended Groth Strip (EGS),
COSMOS, and UDS, reaching a 5𝜎 limiting magnitude of 𝐻 ≳ 27.0 mag in the whole area. These
regions, together with the Hubble Ultra Deep Fields, create the so-called "wedding-cake" approach
regarding depth and field of view.

CANDELS images and the associated multi-wavelength photometric catalogs are publicly avail-
able. Catalogs are presented in different papers: Guo et al. 2013 for GOODS-S, Galametz et al.
(2013) for UDS, Nayyeri et al. (2017) for COSMOS, Stefanon et al. (2017) for EGS, and Barro
et al. (2019) for GOODS-N. Apart from multi-wavelength photometry, catalogs also include addi-
tional information like the stellar mass of galaxies, SFR, and photometric redshift. In the case of
GOODS-S and UDS, the stellar masses for both fields are separately published in Santini et al.
(2015), and the photometric redshifts for GOODS are published in Dahlen et al. (2013). For all
the photometric catalogs, WFC3/F160W was chosen as the reference band and was used for source
detection.

Fig. 3.4 shows the sky regions covered by the five CANDELS fields, extracted from the respective
photometric catalogs, together with some existing ancillary data in the same sky region (see the
corresponding photometric catalogs papers for a detailed description of all the ancillary data in each
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field). In all fields, the gray shaded areas correspond to different depths of the F160W mosaic. For
GOODS-N (Fig. 3.4a), the shaded zones include CANDELS/Wide and Deep. The ancillary data
shown would be GOODS HST/ACS data (Giavalisco et al. 2004; in blue), 𝐾𝑠 band from the Subaru
MOIRCS Deep Survey (MODS; Kajisawa et al. 2009; dark red), 25 optical medium bands from
the Survey for High-z Absorption Red and Dead Sources (SHARDS; Pérez-González et al. 2013) at
Gran Telescopio de Canarias (GTC; orange), GOODS Spitzer/IRAC data (Dickinson et al. 2003;
gold), together with both Spitzer/IRAC from the Spitzer Extended Deep Survey (SEDS; Ashby
et al. 2013) and 𝐾 photometry from MegaCam at Canada–France–Hawaii Telescope (CFHT; Hsu
et al. 2019) that cover the whole field.

For GOODS-S (Fig. 3.4b), the gray shaded areas include the CANDELS wide and deep region,
HST/WFC3 Early Release Science (ERS; Windhorst et al. 2011), and HUDF09 (Bouwens et al.
2010). Ancillary data shown correspond to 𝑈-band images (Nonino et al. 2009; magenta) taken
by the Visible Multi-Object Spectrograph (VIMOS) on the Very Large Telescope (VLT), GOODS
HST/ACS (Giavalisco et al. 2004; in blue), 𝐾𝑠-band image taken by both the VLT/Infrared Spec-
trometer and Array Camera (ISAAC; Retzlaff et al. 2010; green) and the VLT/High Acuity Wide
field K-band Imager (HAWK-I; Fontana et al. 2014; in yellow), and GOODS Spitzer/IRAC (Dick-
inson et al. 2003; red). The whole field is also covered by SEDS in Spitzer/IRAC.

For UDS (Fig. 3.4c), CANDELS WFC3 F160W data is marked as the gray hatched area inside
the red solid line, and ACS data are inside the red dashed line. Additional data shown are CFHT
u-band (Almaini et al., in prep.; pink), Subaru data (𝐵𝑉𝑅𝑐𝑖

′𝑧′; Furusawa et al. 2008, blue), UKIRT
Infrared Deep Sky Survey (UKIDSS; (JHK ; Almaini et al., in prep.; green), 𝑌𝐾𝑠 bands from the
HAWK-I UDS and GOODS Survey (HUGS; Fontana et al. 2014; black dashed), Spitzer/IRAC
SEDS (3.6 and 4.5 µm orange solid), and the 4 IRAC bands from the Spitzer UKIDSS Ultra Deep
Survey (SpUDS, PI: J. Dunlop; orange dashed).

For EGS (Fig. 3.4d), the light-blue shaded region represents the ACS F606W data from the
All-Wavelength Extended Groth Strip International Survey (AEGIS; Davis et al. 2007), which
overlaps the CANDELS WFC3 F160W data (dark gray inside). Additional data shown are optical
broadband 𝑢* -to-𝑧′ from the CFHT Legacy Survey (CFHTLS; Gwyn 2012; blue line), 𝐽, 𝐻, and 𝐾𝑠

bands from the Wide-field InfraRed Camera (WIRCam) Deep Survey (WIRDS; Bielby et al. 2012;
red), IRAC 3.6-to-8 µm from the Spitzer-Cosmic Assembly Deep Near-infrared Extragalactic Legacy
Survey (S-CANDELS; Ashby et al. 2015; 28 h in pink, 50 h in magenta), the NOAO Extremely
Wide-Field Infrared Imager (NEWFIRM) Medium-Band Survey (NMBS; Whitaker et al. 2011;
orange contour), and the WFC3 F140W band from 3D-HST (Skelton et al. 2014; green).

Finally, for COSMOS (Fig. 3.4e) CANDELS ACS (blue solid line) overlaps most of the WFC3
F160W footprint (gray shaded area). The ancillary data shown correspond to Spitzer/IRAC (3.6
and 4.5 µm from Ashby et al. 2013, and 5.8 and 8.0 µm from Sanders et al. 2007; red) and NEWFIRM
(𝐽1𝐽2𝐽3𝐻1𝐻2𝐾 bands; cyan). Other additional data that cover the whole WFC3 footprint are
observations from CFHT/MegaPrime (Gwyn 2012; 𝑢*, 𝑔*, 𝑟*, 𝑖*, and 𝑧*), from Subaru/Suprime-
Cam (Taniguchi et al. 2007; 𝐵, 𝑔+, 𝑉 , 𝑟+, 𝑖+, and 𝑧+), and from the Ultra Deep Survey with the
VISTA telescope (UltraVISTA; McCracken et al. 2013).

In Table 3.6 we show the HST WFC3 and ACS images available in each CANDELS fields,
according to the photometric catalogs papers. General information such as the FWHM of the PSF
and the limiting depths at 5𝜎 are also included in this table.
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Figure 3.4: Sky coverage of CANDELS fields: GOODS-N (a), GOODS-S (b), UDS (c), EGS (d), and
COSMOS (e). Adapted figures from Barro et al. (2019), Guo et al. (2013), Galametz et al. (2013), Stefanon
et al. (2017), and Nayyeri et al. (2017), respectively. Gray shaded zones represent CANDELS WFC3 F160W
mosaic, where darker zones correspond to deeper data, except for UDS, where WFC3 data are the hatched
region delimited by the red solid line and, ACS, inside the dashed red line. In EGS (d), ACS data are the
light blue larger shaded zone enclosing the WFC3 data in the center (dark gray). See details in main text.
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Table 3.6: CANDELS fields: HST ACS and WFC3 images.

Field Filter
Filter PSF Depth

name name
𝜆pivot FWHM at 5𝜎 References
(nm) (arcsec) (𝑚AB)

EGS

ACS F606W 592 0.12 28.8 Koekemoer et al. (2011)
F814W 805 0.12 28.2 ...

WFC3 F125W 1249 0.19 27.6 ...
F140W 1392 0.19 26.8 Skelton et al. (2014); Brammer et al. (2012)
F160W 1537 0.20 27.6 Koekemoer et al. (2011)

COSMOS

ACS F606W 592 0.10 28.3 Koekemoer et al. (2011)
F814W 805 0.10 27.72 ...

WFC3 F125W 1249 0.14 27.72 ...
F160W 1537 0.17 27.56 ...

GOODS-N

ACS F435W 433 0.10 27.1 Giavalisco et al. (2004)
F606W 592 0.10 27.7 ...
F775W 769 0.11 27.2 ...
F814W 805 0.11 28.1 Grogin et al. (2011); Koekemoer et al. (2011)
F850LP 903 0.11 26.9 Giavalisco et al. (2004)

WFC3 F105W 1055 0.18 26.4 Grogin et al. (2011); Koekemoer et al. (2011)
F125W 1249 0.18 27.5 ...
F140W 1392 0.18 26.9 AGHAST survey (GO: 11600; PI: B. Weiner)
F160W 1537 0.19 27.3 Grogin et al. (2011); Koekemoer et al. (2011)

GOODS-S

ACS F435W 433 0.08 28.95 / 30.55𝑏 Giavalisco et al. (2004); Bouwens et al. (2011)
F606W 592 0.08 29.35 / 31.05𝑏 ...
F775W 769 0.08 28.55 / 30.85𝑏 ...
F814W 805 0.09 28.84 Grogin et al. (2011); Koekemoer et al. (2011)
F850LP 903 0.09 28.55 / 30.25𝑏 Giavalisco et al. (2004); Bouwens et al. (2011)

WFC3 F098M 986 0.13 28.77 Windhorst et al. (2011)

F105W 1055 0.15 27.45 / 28.45 / 29.45𝑐
Grogin et al. (2011); Koekemoer et al. (2011)

and Bouwens et al. (2011)
F125W 1249 0.16 27.66 / 28.34 / 29.78𝑐 ...
F160W 1537 0.17 27.36 / 28.16 / 29.74𝑐 ...

UDS

ACS F606W 592 0.10 28.49 Grogin et al. (2011); Koekemoer et al. (2011)
F814W 805 0.10 28.53 ...

WFC3 F125W 1249 0.20 27.35 ...
F160W 1537 0.20 27.45 ...

Notes:
𝑎 The 5𝜎-depths in this table, unless otherwise specified, have been measured in ∼5,000 circular apertures, with radius
equal to the FWHM of the PSF, randomly placed in regions of the image which are free of objects.
𝑏 Limiting depths in these ACS images have been measured inside an aperture with a fixed radius of 0′′.09. Each filter has
two measurements: one for GOODS-S v2.0 images and the other one for HUDF.
𝑐 Limiting depths in these WFC3 images have been measured inside an aperture with a fixed radius of 0′′.17. Each filter
has three measurements: for CANDELS Wide, CANDELS Deep, and HUDF09 (respectively, as they appear in the table).
References: Data for this table has been extracted from Stefanon et al. (2017) for EGS, Nayyeri et al. (2017) for COSMOS,
Barro et al. (2019) for GOODS-N, Guo et al. (2013) for GOODS-S, and Galametz et al. (2013) for UDS.
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3.2 The James Webb Space Telescope

JWST is currently the most powerful observatory ever built and is expected to be the premier
observatory of the next decade. It is the result of an international collaboration led by NASA, ESA
and the Canadian Space Agency (CSA) on which more than ∼20,000 people have worked.

The history of JWST began in 1989, when it took place the first conference about the successor
space telescope of Hubble, the then called Next Generation Space Telescope (NGST), and in which
its scientific opportunities and technological requirements for the mission were discussed. The
feasibility of the project was evaluated during the following years and it was officially initiated in
1996. In 2002, the NGST was renamed the James Webb Space Telescope (JWST, or also, Webb),
after James E. Webb (1906-1992), the second administrator of NASA, and its construction began
in 2004. The project suffered from numerous delays and multiple cost overruns, which made that
final tests and the folding of the telescope were not completed until 2021 and that the launch was
postponed several times.

Finally, on 25 Dec 2021, Webb was launched on an Ariane 5 rocket from EAS’s spaceport in
French Guiana and was released to its route ∼26 min after the liftoff. Unlike Hubble that orbited the
Earth, the destination of JWST was the second Sun-Earth Lagrange point (or L2), located at ∼1.5
million kilometers away from the Earth in the opposite direction of the Sun, and which makes service
missions impossible. Both the launch and subsequent deployments of the telescope were successfully
completed and, 29 days after launch, the telescope arrived at its desired orbit around L2 with
minimal propellant costs (see Fig. 3.5a). The following 6 months of commissioning and calibration
showed that the mission and science requirements were met or, even, exceeded (Rigby et al. 2022a).
On 12 July 2022, the first JWST science images and spectra were publicly released (JWST Early
Release Observations, ERO; Pontoppidan et al. 2022) showing the exceptional capabilities of JWST
for both imaging and spectroscopy.

In July 2022, JWST began normal science operations and, in the following months, science
papers quickly began to appear. Originally, there are four main themes into which JWST science
goals are divided: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars
and Protoplanetary Systems, and Planetary Systems and the Origins of Life (Gardner et al. 2006).
In this regard, JWST can, among other things, observe galaxies from the earliest phases of the
Universe to nowadays, study the birth of stars and protoplanetary systems, or shed light onto the
origin of life by observing exoplanets or objects within our Solar System.

Regarding the future of Webb, the observatory has propellant for significantly more than the
initially programmed 5-10-year mission, possibly for 20-26 years. However, there are other factors
that can determine its lifetime apart from propellant, such as micrometeoroid impacts or instrument
failures. In May 2022, JWST was hit by a micrometeoroid that produced a significant larger damage
than expected on the primary mirror. Should a similar impact be repeated ∼10 times more, it would
mean the end of the observatory lifetime because of the wavefront degradation. Although Cycle 2
will reduce the probability of these impacts (by limiting the pointing into the direction of these
micrometeoroids), the statistics of how often these big impacts occur are still uncertain. In addition
to this, science instrument and spacecraft components do not last forever and, unlike Hubble, Webb
is not designed to be serviced by any space shuttle. But, although the factors that will ultimately
limit the science lifetime of JWST are still known, Webb is expected to have a long, productive life.
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a)

b) c)

d) e)

Figure 3.5: Webb images. a) JWST from launch to L2. The position of Sun-Earth L2 is shown on the
top right. b) Front (left) and side (middle) view of JWST. Images show how the Optical Telescope Element
(OTE) and the Integrated Science Instrument Module (ISIM) are separated from the spacecraft bus and
are shaded from sunlight by the sunshield. c) Comparison between JWST image quality (with MIRI) with
respect to that of Spitzer IRAC 8.0 µm. d) Schematic view of the optical design of JWST, which is a three-
mirror anastigmat with a primary mirror, secondary mirror, tertiary mirror, and an additional fine steering
mirror. e) Angles in which JWST can rotate for observations. The inset shows the allowed rotation with
respect to the axis pointing to the Sun direction. Adapted figure from STScI. Credits: AURA/S. Lifson for
a), McElwain et al. (2023) for b) and d), NASA/ESA/CSA/STScI/JPL-Caltech for c), STScI for e).
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3.2.1 JWST general characteristics

JWST is the largest, infrared-optimized space telescope ever built (Gardner et al. 2006), with a
primary mirror of 6.605 m in diameter (25.0 m2 in area) and a total weight of ∼6,500 kg. Regarding
its optical design, Webb is a three-mirror anastigmat, with a primary, secondary and tertiary mirror
that correct spherical aberration, astigmatism, coma, and field curvature (Korsch 1972). In addition
to these three mirrors, JWST uses an additional fine steering mirror to actively point light into
the science instruments. Fig. 3.5d shows an schematic view of this optical design. As shown in
Fig. 3.5b, the primary mirror is composed of 18 independent 1.32 m segments separated by 7 mm
gaps and which are capable of folding up to minimize the volume of the telescope during the launch.
These mirrors are semi-rigid and are controlled by six actuators each. The size of the secondary,
tertiary and fine steering mirrors is 74 cm×74 cm, 73 cm×52 cm, and 17 cm×17 cm, respectively, and
their surface shapes are convex, concave, and flat. All mirrors are made of beryllion, an ultra-light
material, coated with a 100 nm layer of gold to increase their IR reflectivity. Webb has an effective
focal ratio of 𝑓 /20 and an effective focal length of 131.4 m. At the focal plane, the field is ∼ 18′×9′.

Webb orbits the Sun-Earth L2, one of the five Sun-Earth Lagrange points in which the gravita-
tional force exerted by the Sun and Earth equals the centripetal force of JWST as it moves with the
Earth (Fig. 3.5a, top right). This position enables Webb to keep its orbit with reduced propellant
costs and, also, to keep communications with the Earth through the Deep Space Network, NASA’s
international array of giant antennas managed by the Jet Propulsion Laboratory. Like Hubble,
Webb has reaction wheels onboard that are used to rotate the observatory for pointing with an ab-
solute accuracy below 0.1′′. During observations, solar photons pressure causes the reaction wheel
to accumulate momentum, which is periodically released by firing propellant through the thrusters.

The telescope can be divided into three main parts: the Optical Telescope Element (OTE),
the Integrated Science Instrument Module (ISIM), the sunshield, and the spacecraft bus. The
spacecraft bus is where all the necessary support functions for JWST operation are, providing
electrical power (from the solar array), thermal and attitude control, communications services, and
propulsion. The sunshield separates the spacecraft bus, located at the bottom of JWST, from
the telescope and science instruments. This sunshield consists of five layers of ∼ 21 m × 14 m in
size (around the size of a tennis court), composed of Kapton E (a polymer) with aluminum and
doped-silicon coatings. While Webb is observing, the sunshield protects the telescope from the
heat and light of, mainly, the Sun, but also from that of the Earth (and Moon). This is essential
for keeping the optics and instruments cold for infrared measurements (the operating temperature
range for the mirrors is ∼35-55 K; McElwain et al. 2023) and for limiting undesired background
measurements (see Rigby et al. 2022b for a discussion of JWST backgrounds). In this regard, the
shade produced by the sunshield on the telescope and science instruments limits the accessible
portion of sky observed by Webb at each time. Fig. 3.5e shows the orientation of JWST with
respect to the Sun and the allowed angles in which the telescope can rotate for pointing. Webb
can observe ∼40% of the sky at each position, but as it moves around its L2 orbit, the whole sky
becomes accessible in approximately 6 months time.

Webb is optimized to observe infrared wavelengths, presenting a broader wavelength coverage
(∼600 nm to 28 µm) than that of Hubble and a higher sensitivity. In fact, the imaging sensitivity
of Webb (considered as the faintest point source that it can detect in 10,000 s with SNR = 10) is
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∼6 times better than that of Hubble at 1.5 µm, and 68 better at 3.6 µm than that of Spitzer/IRAC1

(Rigby et al. 2022a). Although the requirement for JWST was to be diffraction limited at 2 µm,
during the commissioning it was found that this requirement was exceeded, being Webb diffraction
limited at 1.1 µm (see Rigby et al. 2022a for more about JWST science performance, which is better
than expected across the board). This implies that JWST has approximately the same angular
resolution at 2 µm than that of Hubble at 700 nm. 3.5c shows the image quality improvement of
JWST with respect to Spitzer IRAC 8.0 µm.

3.2.2 Scientific instruments

All the scientific instruments in Webb are located within the ISIM. There are four operating instru-
ments onboard:

• Near-Infrared Camera (NIRCam; Rieke et al. 2003, 2005; Beichman et al. 2012)

• Near-Infrared Spectrograph (NIRSpec; Jakobsen et al. 2022)

• Near-Infrared Slitless Spectrograph/Fine Guidance Sensor (NIRISS/FGS; Doyon et al. 2012)

• Mid-Infrared Instrument (MIRI; Rieke et al. 2015; Wright et al. 2015)

All instruments except MIRI are passively cooled and operate at ∼ 39 K (−234 ◦C), which is
the ideal temperature for their HgCdTe NIR detectors. MIRI observes in the mid-infrared and has
a different type of detectors (arsenic doped silicon, Si:As), which need an operating temperature
below ∼ 7 K (−266 ◦C) to operate properly. Since passively cooling alone is not able to reach such
a temperature, MIRI uses a helium cryocooler system to cool its detectors.

The two primary cameras onboard are NIRCam and MIRI, optimized for near-infrared (0.6-
5.0 µm) and mid-infrared (5.6 − 25.5 µm) imaging, respectively. In addition to imaging, these
instruments also offer other operating modes like coronography imaging or low/medium-resolution
spectroscopy. NIRSpec offers four different spectroscopic modes with 𝑅 ∼ 100,∼1,000, and ∼2,700
and over the 0.6 − 5.0 µm wavelength range: multi-object spectroscopy (MOS) mode with a mi-
croshutter assembly (MSA), imaging spectroscopy with the Integral Field Unit (IFU), a fixed SLIT
mode for high contrast spectroscopy of single objects, and a time-series spectroscopy mode for
bright sources. NIRISS complements NIRCam and NIRSpec by providing, in the wavelength range
from 0.6 to 5.0 µm, slitless spectroscopy for both wide field and single objects (𝑅 = 150 and 700 at
1.4 µm, respectively), high-contrast interferometric imaging, and medium- and broad-band imag-
ing. The FGS, which is packed with NIRISS, is a near-infrared camera (∼0.6 to 5.0 µm) that uses
guide stars in the focal plane to provide data for fine pointing, and attitude determination and
stabilization. In contrast to the one on HST, it is used exclusively for the latter purposes and it is
not available for scientific proposals. Fig. 3.6a shows the locations of the scientific instruments on
JWST focal plane and their fields of view, together with some of the operating modes offered for
them.

1JWST limiting point source sensitivities, measured for 𝑆𝑁𝑅 = 10 detections in 10,000 s using 𝑟 = 0.08′′ apertures,
are 7.9 nJy (29.1 mag) for NIRCam/F150W (λ ∼ 1.5 µm), and 8.8 nJy (29.0 mag) for NIRCam/F356W (λ ∼ 3.6 µm).
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In this thesis, we have made used of broad-band images taken with NIRCam imaging mode. In
Section 3.2.2.1, we give an overview of this instrument based on the JWST User Documentation
(JDOX, 2016-; updated in Dec 2022).

3.2.2.1 NIRCam

NIRCam is the primary near-infrared camera for Webb and can observe from of 0.6 to 5.0 µm. It
has two different channels for imaging: the Short Wavelength channel (SW; 0.6-2.3 µm) and the
Long Wavelength channel (LW; 2.4-5.0 µm). The LW channel has 2 detectors with 2,040 × 2,040
pixels of 0.063′′/pix and with a field of view of 129′′ × 129′′ each, while the SW has 8 detectors of
2,040 pix × 2,040 pix with 0.031′′/pix and whose fields of view, 64′′ × 64′′ each, almost overlap that
of the LW (see in Fig. 3.6b). The two NIRCam modules, A and B, are separated by a 42-48′′gap,
provide a total field of view is 2 × 2.2′ × 2.2′ (9.7 arcmin2) and can be simultaneously observed in
the SW and LW channels by using a dichroic. General characteristics of the SW and LW channels
are summarized in Table 3.7

NIRCam detectors achieve a Nyquist sampling of the PSF or better (PSF FWHM>2 pix) above
2 µm in the SW channel and 4 µm in the LW channel. For the undersampled PSFs at lower
wavelengths, the PSF sampling can be improved by using subpixel dithering techniques. According
to the Cycle 1 Absolute Flux calibration program, the FWHM of the PSFs for NIRCam filters ranges
from 0.029′′(or 0.94 pix) to 0.164′′(2.6 pix) for the shortest wavelength filter (F070W; 𝜆 = 0.704 µm)
and longest wavelength filter (F480M; 𝜆 = 4.834 µm), respectively. Regarding the sensitivity, this
is very high for the imaging mode: NIRCam can detect point sources of 𝑚AB ∼ 29 (𝑚AB ∼ 29.75)
with SNR = 10(5) in 10,000 s F200W (F277W) images.

NIRCam provides imaging in different filters: 13 filters for SW and 16 for LW. These filters are
classified into narrow (𝑅 ∼ 100), medium (𝑅 ∼ 10), wide (𝑅 ∼ 4), and extra-wide (𝑅 ∼ 1). Most of
these filters are located in the filter wheel, but there is an additional pupil wheel that holds 6 filters
and other elements like grisms, coronograph masks, or a clear position, among others, and which
can be combined with filters from the filter wheel. In total, per each NIRCam module, there are 48
optical elements distributed into two filter wheels and two pupil wheels (one filter and pupil wheel
per NIRCam channel). For this thesis, we have made used of six out of the eight NIRCam wide
filters: F115W, F150W, and F200W in the SW channel, and F277, F356W, and F444W in the LW
channel. General information for these filters is shown in Table 3.8 and total (system( throughputs
are shown in Fig. 3.6c.

In this section, we have focused on the imaging mode of NIRCam, since it is the observing mode
used in this thesis. Nevertheless, NIRCam provides four additional observing modes: coronography
imaging, wide field slitless spectroscopy (WFSS), together with time-series imaging and time-series
spectroscopy. Coronography imaging can be performed in different wavelengths (1.8-2.2 µm and
2.8-5.0 µm) with 5 occulting masks and in a 20′′ × 20′′ field of view (outside that of the imaging
field of view; see Fig. 3.6 a,b). Wide field slitless spectroscopy can be conducted in the LW
channel (2.4-5.0 µm, 𝑅 ∼ 1,600 at 4 µm, and a field of view of 2 × 129′′ × 129′′) by using two grisms
with orthogonal orientations (GRISMC and GRISMR in Fig. 3.6 b). Time-series imaging is the
photometric monitoring of time-variable bright sources in the whole NIRCam wavelength range
and has the same field of view as that of the imaging mode. Grism time-series spectroscopy
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a)

b)

c)

Figure 3.6: Scientific instruments and NIRCam images. a) JWST focal plane and field of view of the
scientific instruments (highlighted) and the FGS. Several observing modes for the instruments are marked
in different colors. b) NIRCam modules and field of view for both the short wavelength (SW) and long
wavelength (LW) channels. Both channels can be simultaneously observed. c) Total system throughputs
for NIRCam broadband filters. The ones used in this work have been highlighted. The dark gray bar in the
middle is approximately the dichroic cutoff between the SW and LW channels. Adapted figure from STScI.
Credits: STScI for all images.
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Table 3.7: General characteristics of NIRCam channels.

Short Wavelength (SW) Long Wavelength (LW)
channel channel

Wavelength coverage 0.6−2.3 µm 2.4−5.0 µm
Number of detectors 8 2
Field of view (per detector) 64′′ × 64′′ 129′′ × 129′′

Field of view (all detectors) 2 × 2.2′ × 2.2′ (with 5′′gaps) 2 × 2.2′ × 2.2′

Gap between detectors 5′′and 44′′ 48′′

Pixel Scale 0.031′′/pix 0.063′′/pix
Pixel Size 18 µm × 18 µm 18 µm × 18 µm
Image format (pix2) 8 × 2,040 pix × 2,040 pix 2 × 2,040 pix × 2,040 pix
PSF FWHM 2 pix at 2.0 µm 2 pix at 4.0 µm

Reference: JWST User Documentation (JDOX, 2016-; updated in Dec 2022).

Table 3.8: Broadband NIRCam filters used in this thesis.

Filter Central wavelength𝑎 FWHM𝑏

Channel
name (µm) (µm)
F115W 1.154 0.264 SW
F150W 1.501 0.335 SW
F200W 1.989 0.469 SW
F277W 2.762 0.706 LW
F356W 3.568 0.724 LW
F444W 4.404 1.114 LW

Notes:
𝑎 The provided central wavelengths, unless otherwise stated, correspond
to the pivot wavelength: 𝜆pivot ≡

∫
𝑇 (𝜆) 𝑑𝜆∫

𝑇 (𝜆) 𝑑𝜆/𝜆2 , where 𝑇 (𝜆) is the filter
transmission.
𝑏 The width of the filter is calculated as the difference between the two
wavelengths at which the transmission of the filter is half maximum.
References: JWST User Documentation (JDOX, 2016-; updated in Dec
2022) and the Spanish Virtual Observatory (SVO; https://svo.cab.

inta-csic.es/)

https://svo.cab.inta-csic.es/
https://svo.cab.inta-csic.es/
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is the spectroscopic monitoring of time-varying, isolated, bright sources over 2.4-5.0 µm and with
𝑅 ∼ 1,600 at 4 µm. In addition, NIRCam also performs wavefront measurements which are essential
to periodically align the segments of the primary mirror.

3.2.3 Introduction to JWST cosmological surveys

The combination of Webb’s large aperture, diffraction-limited images, and unprecedented IR sen-
sitivity over a wide wavelength range makes JWST a perfect observatory for deep galaxy surveys.
As discussed in Section 1.3, one of the most promising features of Webb is that, thanks to its
exceptional capabilities, can expand the 𝑧 ∼ 10 − 11 limit of detectable galaxies with Hubble (e.g.
Castellano et al. 2022). This redshift limit is imposed by the red cutoff at 1.7 µm in HST, which
limits the detection of the characteristic Lyman-break signature in the galaxy SEDs of LBGs to
redshifts below that limit (see Section 1.3.1). In contrast, the wide IR coverage by JWST enables
it to reach higher redshifts (possibly, up to 𝑧 ∼ 15).

Nevertheless, Webb will not only be useful for the detection of high-redshift galaxies, but it will
also study intermediate-redshift galaxy populations (e.g., 1 < 𝑧 < 4) with better spatial resolution
(subarcsec resolution in all bands) and IR sensitivity than ever. This will be particularly helpful to
better constrain the properties of the stellar populations in galaxies, together with their photometric
redshifts, which is of particular interest for this thesis. Fig. 3.7, adapted from Carnall et al. (2023),
shows the improvement JWST has provided in the derivation of galaxy properties from SED-
fitting techniques. This figure shows, with blue dots, previous available CANDELS photometry
measurements for a galaxy from the CANDELS EGS catalog (Stefanon et al. 2017), and the best-
fitting SED model in green. The posterior distributions of the galaxy redshifts and stellar masses
are shown in green in the insets. According its redshift distribution, this galaxy could be located in
almost anywhere at cosmic history between 0.5 ≲ 𝑧 ≲ 4.5, and this is mainly due to the enormous
uncertainties in the available photometric points. Since the wavelength limit of HST in ∼ 1.7 µm,
this galaxy would only be detected in HST in very few bands, since most bands would be below
the Lyman break. Beyond this limit, we rely on a combination of ground-based data in the K-
band and Spitzer/IRAC data at longer wavelengths (5 right-most blue dots). However, there are
not photometric data at 𝜆 ≈ 2.0 − 3.0 µm between 𝐾𝑠 and IRAC 3.6 µm, which means that the
Balmer break/D4000 spectral feature cannot be constrained, which also contributes to the stellar
mass and redshift uncertainties. The new NIRCam available data from JWST is shown in orange,
with significantly smaller photometric uncertainties. This, together with the wide wavelength
coverage provided by NIRCam, enables a better SED fit that constrains the redshift and stellar
mass distributions considerably better.

There are 13 JWST Director’s Discretionary-Early Release Science (DD-ERS) program that
were conducted in the 5 following months after the JWST commissioning. These ERS have no ex-
clusive data access period and their data are immediately public. In this thesis, we make use of data
from the Cosmic Evolution Early Release Science Survey (CEERS; PI: S. Finkelstein; Finkelstein
et al., in prep.), an ERS program in the category of “Galaxies and Intergalactic Medium”. Other
ERS programs in the same category that probe intermediate to high-redshift galaxies are GLASS
(JWST-ERS-1324; PI: T. Treu) and TEMPLATES (Targeting Extremely Magnified Panchromatic
Lensed Arcs and Their Extended Star Formation; JWST-ERS-1335; PI: J. Rigby).
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Figure 3.7: Comparison of the SED fit of a 𝑧 > 4 galaxy in the pre-JWST era (blue dots and green model)
and using new JWST CEERS data (orange dots and red model). The object belongs to the CANDELS
EGS photometric catalog (Stefanon et al. 2017). The blue dots correspond to CANDELS HST photometry,
together with 𝐾𝑠 band and the four Spitzer/IRAC bands from the photometric catalog. The orange dots
correspond to new NIRCam photometric data. The SED-fitting-derived probability distributions for stellar
mass and redshift are shown as an inset (green for the CANDELS fit and red for the JWST fit). The JWST
SED fit significantly better constrains the redshift and stellar mass distributions. An RGB postage stamp
of the galaxy is also shown (5′′ × 5′′), created with NIRCam F444W, F200W, and F150W images. Credits:
Adapted figure from Carnall et al. (2023).

3.2.3.1 The CEERS Survey

The Cosmic Evolution Early Release Science Survey (CEERS; PI: S. Finkelstein; Finkelstein et
al., in prep.) is one of 13 JWST ERS programs that covers 100 arcmin2 using imaging and spec-
troscopy. The primary goal of CEERS is to find galaxies at the earliest cosmic times (𝑧 ≳ 9 − 10),
demonstrating at the same time the efficiency of using survey parallel observations with JWST
for the exploration of the high-redshift Universe. These observations include NIRCam and MIRI
imaging, 𝑅 ∼ 100 and 𝑅 ∼ 1,000 with NIRSpec, and 𝑅 ∼ 1,500 slitless grism spectroscopy with
NIRCam. The main motivation for this key science goal is the poor agreement in the history of the
SFRD at 𝑧 ≳ 8, which is due to the scarce number of galaxies observed at these high redshifts in the
pre-JWST era. CEERS will provide a more complete census of high-redshift galaxies, observing
∼ 5− 50 galaxies at 𝑧 > 10 (based on predictions of previous simulations). Depending on the abun-
dance of high-redshift galaxies observed by this survey, CEERS will be able to distinguish between
different cosmological models that predict different star formation efficiencies at early epochs.

The CEERS science addresses two main JWST scientific themes: First Light and Reionization
and The Assembly of Galaxies. According to the CEERS program proposal (Finkelstein et al.
2017), this will be done by: ii) discovering and constraining the abundance and physical nature
of 𝑧 > 9 galaxies, as well as robustly estimating the stellar mass of galaxies at 𝑧 > 4; ii) by
providing spectra for ∼1,000 galaxies at 𝑧 ∼ 1− 9, which will enable to constrain their redshifts and
physical conditions; iii) by quantitatively studying morphological features of 𝑧 > 3 galaxies, and
iv) by measuring mid-IR emission in galaxies to look into dust-obscured star formation and SMBH
growth at 𝑧 ∼ 1 − 3. All this will allow us to improve our knowledge about the galaxy assembly
and black hole growth at 𝑧 ∼ 1 − 10, shedding light onto the interrelated processes that affect the
evolution of galaxies (see Finkelstein et al., in prep., for a full description of CEERS science goals).
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a)

b)

Figure 3.8: CEERS images. a) Layout of CEERS observations: whole program (top middle), June
observations (bottom left), and December observations (bottom right). b) CEERS NIRCam Epoch 1 color
mosaic. We have highlighted and zoomed-in four 1 < 𝑧 < 4 galaxies with M★ > 1010 M⊙. Credits: D. Kocevski
for a), and NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/R. Larson/Z. Levay for the mosaic in b).
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The CEERS field covers the majority of the CANDELS/EGS field probed with HST/WFC3,
for which multiple multi-wavelength data are available, including imaging and spectroscopy obser-
vations from ground-based and space telescopes (see Fig. 3.4d). CEERS observations will cover the
∼ 1 − 20 µm wavelength range and will finally consist of 10 NIRCam pointings for imaging in the
SW and LW channels, with 4 of these pointings observed in parallel with NIRSpec spectroscopic
observations, and 6, with MIRI imaging. In addition, 4 of the 10 pointings include NIRCam wide-
field slitless spectroscopy. Originally, CEERS observations were originally planned to be conducted
in one observing period, either in the June or December observability window of the EGS field.
Nevertheless, it was finally decided to split the observations into two epochs due to time limitations
in June after the JWST commissioning. Thus, CEERS observations can be divided into: CEERS
Epoch 1, taken the 21st June 2022, and CEERS Epoch 2, in Dec 2022. Fig. 3.8a shows CEERS
observations layout for the complete survey (top), and separated for June (bottom left) and De-
cember (bottom right) observations. On the background of this figure, CANDELS HST/WFC3
observations are shown in gray.

The results from this thesis are based on CEERS Epoch 1 data. These consist of 4 out of
the 10 NIRCam pointings, labeled as 1, 2, 3, and 6 pointings, together with 4 parallel MIRI
observations (see Fig. 3.8a, bottom left). In particular, for this thesis, we make use of CEERS Epoch
1 NIRCam observations, as described in Chapter 6, which will be combined with CANDELS HST
observations in the same field. CEERS Epoch 1 NIRCam observations cover an area of 35.5 arcmin2.
Fig. 3.8b shows an RGB image of the NIRCam mosaic for Epoch 1, formed from NIRCam1,
NIRCam2, NIRCam3, and NIRCam6 pointings, together with a zoom-in of four M★ > 1010 M⊙
galaxies at 1 < 𝑧 < 4. CEERS Epoch 2 was observed in December 2022 and is composed of
the remaining CEERS observations: 6 NIRCam imaging pointings with parallel NIRSpec MSA
observations (𝑅 ∼ 1,000), plus 4 NIRCam WFSS pointings (𝑅 ∼ 100) in parallel with MIRI imaging.

NIRCam Epoch 1 observations were conducted by simultaneous imaging of the following NIR-
Cam SW and LW filters: F115W+F277W, F115W+F356W, F150W+F410M, and F200W+F444W.
Table 3.9 shows a summary of NIRCam Epoch 1 images presented in Finkelstein et al. (2023), to-
gether with the available HST broadband images in these mosaics. The reduction and calibration
of Epoch 1 NIRCam images is described in Bagley et al. (2022). Regarding Epoch 1 MIRI observa-
tions, these were obtained in parallel to NIRCam images in the following filters: F560W, F770W,
F1000W, F1280W, F1500W, F1800W and F2100W (see Yang et al. 2023 for more information
about these images and their reduction).

As regards this thesis, CEERS moderate depth (see Table 3.9) and relatively large area form a
perfect combination to study massive galaxies at 1 < 𝑧 < 4, in which we are interested in this thesis.
In addition to this, as part of the CEERS collaboration, we have a privileged access to CEERS
data months before they are publicly released, which will facilitate our work. CEERS reduced
observations (images and spectra) and other derived data products will be publicly released and
available to the scientific community on its website ceers.github.io/releases.html and, in the
upcoming future, via MAST:10.17909/z7p0-8481. Among the derived data products, we can men-
tion a robust sample of 𝑧 > 9 candidates and preliminary photometric catalogs for NIRCam+HST
data, MIRI data, and spectroscopic catalogs.

ceers.github.io/releases.html
https://archive.stsci.edu/doi/resolve/resolve.html?doi=10.17909/z7p0-8481
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Table 3.9: CEERS NIRCam Epoch 1 imaging data and HST broadband filters.

Telescope Instrument Filter PSF FWHM Limiting
(arcsec) Magnitude (5𝜎)

JWST NIRCam SW F115W 0.066 29.2
F150W 0.070 29.0
F200W 0.077 29.2

NIRCam LW F277W 0.123 29.2
F356W 0.142 29.2
F410M 0.155 28.4
F444W 0.161 28.6

HST ACS F606W 0.118 28.6
F814W 0.124 28.3

WFC3 F105W 0.235 27.1
F125W 0.244 27.3
F140W 0.247 26.7
F160W 0.254 27.4

Notes: Values have been extracted from Finkelstein et al. (2023) and are aver-
aged over the four Epoch 1 NIRCam fields. Limiting magnitudes are measured
in 𝑟 = 0.1′′ apertures, and corrected to total magnitudes based on the PSF flux
enclosed in that aperture.

3.3 Final considerations

Fortunately for the scientific community (and for this thesis), not only JWST did not explode when
it was launched, but it is currently running with technical imaging capabilities which are better
than expected. These exceptional imaging capabilities allow JWST to extend the high-spatial
resolution of HST in the optical to the NIR, reaching a resolution of ∼ 0.16′′ at 4.4 µm with JWST.
In addition, the CEERS survey, which overlaps the majority of the CANDELS/EGS field probed
with HST, meets the scientific requirements, in terms of depth and area, to allow us to study a
representative sample of massive galaxies at 1 < 𝑧 < 4. And these data are already available for
us. The aim of the following chapter will be to present the tools to be applied on these massive
galaxies in order to derive the properties of their their stellar populations and, namely, their SFHs
from our 2D analysis.





CHAPTER4
Recovering Star Formation Histories:

Stellar Population Synthesis in 2D

Stellar population synthesis (SPS) is a fundamental tool in the study of unresolved stellar popula-
tions. Since its early beginnings (e.g., Tinsley 1968; Spinrad & Taylor 1971; Faber 1972; Searle et al.
1973; Tinsley & Gunn 1976; Bruzual 1983), SPS methods have improved as we have increased our
understanding of stellar physics and evolution, hand in hand with computational advances (e.g.,
Charlot & Bruzual 1991; Bruzual & Charlot 1993; Worthey et al. 1994; Fioc & Rocca-Volmerange
1997; Leitherer et al. 1999; Bruzual & Charlot 1993) Due to the difficulty in probing the UV and
IR spectral ranges, the first synthesis models were based on optical-to-NIR SEDs, but in recent
decades, significant progresses have been made in adding information from the far-ultraviolet (FUV)
to the far-infrared (FIR) SEDs (see Conroy 2013 and references therein).

In this chapter, we first give a brief overview of the most extended SPS modeling technique,
highlighting the main fundamental parameters that affect the SPS modeling in Section 4.1 (see
Walcher et al. 2011 and Conroy 2013 and for a comprehensive review of SPS modeling). In Sec-
tion 4.2, we discuss the details and assumptions made in the SPS modeling used for this work. The
SPS code used in this work is presented in Section 4.3. Finally, in Section 4.4, we outline the SPS
method developed and applied for each galaxy in this thesis, which makes use of the information
provided by its spatially-resolved SEDs.

4.1 Stellar population synthesis modeling: an overview

The aim of stellar populations synthesis is to determine the characteristics of the unresolved stellar
population in a galaxy from its spectrum or, in our case, from its SED. More specifically, the final
goal of SPS is to recover the fundamental properties of the stellar population which is responsible
for that SED, such as the galaxy Star Formation History (SFH), total stellar mass, metallicity, dust
attenuation, or initial mass function (IMF), all of which leave an imprint on the SED. The most
extended SPS technique is the “isochrone synthesis” (Chiosi et al. 1988; Charlot & Bruzual 1991)
and, as its name indicates, it makes use of isochrones to determine the spectral evolution of stellar
populations. This method, schematically shown in Fig. 4.1 from Conroy (2013), assumes that the
evolution of the stellar population in a galaxy can be described by a series of Simple/Single Stellar
Populations (SSPs), which consist of families of stars that are simultaneously and instantaneously
born with the same metallicity, 𝑍.
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To model the evolution of the spectrum emitted by an SSP, three different ingredients are
required: isochrone tables to model stellar evolution, an IMF, and a library of stellar spectra (see
Section 4.1.1). Isochrones define the position in the Hertzsprung-Russell (HR) diagram of stars with
a same age and metallicity. The IMF indicates how the different evolutionary stages in the isochrone
are populated by stars with different initial masses. Stellar spectra libraries include (theoretical
or empirical) spectra for stars of all the spectral types and for a wide range of metallicities. The
spectrum emitted by each SSP is calculated by summing the spectrum of all the individual stars
on each isochrone and is given by (Conroy 2013)

𝑆SSP,λ (𝑡, 𝑍) =
∫ 𝑚up

𝑚low

𝑓star,λ (𝑚, 𝑡, 𝑍) 𝜙(𝑚) d𝑚 (4.1)

where 𝑆SSP,λ is the emitted spectrum by the time- and metallicity-dependent SSP per unit
wavelength and time interval (normalized to an initial mass of 1 M⊙), 𝑓star,λ is a stellar spectrum,
𝜙(𝑚) is the IMF, and 𝑚 is the zero-age main sequence (or initial) stellar mass.

To reproduce the spectrum of the stellar population in a galaxy we need to use what is known
as a Composite Stellar Population (CSP), for which SSPs are the building blocks. To build the
CSP, the SSPs spectra are combined with a parametrized evolution of the star formation rate (i.e.,
the star formation history, SFH), 𝑆𝐹𝑅(𝑡), and a chemical enrichment model described by 𝑍 (𝑡). The
shape of the SFH is not known a priori and a parametrized functional form is usually adopted.
For instance, the middle-left panels of Fig.4.1 show time-delayed exponentially declining SFHs,
i.e., 𝑆𝐹𝑅(𝑡) ∝ 𝑡 · 𝑒−𝑡/𝜏 for different star formation time-scales, 𝜏, together with the corresponding
chemical enrichment.

The effects of dust on the spectrum must also be taken into account. On the one hand, dust
attenuates the spectrum in the UV-to-NIR. This is usually modeled by applying a dust attenuation
curve, whose shape is kept fixed, but its normalization is fitted. On the other hand, dust emits in
the IR. This emission consists of the continuum (dominates at λ > 50 µm and it is produced by
dust at low temperatures, 𝑇 ∼ 15 − 20 K, or/and very large grains) together with several emission
features (clearly visible at λ < 12 µm and mainly attributed to polycyclic aromatic hydrocarbons,
PAHs). Fig.4.1 (bottom) shows the final spectrum recovered from the SPS modeling before (blue)
and after (red) applying the dust model.

Thus, taking into account all the above ingredients, the spectrum emitted at a time 𝑡 by a
stellar population in a galaxy is given by (Conroy 2013)

𝑆CSP,λ (𝑡) =
∫ 𝑡

0

(
𝑆𝐹𝑅(𝑡 − 𝑡′) 𝑆SSP,λ (𝑡 − 𝑡′, 𝑍) 𝑒−𝜏𝑑,λ (𝑡−𝑡

′ ) + 𝑘 𝑓dust,λ (𝑡 − 𝑡′, 𝑍)
)

d𝑡′ (4.2)

where the integration variable 𝑡′ is the stellar population age of each SSP, and the dust modeling
is incorporated by the dust optical depth, 𝜏𝑑,λ (𝑡′)1, for dust attenuation, and by the function 𝑓dust,λ
for dust emission, being 𝑘 a normalization constant to balance the bolometric luminosity absorbed
and reradiated by dust.

1𝜏𝑑 is directly related to the attenuation 𝐴λ : 𝜏𝑑 = ln 10
2.5 𝐴λ = 0.921 𝐴λ
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Figure 4.1: Schematic diagram of the SPS modeling with the isochrones technique, extracted from Conroy
(2013). SSPs are built from an IMF, isochrone tables, and stellar spectra libraries. These SSPs are com-
bined with a parametrized SFH and chemical enrichment and dust models to produce the CSP spectrum
(see details in the main text). The middle-left panels show an example of SFH parametrized by a time-
delayed exponential, i.e., 𝑆𝐹𝑅(𝑡) ∝ 𝑡 · 𝑒−𝑡/𝜏 , for two different star formation time-scales: 𝜏 = 1 Gyr (black) and
𝜏 = 10 Gyr (red), and the corresponding assumption on the evolution of the metallicity (below). The dust
attenuation panel (middle right) shows the attenuation law from Calzetti et al. (2000; red line) and the MW
extinction curve (Cardelli et al. 1989; O’Donnell 1994; in black). In the bottom panel, the resulting SPS
spectrum is shown before (blue) and after (red) applying the dust model. Nebular emission is not included
in these models.
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Finally, although not included in equation 4.2, the emission of the ionized gas, known as nebular
emission, should also be considered when modeling SEDs, since it can account for ∼ 20−60% of the
UV-optical broadband fluxes in some extreme cases (Anders & Fritze-v. Alvensleben 2003). Nebular
emission is composed of two components: continuum emission and nebular emission lines. The
continuum consists of free-free, free-bound, and two-photon emission, while nebular emission lines
are mainly generated in recombination processes and forbidden and fine structure line transitions.
Only a handful of the widely used SPS codes include prescriptions for nebular emission (e.g., neither
Bruzual & Charlot 2003 nor Maraston 2005 include it), although they can be coupled with existing
photoionization codes, such as CLOUDY (Ferland et al. 2013) or MAPPINGS-III (Groves et al.
2004) that treat the stellar and nebular energy distributions in a detailed fashion.

For the fit to photometric SEDs (the case of this thesis), the CSP spectrum is transformed into
broadband colors by convolving the spectrum with the filter transmission curves for each band.
These synthetic SEDs, whose shapes depend on the stellar population parameters, are compared
with the observed SED using, e.g., a 𝜒2 technique that explores the parameter space in order to
recover the best-fitting stellar parameters. One of these parameters is the stellar mass-to-luminosity
ratio, 𝑀/𝐿, which can be converted into stellar mass by multiplying this value by the observed
luminosity, 𝐿.

In recent years, an alternative SPS approach that fits non-parametric SFHs has gained popu-
larity when modeling SEDs (e.g., the Prospector SED fitting code; Leja et al. 2017; Johnson et al.
2021). The basis of this technique, which is computationally more expensive than traditional ones,
will not be discussed here.

4.1.1 Basic ingredients of SPS

As shown in equations 4.2 and 4.1, the main parameters that affect the different types of SPS
models found in the literature are the following:

• IMF. The IMF, 𝜙(𝑚) ≡ d𝑁/d𝑚, indicates the birth mass distribution of stars, defined such
that 𝜙(𝑚) d𝑚 is the number of stars born with a mass between 𝑚 and 𝑚 + d𝑚, and usually
normalized so that

∫ 𝑚up
𝑚low

𝜙(𝑚) d𝑚 = 1 M⊙. Since the stellar evolution is very dependent on its
initial mass, the IMF crucially affects the evolutionary history and observable properties of
stellar populations (e.g., the CSP spectrum or the normalization of the stellar mass-to-light
ratio, 𝑀/𝐿). The IMF is usually assumed universal (also independent of time), although this
could not be true (see, e.g., Bastian et al. 2010 or Smith 2020 reviews). Commonly adopted
IMFs are the classical Salpeter (1955), with 𝜙(𝑚) ∝ 𝑚−2.35, or those from later works from
Kroupa (2001) and Chabrier (2003), both with a shallower slope at low stellar masses.

• Isochrones. Based on theoretical stellar evolution models, isochrones indicate the location in
the HR diagram of stars that have the same age and metallicity, i.e., for a given metallicity
and age, they establish the relation between 𝑇eff , log 𝑔, and 𝑚. Among the most widely used
isochrone models, we can mention Padova (Bressan et al. 1993; Bertelli et al. 1994; Girardi
et al. 2000; Marigo et al. 2008), Geneva (Maeder & Meynet 1987; Schaller et al. 1992; Meynet
& Maeder 2000), or BaSTI models (Pietrinferni et al. 2004; Cordier et al. 2007).
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• Stellar spectra libraries. Once the IMF has predicted the number of stars in each position of
the HR diagram, stellar spectral libraries are required to assign an SED to each star in the
isochrone (depending on its metallicity). The stellar spectral libraries can be either empirical
(i.e., based on observations of stars), such as the Medium resolution Isaac Newton Telescope
Library of Empirical Spectra (MILES; Sánchez-Blázquez et al. 2006), or theoretical (synthetic
spectra calculated using models for stellar evolution and stellar atmospheres), like that from
Coelho et al. (2005).

• SFH. Although the SFH of a galaxy can have any arbitrary shape, simple functional forms are
usually adopted to describe the SFH (e.g. instantaneous burst, constant 𝑆𝐹𝑅, or other more
complicated forms). The most classical adopted form is a declining exponential (or 𝜏model)
i.e., 𝑆𝐹𝑅(𝑡) ∝ 𝑒−𝑡/𝜏 (e.g., Gavazzi et al. 2002; Savaglio et al. 2005; Whitaker et al. 2012; Pacifici
et al. 2013). Rising SFHs are also popular since they seem to provide a better SED fit for
𝑧 ≳ 3 galaxies (e.g., Lee et al. 2010; Pforr et al. 2012). Commonly used functional forms for
these rising SFHs can be an inverted 𝜏 model, i.e., 𝑆𝐹𝑅(𝑡) ∝ 𝑒+𝑡/𝜏 (e.g. Maraston et al. 2010;
Reddy et al. 2012) or a time-delayed exponential (or delayed 𝜏 models), i.e., 𝑆𝐹𝑅(𝑡) = 𝑡 𝑒−𝑡/𝜏
(e.g. Sandage 1986; Gavazzi et al. 2002; Wuyts et al. 2011; Alcalde Pampliega et al. 2019).

• Dust. As commented above, dust attenuates the spectrum in the UV-to-NIR and emits in
the IR. Dust attenuation is usually modeled with typical attenuation laws (e.g. Calzetti et al.
2000), extinction curves (e.g., MW extinction curve; Cardelli et al. 1989; O’Donnell 1994)
or other attenuation prescriptions like the age-dependent Charlot & Fall (2000) attenuation
model. Regarding dust emission, there are sophisticated models that predict the IR emission
of dust, including PAH emission features, by taking into account grain size distributions and
grain optical properties (e.g., Draine & Li 2007), although simpler models based on templates
with fewer parameters are often used (e.g., those from Chary & Elbaz 2001 and da Cunha
et al. 2008). In practice, dust emission is usually neglected when only modeling rest-frame
UV-to-optical SEDs.

In Section 4.2, we describe the details regarding the above parameters in our SPS modeling.

4.2 Details of the SPS model used in this work

In this thesis, we make use of both the STARBURST99 (SB99; Leitherer et al. 1999; Vázquez
& Leitherer 2005; Leitherer et al. 2010) and Bruzual & Charlot (2003) (hereafter, BC03) models.
As shown in Chapter 5, we use SB99 for the SPS modeling of the stellar populations in Illustris
synthetic images. The reason for this was that, although the stellar evolution in Illustris is modeled
with Bruzual & Charlot (2003), the synthetic images used for this thesis were generated by applying
SB99 models to the Illustris simulated particles in each galaxy (see Section 2.3). Besides, we use
BC03 models in the second part of this thesis, when modeling the stellar populations in real
CANDELS+CEERS observations, since BC03 models are considerably more widely used than
SB99 in the extragalactic community, especially when dealing with stellar ages beyond ∼ 1 Gyr.

In the following subsections, we describe our SPS details regarding the basic SPS ingredients
described in Section 4.1.1. We point out that the descriptions below of characteristics of our SPS
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modeling apply to all the photometric SEDs fitted in this work, either for integrated SEDs (i.e.,
from the integrated flux of the galaxy) or spatially-resolved SEDs (i.e., those from a pixel-by-pixel
or a set of pixels analysis). In Section 4.4, we outline how the galaxy SFH is recovered from our
SPS modeling in two dimensions (2D SPS), which will be described in detail in Chapter 5.

4.2.1 IMF

BC03 models are available only for a Salpeter (1955) and a Chabrier (2003) IMF. We adopt the
Chabrier (2003) IMF in BC03, parametrized as a lognormal distribution given by (Bruzual &
Charlot 2003)

𝜙(𝑚) ∝
 𝑚−1 · 𝑒−

(log𝑚−log𝑚𝑐 )2
2𝜎2 , for 𝑚 ≤ 1 M⊙

𝑚−2.3, for 𝑚 > 1 M⊙
(4.3)

where 𝑚𝑐 = 0.08 M⊙ and 𝜎 = 0.69.

SB99 models allow to select a customized IMF by specifying one or more IMF exponents (and
the associated mass boundaries) for a power-law IMF. We select a Kroupa (2001) IMF, which is a
broken power law given by

𝜙(𝑚) ∝ 𝑚−𝛼 (4.4)

with

𝜙(𝑚) ∝
{
𝛼 = 1.3, for 𝑚 ≤ 0.5 M⊙

𝛼 = 2.3, for 𝑚 > 0.5 M⊙
(4.5)

In both cases, we use 𝑚low = 0.1 M⊙ and 𝑚up = 100 M⊙ as the lower and upper mass cut-offs2,
respectively, where both IMFs are practically indistinguishable and the spectral properties obtained
with any of them are very similar (Bruzual & Charlot 2003). Fig. 4.2 shows the comparison of both
IMFs, together with the canonical Salpeter IMF: 𝜙(𝑚) ∝ 𝑚−2.35, all normalized so that the integral
under each curve between 0.1 M⊙ and 100 M⊙ is 1 M⊙. The major differences between Chabrier
(2003) and Kroupa (2001) IMFs are below 0.1 M⊙, outside of our considered mass range.

4.2.2 Isochrones

In BC03, we use the Padova 1994 library of stellar evolutionary tracks, computed by Alongi et al.
(1993), Bressan et al. (1993), Fagotto et al. (1994a,b), and Girardi et al. (1996). This library
includes 𝑍 = 0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05, and 0.1 metallicities and models all phases of

2Actually, the original Kroupa (2001) IMF has two different values of 𝛼 for 𝑚 ≤ 0.5 M⊙ : 1) 𝛼 = 1.3 for
0.08 < 𝑚 ≤ 0.5 M⊙ and 2) 𝛼 = 1.3 for 0.01 < 𝑚 ≤ 0.08 M⊙ . In practice, we only consider the former since our lower
mass limit (𝑚low = 0.1 M⊙) is above the mass value where the 𝛼 changes in this mass range (0.08 M⊙).
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Figure 4.2: IMF comparison: Chabrier (2003) (red), Kroupa (2001) (blue), and the canonical Salpeter
(1955) (orange dashed) IMF. All IMFs have been normalized to recover 1 M⊙ when they are integrated from
0.1 M⊙ to 100 M⊙ (white area). The dotted red and blue lines (in the gray shaded area) show the values
of the Chabrier (2003) and Kroupa (2001) IMFs, respectively, outside the range of initial stellar masses
considered in this work.

stellar evolution from the zero-age main sequence to the beginning of the thermally pulsing asymp-
totic giant branch (TP-AGB) phase for low-and intermediate stellar masses or the core-carbon
ignition for more massive stars. These tracks are supplemented with the TP-AGB evolutionary
tracks from Vassiliadis & Wood (1993) and those from Vassiliadis & Wood (1994) for the post-
AGB evolution. The reason for using Padova 1994 instead of its more recent version Padova 2000
(Girardi et al. 2000), also available in BC03, is that Bruzual & Charlot (2003) recommends the
previous version, since the latter yields worst agreement with observed galaxy colors.

For SB99, we use the tracks included in the SB99 upgrade (Vázquez & Leitherer 2005), and
which are presented in Girardi et al. (2002). These consist of the Padova tracks updated by Girardi
et al. (2000) for low and intermediate masses (0.15 − 7 M⊙), which are combined with the original
Padova 1994 tracks for the most massive stars. Like in BC03, TP-AGB stars are included following
the models of Vassiliadis & Wood (1993).

4.2.3 Stellar spectra libraries

We use BC03 with the semi-empirical STELIB/BaSeL 3.1 stellar spectral library, which provides
high-resolution spectra from 91 Å to 160 µm for all metallicities in the Padova stellar evolutionary
tracks. This library is composed of stellar spectral from the empirical STELIB spectral library (Le
Borgne et al. 2003) for 3200−9500 Å (𝑅 = λ/∆λ ∼ 2000), and from the theoretical BaSeL 3.1 stellar
spectral library (Westera et al. 2002) in the remaining wavelength range (with λ/∆λ ∼ 200 − 500).
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Figure 4.3: SEDs for SSP models in SB99 and BC03. Models have been created assuming a Salpeter IMF
(0.1 to 100 M⊙) for both SB99 (dotted) and BC03 (solid), for two metallicities: 𝑍 = 0.004 (left panel) and
𝑍 = 0.020 (solar; right). Ages of 10 Myr, 100 Myr, 1 Gyr, and 5 Gyr are shown in different colors.

Since none of these libraries provides spectra for carbon-rich TP-AGB stars, these spectra are
constructed from period-averaged spectra of atmosphere models from Höfner et al. (2000) with
solar metallicity. Spectra of stars in the superwind phase at the end of the TP-AGB phase are
constructed from observations from Le Sidaner & Le Bertre (1996) and Le Bertre (1997).

SB99 uses a comprehensive set of spectral libraries, most of them theoretical, and each optimized
for a specific spectral range. Among them, we can mention the theoretical UV spectral library of
OB stars (Leitherer et al. 2010) that generates spectra between 912 and 3000 Å with a resolution
of ∆λ = 0.4 Å, which was updated to include the theoretical UV emission from Wolf-Rayet stars
(Leitherer et al. 2014). Also, the theoretical optical spectral library presented in Martins et al.
(2005), which covers from 3000 to 7000 Å with a resolution of ∆λ = 0.3 Å. In addition, a theoretical
low-resolution spectrum (∼20 Å) that covers from X-rays to radio is produced by choosing between
several stellar atmosphere models. We chose the recommended Pauldrach + Hillier models (Hillier
& Miller 1998; Pauldrach et al. 2001) for the generation of this spectrum.

SB99 and BC03 show very similar SEDs for the SSP models in the optical bands, being the
major differences in the UV emission. In particular, the main differences arise from the different
UV emission of the old stellar populations in both models. Fig. 4.3 shows the comparison of
the SEDs of the SSPs in SB99 and BC03 for different ages and two different metallicities (0.2 𝑍⊙
and 1 𝑍⊙), assuming a Salpeter IMF for both of them. This figure shows how the differences
in the SEDs between BC03 and SB99 are relevant only in the UV and for the oldest ages in
the figure (1 and 5 Gyr), for which BC03 predicts non-negligible UV emission compared to SB99.
Nevertheless, the UV emission coming from younger stellar populations is ≳ 2 orders of magnitude
larger than that of older populations in this wavelength range. Although the differences in the
UV spectra between SB99 and BC03 could have a strong impact when modeling red and dead
galaxies, the massive high-redshift galaxies considered in this work have a substantial ongoing star
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formation (i.e., they host very young stellar populations), which makes that any UV emission from
these younger bursts will dominate the UV spectra and will make irrelevant the UV contribution
from older stellar populations in the galaxy, some of which have not even appeared at the redshifts
of the sample.

4.2.4 SFH

Both in the BC03 and SB99 models, we assume that the SFH of each SED can be described by a
double time-delayed exponential, i.e., its SFH consists of the sum of an old and a young population,
each of them described by 𝑆𝐹𝑅(𝑡) ∝ 𝑡 𝑒−𝑡/𝜏 from 𝑡 = 0 (onset of star formation) up to 𝑡burst, where
𝑡burst is the age of the burst and 𝜏 the star formation time-scale. The burst strength, 𝑏, is defined
as the fraction of the total stellar mass that is created by the most recent burst.

We remind the reader that this two population model for the SFH is assumed for all the SEDs
analyzed in this thesis, either integrated or spatially-resolved SEDs (see more details in Section 4.4).
Fig. 4.4a shows an example of a SFH described with this double-burst parametrization, in this case,
for an integrated SED. As described in Chapter 5, simpler parametrizations of the SFH for each
SED (e.g., consisting of only one burst) cannot successfully reproduce the arbitrary SFH a galaxy
can have, and, mainly, they are unable to recover the first stages of the stellar mass assembly, in
which we are interested.

4.2.5 Dust

Regarding dust attenuation, we assume the empirical attenuation law from Calzetti et al. (2000)
both for the BC03 and SB99 models. Calzetti et al. (2000) was derived from UV and optical data
of local starburst galaxies by assuming a simple screen model and it is commonly adopted when
fitting SEDs at high redshift. An important feature of this law is the absence of the 2175 Å UV
bump. Fig. 4.1 (dust attenuation panel) shows the Calzetti et al. (2000) law in terms of the optical
depth (red line) compared with the MW extinction curve (Cardelli et al. 1989; O’Donnell 1994; in
black).

The Calzetti et al. (2000) attenuation law is described in terms of the reddening as

𝑘λ =

{
2.659 (−2.156 + 1.509/λ − 0.198/λ2 + 0.011/λ3) + 𝑅𝑉 , for 0.12 ≤ λ < 0.63 μm
2.659 (−1.857 + 1.040/λ) + 𝑅𝑉 , for 0.63 ≤ λ ≤ 2.20 μm

(4.6)

where 𝑅𝑉 ≡ 𝐴𝑉/𝐸 (𝐵 − 𝑉) = 𝑘 (λ) is the total-to-selective extinction ratio in the 𝑉 band, being
𝐸 (𝐵 − 𝑉) the color excess. 𝑅𝑉 is usually assumed to be 3.1 for the MW and Large Magellanic
Cloud (LMC) extinction curves, but for the Calzetti law (𝑅𝑉 = 4.05 ± 0.80). The reddening curve
can be expressed as the attenuation of the continuum at any wavelength, 𝐴λ, normalized by the
attenuation in 𝑉 , 𝐴𝑉 , as follows

𝐴λ/𝐴𝑉 = 𝑘λ/𝑅𝑉 (4.7)
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Fig. 4.4b shows the Calzetti et al. (2000) attenuation law expressed as 𝐴λ/𝐴𝑉 as a function of
wavelength for 𝑅𝑉 = 3.1 (gray solid) and 𝑅𝑉 = 4.05 (black solid). As mentioned above, we assume
𝑅𝑉 = 4.05 for this work, as suggested by Calzetti et al. (2000).

Regarding dust emission, the longest rest-frame wavelength covered by our broadband filters is
∼ 2.5 μm (corresponding to the right end of the NIRCam/F444W filter at 𝑧 = 1). At this wavelength
(and lower), dust emission is still unimportant (PAHs emission features begin to be relevant at
wavelengths redder than ∼ 3 µm; see Section 4.1). Thus, we can neglected the contribution of dust
emission in our SEDs and will not discuss its implementation in our SPS modeling.

4.3 Synthesizer code

We have used the synthesizer code (described in Pérez-González et al. 2003, 2008) to perform the
SPS modeling of our UV-to-NIR SEDs. This code assumes that the stellar population responsible
of each SED can be described by a composite stellar population. To perform the fitting procedure
with synthesizer, several choices are required a priori:

1) the SPS model (SB99 or BC03, in our case)

2) the IMF (Kroupa 2001 or Chabrier 2003)

3) the SFH parametrization (double-burst time-delayed exponential)

4) the attenuation recipe (Calzetti et al. 2000)

Together with these input variables, the user has to define the allowed values or ranges within
which each parameter is allowed to vary in the fitting procedure. For our choice of a double-
burst exponentially declining SFH (see Section 4.2.4), the parameters to fit (and finally yielded)
by synthesizer can be split into those for the old stellar population (age 𝑡old, star formation
time-scale 𝜏old, metallicity 𝑍old, and attenuation 𝐴V,old) and those for the young population (𝑡young,
𝜏young, 𝑍young, and 𝐴V,young). Additional parameters are the total stellar mass, 𝑀, and the burst
strength, 𝑏, which measures the contribution of the young population to the total stellar mass.

To perform the fit, synthesizer compares the observed SED points for each filter with those
predicted by the SPS models, taking into account observational photometric errors. For this, the
stellar population models are first shifted to the redshift of the galaxy, and then, convolved with
the corresponding filter transmission curves. In particular, the variables to fit are the colors of the
SED, which are considered as statistical gaussian distributions with a standard deviation equal to
the associated error (more details in Gil de Paz & Madore 2002). The best model that fits the data
is determined with a minimized 𝜒2 estimator that measures the goodness of the fit, given by

𝜒2 =
1
𝑁filt

𝑁filt∑︁
𝑖=1

(𝐹model
𝑖

− 𝐹SED
𝑖

)2

(Δ𝐹SED
𝑖

)2
(4.8)

where 𝐹SED
𝑖

is the observed flux in filter 𝑖, Δ𝐹SED
𝑖

is its associated uncertainty, 𝐹model
𝑖

is the flux
predicted by the models for that filter, and 𝑁filt is the number of filters (or SED points) considered.
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Figure 4.4: a) Double-burst SFH. The galaxy SFH (black solid) results from the combination of an old
population (orange dashed) and a young population (blue dashed), each described by 𝑆𝐹𝑅(𝑡) ∝ 𝑡 𝑒−𝑡/𝜏 . The
ages of the old and young population are 𝑡old = 4 Gyr and 𝑡young = 1 Gyr, respectively, and their time-scales,
𝜏old = 1.5 Gyr and 𝜏old = 100 Myr. This synthetic galaxy would be at 𝑧 = 1, with a stellar mass of 1010 M⊙,
where the young burst accounts for 10% of this mass. b) Calzetti (2000) attenuation law expressed as 𝐴λ/𝐴V
as a function of wavelength. Two different values for 𝑅V have been adopted: 𝑅V = 4.05 (Calzetti law; black
solid) and the typically adopted value of 𝑅V = 3.1 (gray dashed).

Since the models predict luminosities per unit of stellar mass at all wavelength, the stellar mass is
calculated by scaling the luminosities predicted by the models with those observed for each band
(i.e., by multiplying by a factor the luminosities predicted by the models). The final stellar mass
and its uncertainty are the median stellar mass and the standard deviation of all the scaling factors
for all filters.

Due to the large number of parameters and SEDs to fit, the amount of time required to probe
the whole parameter space for each SED is extremely high. For this reason, we make use of the
genetic algorithm (Charbonneau 1995) implemented in synthesizer. This algorithm samples the
parameter space (or grid of solutions) in an optimized way that considerably reduces the amount
of time required for the fit, being able to recover the best estimate of the parameters given by the
model best fitting the data (see more details in Pérez-González et al. 2008).

Synthesizer provides uncertainties for the derived parameters and allows to study the existing
degeneracies in the solutions of the fit. This is done using a Monte Carlo (MC) algorithm that first
alters the original SED points by letting their associated fluxes randomly vary following a gaussian
distribution with a standard deviation given by the (uncorrelated3) photometric uncertainties.

3To perform the different MC realizations, synthesizer assumes uncorrelated photometric uncertainties by de-
fault. This means the seed used to randomly vary the flux for each photometric band is different. The contrary to
this would be to use the same seed to vary all photometric bands, which would lead to a shift of the whole SED
upwards or downwards.
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Then, the resulting modified SED is refitted and a new set of solutions for the stellar parameters
are yielded by synthesizer. By repeating this procedure many times (typically, hundreds; 300
iterations in our case), we get an estimate of the posterior probability distributions encountered
for the parameters fitted and the existing degeneracies of them.

Synthesizer takes into account the effects of nebular emission by adding its contribution to the
stellar-only predictions of the BC03 and SB99 models. Regarding nebular continuum, this is calcu-
lated from the number of Lyman photons predicted by the evolutionary synthesis models assuming
the emission and recombination coefficients given by Ferland (1980), with an electron temperature
of 𝑇𝑒 = 104 K. For the hydrogen emission lines (Balmer, Paschen and Bracket), the relations given
by Brocklehurst (1971) are used, together with the theoretical line rations predicted by Oster-
brock (1989) for a low-density gas (𝑛𝑒 = 102 cm−3) with 𝑇𝑒 = 104 K in the recombination case B.
The emission of the most important forbidden lines ([OII]λλ3726, 3729 Å, [OIII]λλ4959, 5007 Å,
[NII]λλ6548, 6583 Å, and [SII]λλ6717, 6731 Å) is also accounted for, based on the line ratios cal-
culated in Gallego et al. (1996) for local star-forming galaxies.

4.4 2D SPS

The SFH of galaxies at high redshift is traditionally inferred by performing SPS on their integrated
SEDs, assuming for that a relatively simple SFH parametrization (constant, instantaneous, 𝜏 model,
time-delayed exponential, etc.). Since most of the stellar emission of a stellar population is emitted
in the (rest-frame) UV-optical, the better we cover this spectral range when building the galaxy
integrated SED, the more robust the stellar parameters derived from the SPS modeling will be. As
described in Chapter 3, with the advent of JWST, galaxies at high redshift are now observed in
the IR with a higher spatial resolution than ever, which allows us to probe many rest-frame optical
morphological features previously missed by Hubble. Thus, when these IR data from JWST are
combined with high-spatially-resolved data in the UV-optical from Hubble, we are able not only
to extend to longer wavelength the integrated SEDs provided by HST, but also those for smaller
parts of the galaxy than can now be simultaneously resolved with HST and JWST.

In this sense, what we will do in this thesis is to make use of these HST+JWST spatially-
resolved SEDs to build the integrated galaxy SFH, i.e., to combine the information of the SPS in
two dimensions (2D SPS) of the galaxy to build the galaxy SFH. Since the SFH of a galaxy can
have very diverse shapes, its global (integrated) SFH may not always be successfully recovered when
assuming a functional form to describe it. By combining the SFH from the 2D SPS, we can obtain
more complex galaxy SFHs by adding together the contributions of the different SFHs derived for
each one of the smaller regions considered, for which a simple functional form was assumed in their
SED fit4. In addition, the smaller the region of the galaxy on which the SPS is applied, the simpler
its SFH will be, in general (at least, the part of the SFH that has a noticeable impact on the SED).

4A simple example to understand this would be to consider a galaxy whose SFH can be described with three
instantaneous burst that occur in different parts of the galaxy at different times. If we try to derive the galaxy SFH
using a two population model, one of the burst in the SFH will be not reproduced. Nevertheless, if we split the galaxy
into the three regions where the bursts occurred and perform SPS modeling on them, the SFH recovered for each
of these regions will likely recover each one of the bursts. If the SFHs for these individual regions are then added
together, the resulting SFH will probably be able to reproduce the SFH of the galaxy in a better way than when
considering only integrated SED.
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Figure 4.5: Example of galaxy SFH recovered from the 2D-SPS modeling for an Illustris galaxy. The
black solid line shows the galaxy SFH obtained by adding together the individual SFHs of the spatially-
resolved SEDs (thin colored lines), for which a two population SFH is assumed. The square inset shows
an WFC3/F160W image of the galaxy. The grid shows the regions from where these 2D SEDs have been
measured (same color code as used for their SFHs). The alternative galaxy SFH derived from the integrated
SED, measured inside the integrated aperture, is shown in dotted blue, also assuming a two population
SFH. The green solid line shows the ground-truth SFH for the galaxy, provided by the simulated particles
belonging to the galaxy in Illustris. The figure shows how the galaxy SFH derived from the 2D-SPS modeling,
unlike that of the integrated SED, is able to capture the shape of the true SFH, especially at higher lookback
times.

Therefore, by deriving the SFH of spatially-resolved regions of the galaxy we are breaking down a
complex problem (the galaxy SFH) into simpler subproblems that we can address in a more feasible
and flexible way.

For this analysis, we assume that the spatially-resolved SEDs are not correlated. This will
make us use spatial resolution elements (cells; see Chapters 5 and 6) that avoid spatially oversam-
pling SEDs at individual regions. Fig. 4.5 shows an example of how the galaxy SFH is recovered
from our 2D analysis on the Illustris synthetic deep survey images (see Section 2.3) for galaxy
Illustris-1_073_0141918. The synthetic WFC3/F160W image of this galaxy is shown as an
inset, with the different apertures considered. SEDs are first measured both in an integrated aper-
ture (dotted blue) and for each of the cells of a grid defined inside this aperture (a different color
is used for each cell). Only cells that belong to the galaxy are considered. The blue dotted SFH
in the figure shows the integrated SFH derived from applying SPS to the integrated SED with the
two population model described in Section 4.2.4 (i.e., a double-burst SFH). The thick black SFH
is the resulting galaxy SFH recovered by considering the 2D-SPS information. This black SFH is
built by adding together the individual SFHs derived for each cell in the grid after applying SPS
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to them. The SFH of each grid region is shown with thin lines (same color code as the grid) and
is also described by a double burst SFH (see zoomed inset on top).

As described in Section 2.4, the ground-truth galaxy SFH can be built from the information
provided by the simulated particles belonging this galaxy (green SFH). In fact, this ground-truth
SFH in green is the same as that shown in Fig. 2.5, where the distributions for the stellar and gas
particles belonging to the galaxy are also shown. Fig. 4.5 shows how the galaxy SFH derived from
the 2D SPS (thick black) is able to better recover the true SFH of the galaxy (in green) than the
integrated SFH (blue dotted). This is especially noticeable at the beginning of the ground-truth
galaxy SFH (at the highest lookback times), in which we are interested in this thesis, for which the
integrated SFH does a rather poor job.

In the figure above, the galaxy SFH derived from the 2D-SPS analysis (in black) has been built
by only considering one of the 300 MC realizations performed by synthesizer for each SED (see
Section 4.3). Nevertheless, when all the MC realizations are considered, different galaxy SFH can
be obtained from the 2D-SPS analysis, providing a better estimation of the most probable galaxy
SFH (e.g., by calculating the median galaxy SFH of all of them). In addition, the MC realizations
allow us to access the information on the uncertainties and degeneracies of the parameters that we
will derive from the inferred galaxy SFH.

This new 2D-SPS method of inferring the galaxy SFH is described in detail in Chapter 5 (see
also García-Argumánez et al. 2023), where we discuss the calibration of this method with simulated
galaxies from the Illustris simulation. As it will be discussed there, the SPS input parameters have
been optimized for best recovering the earliest parts of the galaxy SFH, which provide information
about the beginning of the stellar mass assembly in the galaxy. In Chapter 6 we will apply this
2D-SPS method to galaxies observed in the CEERS survey, with the aim to shed light on when
real massive galaxies at 1 < 𝑧 < 4 began to form.



CHAPTER5
Probing the earliest phases in the formation

of massive galaxies with simulated
HST+JWST imaging data from Illustris

This chapter is largely based on García-Argumánez et al. (2023).

5.1 Introduction

As discussed in Chapter 1, there are still many open questions regarding when massive galaxies
began to form. The way to address the latter issue in this thesis is to study the massive progenitors
at high redshift of the most massive galaxies observed today and analyze their stellar populations,
namely, their SFH. Our approach is to use spatially-resolved multiwavelength broad-band data from
JWST, combined with already existing broad-band data from HST, to extract SEDs of progenitors
of nearby massive galaxies at high redshift and apply 2D-SPS modeling on them. The determination
of stellar population parameters in two dimensions, and not only for the galaxy as a whole, will help
us to analyze stellar mass distributions inside galaxies and to recover realistic integrated galactic
SFHs. The power of analyzing the stellar populations in 2D resides in the fact that smaller regions
of a given galaxy should have its observational properties driven by a more simple SFH, which
can therefore be characterized with fewer parameters compared to that required to characterize an
entire galaxy (which easily could count with several, quite different stellar populations). Analyzing
the stellar content of high-redshift systems in 2D will be fundamental to identify the evolutionary
stages a galaxy can undergo regarding its stellar content evolution and to determine when its
assembly began.

This work aims at determining the robustness of spatially-resolved SFHs for massive galaxies
at 1 < 𝑧 < 4, derived from the 2D-SPS analysis of simulated HST+JWST broad-band photometry,
to infer when these massive progenitors began their stellar mass assembly. The reason for focusing
on this 1 < 𝑧 < 4 redshift interval, for which JWST is expected to provide high-quality data, is
that it includes the so-called ‘cosmic noon’, i.e., the epoch of the Universe where the cosmic star
formation rate density history was maximum at 𝑧 ∼ 2 and where a considerable fraction of the local
stellar mass was formed: half of the present-day stellar mass was formed before 𝑧 = 1.3 (see Madau
& Dickinson 2014 and references therein). The results of this work will help us identify the first
progenitors of massive galaxies around cosmic noon, an epoch of the Universe of great interest for
many JWST studies in the upcoming years.

79
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In order to establish a methodology and test its performance, we use galaxy images in different
bands simulated by the Illustris Project. One of the most appealing features of recent cosmological
simulations such as Illustris-1 (Vogelsberger et al. 2014b, Nelson et al. 2015) is that some of them
provide synthetic stellar images generated for simulated galaxies at different redshifts in common
broad-band filters from HST or JWST (Torrey et al. 2015) and with “realistic” morphologies (at
least, relative to the morphologies provided by typical semi-analytical models). These images, when
compared to the available information of the stellar particles for each galaxy in the simulation, make
them the perfect benchmark to test how successful our 2D stellar population synthesis method is
at recovering the early formation of massive galaxies at high redshift when upcoming JWST broad-
band photometry data become available.

The present chapter is structured as follows. In Section 5.2, we give a brief overview of the
Illustris simulation and explain how the sample of simulated galaxies has been selected from the
synthetic images. In Section 5.3, we present the processing of the images and the photometric
method conducted to build SEDs in 2D. Section 5.4 describes the SPS modeling of the SEDs mea-
sured in 2D and the derivation of the integrated SFHs from these 2D-SPS analysis. In Section 5.5,
we evaluate the success of our method in recovering the earliest phases in the formation of each
galaxy in the sample. Finally, in Sections 5.6 and 5.7, we present our results and outline our
conclusions, respectively.

Throughout this chapter, we adopt the same cosmology as specified in the Illustris-1 simulation:
ΛCDM cosmology with Ω𝑚 = 0.2726, ΩΛ = 0.7274, Ω𝑏 = 0.0456, and ℎ = 0.704. We assume a
Kroupa (2001) initial mass function (IMF). All magnitudes presented in this work are calculated
using the AB system (Oke & Gunn 1983).

5.2 Dataset

In this chapter, we present a method to study the star formation history of massive, spatially-
resolved high-redshift galaxies using HST and JWST photometric data. We apply this method
to a sample of galaxies simulated by the Illustris Project. Our aim is to assess the utility of HST
plus JWST combined datasets for the analysis of the earliest evolutionary phases of nearby massive
galaxies. For that purpose, our approach consists in selecting the progenitor galaxies at high redshift
of nearby massive galaxies, and then analyzing their pixel-by-pixel and resulting integrated-galactic
SFHs. In this Section, we describe the simulations, the sample, and the data. Since the Illustris
Simulation has already been described in Chapter 2, here we only summarize its most relevant
characteristics for this chapter.

5.2.1 Illustris Simulation and synthetic deep-survey images

As described in detail in Chapter 2, the Illustris Project is a set of hydrodynamical simulations of
a (106.5 Mpc)3 periodic cosmological volume that trace the evolution of dark matter, gas, stars,
and supermassive black holes from 𝑧 = 127 to 𝑧 = 0 (Vogelsberger et al. 2014b, Nelson et al. 2015).
The Illustris Project comprises six different runs: Illustris-(1,2,3) and Illustris-(1,2,3)-Dark, where
the former include a baryonic physical component in addition to the dark-matter content, and the
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latter the dark-matter component alone (see Table 2.1). We make use of the Illustris-1 run, the one
with the highest-resolution box of these six runs in terms of the number of resolution elements and
their masses: it follows the evolution of 18203 dark-matter particles with a mass of 6.26 × 106 M⊙
each, and 18203 baryonic particles with an initial mass of 1.26 × 106 M⊙. The Illustris-1 volume
contains ∼ 40, 000 galaxies at 𝑧 = 0 with more than 500 stellar particles − roughly equivalent to
galaxy stellar masses of M★ > 5 × 108 M⊙ (Torrey et al. 2015). Out of all these galaxies at 𝑧 = 0 in
Illustris-1, 856 galaxies have stellar masses of M★ > 1011 M⊙.

This work is based on the simulated galaxies and broad-band images from the Illustris-1 supple-
mentary data catalogs published by Snyder et al. (2017, hereafter S+17) and available via MAST1.
These catalogs correspond to three synthetic deep survey square images in three different fields,
which are labeled as Field A, B, and C, each 2.8′ × 2.8′ in size. As described in Section 2.3,
each of these three deep survey images has been created by applying the lightcone technique from
Kitzbichler & White (2007) to the periodic Illustris-1 volume. As a result, each of the three light-
cones created to generate the images contain unique galaxies up to 𝑧 ∼ 18 with no repetition,
although there can be repeated galaxies between the fields. To create the images in arbitrary filters
from the lightcones, the physical information given by the output of the simulation at each redshift
in the lightcones is processed with the spectral synthesis code SUNRISE (Jonsson 2006; Jonsson
et al. 2010). This is done by assigning SEDs to the stellar particles according to their mass, age,
and metallicity, and by projecting these quantities from the simulation space to pre-defined hypo-
thetical cameras. For the creation of these images, Starburst99 stellar population models (Leitherer
et al. 1999) were used, with a Kroupa (2001) initial mass function (IMF), and using a (Charlot &
Fall, 2000) model to include the effect of dust absorption in the mock images.

These three synthetic deep-survey images, also called “mock ultra deep fields”, are provided
down to the spatial resolution of HST and JWST, among other observatories, in a wide range of
broad-band filters, imitating the conditions of real galaxy surveys (see Fig. 2.3). Publicly available
catalogs associated to these images include galaxies in the survey images whose rest-frame g-band
apparent magnitude is g < 30.0 mag (19,347 galaxies).

5.2.2 Sample selection

Starting from all the galaxies included in the catalogs of the S+17 mock images, we select those
at 1 < 𝑧 < 4 which will evolve into a very massive (M★ > 1011 M⊙) descendant at 𝑧 = 0, as tracked
forward in time via the Illustris merger trees (Rodriguez-Gomez et al., 2015). This means that
we select 1 < 𝑧 < 4 progenitors in the mock images of 𝑧 = 0 very massive galaxies in the whole
Illustris-1 simulation. Among all progenitor galaxies at 1 < 𝑧 < 4 in the images, we restrict our
analysis to massive galaxy progenitors with M★ > 1010 M⊙, for which very high quality JWST data
will be available in the near future. This implies that, for the same 1011 M⊙ galaxy at 𝑧 = 0, all
its massive progenitors at 1 < 𝑧 < 4 in the images are considered in our sample (e.g. two massive
galaxies at 1 < 𝑧 < 4 could merge to form a M★ > 1011 M⊙ galaxy at 𝑧 = 0). Fig. 2.6 schematically
shows how our sample of massive progenitors at 1 < 𝑧 < 4 in the images has been selected selected.

The left panel of Fig. 5.1 shows the location in the star formation rate (SFR) vs. stellar
mass plane of all the progenitor galaxies at 1 < 𝑧 < 4 in the S+17 simulated images that have

1https://archive.stsci.edu/prepds/illustris/

https://archive.stsci.edu/prepds/illustris/
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a M★ > 1011 M⊙ at 𝑧 = 0. These 2,994 progenitor galaxies shown in the left panel of Fig. 5.1
represent 19% of all galaxies located at 1 < 𝑧 < 4 in the images. This is equivalent to saying that
81% of galaxies at 1 < 𝑧 < 4 in the images do not end up as a very massive galaxy at 𝑧 = 0. Out of
that fraction of 1 < 𝑧 < 4 galaxies with a very massive descendant at 𝑧 = 0, our selected sample is
composed of the 221 progenitor galaxies with M★ > 1010 M⊙ (represented by stars in Fig. 5.1, left
panel). Among them, two of them appear simultaneously in two of the three mock ultra-deep fields
with different orientations, and will be considered as independent galaxies in this work regarding
the photometric analysis and the derivation of the SFHs. In fact, the initial selected sample from
the images is composed of 248 galaxies, but only 221 (+ 2 repetitions) are kept until the final
analysis. These 248 galaxies in the initial sample of massive progenitors represent the 64% of all
M★ > 1010 M⊙ galaxies at 1 < 𝑧 < 4 in the images (388 galaxies), i.e., if we were to select all massive
galaxies at 1 < 𝑧 < 4 in the images, only 64% of them would actually become a M★ > 1011 M⊙
galaxy at 𝑧 = 0. Interestingly, this percentage rises to 68% and 85% when the mass cutoff is set
to 1010.1 and 1010.5 M⊙, respectively. In these cases, the number of galaxies in the sample would
decrease from 388 galaxies to 305 for the 1010.1 M⊙ cut and to 123 for 1010.5 M⊙. In Fig. 5.1, we
also show the galaxy Main Sequence for Illustris galaxies, as determined by Sparre et al. (2015).

The right panel of Fig. 5.1 shows the 𝑔 − 𝑟 color-stellar mass diagram for descendants at 𝑧 = 0
of all galaxies at 1 < 𝑧 < 4 in the mock images of S+17. Only descendants with log(M★/M⊙)≳ 8.68
are shown, for which integrated photometry data is available (5,498 galaxies). Since descendants
at 𝑧 = 0 of galaxies in S+17 mock images have been traced via the Illustris merger tree and do not
appear in these survey images, the integrated photometry magnitudes used to build this diagram
have been extracted from the Torrey et al. (2015) synthetic individual galaxy images. But these
mock galaxy images are only available for 𝑧 = 0 descendants with a minimum stellar mass of
log(M★/M⊙)≳ 8.68 (∼ 63% of all the 8,768 𝑧 = 0 descendants of 1 < 𝑧 < 4 galaxies in the images).

Our final 221 galaxies selected from these images evolve to 132 (unique) very massive galaxies
at 𝑧 = 0, which means that some galaxies in our final sample at 1 < 𝑧 < 4 have the same descendant
at 𝑧 = 0. These descendants are called 𝑧 = 0 descendants of our main sample, hereafter, and are
shown as violet stars in the right panel of Fig. 5.1. We note that 51% of all 𝑧 = 0 M★ > 1011 M⊙
with a progenitor galaxy at 1 < 𝑧 < 4 in the images do not come from any of the galaxies in our
initial sample of 248 1 < 𝑧 < 4, M★ > 1010 M⊙ systems. The main progenitor at 𝑧 > 1 in the
images of those nearby massive galaxies presents a typical stellar mass log(M★/M⊙) = 9.129.65

8.48 and
a typical redshift of 𝑧 = 2.713.42

2.01 (median values and first and third quartiles).

The 221 galaxies in the sample account for 28% of the total stellar mass present in their 132
𝑧 = 0 descendants, where the 22 galaxies at 3 < 𝑧 < 4 account for 8.1% of the stellar mass of their
descendants, the 94 galaxies at 2 < 𝑧 < 3 for 23%, and the 105 galaxies at 1 < 𝑧 < 2 for 33%. These
descendants are predominantly Red Sequence galaxies (RS; approximately 73%), but there are also
a few galaxies in the Green Valley (GV; 14%) and in the Blue Cloud (BC; 13%). In the case of
the M★ > 1011 M⊙ descendants of progenitor galaxies at 1 < 𝑧 < 4 which are not massive, their
location in the diagram is similar, but with a higher fraction of them in the BC: 63% in the RS,
16% in the GV, and 21% in the BC.

The galaxies in our sample are projected into three 2.8 × 2.8 arcmin2 area (S+17). The typ-
ical stellar mass, star-formation rate (SFR), redshift and stellar half-mass radius (i.e., the ra-
dius enclosing half of the total stellar mass of the galaxy; rhm) of galaxies in the sample are
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Figure 5.1: Left panel: Main Sequence plot for those galaxies at 1 < 𝑧 < 4 included in the mock survey
presented in S+17 which are progenitors of very massive galaxies (M★ > 1011 M⊙) at 𝑧 = 0. All progenitors
are color-coded by redshift. In this chapter, we concentrate on the analysis of the most massive progenitors
(M★ > 1010 M⊙), which are plotted with star symbols. The Main Sequence found for all the Illustris
simulated galaxies at different redshifts (Sparre et al. 2015) has also been plotted. Middle panel: postage
stamp images for some representative examples of our galaxies (size 2.5′′ × 2.5′′). These RGB images are
created using ACS/F1814W, NIRCam/F200W, and NIRCam/F277W asinh-scaled images as B, G and R
filters, respectively. The position of these galaxies in the left panel has been highlighted with a white dot
inside. Right panel: 𝑔 − 𝑟 color vs. stellar mass diagram for descendants at 𝑧 = 0 of all galaxies at 1 < 𝑧 < 4
(independently of their stellar mass) in the S+17 mock survey images. Descendants of the final sample of
221 galaxies analyzed in this chapter are plotted as stars.
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Figure 5.2: Histograms for our 1 < 𝑧 < 4 sample of 221 simulated galaxies: redshift (top left panel), total
stellar mass (top right), SFR (bottom left), and stellar half-mass radius (bottom right). These properties
have been extracted from the Illustris-1 database. Median and quartiles are shown as segments on the top.
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⟨log(M★)⟩ = 10.410.7
10.1 M⊙, ⟨SFR⟩ = 2543

12 M⊙/yr, ⟨𝑧⟩ = 2.02.5
1.6, and ⟨rhm⟩ = 4.75.8

3.6 kpc (median and
quartiles), respectively. Fig. 5.2 shows the histograms of these properties for our sample of 221
galaxies.

5.3 Photometric data from the Illustris simulation

In this section, we describe how the simulated deep survey images have been processed to obtain
SEDs for all galaxies in our sample. We measure integrated-light photometry for each galaxy,
and we also consider spatially-resolved SEDs, all constructed with data in several HST and JWST
filters. Apart from simulated images, we also use redshifts and physical properties extracted from
the Illustris database. As in the rest of the thesis, we refer to ‘ground-truth’ or ‘reference’ properties
as those galaxy properties derived either from the catalogs associated to the S+17 mock images or
from the Illustris database, in contrast to the properties obtained from SED fits to stellar population
synthesis models for different regions in each galaxy, what we call 2D-SPS-derived properties.

5.3.1 Photometric broad-band filters

As described in Section 5.2.1, this work uses the Illustris-1 “mock ultra-deep fields” from S+17,
each 2.8 arcmin in size. These synthetic deep survey images are available to be used in 34 broad-
band filters onboard the HST/ACS and WFC3, JWST/NIRCam and MIRI, and Roman/WFI. For
this work, we consider 15 HST and JWST broad-band filters in the optical and near-infrared (see
Table 5.1), which will be available for several cosmological fields covered by HST legacy projects
such as the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields (CANDELS;
Grogin et al. 2011; Koekemoer et al. 2011), and JWST Guaranteed Time Observations (GTO),
Cycle 1 Guest Observers (GO1) or Early Release Science (ERS) programs such as the MIRI Deep
Survey (Norgaard-Nielsen & Perez-Gonzalez 2017), the JWST Advanced Deep Extragalactic Survey
(JADES; Williams et al. 2018, Rieke et al. 2019), the Public Release IMaging for Extragalactic
Research (PRIMER; Dunlop et al. 2021) or the Cosmic Evolution Early Release Science (CEERS;
Finkelstein et al. 2017). The filterset covers the optical through mid-infrared observed spectral
region, corresponding to rest-frame UV to near-infrared wavelengths at 1 < 𝑧 < 4, an adequate
range to study the emission from young and old stellar populations (i.e., providing information
about the SFH). The survey images released by S+17 are noise-free synthetic images with different
spatial resolution depending on the instrument and telescope used (see Table 5.1) and available
with or without considering the point spread function (PSF) degradation for each filter. For this
work, we use as starting images those without the PSF model applied, with pixel scales provided
in Table 5.1.

5.3.2 Photometric measurements

We process the original idealized (without PSF and noise) images for HST and JWST filters in
order to imitate CANDELS data (Grogin et al. 2011; Koekemoer et al. 2011) and the recently-
begun CEERS observations (Finkelstein et al. 2017), respectively. The reason for choosing the
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Table 5.1: Photometric broad-band images used in Chapter 5.

Instrument Filter λcentral Width Pixel scale𝑎 5𝜎 depth𝑏

(µm) (µm) (′′/pix) (mag)
ACS F435W 0.4318 0.0993 0.03 27.3

@HST F606W 0.5919 0.2225 0.03 27.4
F775W 0.7693 0.1491 0.03 26.9
F814W 0.8057 0.2358 0.03 27.2
F850LP 0.9036 0.2092 0.03 26.5

WFC3 F105W 1.0585 0.2653 0.06 26.1𝑐

@HST F125W 1.2471 0.2867 0.06 26.1
F140W 1.3924 0.3760 0.06 25.6
F160W 1.5396 0.2744 0.06 26.4

NIRCam F115W 1.1512 0.2426 0.032 29.2
@JWST F150W 1.5017 0.3309 0.032 28.9

F200W 1.9905 0.4654 0.032 29.0
F277W 2.7861 0.7117 0.065 29.2
F356W 3.5594 0.8163 0.065 29.0
F444W 4.4457 1.1197 0.065 28.6

Notes:
𝑎 Pixel size in original images. Final (matched) pixel size is 0.06′′/pix.
𝑏 HST depths from the CANDELS/3D-HST catalogs (Skelton et al.
2014): median 5𝜎 depth calculated from the errors of objects in the fi-
nal catalogs (apertures of 0.7′′) for all 5 CANDELS fields. JWST depths
corresponding to the CEERS proposal: values represent the planned 5𝜎
point source depths per filter, assuming a total integration time of 2867 s
for all NIRCam filters except for F115W (5734 s).
𝑐 This limiting magnitude is not included in the CANDELS/3D-HST
catalogs from Skelton et al. 2014. We assume the same value as F125W,
since the magnitudes for this band are slightly fainter/brighter than
those of F105W in the CANDELS survey.
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CEERS survey as a test case is that, although depths for subsequent JWST surveys are expected
to be better, CEERS is expected to provide one of the first publicly available datasets for deep-field
JWST observations. Cycle 1 GO / Treasury programs such as PRIMER are expected to achieve
similar depths.

First, we match the pixel size of the images to that of HST/WFC3 (0.06 arcsec). Second, we
convolve the image for each filter with the PSF model for the WFC3/F160W filter (FWHM ≈ 0.19
arcsec). Finally, we add Gaussian sky noise to the HST and JWST images to achieve the same
depth as in the CANDELS and CEERS observations, respectively. We degrade HST images adding
noise in order to match the median background rms noise measured around CANDELS massive
galaxies (M★ > 1010 M⊙) at 1 < 𝑧 < 4. For this calculation, we use actual regions covered by
CANDELS/Wide, CANDELS/Deep (Grogin et al. 2011, Koekemoer et al. 2011), and the Hubble
Ultra Deep field (HUDF; Beckwith et al. 2006b, Oesch et al. 2010c, Ellis et al. 2013a, Koekemoer
et al. 2013b, Illingworth et al. 2013b). For JWST images, the sky noise is estimated using the official
JWST exposure time calculator Pandeia2 (Pontoppidan et al. 2016), by measuring the predicted
signal-to-noise ratio (SNR) as a function of the pixels surface-brightness in CEERS observations
for the selected JWST broad-band filters. The initial spatial resolution of the images for each filter
(before registering) and final depths (after the noise addition) are given in Table 5.1. The limiting
magnitude has been estimated (without aperture correction) from the sky rms value adopting a
circular aperture with a fixed radius of 0.2′′ at a 5𝜎 level.

We use these processed (registered, PSF-matched, and sky noise-added) deep survey images to
measure photometry. To do that, we first generate a segmentation map by running SExtractor
(Bertin & Arnouts 1996) on the WFC3/F160W image using the following parameters: we filter
images with a gaussian kernel FWHM 3 pixels, set the minimum area for detections to 20 (a bit
smaller than the PSF FWHM), the number of deblending sub-thresholds to the maximum (64),
the contrast to 5 × 10−4, and local background to a size of at least 4 times the largest galaxy in
our sample. The results did not vary much when changing the relevant parameters given that we
are dealing with relatively bright galaxies. In general, there is good agreement between sources
detected in the segmentation map and galaxy positions given by the Illustris catalogs based on
the original images. Then, this segmentation map is combined with the information of the sample
in the Illustris catalogs to create circular galaxy apertures that enclose the integrated emission
from all galaxies in the sample (see 5.3.2.1 below). We choose to use galaxy positions given by
the Illustris catalogs instead of the ones provided by SExtractor in order to make the future
comparison between our results derived from 2D-photometry and from the simulated particles in
the galaxy more fair (otherwise, the centers for the galaxy photometric apertures would be shifted
from the galaxy centers given by the simulated particles).

We build galaxy SEDs by measuring multi-wavelength photometry in two different ways: inside
these circular galaxy apertures, which enclose the entire flux of the galaxy (hereinafter “integrated
photometry”), and for small parts of the galaxy defined after creating a grid inside this circular
aperture with cell size equal to 3×3 pixels, roughly the area of the FWHM of the PSF-homogenized
dataset (“2D photometry”, hereafter). In both cases, the flux uncertainty is estimated as

√
𝑁 × 𝜎,

where 𝑁 is the number of pixels within the aperture and 𝜎 the rms of the sky for that filter.

2https://jwst.etc.stsci.edu/. Pandeia Version: 1.7

https://jwst.etc.stsci.edu/
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5.3.2.1 Integrated photometry

In order to define the integrated-photometry apertures, we use both the segmentation map and
information extracted from the Illustris database, in particular, the galaxy centers and stellar half-
mass radii. The apertures are first defined in the segmentation map around galaxy centers with an
initial radius equal to twice the stellar half-mass radius (𝑟hm). We decided to use the 𝑟hm values
from the Illustris database because many of the galaxy properties provided by these simulations
refer to this radius (and to 2×𝑟hm) and, typically, papers compare the results based on observations
to what Illustris provides for 2 × 𝑟hm (see, e.g., Vogelsberger et al. 2014a, Sales et al. 2015, Cook
et al. 2016, Elias et al. 2018, Valentino et al. 2020) . With the following procedure, we test how
those apertures compare to what is directly measured in the simulated images. The initial radius
is first reduced to minimize the contamination from other sources until 80% of the pixels within
the aperture belong to the considered galaxy, i.e., we allow up to 20% of pixels from neighbors. If
the number of sky pixels (defined as those not belonging to any source) within this new aperture
is greater than 10%, we further reduce the radius to decrease that number below 10%. We refer
to the final photometric aperture radius as 𝑟phot hereafter. We discard galaxies (from the initial
selected sample of 248 galaxies) whose final aperture radius is 𝑟 < 0.75 × 𝑟hm. This showed to
be effective in removing sources overdeblended by SExtractor and galaxies whose initial aperture
(with 𝑟 = 2 × 𝑟hm) is partially beyond the edges of the simulated images. We also discard galaxies
which present surface brightness values fainter than 25 mag/arcsec2 in WFC3/F160W in their
brightest pixel within the final aperture.

Typically, the fraction of pixels within the final integrated photometric apertures belonging to
other nearby galaxies is very low, less than 1% for 75% of the sample of 221 galaxies. The maximum
percentage of pixels from neighbor galaxies within the integrated apertures is ∼20%, but only 27
out of 221 galaxies have more than 10% of pixels belonging to other sources.

In Fig. 5.3 (top panel) we show the histogram for the final radii of the apertures as a fraction
of 2 × 𝑟hm for the 221 galaxies in the final sample. This means we do not have apertures in this
histogram at 𝑟/(2 × 𝑟hm) < 0.375, due to the threshold imposed on the final apertures to be kept:
𝑟 > 0.75 × 𝑟hm. We find the median and quartiles for 𝑟phot/(2 × 𝑟hm) are 0.831.00

0.66. It can be noticed
that a considerable number of galaxies presents radii very similar or equal to the (starting) aperture
radius of 2× 𝑟hm: ∼ 40% and ∼ 37% of galaxies have 𝑟phot/(2× 𝑟hm) ≥ 0.95 and 0.999, respectively.
On the contrary, only ∼ 8% of galaxies have aperture radii smaller than 𝑟hm. But assuming 2× 𝑟hm
as the best aperture to compare our results with simulations has demonstrated not to work for a
significant number of galaxies.

The stellar masses enclosed by our final apertures, a fraction of the total stellar mass of each
galaxy, can be seen in the bottom panel of Fig. 5.3. As a comparison, we also show the histogram
for the fraction of stellar mass enclosed by a radius of 2 × 𝑟hm. For both radii, the masses have
been extracted from the Illustris database, i.e., they are ground-truth masses calculated by adding
up the simulated stellar particles belonging to each galaxy which are closer to the galaxy center
than the radii considered. The typical percentages of the stellar masses enclosed by these two
apertures are (median and quartiles) 6572

57% for the final photometric apertures and 7580
71% for a

radius of 2×𝑟hm. These percentages refer to total stellar masses provided by the Illustris database or
using all particles (in both cases, referring to the whole dark matter halo, i.e., they include regions
with very low mass surface densities, whose emission is well below our observational limits). This
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Figure 5.3: Top panel: histogram for the radii of the photometric apertures of the 221 galaxies in the final
sample as a fraction of 2 × 𝑟hm radius, the typical radius used by Illustris to compare with observations.
The cumulative fraction of galaxies in shown as a red line. Bottom panel: histogram for the fraction of
stellar mass enclosed by the photometric apertures (blue filled histogram) and for a radius of 2×𝑟hm (orange
hatched) with respect to the total stellar mass in the galaxy. In both cases, we neglect neighboring galaxies.
These total masses have been extracted from the simulated particles belonging to each galaxy in the Illustris
database. At the top of both panels, we show the median and quartiles for each histogram.

procedure aims at reproducing that to be applied to actual HST+JWST observations, so we should
be able to evaluate its impact on reproducing ground-truth properties.

To measure the integrated flux for each galaxy, we only consider pixels whose center lies within
the final circular aperture and which do not belong to other sources (according to the segmentation
map). The fluxes of these pixels within the aperture (considered galaxy and sky pixels) are added
together to build the integrated SED. In Table 5.2 we show the typical integrated magnitudes
(median and quartiles) of our 221 galaxies in several filters and in different redshift bins.

5.3.2.2 2D photometry

Separately, we also define a grid inside the circular aperture with cell size equal to 3×3 pixels
(0.18′′ × 0.18′′) and we measure SEDs for each of these spatial resolution elements. We only
consider cells inside the aperture which have at least one pixel that belongs to the galaxy we
are measuring. If there are any pixels in the cells belonging to other galaxies (according to the
segmentation map), the value of these pixels is replaced by sky pixels by adopting the same Gaussian
sky noise distribution previously added to the images. Additionally, we only keep SEDs for our



5.3 Photometric data from the Illustris simulation 89

Table 5.2: Integrated magnitudes of our 1 < 𝑧 < 4 sample

Instrument Filter
𝑚AB (mag)

1 < 𝑧 < 2 2 < 𝑧 < 3 3 < 𝑧 < 4
HST/ACS F435W 23.023.6

22.1 23.524.6
22.9 25.526.4

24.9
HST/WFC3 F160W 21.722.4

21.0 22.523.1
21.9 23.324.1

23.2
JWST/NIRCam F115W 22.022.6

21.1 23.123.9
22.5 23.824.3

23.3
F200W 21.722.4

20.9 22.523.1
21.9 23.023.7

22.8
F356W 21.422.2

20.7 22.322.8
21.7 23.023.7

22.8

Notes: Median values, first and third quartiles of the integrated
magnitude measured in different redshift bins and for several
bands.

analysis from cells with a SNR > 3 in at least 5 bands and with surface brightness brighter than
25 mag/arcsec2 in WFC3/F160W. Cells that do not satisfy these conditions are discarded. The
reason for imposing this surface brightness limit of 25 mag/arcsec2 is to deal with the problem
of the larger-than-observed galaxy sizes in Illustris galaxies with M★ ≲ 1010.7 M⊙, which present
larger half-light radii and more extended discs than real observed galaxies (Snyder et al. 2015).

Fig. 5.4 shows an example of the integrated aperture and the grid for one of the galaxies in the
sample. We also include in this figure the segmentation map around this galaxy and the initial
integrated aperture of 𝑟 = 2× 𝑟hm (dotted line). We show the WFC3/F160W image for this galaxy
before and after replacing the values of the pixels of nearby galaxies by random values drawn from
the same Gaussian sky noise distribution previously used to add the noise in this image. The initial
grid covers all the region within the final integrated aperture, but we only keep cells in cyan for
the stellar population analysis, as described in the previous paragraph.

The typical number of cells per galaxy decreases as we move to higher redshifts, as expected
given the smaller size of high-redshift galaxies (e.g., Bouwens et al. 2004, Oesch et al. 2010a, Ono
et al. 2013). Our galaxies present (median and quartiles) 98136

69 cells at 1 < 𝑧 < 2, 5286
37 at 2 < 𝑧 < 3,

and 2429
21 at 3 < 𝑧 < 4. We also calculate the median SNR of the galaxy cells included in the

analysis in different redshift bins, by calculating the SNR as the ratio between the measured flux
and its uncertainty in these cells. Median and quartile values for ACS/F435W (WFC3/F160W)
are 3148

22 (3052
22), at 1 < 𝑧 < 2, 3040

21 (2738
22) at 2 < 𝑧 < 3, and 1723

10 (2431
21) at 3 < 𝑧 < 4. For F115W,

F200W and F356W NIRCam bands, the median SNR of the galaxy cells are: 6293
51, 72110

61 and 92132
77,

respectively, at 1 < 𝑧 < 2, 4354
34, 6688

60 and 88110
77 at 2 < 𝑧 < 3, and 5369

48, 8191
74 and 91108

80 at 3 < 𝑧 < 4.

5.3.3 Redshifts

Galaxy redshifts are taken from the Illustris database. Specifically, we use the ‘inferred redshift’
values in the catalogs that were used to generate the simulated images in S+17. This redshift value
corresponds to the inferred cosmological redshift obtained considering the contribution of both
the true cosmological redshift and the galaxy peculiar velocity. A discussion about the possible
differences in the derived stellar population properties due to uncertainties in the redshifts of the
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Figure 5.4: Postage stamp images (size 2.5′′ × 2.5′′) for one of our galaxies: Illustris-1_066_0000006 at
z = 2.192 (Field A of S+17 images). This galaxy code stands for galaxy id 6 and snapshot 66 (𝑧 = 2.21)
in the Illustris-1 simulation. Left panel: Segmentation map, with colored regions delimiting the galaxy (in
orange), three nearby galaxies (green, yellow, and red), and sky pixels (black). We also show the integrated
photometric aperture (dark cyan solid line) and the starting aperture of 𝑟 = 2 × 𝑟hm used to calculate the
former (dotted line). Inside the integrated aperture, we show the grid where the 2D photometry is measured:
the cells that are finally kept for the 2D-SPS analysis are shown in cyan, cells discarded for not fulfilling
the SNR and surface brightness criterion as pink hatched squares, and cells discarded for not including any
pixel from the considered galaxy as white hatched squares. Middle panel: WFC3/F160W image (already
registered, PSF-matched, and sky noise-added) with the integrated aperture. Right panel: WFC3/F160W
image where the values of the pixels from nearby galaxies have been masked by replacing them with the
same Gaussian sky noise distribution previously added to the images. We also show the integrated aperture
and the grid.

corresponding observed galaxies is beyond the scope of this work. Although photo-z uncertainties
can be substantial, it will be likely that future spectroscopic redshift samples from both JWST and
the Atacama Large Millimeter/submillimeter Array (ALMA) will increase the fraction of galaxies
with spectroscopic redshifts and, at the same time, improve the photo-z accuracy at such high
redshifts.

Fig. 5.5 shows the stellar mass vs. redshift plot for our galaxies. Two different values of stellar
masses are shown for each galaxy: considering all particles in the galaxy or only particles inside
twice the stellar half-mass radius. The median values and quartiles for these mass measurements,
in log(M★/M⊙), are 10.4310.73

10.17 and 10.3010.63
10.05, respectively, and 2.032.47

1.57 for the redshifts.

5.3.4 Ground-truth physical properties of each galaxy

We use the Illustris database to extract the information for all the simulated particles belonging to
a galaxy. In particular, we extract total stellar masses and SFRs of the whole galaxy. These total
stellar masses and SFRs values are the ones shown in Fig. 5.1.

We build ground-truth galaxy SFHs from the information of the individual particles that belong
to each galaxy (see Section 2.4). Briefly, the SFH can be computed by first loading from the
database the stellar particles in the galaxy and then making a histogram of their formation ages
in lookback time. We assume time bins for the formation ages of 25 Myr up to a formation age
of 1 Gyr, and 250 Myr afterwards. Subsequently, the stellar mass formed per time interval is
calculated by summing the masses of the stellar particles formed in each time bin. We will also
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Figure 5.5: Stellar mass vs. redshift plot for galaxies in our sample, with values extracted from the Illustris
database. We show the stellar mass when considering all the particles in the galaxy (total stellar masses) as
light blue circles and the stellar mass obtained when only particles inside twice the stellar half-mass radius
as small dark blue dots. Histograms of stellar masses and redshifts are shown at the top and on the right,
with the median and quartiles marked.

use in the following sections an additional SFR estimation for each galaxy obtained from the SFH
and calculated by loading the gas particles in the galaxy for the snapshot corresponding to the
observed redshift and adding together their instantaneous SFR values. Since these ground-truth
SFHs will be compared with those derived from the SED-fitting in Section 5.5, in order to make
the comparison more fair, we only consider stellar and gas particles which are closer to the galaxy
center than the radius of the photometric aperture. Still, our SFHs will be naturally affected by
the limitation inherent to detection and photometry procedures.

5.4 Estimation of the SFH from 2D SED fitting

Our aim is to study the earliest formation phases of nearby massive galaxies by analyzing in detail
the formation history and location of the star formation in massive galaxy progenitors at high
redshift. For that purpose, our approach consists in using broad-band data covering the (observed-
frame) optical-to-mid-infrared spectral range provided by HST and JWST. In this chapter, we
assess the robustness of the results derived from this type of realistic but naturally simplified
analysis using simulated imaging data from Illustris (see Section 5.3). As described in the previous
section, we build SEDs for each source for both the integrated emission as well as in a 2D grid. In
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this section, we describe the derivation of integrated SFHs for each galaxy based on SPS modeling
for these SEDs. We then analyze how successfully we can recover the ground-truth SFHs when
only broad-band HST and JWST photometric data is used.

5.4.1 Stellar populations synthesis modeling

The integrated and grid SEDs are compared with stellar populations models of Starburst99 (Lei-
therer et al. 1999), assuming a Kroupa (2001) IMF and a Calzetti et al. (2000) attenuation law. To
perform these fits, we use the synthesizer code described in Pérez-González et al. (2003, 2008). This
code combines the emission of both stars and gas, compares the models with the observed data,
and returns the model that best fits the data by performing a 𝜒2 minimization (see Section 4.3).

We assume a double-burst delayed exponential SFH, with each burst described by 𝑆𝐹𝑅(𝑡) ∝
𝑡 · 𝑒−𝑡/𝜏 for 𝑡 > 0 up to 𝑡 = 𝑡burst, being 𝜏 the star formation timescale and 𝑡𝑏𝑢𝑟𝑠𝑡 the age of the burst.
The age of the burst must be understood as the time passed between the age of the Universe when
the galaxy started to form stars in that burst and the time corresponding to the observed redshift.
The SFH form was chosen after some testing which indicated that 2 bursts following a delayed-
exponential SFH instead of other simpler parametrizations (e.g., one single exponential burst) as a
more adequate parametrization to successfully reproduce the ground-truth SFHs given by Illustris.
Several tests were performed assuming only one time-delayed exponential with different values for
𝜏 and the minimum age of the population, but all of them resulted in the 2D-SED fits selecting
too young (recent) ages for the models which were unable to recover the ground-truth galaxy SFH.
We will discuss this further in Section 5.5.

The free parameters in our SED fits are the age (𝑡), star-formation timescale (𝜏), extinction
(𝐴𝑉), and metallicity (𝑍) for the two stellar populations, in addition to the burst strength (𝑏). This
burst strength describes the fraction of the total stellar mass that has been created by the most
recent burst. We consider an old burst as the one occurring first in the galaxy formation history and
a young burst as the one occurring closer to the age of the Universe corresponding to the observed
redshift. The stellar mass (M★) is derived from the SED fits by normalizing the best-fitting model
(which provides mass-to-light ratios at all wavelengths) to the observed photometry.

In order to improve the resemblance of the estimated SFHs to the ground-truth SFHs built from
simulated particles in the simulation, we found that the allowed age ranges for the old and young
stellar populations must depend on the galaxy redshift. In other words, the age frontier between
the two stellar populations is an important parameter to set a priori based on the galaxy redshift.
We thus tested the dependence of our results on this age separation limit (agelim in Table 5.3),
considering values as a function of the age of the Universe for a given redshift. The most accurate
results in our analysis (considering the mass-fraction formation ages discussed in Section 5.5) are
obtained when we impose an age limit between the 2 populations equal to 40% of the age of the
Universe for galaxy redshifts at 1 < 𝑧 < 2 and to 50% of the age of the Universe for 2 < 𝑧 < 4
(i.e., 40% of the age of the Universe for the young population and 60% for the old population when
1 < 𝑧 < 2, and 50% of the age of the Universe for both populations when 2 < 𝑧 < 4).

Similarly, we tested different values for the star formation timescales of both bursts and found
the best results are obtained when setting 200 < 𝜏old < 1000 Myr, and 𝜏young = 10 Myr. Table 5.3
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Table 5.3: Free parameters and their ranges in the SED fitting for a double delayed-exponential SFH.

Parameters Values/Range Units Step
𝑡young 0.1 - age𝑎lim Gyr discrete𝑏

𝜏young 10 Myr –
𝐴V,young 0 - 2 mag 0.1 mag
𝑡old agelim - age𝑐Univ,z Gyr discrete𝑏

𝜏old 200 - 1000 Myr 0.1 dex
𝐴V,old 0 - 1 mag 0.1 mag

𝑍young & 𝑍old [0.2, 0.4, 1] Z/Z⊙ discrete
𝑏 0.01 - 1 - 0.01

Notes:
𝑎 The age separation limit between the young and old popula-
tions, is measured (backwards) from the redshift of observation
of the galaxy. This value depends on the redshift of the galaxy:
it is set to 40% of the age of the Universe for 1 < z < 2 and to
50% of the age of the Universe for 2 < z < 4.
𝑏 We use all the discrete values for the ages given by the SB99
models within the allowed range.
𝑐 The maximum allowed value for the age of the old popula-
tion is the age of the Universe at the galaxy redshift.

shows the ranges within which each free parameter is allowed to vary in the SED-fittings of this
work.

It is impossible to present the results of the full set of tests performed to explore the parameter
space here, so instead we focus on those that yield the best match and will be the most useful for
upcoming JWST observations.

The metallicity is allowed to adopt three different values: 𝑍/𝑍⊙ = 0.2, 0.4, and 1. These
values are expected for our sample according to the mass-metallicity relationship at the considered
redshifts, at which this relationship shows lower metallicities than locally for a given mass (Erb et al.
2006; Maiolino et al. 2008; Mannucci et al. 2009; Zahid et al. 2011). Regarding the dust attenuation,
we limit the attenuation range to values within 0 < 𝐴V,old < 1 mag for the old population, and
within 0 < 𝐴V,young < 2 for the young population.

Fig. 5.6 shows an example of an integrated SED fit and the values of the model that best fits
our data. For this particular galaxy, both the old and young stellar populations contribute at the
40%-60% level throughout the full spectral range. This analysis is performed for the 221 galaxies:
both for their integrated measurements and their 2D emission (given by the cells in the grid).

To estimate uncertainties in the derived stellar population properties, Monte Carlo (MC) simu-
lations are performed in synthesizer by allowing the photometric data to normally vary within their
photometric uncertainty (without correlation), and then repeating the fit again for 300 resampled
SEDs (more details in, e.g., Domínguez Sánchez et al., 2016). This results in 300 sets of solutions
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Figure 5.6: Example of one integrated SED fit for one of our galaxies: Illustris-1_062_0004079 at 𝑧 = 2.843.
This galaxy code stands for galaxy id 4079 and snapshot 62 (𝑧 = 2.73) in the Illustris-1 simulation. The best
fit is shown as a red line. We also show the models corresponding to the old (green) and young (orange)
stellar populations. The transmission curves of the filters have been included at the bottom of the figure. The
best-fit stellar parameters for the old and young populations are also given. An RGB image (size 1.5′′×1.5′′)
with the integrated aperture is shown as an inset.
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Figure 5.7: Stellar masses for the 1 < 𝑧 < 4 sample derived from the integrated SED-fits vs. their ground-
truth values calculated from the simulated stellar particles belonging to each galaxy (inside a sphere with
the same radius as that of the integrated photometric aperture). The one-to-one relation is shown with the
dotted black line. The histograms for both distributions are shown in different colors, with the median and
the 68% intervals as horizontal segments.

for each SED which also provide us with information about the typical degeneracies present in
these kinds of studies (e.g., age-metallicity or 𝜏-age degeneracy).

Fig. 5.7 shows the stellar masses for our 1 < 𝑧 < 4 sample derived from the integrated SED-fits
vs. their ground-truth values and how the one-to-one relation is recovered, with a median offset of
0.04 dex and a scatter of 0.2 dex. Each of the SPS-derived galaxy masses has been calculated as
the median stellar mass provided by the integrated SED fits. The ground-truth masses have been
calculated from the database by considering only the simulated particles of each galaxy closer to the
galaxy center than the radius of the integrated photometric aperture. In both cases, stellar masses
correspond to the current mass of stars at the redshift of observation (i.e., calculated after taking
into account the time-dependent mass-loss and fraction of remnants as a function of time). The
histograms for both distributions are also shown. We notice our SPS-derived stellar masses slightly
overestimate the ground-truth masses, although the differences are small: log(M★/M⊙) = 10.3310.80

9.96
for the integrated SED-fits vs. 10.2110.72

9.92 for the stellar particles (median and 68% confidence
interval).
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Several effects could be responsible for the dispersion observed around the one-to-one relation
between our integrated vs. ground-truth masses. One of these effects is due to the difference between
the volume of the sphere used to calculate the ground-truth masses and that of the cylinder along
the line of sight which would enclose all the stars contributing to photometry. This makes that,
depending on the shape of the galaxy, when measuring photometry we may include the light
from stellar particles in the line of sight located at large galactocentric distances (not included in
spherical aperture used to calculate the ground-truth galaxy mass). In fact, this is what happens
for the galaxy with an integrated mass that differs in ∼1.5 dex in Fig. 5.7, which is being outshined
by an ultra-massive galaxy of log(Mground-truth

★ /M⊙) = 11.47 located at only 0.1′′ from its center.
Another effect which can cause dispersion in the recovered integrated mass is the presence of nearby
neighbors and their identification in the segmentation map. Even though the light of these neighbors
inside the photometric aperture is usually (but not perfectly) blocked by the segmentation map,
so is the light of the considered galaxy inside this masked region. However, for the calculation of
the ground-truth galaxy mass, we do take into account these stellar particles (from the considered
galaxy) located in this region of the sphere.

5.4.2 Estimating SFHs from HST+JWST photometry

Integrated SFHs are built for each galaxy from the 2D SED-fits, and compared with the ground-
truth SFHs extracted from the Illustris database (see Section 5.3.4). We build 300 integrated SFHs
for each galaxy using the 2D stellar population fits, which includes a MC method to estimate
uncertainties and degeneracies. We first create one SFH for each resolution element in the galaxy
grid. Subsequently, one global SFH is calculated by adding together all these SFHs in the grid.
This procedure is then repeated 300 times, one for each of the MC particles presented in the
previous section. By combining and adding the 300 SED-fits for each cell in the grid, we obtain
300 independent estimations of the integrated SFH for a given galaxy.

The resulting SFHs are smoothed using a 100 Myr square kernel. Then, we normalize these
300 galaxy SFHs with the median stellar mass of the galaxy derived from the 300 integrated SED-
fits. Unless otherwise stated, these galaxy stellar masses refer to the galaxy masses at the time
of observation without including remnants or yields. Finally, we calculate the median SFH of the
galaxy from these 300 normalized SFHs.

In Fig. 5.8, we summarize the methodology followed for a galaxy to obtain this median 2D-SPS
galaxy SFH from its 2D photometry measurements. We start from the HST+JWST data (RGB
image and some individual bands shown on the figure), in our example, a galaxy presenting a red
center which resembles a protobulge and what seems like a blue disk with some spiral structure.
We measure integrated and 2D photometry in a grid. We show SEDs and their stellar population
modeling results for some representative grid regions in the center, blue arm on the bottom left
and a diffuse emission zone on the top right. We note the difference in color shown in the SEDs
between the center and the disk, and how the integrated SED resembles more that of the galaxy
center rather than the disk regions. In this regard, considering 2D photometry in our analysis
facilitates the estimation of SFHs since small parts of a galaxy are expected to have more simple
forms than the entire galaxy, whose integrated photometry is dominated by the regions with highest
intensities, i.e., they outshine fainter regions located in the outskirts for this example galaxy. The
individual SFHs for each grid region are added to obtain an integrated SFH. In this example,
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Figure 5.8: Schematic diagram of the methodology followed to obtain the median SFH for a galaxy from its
2D-SPS analysis. First, we show an RGB image of the galaxy and some of the HST+JWST broad-band images (in
Table 5.1) processed to imitate CANDELS and CEERS observations for HST and JWST filters, respectively. We
measure the 2D photometry inside a grid (in cyan) with cell size equal to the spatial resolution element, in addition
to the integrated photometry (blue aperture). As an example, we show the SEDs measured for three regions of the
grid: the center of the galaxy (teal cell), an arm region (light green), and a diffuse emission zone (pink). To estimate
the uncertainties and degeneracies in the derived stellar populations, each SED is fitted 300 times by performing MC
simulations. We add the individual SFHs inferred from all the grid regions to obtain the SFH for the whole galaxy.
The black thin SFHs in the bottom subfigure show the SFHs for the whole galaxy created by accounting for the
uncertainties in the SFHs of each grid region, where the median galaxy SFH from this 2D-SPS method is shown in
yellow. The blue dotted SFH is the galaxy SFH inferred from the integrated photometry. The ground-truth SFH of
the galaxy, given by the stellar particles belonging to the galaxy, is the green solid SFH.
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we demonstrate how the derived SFHs with our method nicely reproduce the ground-truth SFH,
significantly improving what can be obtained by analyzing the integrated SED. In the following
section, we compare our derived SFHs from our 2D analysis of broad-band imaging data with the
reference SFHs built using the simulated stellar particles in the Illustris-1 database.

5.5 Validation of the method

In this section, we evaluate the levels of success of our method in recovering the SFHs of massive
galaxies at high redshift. In particular, in this thesis we are mainly interested in the earliest phases
of massive galaxy formation. Therefore, we compare our results based on the analysis of broad-
band HST and JWST images with the ground-truth provided by the Illustris database for full
galaxies. We will analyze spatially-resolved stellar population properties in a future works, here we
concentrate on the results about the SFHs.

5.5.1 Characterization of the earliest phases in the formation of massive
galaxies

In order to characterize when massive galaxies start their formation, we calculate the formation
times and redshifts when galaxies have formed a given (small) fraction of their total stellar mass.
In particular, we discuss here the formation times when the first 5%, 10% and 25% of the stars
in each galaxy and the entire sample were formed. We define 𝑡k as the formation time (measured
from the galaxy redshift) at which a galaxy formed the k% of its total stellar mass present at the
galaxy redshift. These mass-fraction formation times, 𝑡k, can be directly computed by integrating
the 2D-SED-derived galaxy SFHs over cosmic time and are similar to other parameters used in
recent literature (see, e.g., Ji & Giavalisco, 2023). We remark that 𝑡k depend on both 𝑡0 and 𝜏, so
they might somehow alleviate possible degeneracies between ages and timescales. We also calculate
mass-weighted ages, 𝑡mw, from the SFHs. To test their robustness, these 𝑡5, 𝑡10, 𝑡25, and 𝑡mw
extracted from the SFHs derived with our 2D-SPS method are compared with their ground-truth
values, which are obtained from the SFHs of the simulation stellar particles following the same
procedure and enclosed by the photometric aperture.

Fig. 5.9 shows 𝑡5, 𝑡10, 𝑡25, and 𝑡mw calculated from the SFHs derived with 2D stellar population
modeling of broad-band data versus their reference values. For each galaxy, we show 300 values of
these quantities (vertically spread out), which correspond to the 300 MC particles or 2D-SPS galaxy
SFH as described in Section 5.4.2. The black dotted line shows the one-to-one relation between
values derived from our 2D-SPS method (output) and those from the simulated particles (ground-
truth). As explained in Section 5.4.1, some a priori parameters of our method (e.g. Table 5.3) have
been optimized to reproduce this one-to-one relation for these four mass-fraction formation times.
In general, we find our ages are consistent with this relation at all redshifts. As an inset in each
panel, we show the histogram of relative differences between median and ground-truth values for all
galaxies. We find our 𝑡5, 𝑡10, 𝑡25, and 𝑡mw values are consistent with the ground-truth values with a
median (relative) offset of +71 (+4.4%), +16 (+1.8%), -2 (-0.1%), and -50 Myr (+5.2%), and a scatter
(68% interval) of 0.33, 0.31, 0.27, and 0.17 Gyr, respectively. As commented in Section 5.4.1, when
we consider only a single-population SFH roughly spanning the whole range of parameters (𝑡, 𝜏,
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Figure 5.9: Comparison between the mass-fraction formation times (measured backwards from the redshift
of observation of the galaxy) of our 2D-SPS method and their ground-truth values: 𝑡5 (upper-left), 𝑡10
(upper-right), 𝑡25 (lower-left) and 𝑡mw (lower-right) calculated from our 2D-SPS-derived SFHs versus their
reference values calculated from the SFHs built from the simulated stellar particles in galaxies. Each galaxy
is represented by 300 vertically spread points, which correspond to the mass-fraction formation times of the
300 2D-SPS SFHs, built from the 300 MC particles in each resolution element in the grid. The median of
these values for each galaxy is shown as bigger circles and error bars represent the standard deviation of
these values (68% interval). All points are color-coded by galaxy redshift. On the top of each panel, we show
the ratio between the 𝑡k of our 2D-SPS method and their ground-truth values as a function of the latter. As
an inset, we include the offsets of the galaxies in the sample.
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𝐴𝑉 , 𝑍) of the two-population fitting, too young ages are assigned in the SED-fits, which leads to
an underestimation of all the ground-truth formation times. Thus, when we assume a SFH given
by only one population instead of two, these median offsets are never better than -0.9, -0.8, -0.5,
and -0.4 Gyr for 𝑡5, 𝑡10, 𝑡25, and 𝑡mw, respectively. In Appendix A, we show other combinations
explored for the SED-fitting parameters.

We have included on the top of each panel the ratio between the 𝑡k of our 2D-SPS method and
their ground-truth values. In general, we do not see any systematic effect as a function of redshift,
but we do find our 𝑡2D-SPS

25 and 𝑡2D-SPS
mw tend to underestimate ground-truth in some galaxies as

the ground-truth 𝑡k increases: 𝑡25 (𝑡mw) presents a median systematic offset of only ∼ 5% (−2%)
with respect to ground-truth for lookback times younger than 2 (1.5) Gyr, but ∼ −13% (−16%)
for older lookback times. We do not see this behavior in the case of 𝑡5 and 𝑡10, which present
a median systematic offset of less than ∼ 6% for ages younger and older than 2 Gyr. A possible
interpretation for this bias in 𝑡25 and 𝑡mw observed for some low-redshift galaxies could have its
origin in the double-burst SFH model assumed for the 2D-SPS analysis. This model causes the
galaxy SFH to usually rise quickly in later epochs due to the presence of the young population burst
(see the median 2D-SPS galaxy SFH in Fig. 5.8). As a consequence of this late and rapid increase
in the SFR, the middle of the SFH necessarily presents lower SFR in order to reproduce the given
final light or mass, which would produce a bias when deriving those formation times of the galaxy
that are more sensitive to this middle part of the SFH, i.e., 𝑡25 and 𝑡mw. Since low-redshift galaxies
have a more extended and possibly more complex SFH than galaxies at high-redshift, this effect
would be more noticeable in them.

Regarding the precision of our method, we find the scatter values are relatively small and similar
for all 𝑡k, but we observe the scatter tends to increase from 𝑡5 to 𝑡25. Taking all this into account,
we conclude that our 2D-SPS method successfully recovers 𝑡5, 𝑡10, 𝑡25 and 𝑡mw for 1 < 𝑧 < 4 massive
galaxies with a ∼30% uncertainty and small ≲5% systematic effects.

5.6 Expectations for the derivation of the SFH of 𝑧 > 1 massive
galaxies with HST+JWST data

The aim of this section is to discuss when the early stages of stellar mass assembly took place in
very massive galaxies. To do this, we apply stellar population synthesis in 2D on our galaxy sample
at 1 < 𝑧 < 4 and we compare the statistical results on the SFHs for the sample with the ground-
truth values inferred from the simulation stellar particles. This comparison gives us information
about the limitations and observational biases we will encounter when using this method on galaxy
samples constructed with real data.

5.6.1 When did massive galaxies begin to form?

In Section 5.5, we showed that our 2D-SPS method successfully recovers 𝑡5, 𝑡10, and 𝑡25 for our
galaxy sample. These quantities represent the lookback times at which galaxies reach 5%, 10%, 25%
of the stellar mass formed, respectively, and can be used to estimate the beginning of star formation
in galaxies. To address the question of when the population of very massive galaxies began to form,
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our approach consists in calculating 𝑡5, 𝑡10, and 𝑡25 from a median SFH of the sample built from
the 2D-SED fits. At this point, we should remind the reader that our sample consists of galaxies
at 1 < 𝑧 < 4 with M★ > 1010 M⊙, all having very massive descendants (M★ > 1011 M⊙) at 𝑧 = 0.
Hence, we expect the median SFH from our 2D-SPS modeling to resemble the median SFH of very
massive galaxies at 𝑧 = 0 over the redshift interval of our sample (where both SFHs overlap). We
say resemble because our sample limitations might have implications on the derived SFHs, i.e., we
have to consider the systematic effects introduced by not taking into account lower mass galaxies
and by the relative number of galaxies selected at different redshifts in our full interval.

Since the final goal of our 2D-SPS method is to be applied on real galaxy samples at high
redshift as soon as JWST data are available, we need to check first whether our results from the
2D-SED fits regarding the first episodes of stellar assembly in very massive galaxies are compatible
with the ground-truth of the simulation. To address this issue, we build two additional samples
of galaxies at 𝑧 = 0 in the simulation to be compared with our main 1 < 𝑧 < 4 galaxy sample.
For these initial three samples of galaxies, we build the typical (median) ground-truth SFH from
the simulated particles in their galaxies, which will be compared with the typical SFH from the
2D-SPS analysis on the 1 < 𝑧 < 4 studied sample of massive progenitors. The samples of galaxies
in the Illustris-1 simulation considered in this section are:

1) Our main galaxy sample at 1 < 𝑧 < 4 used for the 2D-SPS analysis. It consists of the 221 (out
of the 248) M★ > 1010 M⊙ progenitors at 1 < 𝑧 < 4 in the S+17 images with a very massive
descendant at 𝑧 = 0, and which have not been discarded during the analysis procedure (see
Section 5.2.2). This is the “high-redshift sample of (massive) progenitors” or “main sample”,
hereafter.

2) The descendants at 𝑧 = 0 of our main 1 < 𝑧 < 4 galaxy sample, all of them with M★ > 1011 M⊙
(132 descendants). This sample is a subset of the whole population of very massive galaxies
at 𝑧 = 0.

3) The whole population of very massive galaxies (M★ > 1011 M⊙) at 𝑧 = 0. This sample is
composed by 856 galaxies.

Although the main sample of this study is composed of massive progenitors of local M★ > 1011 M⊙
galaxies, our selection criteria could not be applied as such to real observations where the estima-
tion of the final mass at 𝑧 = 0 of observed high-redshift galaxies is not easy without additional
assumptions (see also Section 2.5). To study the impact of this, we apply the same 2D-SPS method
described for our main sample of 1 < 𝑧 < 4 progenitors to the following fourth, additional sample:

4) All M★ > 1010 M⊙ galaxies at 1 < 𝑧 < 4 in the S+17 images, regardless of the stellar mass
of their descendants at 𝑧 = 0. It consists of the 350 (out of the 388) massive galaxies at
1 < 𝑧 < 4 in the images that are not discarded when the 2D-SPS method is applied to them.
This sample is a combination of our main galaxy sample of 221 massive progenitors plus other
129 massive galaxies at 1 < 𝑧 < 4 in the images that do not reach M★ > 1011 M⊙ at 𝑧 = 0 for
any reason.
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The median SFH of this sample of 1 < 𝑧 < 4 massive galaxies built from the 2D-SPS analysis,
and also the ground-truth median SFH from the simulated particles in each galaxy, will also be
compared to the results of our main sample of 1 < 𝑧 < 4 progenitors.

We remind the reader that the S+17 images only contain a limited number of galaxies from the
full Illustris-1 simulation. Thus, the descendants at 𝑧 = 0 of the galaxies we have studied through
their HST+JWST simulated imaging data are also a limited subset of all the galaxies at 𝑧 = 0 in
the simulation (see Fig. 2.6 for a diagram of the sample of massive progenitors at 1 < 𝑧 < 4 in the
images and their 𝑧 = 0 descendants in Illustris). Our aim is to see if, by analyzing the SFHs for
high-redshift, M★ > 1010 M⊙ progenitor galaxies in the images of 𝑧 = 0 very massive galaxies, we
can learn when the whole population of very massive galaxies began to form.

If we consider the masses of all the simulated stellar particles in galaxies, our main 1 < 𝑧 < 4
sample of 221 galaxies accounts for only 28% of the total stellar mass present in their 132 𝑧 = 0
descendants, of which 1 < 𝑧 < 2, 2 < 𝑧 < 3, and 3 < 𝑧 < 4 galaxies in the sample would account
for 33%, 23%, and 8.1% of the stellar mass in their descendants, respectively. If we also take into
account the total stellar masses of less massive progenitors at 1 < 𝑧 < 4 in the images, none of
them considered by the mass cutoff, this number raises to 32% (36% for galaxies at 1 < 𝑧 < 2, 27%
for 2 < 𝑧 < 3, and 11% for 3 < 𝑧 < 4). This means that the remaining 68% of the stellar mass in
nearby massive galaxies must be explained by either more recent in-situ star formation events or
by subsequent mergers at 𝑧 < 1. We refer the reader to Section 5.2.2 for more information about
the main 1 < 𝑧 < 4 galaxy sample and their 𝑧 = 0 descendants.

In Fig. 5.10 we compare the histograms for the ground-truth stellar masses of galaxies in the
four samples, calculated from the simulated particles in the database. On different panels we show
the histograms for the stellar masses corresponding to all particles in galaxies and to particles inside
2×rhm. In both cases, the distribution of the stellar masses for our 1 < 𝑧 < 4 sample of massive
progenitors resembles that of all massive galaxies at 1 < 𝑧 < 4, although the former is biased
towards higher masses: the median and 68% interval are log(M★/M⊙) = 10.411.0

10.1 vs. 10.310.8
10.1 when all

particles are considered, and 10.310.8
10.0 vs. 10.210.6

10.0 for particles inside 2×rhm, respectively. Regarding
the two samples of 𝑧 = 0 galaxies, we find that the distribution of masses for the population of very
massive galaxies at 𝑧 = 0 and for the specific descendants are very similar: log(M★/M⊙) = 11.311.7

11.1
vs. 11.211.6

11.1 (all particles), and 11.111.5
11.0 vs. 11.111.4

11.0 (particles inside 2×rhm). As discussed below in
this section, this difference in the median masses is a consequence of the mass-cutoff imposed for
the selection of the 1 < 𝑧 < 4 sample and will have an impact on the mass-fraction formation times
of both samples. In summary, we conclude that our limited sample of progenitors would indeed
provide representative results for the full population of massive galaxies at 𝑧 = 0.

In Section 5.6.1.1, we calculate the median ground-truth SFH for these subsets of galaxies using
only the simulated particles in them, while in subsection 5.6.1.2 we compare these results with the
median SFH of our main high-redshift sample of M★ > 1010 M⊙ precursors built using our 2D-SPS
method. Finally, in subsection 5.6.1.3 we show the variation of the onset of star formation of
massive galaxies.
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Figure 5.10: Ground-truth stellar mass histograms for the different samples extracted from the Illustris-1
database: when considering all particles in galaxies (top panel) or only particles inside twice the stellar
half-mass radius (bottom panel). We show our main 2D-SPS sample of progenitors at 1 < 𝑧 < 4 in blue,
massive galaxies at 1 < 𝑧 < 4 in cyan, the descendants at 𝑧 = 0 of our 1 < 𝑧 < 4 progenitors in orange,
and the whole population of very massive galaxies at 𝑧 = 0 in green. The median and the 68% intervals are
shown at the top of each panel.

5.6.1.1 Ground-truth SFHs: very massive 𝑧 = 0 galaxies in Illustris and the 1 < 𝑧 < 4
sample

Fig. 5.11 shows the sample-averaged (median) SFHs built from the Illustris simulated particles for
the four different subsets of galaxies considered: the 1 < 𝑧 < 4 main sample of 1 < 𝑧 < 4 progenitors
(blue line), massive galaxies at 1 < 𝑧 < 4 (cyan), the descendants at 𝑧 = 0 of our main sample of
1 < 𝑧 < 4 progenitors (orange lines), and all massive galaxies at 𝑧 = 0 in Illustris-1 (green lines).
To study whether there is any aperture effect on the SFHs, the SFHs of the two subsamples of
𝑧 = 0 galaxies have been built by selecting simulated particles at 𝑧 = 0 in two different ways: either
by considering all the stellar particles belonging to each galaxy (dotted lines), or only the stellar
particles inside a sphere with radius 2×𝑟hm (measured at 𝑧 = 0; solid lines). In the case of the two
high-redshift samples, the radius of each sphere has been set to match the radius of the photometric
aperture used for the 2D-SED fits, rphot, and only particles within this radius have been considered.
These typical SFHs have been smoothed using a 250 Myr square kernel. Shaded areas correspond to
the uncertainty in the median SFH calculated as the 95% confidence interval: 𝑡𝑁−1 ×𝜎/

√
𝑁, where

𝑡 is the 𝑡 value from the 𝑡-distribution for 95% confidence, 𝜎 has been estimated from the dispersion
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of the different SFHs, and 𝑁 is the number of galaxies at each age. We only show median SFHs of
the galaxies at 𝑧 = 0 down to 𝑧 = 1, the lower limit of our main 1 < 𝑧 < 4 sample. Additionally,
we point out that the typical SFH of both samples at 1 < 𝑧 < 4 has been calculated from different
numbers of galaxies at different ages (what we would be able to perform when working with real
data), in contrast to the median SFHs of the other two 𝑧 = 0 samples, which count with the same
number of galaxies in the entire redshift range.

We remark that no normalization has been applied to the median SFHs shown in Fig. 5.11.
Regarding the different absolute levels of these SFHs, these are a consequence of several factors.
First, the difference in SFR values between the dotted lines with respect to the solid lines of the same
color, corresponding to the z=0 samples (green and orange) can be explained by the construction
method of the SFH followed in each case: SFHs which have been built using all particles present
generally higher SFRs than those built using only particles in 2×rhm. This is expected, since both
for the population of 𝑧 = 0 1011 M⊙ galaxies and for the 𝑧 = 0 descendants of the main 1 < 𝑧 < 4
sample, the stellar mass inferred from the typical SFHs of particles within 2×rhm (i.e., the area
enclosed by the SFH) is ∼ 66% of the stellar mass inferred from the typical SFH built from all the
particles in galaxies. We will address the difference between the median SFH of both 𝑧 = 0 samples
below in this section. Secondly, the average SFR values from the median SFH calculated for the
𝑧 = 0 samples (green and orange) is systematically higher than for the 1 < 𝑧 < 4 samples (blue and
cyan). This difference is mainly due to the fact that we calculate the SFH for each 𝑧 = 0 galaxy
from their particles at 𝑧 = 0 instead of computing it after tracing and independently considering
the actual precursors of the 𝑧 = 0 galaxy at high-redshift (unfeasible in real observations). As a
consequence, the average SFR per 𝑧 = 0 galaxy is bigger than the average SFR per precursor, due
to the lower number of galaxies considered at 𝑧 = 0. In the case of the difference between the
median SFH of our main 1 < 𝑧 < 4 sample (blue) and their descendants at 𝑧 = 0 (solid orange for
particles in 2×rhm), there is an additional contribution based on the fact that some of the stellar
mass of the 𝑧 = 0 descendants comes from other less massive progenitors which are not included in
our main 1 < 𝑧 < 4 sample of massive progenitors due to our mass cut-off. In addition to this, the
different apertures considered for both 1 < 𝑧 < 4 samples with respect to the other 𝑧 = 0 samples
also plays a role in lowering the average SFR of these two high-redshift samples: the radii of the
photometric apertures used to build the sphere that contains the simulated particles in these high-
redshift samples are usually smaller than 2×rhm measured at the observed redshift, as explained
in Section 5.3.2, and should be smaller than 2×rhm measured at 𝑧 = 0. In fact, we remind the
reader that the typical photometric aperture radius for our main 1 < 𝑧 < 4 sample of progenitors
is nearly 20% smaller than 2×rhm and encloses around 65% of the total stellar mass in the galaxies
(see Fig. 5.3). When all massive 1 < 𝑧 < 4 galaxies are considered, these numbers are similar: the
photometric aperture has a median radius 19.8% smaller than 2×rhm and includes ∼64.8% of the
stellar mass.

If we integrate the median SFH of both high-redshift samples over cosmic time, the difference
in their SFR levels leads to our main 1 < 𝑧 < 4 sample (in blue) recovering a stellar mass of
0.17 dex higher than for all 1 < 𝑧 < 4 massive galaxies (cyan). This is a likely consequence of our
main 1 < 𝑧 < 4 sample containing only massive progenitors of local 1011 M⊙ galaxies, and these
progenitors, in order to reach such elevated stellar masses at 𝑧 = 0, are expected to be more massive
(in average) and have higher SFRs than ordinary massive galaxies at the sample redshift range.
In fact, our main 1 < 𝑧 < 4 progenitors sample has a median stellar mass 0.08 dex higher than all
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Figure 5.11: Ground-truth median SFHs calculated from the simulated particles for the subsamples of
galaxies: all M★ > 1011 M⊙ galaxies at 𝑧 = 0 (green lines), all massive galaxies at 1 < 𝑧 < 4 (cyan), our main
1 < 𝑧 < 4 progenitors sample (blue), and the descendants at 𝑧 = 0 of this high-redshift sample of progenitors
(orange). The results from the 2D-SPS analysis are not included in this figure. The median SFHs for the
𝑧 = 0 subsets have been calculated in two ways: considering all the particles in galaxies (dotted lines) or only
the particles inside a sphere with radius 2×rhm to the galaxy center (solid). The median SFH of the two
high-redshift samples has been built using only particles whose distance to the galaxy center is lower than
the radius of the photometric aperture used for each galaxy. Shaded areas represent the uncertainty of the
median. As vertical lines, we show the 𝑡5, 𝑡10, 𝑡25, and 𝑡mw calculated for each SFH shown. As a comparison,
we show in purple the median SFH calculated in Iyer et al. (2020) for all galaxies at 𝑧 = 0 in the Illustris
simulation with M★ ∼ 1011 M⊙.
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1 < 𝑧 < 4 massive galaxies (for particles inside rphot) and a SFR (in rphot, median and quartiles) of
1631

7 vs. 1123
5 M⊙/yr for all massive galaxies at 1 < 𝑧 < 4.

In Fig. 5.11, we also show with vertical lines the mass-fraction formation times 𝑡5, 𝑡10, 𝑡25, and
𝑡mw calculated by integrating each sample-averaged SFH over cosmic time. As mentioned before,
we only take into account for these calculations the stellar mass formed in each SFH at ages of the
Universe below that of the minimum redshift of our main 1 < 𝑧 < 4 sample (𝑧 ∼ 1), as at lower
redshifts we lack information on the photometric properties of any of the galaxies in this sample-
averaged SFH. This means we only consider the 𝑧 > 1 part of the median SFHs for the 𝑧 = 0 galaxy
subsets and the whole SFH for the high-redshift samples. We find the mass-fraction formation
times for the SFH of the high-redshift samples (blue and cyan) are systematically shifted towards
earlier times (expressed in terms of the age of the Universe; or correspond to older lookback times),
than the ones for the descendants at 𝑧 = 0 of our main sample (orange), and these, in turn, are
younger than those from the whole population of massive galaxies at 𝑧 = 0 (green). These ∼200-
400 Myr shifts (∼ 10% in relative terms) could be explained by a progenitor bias, which appears
as a consequence of the mass cutoff of M★ > 1010 M⊙ imposed on our main sample selection. We
first focus on the younger (or earlier) formation epochs of the descendants (orange) with respect to
those of all the very massive galaxies at 𝑧 = 0 (green). The mass cutoff makes the sample of 𝑧 = 0
descendants to be biased towards larger masses and more massive galaxies tend to present older
stellar population ages. In contrast, when taking into account all M★ > 1011 M⊙ galaxies at 𝑧 = 0,
i.e., a complete sample of local massive galaxies, we obtain slightly later formation ages. In fact,
as it can be seen in Fig. 5.10, the median and quartile stellar masses are 0.1 − 0.2 dex larger for
the descendants of our sample of M★ > 1010 M⊙ galaxies at 1 < 𝑧 < 4 compared to the complete
sample of M★ > 1011 M⊙ 𝑧 = 0 galaxies. In addition, our mass cut at 1 < 𝑧 < 4 implies losing 17%
of massive M★ > 1011 M⊙ galaxies at 𝑧 = 0.

Indeed, this progenitor bias also explains why the time-averaged SFR for 𝑧 = 0 descendants
(orange) is higher than that for the population of very massive galaxies (green). This applies to
the galaxy apertures considered in Fig. 5.11 (for which no mass-normalization has been applied).
The differences increase for ages corresponding to smaller fractions of the total stellar mass. Fur-
thermore, both for all massive galaxies at 𝑧 = 0 and for 𝑧 = 0 descendants of the main high-redshift
sample, mass-fraction formation times are older (smaller values in age of the Universe) when all
stellar particles are included in the SFH computation than when considering only those inside
2×rhm. This may be explained by an outward migration of stars, which would result in larger
apertures adding a larger fraction of older stars in the SFH computation and, consequently, earlier
formation times.

Regarding the shift to earlier formation times of the main progenitors sample (blue) with respect
to the 𝑧 = 0 descendants (orange), possibly also due to the progenitor bias, we propose a similar
explanation as the one given above. Our main sample of massive progenitors at 1 < 𝑧 < 4 is only
a biased subset (cut in mass and with a given redshift distribution) of all the progenitors that
evolve to a galaxy from the whole sample of 𝑧 = 0 descendants. The descendants, as mentioned
above, also have other progenitors that do not fulfill the mass cutoff at 𝑧 > 1 and which may have
undergone a merger with a galaxy from our main 1 < 𝑧 < 4 sample at a lower redshift. These minor
progenitors at 1 < 𝑧 < 4 would not be included in the SFH of the (massive) progenitors sample,
and they would probably host younger stellar populations, which would explain the shift towards
more recent formation times for their 𝑧 = 0 descendants.
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Finally, we notice that the ground-truth formation times for our main 1 < 𝑧 < 4 sample of
precursors (in blue) are almost identical to the ones derived for all the 1 < 𝑧 < 4 massive galaxies
(cyan), with (relative) differences of less than 34 Myr (1.4%) in all cases. This suggests that,
although our main progenitors sample accounts for approximately two thirds of all the M★ >

1010 M⊙ galaxies at 1 < 𝑧 < 4, we can estimate the formation times of local M★ > 1011 M⊙
descendants by considering all the massive galaxies at the same redshift range.

5.6.1.2 Recovering the SFH of massive galaxies with 2D-SPS modeling of
HST+JWST data

We now calculate the median SFH of the main 1 < 𝑧 < 4 galaxy sample obtained from the 2D-
SED fits (not from the Illustris database, as done in Section 5.6.1.1). For this calculation, we
take the median SFH for each galaxy in this sample constructed from the 2D-SPS analysis (see
Section 5.4.2), normalize each galaxy SFH to recover the median stellar mass (without remnants
or yields) given by its integrated SED-fits, and combine all these normalized galaxy SFHs to build
the median (or typical) SFH for the whole sample. We remark that this implies that the SFR at
a given age of the Universe involves the combination of a different number of galaxies, namely, all
that lie at lower redshifts compared to the redshift corresponding to that age of the Universe.

Fig. 5.12 shows this median SFH of the main 1 < 𝑧 < 4 progenitors sample derived from the
2D-SED fits (red solid line). We compare this SFH, which could be obtained following the same
procedure on real galaxy samples when JWST (plus HST) data are available, with the ground-
truth. First, we compare with the averaged SFH for the same main sample of 1 < 𝑧 < 4 precursors
but built from the simulated particles inside the radius of the photometric aperture (blue). This
comparison allows to evaluate the accuracy of our method. We also compare with the SFH of
𝑧 = 0 descendants using the stellar particles inside 2×rhm (orange). This comparison allows us to
understand the bias of a sample based on imaging data linked to selection effects. The two latter
comparison SFHs are the same shown in Fig. 5.11, but normalized to recover the same stellar mass
as the median 2D-SPS-derived SFH of our main 1 < 𝑧 < 4 sample (1010.57 M⊙ at 𝑧 = 1). Note that,
without normalization, the corresponding stellar masses at 𝑧 = 1 would be log(M★/M⊙) = 10.67 for
the median ground-truth SFH of this high-redshift sample and 10.91 for the median SFH of their
descendants at 𝑧 = 0 (built from particles inside 2×rhm). As commented in Section 5.6.1.1, the
difference in the mass recovered by the SFH of our main 1 < 𝑧 < 4 of massive progenitors and the
𝑧 = 0 descendants is caused by the reduction in the multiplicity of galaxies when calculating galaxy
averages at 𝑧 = 0, the presence of less massive galaxy branches for the 𝑧 = 0 descendants which are
not included in our main 1 < 𝑧 < 4 sample due to the mass cut-off, and the smaller aperture radius
(in average) used to calculate the galaxy SFHs for the 1 < 𝑧 < 4 sample. Shaded areas correspond
to the uncertainty in the median SFH calculated as the 95% confidence interval. Finally, we have
calculated the median SFH derived from applying the 2D-SPS analysis to all 1 < 𝑧 < 4 massive
galaxies in S+17, following the same procedure than that described for our main 1 < 𝑧 < 4 sample
of progenitors. This new median SFH, also normalized to the same mass as the others, is shown in
pink. For clarity, we have not included the uncertainties of this last median SFH.

We find that the general shapes of the four SFHs shown are not very different from each other,
except for the SFR increase in the last 0.5-1.0 Gyr (near 𝑧 = 1) in the SFHs built from the 2D-SPS
analysis (in red and pink). The SFH of our main sample of precursors built from the 2D-SED
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fits (red) follows the general trend of the SFH built from the simulated particles in the sample
(blue), but for this raise, and this also happens for the 2D-SPS-derived SFH of massive galaxies at
1 < 𝑧 < 4 (pink). The number of galaxies considered in the calculation of the SFHs for the high-
redshift samples drops as the redshift decreases (as clearly seen in the increase of uncertainties).
Thus, there are fewer galaxies near 𝑧 = 1 from which to calculate the typical SFH and, when
averaging, the weight of any individual galaxy SFH is bigger. The individual galaxy SFHs built
from the 2D-SPS, as explained in Section 5.4.1, are the combination of the SFH of one young and
one old stellar population. This causes the galaxy SFHs built from the 2D-SED fits to normally
have a peak in SFR near the redshift of the galaxy, which is not necessary present in the galaxy
SFH built from the simulated particles (see, for example, the median 2D-SPS galaxy SFH shown
in Fig. 5.8). At higher redshifts, these individual peaks, if present, are not reflected in the median
SFHs not only because the SFH is averaged over more galaxies but also because these individual
peaks in SFR are located at varying redshifts and distributed across a wide time span. On the
contrary, near 𝑧 ∼ 1, where the number of galaxies drops, we pile up some of these peaks and this
is reflected in the median SFHs from the 2D-SPS analysis.

In Fig. 5.12, we include the SFR values expected from the Illustris SFMS at 𝑧 = 1, 2, and
4 (Sparre et al. 2015) for the stellar masses obtained by integrating our median 2D-SPS SFH of
progenitors down to each of those redshifts. We remind the reader that this median 2D-SPS SFH,
like other SFHs in Fig. 5.12, has been normalized to recover the median galaxy stellar mass (without
including remnants or yields) of the main 1 < 𝑧 < 4 sample of progenitors given by the integrated
SED-fits. We find that our median SFR values (in red in Fig. 5.12) are consistent within the errors
with those expected from the SFMS in Sparre et al., although the agreement observed for the 𝑧 ∼ 1
SFMS value with respect to our median SFR at that redshift is probably caused by the spurious
rise of the SFR in this median SFH at 𝑧 ∼ 1 (due to the second peak of star formation in the
individual galaxy SFHs). On the top panel, we show the evolution of stellar mass assembly for our
main high-redshift sample, calculated both from the median SFH of the 2D-SPS analysis of these
progenitors (in red) and that of their stellar particles in rphot (blue).

The mass-fraction formation times for each SFH in the figure are shown as vertical lines. We
remark the good agreement between the 𝑡5 and 𝑡10 formation times derived for our main high-
redshift sample of precursors using the 2D-SED fits (red) and the simulated particles (blue), with
(relative) differences of -29 (-2.1%) and -9 Myr (-0.5%) in age of the Universe, respectively, with the
ground-truth values being larger. Additionally, the differences in the other two formation times,
although higher, are also low: +107 (+4.5%) and +149 Myr (+4.4%) for 𝑡25 and 𝑡mw, respectively,
with larger values from the 2D-SED fits. Regarding the comparison of these formation times for
the main high-redshift sample (2D-SPS and particles) with their 𝑧 = 0 descendants (orange), the
agreement is also good, with maximum (relative) differences in age of the Universe of -188 (-12%),
-184 (-9.7%), -227 (-8.7%), and -199 Myr (-5.5%) for 𝑡5, 𝑡10, 𝑡25 and 𝑡𝑚𝑤, respectively, and 74 (5.5%),
59 (3.5%), 112 (4.7%), and 98 Myr (2.8%) when the main progenitors sample is compared to all
massive galaxies at 1 < 𝑧 < 4 (pink). As mentioned before, the older values of the 𝑡5, 𝑡10 and 𝑡25
formation times for the high-redshift sample with respect to the 𝑧 = 0 descendants are due to the
progenitor bias.

According to the 2D-SPS analysis of our main 1 < 𝑧 < 4 sample, local M★ > 1011 M⊙ galaxies
would have formed 5% of their stellar mass at 𝑧 ∼ 1 by 𝑧 = 4.5, 10% of their mass by 𝑧 = 3.7,
and 25% by 𝑧 = 2.7. These redshifts correspond to ages of the Universe of 1.4, 1.7, and 2.5 Gyr,
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Figure 5.12: Comparison between the median SFH of our main 1 < 𝑧 < 4 progenitors sample derived from
the 2D-SED fits (in red) and from the simulated particles (in blue). We also include the median SFH of
the descendants of this high-redshift sample at 𝑧 = 0 built with particles inside 2·rhm (in orange) and the
median SFH of massive galaxies at 1 < 𝑧 < 4 derived from applying the 2D-SPS method to this sample
(pink). Shaded areas represent the uncertainty of the median. The SFHs have been normalized to recover
the same stellar mass as the median 2D-SPS-derived SFH of our main 1 < 𝑧 < 4 sample over the same
redshift intervals (𝑧 ≳ 1). The vertical lines depict the 𝑡5, 𝑡10, 𝑡25, and 𝑡mw mass-fraction formation times
for each SFH. Gray diamonds show the Illustris SFMS level at 𝑧 = 1, 2, and 4 (Sparre et al. 2015). On the
top panel, we show the evolution of the integrated stellar mass at each redshift for our main high-redshift
sample (2D-SPS and particles, same color code).
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respectively. This is equivalent to saying that 5% of the stellar mass present in very massive local
galaxies at 𝑧 ∼ 1 was already assembled when the Universe was only ∼ 10% of its current age, 10%
of the mass by 13% of its age, and 25% of the mass by 18% of the cosmic time.

The first star formation episodes for these galaxies are located at 𝑧 = 16 ± 1 (calculated as
the median redshift where the SFR starts to be larger than 0). Then it would rise up to 𝑧 ∼ 3.
After that, it would remain approximately constant down to 𝑧 ∼ 2, and a slightly decreasing
trend would follow. This can be clearly seen in the ground-truth SFH derived from the simulated
particles in the database and agrees with the median SFHs calculated in Iyer et al. (2020) for
1010.75 < M★ < 1011.25 M⊙ galaxies at 𝑧 = 0 in the Illustris simulation (considering all the particles
in galaxies). Nevertheless, we hardly reproduce the most recent part of the SFH from the 2D-SPS
analysis, where our method begins to fail. We note that our 2D-SED fitting method was calibrated
in order to successfully reproduce the first instants of the stellar mass assembly in massive galaxies,
i.e., 𝑡5, 𝑡10, 𝑡25, along with 𝑡mw. Thus, even though we successfully determine these mass-fraction
formation times for the typical SFH of massive galaxies, our method fails to reproduce this SFH
at higher ages of the Universe. However, the recovery of the whole SFH of massive galaxies and,
consequently, their typical SFH throughout the whole redshift range, is beyond the scope of this
work.

We do not find any starburst epoch in the typical SFH from the 2D-SPS analysis on the main
1 < 𝑧 < 4 sample of progenitors, and the other SFHs from the simulated particles, albeit 34% (13%)
of galaxies in our 1 < 𝑧 < 4 progenitors sample reach 50 (100) M⊙/yr at some time of their 2D-SPS-
derived galaxy SFHs because of the young population assumptions in the SED-fits. These starburst
episodes are also present in the ground-truth SFHs of this main 1 < 𝑧 < 4 sample of progenitors
with similar numbers: 31% (14%) of galaxies reach 50 (100) M⊙/yr at some time of their ground-
truth galaxy SFH. Starburst events, which are usually short-lived, ∼100 Myr (Tacconi et al. 2008,
Wuyts et al. 2011, Espino-Briones et al. 2022), have been proven to occur during the evolution of
some galaxies, as it can be inferred from the high SFR values of Main Sequence outliers or those
of the population of very luminous high-redshift submillimeter galaxies, discovered by Smail et al.
(1997). The reason why these brief intense star formation episodes are not present in our median
SFHs is that they averaged out when we consider a whole population of galaxies, in the same way
that they do not appear when calculating the cosmic star formation history (Madau & Dickinson,
2014). In addition to this, the Illustris simulation is known to have has a paucity of strong starburst
galaxies, i.e., a fewer fraction of galaxies that lie significantly above the SFMS when compared to
observations (Sparre et al. 2015), which appears to be a consequence of the insufficient resolution
of Illustris to resolve the sub-kiloparsec starbursting regions (Sparre & Springel 2016).

5.6.1.3 The variety of the start of SFHs in massive galaxies

Finally, we briefly concentrate on when the star formation started for the individual galaxies in
the subsamples. We assume the start of the star formation for each galaxy can be given by its 𝑡5
(calculated from their individual galaxy SFH) or, even, by its 𝑡1.

Fig. 5.13 shows the diversity in the values of 𝑡5 (left) and 𝑡1 (right) for the main sample of pro-
genitors at 1 < 𝑧 < 4 (2D-SPS method and ground-truth from particles in rphot), their descendants
at 𝑧 = 0 (ground-truth from particles inside 2×rℎ𝑚), the whole population of very massive galaxies
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Figure 5.13: Histograms of 𝑡5 and 𝑡1 calculated from the SFHs of galaxies in the different samples consid-
ered. Our main 1 < 𝑧 < 4 sample of progenitors is represented by the outlined histograms: values calculated
from the 2D-SPS-derived galaxy SFHs are outlined in red, while those calculated from the ground-truth
SFHs built from the database (DB) are represented with a dashed blue line. For the 2D-SPS-derived values,
we only show the median 𝑡5 or 𝑡1 for each galaxy (calculated out of the 300 SFHs per galaxy). The cyan,
filled histogram represents the distribution of the ground-truth 𝑡5 and 𝑡1 for massive galaxies at 1 < 𝑧 < 4,
calculated from the ground-truth SFHs built by considering only particles inside rphot in the database. The
ground-truth distribution for the 𝑧 = 0 descendants of our main sample is shown as the orange, hatched
histogram. For the whole population of very massive galaxies at 𝑧 = 0, only its median and quartile values
are shown (black segments). For these two 𝑧 = 0 samples, only particles inside 2×rhm have been considered.
Median and quartiles are shown as segments on the top.
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Table 5.4: Mass-fraction formation times and redshifts for different samples in Chapter 5.

Galaxy subset SFHs from 𝑡5 𝑡10 𝑡25 𝑡mw 𝑧5 𝑧10 𝑧25 𝑧mw

(1) 1 < 𝑧 < 4, M★ > 1010 M⊙ sample 2D-SED fits (rphot) 1.41.7
1.1 1.72.1

1.5 2.53.1
2.2 3.64.1

3.2 4.55.2
3.8 3.74.2

3.1 2.72.9
2.2 1.92.1

1.6
with M★ > 1011 M⊙ descendants Particles in rphot 1.40 1.73 2.39 3.39 4.41 3.70 2.78 1.98

(2) Descendants at 𝑧 = 0 Particles all 1.52 1.88 2.60 3.58 4.14 3.45 2.57 1.87
of main 1 < 𝑧 < 4 sample in 2×rhm 1.56 1.91 2.62 3.59 4.04 3.41 2.56 1.86

(3) All galaxies at 𝑧 = 0 Particles all 1.60 1.98 2.76 3.69 3.97 3.29 2.43 1.81
with M★ > 1011 M⊙ in 2×rhm 1.66 2.05 2.83 3.74 3.85 3.19 2.37 1.78

(4)1 < 𝑧 < 4, M★ > 1010 M⊙ galaxies 2D-SED fits (rphot) 1.33 1.66 2.39 3.45 4.61 3.83 2.79 1.95
with any descendant Particles in rphot 1.41 1.72 2.36 3.37 4.40 3.72 2.82 1.99

Notes: Values have been calculated from the SFHs shown in Figs. 5.11 and 5.12.The mass-fraction formation times are
measured in Gyr from Big Bang.

at 𝑧 = 0 (particles inside 2×rℎ𝑚), and massive galaxies at 1 < 𝑧 < 4 (ground-truth from particles
inside rphot). For clarity, in the case of the population of very massive galaxies at 𝑧 = 0 we do not
include the histogram but only its statistical values (median and quartiles). The median values of
both 𝑡5 and 𝑡1 for the main 1 < 𝑧 < 4 progenitors sample given by the 2D-SPS (in red) are consistent
with the ground-truth (in blue) for this sample (with differences of 0.26 and 0.19 Gyr, respectively),
even though the histogram for our 2D-SPS method predicts that some galaxies start to form a bit
earlier (∼0.2-0.4 Gyr earlier) than expected according to the database. These differences are already
visible in Fig. 5.12, where the SFH corresponding to the 2D-SPS analysis (red curve) rises faster in
the beginning than that of the simulated particles (in blue). Regarding the distributions of the two
subsamples at 𝑧 = 0 (descendants of the main 1 < 𝑧 < 4 sample in orange and the whole populations
of M★ > 1011 M⊙ galaxies in black), their median 𝑡5 and 𝑡1 are similar and also consistent with
each other. This also happens with the ground-truth values of massive galaxies at 1 < 𝑧 < 4 (in
cyan) and our main 1 < 𝑧 < 4 sample (in blue), and, consequently, suggests again that the whole
population of massive 1 < 𝑧 < 4 galaxies tends to reproduce the earliest formation times of actual
massive progenitors (at the same high-redshift range) of M★ > 1011 M⊙ galaxies at 𝑧 = 0.

Fig. 5.13 can be useful if we want to know where to look for the first star formation episodes
in massive galaxies. According to the ground-truth distribution of 𝑡5 and 𝑡1 for the main 1 < 𝑧 < 4
sample of massive progenitors (in blue), 25% of these galaxies would have formed 1% (5%) of its
stellar mass by 𝑧 ∼ 8 (6), and 50% of the galaxies by 𝑧 ∼ 7 (5).

In Table 5.4, we summarize the mass-fraction formation times (and corresponding redshifts) for
all the SFHs shown in Figs. 5.11 and 5.12. We have calculated an estimation of the uncertainties
for the 2D-SPS-derived values of the main sample of 1 < 𝑧 < 4 progenitors by taking into account
the (300) individual SFHs for each galaxy and by calculating the mass-fraction formation times for
all of them. We estimate the uncertainty for the 2D-SPS-derived formation times as the quartile
values of these distributions.
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5.7 Summary and conclusions

We assess the power of broad-band HST+JWST imaging data for the analysis of the earliest
evolutionary phases of galaxies that evolve into local massive objects (M★ > 1011 M⊙) by analyzing
the SFHs of progenitors at high redshift in deep cosmological surveys. For that purpose, we
apply stellar population synthesis in 2D to a sample of 221 Illustris-1 simulated M★ > 1010 M⊙
galaxies at 1 < 𝑧 < 4 that evolve into M★ > 1011 M⊙ galaxies at 𝑧 = 0. We use ACS, WFC3, and
NIRCam data in the optical and near-infrared from the synthetic Illustris-1 deep survey images
(S+17). We measure SEDs for galaxies in the sample from both integrated and 2D multi-wavelength
photometry on these images, previously processed to mimic the depths of CANDELS imaging data
from HST and ongoing CEERS observations with JWST along with the source extraction and
analysis procedures to be applied to data from these surveys. From the SED modeling, we derive
the SFH of each source by combining the 2D information from the fits, and compare it with
the ground-truth SFH given by the simulated particles belonging to each galaxy in the Illustris-1
database. In this work, we focus on determining the capabilities of broad-band HST+JWST for
determining the first episodes in the stellar mass assembly, and our main findings are the following:

(i) We evaluate the success of our 2D-SPS method in recovering the earliest phases of the stellar
mass assembly by comparing the mass-fraction formation times 𝑡5, 𝑡10, and 𝑡25 calculated for each
galaxy from its 2D-SPS-derived galaxy SFH with those given by its ground-truth SFH. We find that
our 2D-SPS method successfully recovers these quantities with a median relative offset between our
values and ground-truth of +4.4%, +1.8%, and −0.1% for 𝑡5, 𝑡10, and 𝑡25, respectively, and scatters
of 0.21, 0.24, and 0.28 dex. Additionally, no systematic effects are observed as a function of galaxy
redshift.

(ii) We build the median SFH of our main 1 < 𝑧 < 4 sample of precursors from the 2D-SPS-
derived individual galaxy SFHs to infer the mass-fraction formation times of the sample as a whole.
Thus, local M★ > 1011 M⊙ galaxies would have assembled 5% of their stellar mass present at 𝑧 ∼ 1
by 𝑧 = 4.5, 10% of their mass by 𝑧 = 3.7, and 25% by 𝑧 = 2.67, or equivalently, when the age of
the Universe was 1.38, 1.72, and 2.50 Gyr, respectively. These ages agree with their ground-truth
values derived from the typical SFH built from the simulated particles of galaxies in the sample,
with relative differences of -2.1%, -0.5%, and +4.5% for 𝑡5, 𝑡10, and 𝑡25, respectively. Nevertheless,
our method fails to reproduce the shape of this SFH for at 𝑧 ≲ 1, mainly because of the second star
formation peaks in the 2D-SPS-derived galaxy SFHs (caused by the second burst assumed in the
functional form of the SFHs) which accumulate at this redshift range.

(iii) We compare the formation times derived from the 2D-SPS analysis for this main sample
of precursors with the values obtained from the ground-truth median SFH at 𝑧 < 1 of local M★ >

1011 M⊙ galaxies and of the descendants of this high-redshift sample. The mass-fraction formation
epochs from the 2D-SPS are systematically earlier than those inferred from the descendants of
this sample. Besides, the latter are higher than the ones inferred from the whole population of
M★ > 1011 M⊙ galaxies. In both cases, these shifts in the formation redshifts, of ∼200-400 Myr, are
due to the progenitor bias. This bias arises as a consequence of the mass cut-off imposed on the
high-redshift progenitor sample, aimed at reproducing the selection suffered in actual HST+JWST
survey observations, and which makes this sample to contain only the most massive (and, thus,
older) progenitors of local M★ > 1011 M⊙ galaxies. Given the way our progenitor sample has been
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selected, their descendants at 𝑧 = 0 also present a median stellar mass that is slightly higher than
the whole population of local M★ > 1011 M⊙ galaxies, which leads to mass-fraction formation times
closer to the Big Bang.

(iv) With the aim of comparing our results with those that will be inferred from CEERS
observations, we perform the same analysis on all the 1 < 𝑧 < 4 1010 M⊙ galaxies in the processed
S+17 images. We find that the formation times derived from the median SFH of this sample
are very similar to the ones inferred from our original sample of massive precursors with a local
M★ > 1011 M⊙ descendant (differences of <1.4% in all the formation times when considering the
ground-truth particles and <4.7% from the 2D-SPS analysis). This suggests that we can consider
all massive 1 < 𝑧 < 4 galaxies observed with CEERS (+CANDELS), regardless of their actual 𝑧 = 0
descendant, to study the formation times of the most massive descendants at 𝑧 = 0.

(v) Regarding the variety of the 𝑡1, and 𝑡5 values, the distribution of these formation times
shows that 25% of our main 1 < 𝑧 < 4 sample of progenitors formed 1% (5%) of their stellar mass
present at the redshift of observation by 𝑧 ∼ 8 (6), and 50% of the galaxies by 𝑧 ∼ 7 (5).

The results from this work show that our 2D-SPS method, when applied to real CANDELS
+ CEERS spatially-resolved broad-band observations of massive 1 < 𝑧 < 4 galaxies, will be able
to infer when the early stages of the stellar mass assembly took place in these galaxies and, from
them, have an estimation of when local 1011 M⊙ galaxies began to form, within the limitations and
biases already discussed throughout this chapter.

We caution the reader that the numerical values of the mass-fraction formation times and other
quantities shown in this work are unique to Illustris-1, since they are dependent on the specifications
of the simulation, such as the assumed cosmology, the volume and resolution of the simulation, the
physical models for galaxy formation (e.g., the star formation and feedback implementations) and
on any free parameter. Thus, the values presented in this chapter for Illustris-1 are not expected to
be necessary similar to those obtained from other simulations like, for example, the IllustrisTNG
project (Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018; Pillepich et al. 2018b;
Springel et al. 2018), follow-up of the Illustris simulation which includes as main changes in the
physics the incorporation of magnetohydrodynamics and updates in the feedback physics model,
among others updates. This new IllustrisTNG series alleviates some of the tensions present between
the outcome of the original Illustris simulations and observations (see Pillepich et al. 2018c), such
as, for example, the (too) high cosmic star-formation rate density predicted by Illustris at 𝑧 ≤ 1,
the excess in the stellar mass function at 𝑧 ≲ 1 at the low (≲ 1010 M⊙) and the high (≳ 1011.5 M⊙)
mass end, the excessively large physical extent for M★ ≲ 1010.7 M⊙ galaxies (a factor of few larger
than observed), or the overpopulation of the blue cloud and green-valley with respect to the red
sequence in the galaxy color distribution (see full list in Nelson et al. 2015). An interesting matter
to discuss when HST+JWST measurements are available will be to tell whether the prescriptions
assumed for Illustris-1, IllustrisTNG or any other simulation are good enough to reproduce the
mass-fraction formation times observed for massive high-redshift galaxies or if, on the contrary,
they must be used as constraints to refine new galaxy formation models.



CHAPTER6
Earliest phases in the formation

of massive galaxies at 1 < 𝑧 < 4 from
spatially-resolved Star Formation Histories

6.1 Introduction

In Chapter 5, we described and tested a method to probe the first stages of the stellar mass assembly
of massive (𝑀★ > 1010 M⊙) galaxies at 1 < 𝑧 < 4 using stellar population synthesis in 2D (2D SPS)
with synthetic imaging data from the Illustris cosmological simulation (see also García-Argumánez
et al. 2023).

The aim of this chapter, which constitutes the main objective of this thesis, is to apply the
method to real data and to study the early assembly of galaxies by applying our 2D-SPS method
to massive, 1 < 𝑧 < 4 galaxies observed with NIRCam data from JWST in the CEERS survey. These
data are combined with previous spatially-resolved HST/ACS data in the optical from CANDELS
of the same fields (Grogin et al. 2011; Koekemoer et al. 2011). We will present the results of
the application of this method to our recently completed (CANDELS+)CEERS observations and
resulting spatially-resolved SEDs, which will be published in the second paper (in prep.).

Throughout this chapter, we assume the same cosmology as specified in Planck Collaboration
et al. (2020): a ΛCDM cosmology with Ωm = 0.3153, ΩΛ = 0.6847, and H0 = 67.36 km s−1 Mpc−1.
All magnitudes presented in this work have been calculated using the AB system (Oke & Gunn
1983).

6.2 Observations

In this chapter, we combine recent broad-band photometric observations from JWST in the near-
infrared (NIR) taken with the Near-Infrared Camera (NIRCam) and belonging to the CEERS
survey (Section 6.2.1), with previous imaging data in the same fields from HST in the visible taken
with the Advanced Camera for Surveys (ACS) and belonging to CANDELS/EGS (Section 6.2.2).
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6.2.1 JWST imaging from CEERS

As commented in Chapter 3.2.3.1, the Cosmic Evolution Early Release Science Survey (CEERS;
PI: Steven Finkelstein; Finkelstein et al., in prep.) is one of the 13 JWST Early Release Programs
(ERS). The full CEERS program covers ∼ 100 arcmin2 with both imaging and spectroscopy. In
this chapter, we use observations from CEERS Epoch 1, i.e., the first batch of CEERS observations
taken with NIRCam in June 2022. These consist of four NIRCam pointings (labeled NIRCam1,
NIRCam2, NIRCam3, and NIRCam6) that cover a combined area of 35.5 arcmin2 (see Fig. 3.8a,
bottom left panel). In particular, we use the broad-band images taken with NIRCam/F115W,
F150W, F200W, F277W, F356W, and F444W filters. We use the public data release version
0.5 of these NIRCam Epoch 1 images, available on https://ceers.github.io/dr05.html. The
reduction and calibration of these images is described in Bagley et al. (2023). Briefly, they were
reduced using version 1.7.2 of the JWST Calibration Pipeline with pmap version 0989, taking
care and removing “snowballs” and “wisps” features in the images, 1/ 𝑓 noise, and performing a
global background subtraction. The 5𝜎 depths for point-like sources in these NIRCam images in
circular apertures of 0.20′′ of diameter range between 29.0 − 29.2 mag, except for the F444W filter
which has 28.6 mag as limiting depth (Finkelstein et al. 2023).

6.2.2 HST imaging from CANDELS/EGS

CEERS area overlaps with most of the Extended Groth Strip (EGS; Davis et al. 2007) observations
from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin
et al. 2011; Koekemoer et al. 2011). This allows us to complement our NIRCam observations
with the HST/ACS F606W and F814W broad-band images from CANDELS/EGS. We use the
version of the ACS images provided by the CEERS team (together with the NIRCam images in
the public data release version 0.51). These consist of four ACS images per filter (one per NIRCam
pointing) which are pixel-aligned to NIRCam Epoch 1 images and drizzled to the same pixel scale
of NIRCam images, namely 0.03 arcsec pixel−1. The 5𝜎 depths in these images for point-like
sources in 0.2′′apertures are 28.6 mag for F606W and 28.3 mag for F814W (Finkelstein et al. 2023).
Although WFC3 data are also available for this field, we do not include them in the analysis because
their images have shallower depths than the rest of considered filters (∼ 1 − 2 mag shallower than
our two ACS images and ∼ 1 − 2.5 mag shallower than our NIRCam images) and the wavelength
range probed by WFC3 filters is mostly covered by our NIRCam filters (with considerably deeper
depths and thus, smaller uncertainties for the SED fittings). Since the 2D-SPS method presented
in Chapter 5 (see Section 5.5) has been validated with more filters (15) than those considered in
this chapter (8), in order to check that our method is still successful at retrieving the first formation
times of massive galaxies, we repeat the analysis of Section 5.5 considering only the 8 filters in this
chapter (see Appendix B). In summary, we find that the median relative offsets (in absolute value)
found for all the mass-fraction formation times considered are now below ∼8.5% when compared
to ground-truth (vs. 5.3% for the 15 filters in Chapter 5), which means that we can consider that
our 2D-SPS method is still sufficiently valid to infer these early formation times.

https://ceers.github.io/dr05.html
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6.3 Selection of the preliminary sample

In this work, we are interested in probing the earliest phases in the formation of massive (𝑀★ >

1010 M⊙) galaxies at 1 < 𝑧 < 4. With this purpose, we first select an preliminary sample of 1 < 𝑧 < 4
galaxies with estimated stellar masses of 𝑀★ > 109.5 M⊙, on which we will perform the photometric
analysis and to which we will apply SPS. Our final sample of massive, 1 < 𝑧 < 4 galaxies will be
built based upon the results of the SPS analysis (Section 6.4), by considering only galaxies in the
preliminary sample with 𝑀★ > 1010 M⊙ within our photometric apertures according to the SED
fits and purge them afterwards. In this section we describe how the preliminary sample is built,
together with the estimation of the photometric redshifts. The properties of our final sample of
massive, 1 < 𝑧 < 4 will be discussed in Section 6.5.1.

We start from the ∼ 36, 000 galaxies in the four NIRCam Epoch 1 pointings that are detected
in the version v0.51 of the CEERS photometric catalog described in Finkelstein et al. (2023). This
catalog has been created with SExtractor (Bertin & Arnouts 1996) using as the detection image
a combination of the PSF-matched F277W and F356W images. First, we search for all available
spectroscopic redshifts for the sources in the catalog. Spectroscopic redshifts are extracted from
the Stefanon et al. (2017) catalog, together with the new sources published in the 2021 data release
of the MOSFIRE Deep Evolution Field (MOSDEF; Kriek et al. 2015; Reddy et al. 2015). We find
1024 galaxies that have available spectroscopic redshifts in the four NIRCam pointings, 97 of which
with values of 1 < 𝑧spec < 4 and associated preliminary stellar masses of 𝑀★ > 109.5 M⊙.

6.3.1 Estimation of photometric redshifts and preliminary stellar masses

We estimate photometric redshifts and preliminary stellar masses for all sources in the catalog.
Although the photometric analysis in this chapter is based solely on the (6) NIRCam and (2) ACS
images described in Section 6.2, we use additional imaging data to estimate these photometric
redshifts. More specifically, we make use of the integrated magnitudes from the photometric catalog
presented in Finkelstein et al. (2023) for this calculation. The JWST images considered for this
catalog consist of the NIRCam images described in Section 6.2.1 plus the additional medium-
band NIRCam/F410M filter. Regarding HST, apart from the ACS images from CANDELS/EGS
mentioned in 6.2.2, WFC3/F105W, F125W, F140W, and F160W images from the same survey are
also considered. These images have 5𝜎 limiting depths of 28.4 mag for NIRCam/F140M, and 27.1,
27.3, 26.7, 27.4 mag for the WFC3 filters listed above, respectively.

We use eazy (Brammer et al. 2008) for the estimation of photometric redshifts and the pre-
liminary stellar masses in the same way as described in Pérez-González et al. (2022). Briefly, we
use a modified version of eazy that allows the template fitting algorithm to take into account (5𝜎)
upper limits provided as an input and which entail a penalty in the 𝜒2 estimator if exceeded by
the fitting template (see also Mérida et al. 2023). For the fit, we use flat priors, no template error
feature, and the v1.3 template set which includes a dusty galaxy spectrum and a spectrum with
high-equivalent-width (EW) emission lines.

To assess the quality of the photometric redshifts, we compare the photometric redshift estima-
tions from eazy for the 97 sources with 1 < 𝑧spec < 4 and 𝑀★ > 109.5 M⊙ with their spectroscopic val-
ues. For this, we compute the normalized median absolute deviation (𝜎NMAD) of Δ𝑧 = 𝑧phot − 𝑧spec



118 6. Earliest phases in the formation of massive 1 < 𝑧 < 4 galaxies from SFHs in 2D

and the number of “catastrophic outliers” (i.e., Δ𝑧/(1 + 𝑧spec) > 5𝜎NMAD) as defined in Brammer
et al. (2008). We find a value of 𝜎NMAD = 0.033, with a very small fraction of outliers (∼3%), which
shows the reliability of the recovery of these photometric redshifts for the range of redshifts and
masses considered in this work.

6.3.2 Preliminary sample

To build our preliminary sample, we then select galaxies more massive than 𝑀★ > 109.5 M⊙ in
the four CEERS Epoch 1 NIRCam pointings which have 1 < 𝑧spec < 4 (97 galaxies) or, in case no
spectroscopic redshift is available, with 1 < 𝑧phot < 4 (684 galaxies). This makes an initial sample
of 781 galaxies, with a median value for the redshift of 𝑧 = 1.752.58

1.45 (median and quartiles) and a
median stellar mass of log(𝑀★/M⊙) = 10.010.4

9.7.

6.4 Methodology

In this section, we describe the methodology applied to our initial sample of 𝑀★ > 109.5 M⊙ galaxies
at 1 < 𝑧 < 4. Our approach is to measure photometry in 2D on these galaxies with the aim to derive
their galaxy SFHs from the analysis of their 2D SED fits. The results from the SPS will allow to
discard galaxies in our preliminary sample with stellar masses inside the integrated photometric
apertures below 1010 M⊙ and build the final sample of bona-fide massive galaxies at 1 < 𝑧 < 4, on
which we will concentrate to infer their early stages of stellar mass formation and assembly. We
will describe how the galaxy SFHs are built for galaxies in the final sample by taking into account
the results from the fits of their spatially-resolved SEDs.

6.4.1 Photometry: measuring integrated and 2D SEDs

Since the ACS and NIRCam images for each of the four NIRCam pointing are already pixel-
aligned and have the same pixel scale of 0.03 arcsec/pix (Section 6.2), we start by PSF-matching
these images to the NIRCam/F444W image, with the worst PSF FWHM (∼0.16′′). To measure
photometry, we will make use of the SExtractor segmentation maps provided in the Finkelstein
et al. (2023) photometric catalog and, as our starting integrated apertures, we will use the associated
elliptical apertures provided for each source with semi-major axes of twice the Kron radius (𝑎 =

2 𝑟Kron).

6.4.1.1 Galaxy inspection and refinement of the segmentation maps

Since our goal is to measure the spatially-resolved SEDs in the preliminary sample of galaxies, the
deblending of the sources in the segmentation map around should be as accurate as possible in
order to reduce possible sources of error introduced by pixels that do not belong to the considered
galaxy. With this in mind, and based on the lessons learned from Chapter 5, we visually inspect
the segmentation maps around each galaxy in order to edit them if necessary. This is done by
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comparing the segmentation map for each galaxy in the sample to an RGB image of the same
region generated using the NIRCam F115W, F200W, and F356W filters. It is worth mentioning
that the segmentation maps have been generated using NIRCam F277W+F356W as the detection
image, so comparing the maps to an RGB image gives us additional information regarding galaxy
colors that will be useful in locating possible flaws in the identification of sources in the original map.
Among these flaws that need to be retouched, we can mention, e.g., over- and under-deblended
sources, non-identified neighbors that need to be masked or neighboring galaxies whose identified
region in the map needs to be extended so that it does not belong to the galaxy under consideration.
In total, we edit the segmentation map for ∼33% of galaxies in the preliminary sample.

During this visual inspection, we discard galaxies located at the edges of the images (i.e., whose
elliptical apertures with 𝑎 = 2 𝑟Kron are partially outside the image area in any band; 45 galaxies
in total), misidentified galaxies (e.g., misidentified spurious sources that are diffraction spikes from
a neighboring source or a region of a nearby galaxy; 34 galaxies) or galaxies that have a spike
coming from a very bright source near them (63 galaxies). We keep the remaining 639 galaxies in
the preliminary sample, for which we will measure photometry and build SEDs using the refined
segmentation maps.

6.4.1.2 Integrated photometry inside elliptical apertures

We will build SEDs for each source by measuring multi-wavelength photometry in two ways: inside
an elliptical integrated aperture (we refer to this as “integrated photometry” that will have an “in-
tegrated SED” associated), and on a grid defined inside the integrated aperture (“2D photometry”
and “2D SEDs”).

We define the integrated aperture following the same procedure as in Chapter 5 (see also García-
Argumánez et al. 2023). For this, we start by placing the initial elliptical aperture of 𝑎 = 2 𝑟Kron
on the center of each galaxy and begin reducing the aperture to minimize the contamination from
other sources (according to the segmentation map). In this first step, the elliptical aperture is
reduced until the number of pixels belonging to the considered galaxy is >80% of all the pixels in
the aperture that belong to any source (i.e., in this first step we do not consider pixels identified as
sky in the segmentation map to calculate this percentage of galaxy pixels). After this step, if the
number of sky pixels within the aperture exceeds 10% of all the pixels in the aperture, we further
reduce the aperture until this limit of sky pixels is reached. In both steps, the elliptical aperture
is reduced keeping its original ellipticity and position angle fixed. Hereafter, we refer to this final
elliptical aperture as the photometric integrated aperture.

The median semi-major (with quartiles) of our final integrated apertures is 0.871.13
0.68

′′ or, in
physical units, 7.39.7

5.6 kpc. When galaxies are split in different redshift bins, these values become
0.989.69

0.75
′′(8.410.5

6.5 kpc) for the 368 galaxies at 1 < 𝑧 < 2, 0.841.04
0.68

′′(7.08.6
5.6) kpc for the 145 galaxies at

2 < 𝑧 < 3, and 0.670.91
0.55

′′(5.036.95
4.19) kpc for the 145 galaxies at 2 < 𝑧 < 3. If we compare the sizes

of our final integrated apertures with those of the initial apertures, we find that the ratio between
both of them is 1.001.00

0.92. This means this reduction process leaves most of the initial integrated
apertures unchanged: in only 25% of the galaxies the final integrated aperture has been reduced
to < 92% of the initial size of 2 𝑟Kron, and only in only ∼10% of them to < 75% of this initial size.
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We now build the integrated SED for each galaxy by measuring photometry on all the ACS
and NIRCam images within the photometric integrated apertures. For this, we first subtract for
each galaxy the median local background in each filter calculated in a 0.1′ region around each
galaxy, computed by randomly placing 200 one-pixel apertures in this region. We estimate the
background rms (or 1𝜎 noise) from the median absolute deviation of the flux values in these one-
pixel apertures (multiplied by 1.48 to recover the standard deviation assuming a Gaussian noise
distribution). After the local background is subtracted, we mask all the pixels within the integrated
aperture belonging to other sources (using the edited segmentation map), and then add the flux
of the remaining pixels within the aperture (i.e., those from the considered galaxy and sky pixels)
to build the integrated SED of the galaxy. Photometric flux uncertainties are estimated from the
local background rms as

√
𝑁 𝜎.

6.4.1.3 2D photometry inside a grid

To measure the 2D photometry on each source, we define a grid inside each integrated elliptical
aperture with cell size of 5× 5 pixels2 (i.e., 0.15′′ × 0.15′′), roughly the size of our worst PSF in
FWHM. An initial grid is built by considering all cells whose center lies within the integrated
photometric aperture. We only keep cells in this initial grid which contain more or the same
number of pixels belonging to the galaxy under consideration than to other sources. Cells within
the integrated aperture that only contain pixels identified as sky in the segmentation map (and no
other pixels belonging to any source) are also kept.

Once the grid is defined, we use the segmentation map to identify those pixels in the cells
belonging to neighboring galaxies. We replace the flux values of these pixels by random sky values,
drawn from a Gaussian distribution with mean 0 and a standard deviation equal to the background
noise 𝜎 previously measured for each filter around the galaxy. We build the 2D SEDs by adding
the flux of all pixels inside each cell of the grid on these modified photometric images, which had
been previously background subtracted. For the analysis, we only keep SEDs of those cells that
have a signal-to-noise (SNR) > 3 in at least 5 bands. Cells in the grid that do not satisfy this
condition are discarded.

Fig. 6.1 shows a summary of the procedure described above. The first inspection the RGB
image of the galaxy (first panel) shows the need for a refinement of the original segmentation map
(second panel), which is edited (third panel) to include a non-identified neighboring galaxy and to
extend the pixels belonging to the neighboring galaxy on top. We then reduce the initial integrated
apertures following the procedure described above (fourth panel) with the information provided
by the edited segmentation. Finally, we subtract the local background around the galaxy in all
filters and replace the pixels belonging to other sources with random sky noise (fifth panel). The
integrated SED and 2D SEDs are built by measuring photometry in the integrated aperture and
in each cell of the grid, respectively (fifth panel). Fig. 6.2 shows the final (and initial) integrated
aperture and final grid for some CEERS objects in our sample.

For ∼5% of the galaxies, instead of using the final apertures resulting from the procedure
described above, we need to redefine their integrated apertures by manually editing their initial
elliptical apertures (in terms of size, ellipticity and/or position angle). This is needed so that their
integrated apertures better enclose the galaxy observed in their RGB images and the correspond-
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Figure 6.1: Postage stamp images (3.5′′ × 3.5′′) for a CEERS galaxy nircam1-3670 at 𝑧 = 1.13. a) RGB
image generated with NIRCam filters (R:F356W, G:F200W, B:F115W) with asinh scaling, with the initial
integrated aperture (𝑎 = 2 𝑟Kron; dashed blue). b) Original segmentation map, where the pixels belonging
to the considered galaxy are shown in red, the sky pixels in black, and pixels belonging to other galaxies, in
yellow and orange. c) Edited segmentation map. We add a previously non-identified neighboring galaxy (in
white) and we extend the pixels belonging to the neighboring galaxy on top (yellow). d) Reduction of the
integrated aperture to minimize pixels belonging to neighbors. The new final integrated aperture is shown
in solid blue. e) New RGB image of the galaxy in which the flux of the pixels belonging to other sources
has been replaced by random sky noise. f) Final photometric apertures: integrated aperture for integrated
photometry (blue) and grid for 2D photometry (cyan).



122 6. Earliest phases in the formation of massive 1 < 𝑧 < 4 galaxies from SFHs in 2D

ing edited segmentation maps. In this small percentage of galaxies, the photometric integrated
apertures will refer to their manually-edited integrated apertures (ignoring the resulting reduced
apertures from the two-step procedure described above).

6.4.2 SPS modeling

The aim of this chapter is to infer the earliest formation phases of massive galaxies at 1 < 𝑧 < 4,
namely, from their SFHs which are derived by applying 2D SPS. Our 2D-SPS method, summarized
in this section, has been tested using simulated imaging data of galaxies from the Illustris simulation
(see Chapter 5 and García-Argumánez et al. 2023). This method, and the assumptions regarding
its SPS modeling, have been optimized to recover the beginning of the SFH of massive, 1 < 𝑧 < 4
galaxies. In this section, we discuss the details regarding the integrated and 2D SED fits. We
refer the reader to Chapter 5 and García-Argumánez et al. (2023) for more information about the
choices of the SPS modeling input parameters.

We use synthesizer the code (described in Pérez-González et al. 2003, 2008) to perform the
SPS modeling of our integrated and 2D SEDs. This code compares the observed SED points with
those predicted by the SPS models for each filter, taking into account observational photometric
errors and combining the emission from both stars, gas, and the effect of dust (see Section 4.3).
The model that best fits the data is determined by performing a 𝜒2 minimization.

All integrated and 2D SEDs are compared with two stellar population models: STARBURST99
(SB99; Leitherer et al. 1999; Vázquez & Leitherer 2005; Leitherer et al. 2010) and Bruzual & Charlot
(2003) (hereafter, BC03) models. We assume a Kroupa (2001) IMF for SB99 models and a Chabrier
(2003) IMF for BC03. Following Chapter 5 and García-Argumánez et al. (2023), we assume each
SED to be described by a double-burst SFH, i.e., a SFH which is the sum of an old and a young
population, each of them with a SFH given by 𝑆𝐹𝑅(𝑡) ∝ 𝑡 𝑒−𝑡/𝜏 for 𝑡 > 𝑡pop, where 𝑡pop is the age
of each population, and 𝜏 is the star-formation time-scale. The time, 𝑡, in the above expression is
measured in terms of the age of the universe and the age of each population, 𝑡pop, is the age of the
universe at which each population began to form stars. We refer to the old (young) population as
the one that first (more recently) began to form stars in the galaxy SFH. The burst strength, 𝑏,
indicates the contribution of stellar mass created by the most recent population (or young burst)
to the total stellar mass.

The free parameters in our SED fits are, in addition to the burst strength (𝑏), the age (𝑡),
star-formation timescale (𝜏), metallicity (𝑍), and dust extinction (𝐴𝑉) for each one of the two
stellar populations. Regarding their allowed ranges in the SED fitting, we let the age of the young
population vary from 100 Myr to an specific age limit (see below), and the age of the old population
within that same age limit and the age of the universe at the redshift of the galaxy. This age limit
between the old and young population depends on the galaxy redshift: it is equal to 40% of the age of
the universe for galaxies with 1 < 𝑧 < 2 (i.e., 40% of the age of the universe for the young population
and 60% for the old population) and equal to 50% of the age of the universe for 2 < 𝑧 < 4 galaxies
(half of the age of the universe for each population). The allowed range for the star-formation
timescale is 200 Myr < 𝜏old < 1 Gyr for the old population, and we fix 𝜏young = 10 Myr for the young
population. The attenuation for the old population can vary within 0 mag< 𝐴𝑉,old < 1 mag, and
0 mag< 𝐴𝑉,young < 2 mag for the young population. Metallicity in both populations can adopt any
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𝑧 = 2.37𝑧 = 2.37 𝑧 = 3.52𝑧 = 3.52 𝑧 = 1.23𝑧 = 1.23
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Figure 6.2: RGB images (3.5′′ × 3.5′′) generated with NIRCam filters (R:F356W, G:F200W, B:F115W)
and with asinh scaling for six CEERS galaxies in our final sample. First row (of each galaxy panel): final
integrated aperture (dashed blue) and, in case this is smaller than the initial integrated aperture (𝑎 = 2 𝑟Kron),
we also show the latter (solid blue). Second row: Final integrated aperture and final grid.
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of the following three values: 𝑍/𝑍⊙ = 0.2, 0.4, and 1. As for the burst strength, we let it vary
within 0.01 < 𝑏 < 1. The stellar mass (M★) is calculated by normalizing the best-fitting model in
the SED fit to the observed SED.

We perform Monte Carlo (MC) simulations to fit each SED 300 times by letting the photometric
points of the SED randomly (and uncorrelatedly) vary within their photometric error and then
refitting. This provides us with 300 sets of solutions of the derived parameters of the fit which
allows us to have a better knowledge of the uncertainties and degeneracies in these parameters (see
Domínguez Sánchez et al. 2016). Since we are mainly interested in inferring SFHs, this means we
will be able to build 300 SFHs from each SED fit (either integrated or from each grid cell).

6.4.3 Massive galaxies and SFH from the 2D SED fits

First, we calculate the stellar mass for each galaxy as the median of all the masses provided by
its integrated SED fits. Hereafter, we will refer to this median integrated stellar mass as the
galaxy mass of the galaxy. At this step, we discard galaxies in the sample with a galaxy mass
𝑀★ < 1010 M⊙, keeping only those which are massive. This makes a final sample of 333 (386)
massive galaxies in our considered redshift range when BC03 (SB99) models are used.

We build the SFH for each galaxy (or “galaxy SFH”) for these massive galaxies by combining
the information provided by the 2D SED fits, using the stellar mass of the galaxy described above
obtained from the integrated SED fits to normalize the SFH. First, we compute the galaxy SFH by
adding all the SFHs derived for the 2D SED fits (i.e., for each cell in the grid). Then, we normalize
this galaxy SFH by the galaxy stellar mass. As done in Chapter 5, instead of building just one
galaxy SFH (or sum SFH), we build 300 realizations of this SFH by considering the different MC
solutions obtained for each of the 2D SEDs. The final galaxy SFH is calculated as the median SFH
obtained from all these galaxy SFH realizations.

Fig. 6.3 shows the galaxy SFH (solid light blue) calculated from the median of the 300 SFH
realizations (thin black) obtained for nircam2-7435 (𝑧 = 3.47) with the SB99 models. We also show
the galaxy SFH directly inferred from the integrated SED (dashed blue), which shows a considerably
younger age. As a comparison, we include the galaxy SFH obtained with BC03 (dashed orange).
The lower normalization of the galaxy SFH for BC03 with respect to that of SB99 is due to the
difference in the median integrated mass recovered by the models: 6.8 × 1010 (4.1 × 1010) M⊙ for
SB99 (BC03). In this case, the galaxy SFH for BC03 begins at an earlier cosmic time than that of
SB99, although the majority of its mass is formed at later ages of the Universe compared to that
of SB99 models. The integrated aperture and the 2D grid, together with the segmentation map for
the galaxy, are also shown (right panels).

6.5 Results

In this section, we describe the final sample of CEERS massive galaxies at 1 < 𝑧 < 4 and their
galaxy SFHs, derived in Section 6.4 via 2D SPS, with the aim of addressing the question of when
these galaxies began to form their stars.
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Figure 6.3: a) 2D-SPS-derived galaxy SFH for nircam2-7435 (solid light blue), obtained as the median
of the different galaxy SFH realizations (thin black) which result from the MC solutions obtained for each
of the 2D SEDs and corresponding to the SB99 models. The galaxy SFH derived from the integrated SED
is shown in dashed blue (also for SB99). The galaxy SFH obtained for BC03 is shown in dashed orange as
a comparison. b) RGB image (2′′ × 2′′) of the galaxy generated with NIRCam filters (R:F356W, G:F200W,
B:F115W; asinh scale) with its integrated aperture c) and the 2D grid. d) Segmentation map for the galaxy.
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6.5.1 CEERS final sample of massive, 1 < 𝑧 < 4 galaxies: redshift and stellar
mass

To build our final sample of massive galaxies at 1 < 𝑧 < 4, we select only those galaxies for which
the stellar mass derived by the integrated SED fits with SB99 and BC03 models is simultaneously
𝑀★ > 1010 M⊙ in both models. This results in a final sample of 333 galaxies, whose distributions
of redshifts and stellar masses are shown in Fig. 6.4. We find that the stellar mass distributions
distributions are very similar when either SB99 (blue) or BC03 models (orange) are used: our
galaxies present a median (with quartiles) redshift of 1.722.50

1.39, and a stellar mass (in log(𝑀★/M⊙))
of 10.510.7

10.2 (10.610.8
10.3) for BC03 (SB99) models. The median difference between the stellar masses

derived for each galaxy with both models is 0.090.15
0.03 dex, being slightly larger those from SB99.

That is the reason why there were ∼ 15% more galaxies in the initial SB99 sample.

In Appendix C, we show flashcards for the 333 massive galaxies at 1 < 𝑧 < 4 in our CEERS
final sample. Each galaxy card includes the integrated HST+JWST photometry, some postage
stamps of the galaxy (including different RGB images and the segmentation map, together with
the integrated aperture and the grid), and the 2D-SPS-derived galaxy SFH for both SB99 and
BC03 models. In Appendix D, we include some general characteristics for these galaxies, such as
redshifts, stellar masses, and other relevant information related to their photometric apertures (see
Table D.1).

We compare our sample with simulated massive galaxies at 1 < 𝑧 < 4 from the Illustris sim-
ulation (Vogelsberger et al. 2014a,b; Genel et al. 2014) which appear in the Illustris synthetic
deep survey images (∼23.5 arcmin2; Snyder et al. 2017). Those galaxies were already analyzed in
Chapter 5 (sample #4 in Section 5.6.1; see also García-Argumánez et al. 2023) following the same
photometric + 2D-SPS analysis described in this chapter. For our comparison to CEERS galaxies,
we impose to this sample of Illustris massive galaxies at 1 < 𝑧 < 4 an additional stellar mass cut-off
of 1010 M⊙ within the photometric aperture after the SED fits (as done with CEERS galaxies here),
which results in 261 Illustris galaxies (included in magenta in Fig. 6.4). The median redshift for
this sample is 𝑧 = 1.982.40

1.47, and the median galaxy stellar masses (provided by the integrated SED
fits) is log(𝑀★/M⊙) = 10.310.6

10.1. For these Illustris galaxies, we build the galaxy SFHs in the same
way as described in Section 6.4.3 for CEERS galaxies in this chapter.

6.5.2 The first stages of the SFH in massive 1 < 𝑧 < 4 galaxies

As done in Chapter 5, we quantitatively characterize the first stages of the SFH by calculating the
time 𝑡k, at which a galaxy first formed small percentages (k%) of its stellar mass. These formation
times, expressed in age of the Universe, are directly computed by integrating the galaxy SFH over
cosmic time. Here, we discuss the formation times 𝑡5, 𝑡10, and 𝑡25, at which 5%, 10%, and 25% of
the stellar mass was formed, respectively, focusing on 𝑡5 to determine the onset of the SFH. The
reason for preferring 𝑡5 instead of 𝑡0 for establishing this beginning is that, since these 𝑡k depend
on both 𝜏 and 𝑡0, possible degeneracies between ages and timescales might be alleviated.

We characterize when massive galaxies start their formation in two different ways. In the first
place, in Section 6.5.2.1 we analyze the onset of the star formation in CEERS massive galaxies as a
whole by calculating a median SFH for the sample CEERS galaxies and determining the formation
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Figure 6.4: Stellar mass vs. redshift for our final CEERS sample of 333 galaxies at 1 < 𝑧 < 4 with
𝑀★ > 1010 M⊙ when SB99 (blue) and BC03 (orange) models are used. The redshift and stellar mass distri-
butions are shown at the top and on the right, respectively, with median and quartiles marked with segments
on top (and right) of the corresponding histograms. As a comparison, we include the results from applying
the same photometric + 2D-SPS analysis to 1 < 𝑧 < 4 massive galaxies from the Illustris simulation (ma-
genta; see main text).
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times 𝑡5, 𝑡10, and 𝑡25 from it. Secondly, in Section 6.5.2.2 we analyze the variety of the onset of
SFHs in massive galaxies directly from each individual galaxy SFH. This is done by computing the
formation times 𝑡k described above from each galaxy SFH or, alternatively to these mass-fraction
formation times, by calculating the time, 𝑡10𝑋 M⊙ , at which a certain (and fixed) amount of stellar
mass, 10𝑋 M⊙, was formed according to the galaxy SFH.

6.5.2.1 Results about the median SFH for CEERS galaxies

Fig. 6.5 shows the median SFH for our sample of CEERS massive galaxies at 1 < 𝑧 < 4 when
using BC03 (orange) and SB99 (blue) models. The full-sample SFH is first computed from the
median of all the SFHs of the galaxies selected in the CEERS survey (see Section 6.4.3). Then, a
200 Myr smoothing square kernel is applied to the median SFH of the sample. Shaded areas show
the uncertainty in the median SFH, calculated as the 95% confidence interval. When integrated
across cosmic time, the median SFH for CEERS with BC03 models (in orange) yields an stellar
mass of log(𝑀★/M⊙) = 10.34. The other two SFH in Fig. 6.5 have been normalized so that they
recover the same stellar mass when integrated. The original mass recovered by the median SFH
for CEERS with SB99 was log(𝑀★/M⊙) = 10.49, and 10.53 for the median SFH of Illustris massive
galaxies.

We point out that, since each individual galaxy SFH spans from the age of the galaxy to the
redshift of observation, each individual SFH provides no information at lower redshifts than that of
the galaxy. As a consequence, the median SFH of all CEERS galaxies is calculated by considering
different number of galaxies at each age of the Universe. Therefore, the shape and normalization
of this median SFH depends on the redshift distribution of the sample of galaxies. However, this
dependence is milder at the beginning of the median SFH (at lower ages of the Universe) since
in this epoch, and in which we focus in this work, the median SFH is computed from the largest
number of galaxies (virtually, with the full sample).

We find that the shape of the median SFH for CEERS is very similar when using either SB99
(blue) or BC03 (orange) models. The most striking feature of this median SFH is its steep rise in
the first ∼ 400 − 600 Myr of the age of the Universe (beyond 𝑧 ∼ 8−9), which is followed by a nearly
constant decrease until 𝑧 ∼ 1. The start of the rise in the beginning of the SFH occurs ∼ 100 Myr ear-
lier for BC03 than for SB99 and is slightly steeper in the case of the former (e.g., the SFH for BC03
reaches 5 M⊙/yr in after its first 300 Myr, while the SFH for SB99 needs ∼ 600 Myr to reach that
SFR). This explains why the formation times 𝑡5, 𝑡10, and 𝑡25 (vertical dotted lines) calculated for the
median SFH of BC03 models are systematically shifted to earlier ages of the Universe than those of
the median SFH of SB99. According to our results, the median SFH for CEERS massive galaxies at
1 < 𝑧 < 4 would begin at 𝑧 ∼ 30 (𝑧 ∼ 20) for BC03 (SB99). The formation times for BC03 (SB99), in
age of the Universe, are 𝑡5 = 0.42 (0.67) Gyr, 𝑡10 = 0.60 (0.89) Gyr, and 𝑡25 = 1.16 (1.47) Gyr, which,
expressed in terms of redshift of the Universe, correspond to 𝑧5 = 10.9 (7.7), 𝑧10 = 8.4 (6.2), and
𝑧25 = 5.0 (4.1). Table 6.1 shows the formations times and corresponding redshifts of the SFHs
shown in Fig. 6.5.

The inferred formation times, especially 𝑡5 and 𝑡10, denote an intense star formation at very
early ages of the Universe. This early star formation is not seen in the median SFH derived for Illus-
tris massive galaxies at 1 < 𝑧 < 4 to which the same 2D-SPS method has been applied (in pink; see
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Figure 6.5: Median SFH for CEERS massive galaxies at 1 < 𝑧 < 4 for (SB99 in blue and BC03 in orange).
As a comparison, we include the median SFH for massive, 1 < 𝑧 < 4 in Illustris (pink) after applying the
same photometric + 2D-SPS analysis to these galaxies (Chapter 5 and García-Argumánez et al. 2023; see
main text). All median SFHs have been normalized to recover the same mass as that of the median SFH
for BC03. Shaded areas represent the uncertainty of the median. Vertical lines show the formation times
𝑡5, 𝑡10, and 𝑡25 computed from these median SFHs. On top, we show the evolution of the integrated stellar
mass for the median SFHs.
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Table 6.1: Formation times and redshifts for median SFH of massive 1 < 𝑧 < 4 galaxies in Fig. 6.5.

Galaxy sample Redshift SFHs from 𝑡5 𝑡10 𝑡25 𝑧5 𝑧10 𝑧25

CEERS M★ > 1010 M⊙ galaxies 1 < 𝑧 < 4 2D SPS (BC03) 0.42 0.60 1.16 10.9 8.4 5.0

(SB99) 0.67 0.89 1.47 7.7 6.2 4.1

Illustris M★ > 1010 M⊙ galaxies 1 < 𝑧 < 4 2D SPS (SB99) 1.37 1.69 2.43 4.4 3.7 2.7

Notes: The formation times are measured in Gyr since the Big Bang.

Section 6.5.1). Instead, the median SFH for Illustris predicts a SFH that peaks considerably later
(𝑧 ∼ 2 − 3) and has a less steep and delayed initial rise, with its SFH beginning at 𝑧∼15 and need-
ing ∼ 600 Myr to reach an SFR of 1 M⊙/yr (≲ 100 Myr for both SB99 and BC03). Consequently,
the inferred formation times for Illustris occur at significantly older ages of the Universe (or lower
redshifts): 𝑡5 = 1.37 Gyr (𝑧5 = 4.4), 𝑡10 = 1.69 Gyr (𝑧10 = 3.7), and 𝑡25 = 2.43 Gyr (𝑧25 = 2.7) (see Ta-
ble 6.1). This later assembly of the stellar mass in Illustris can also be seen on the top panel Fig. 6.5,
which shows the evolution of the integrated stellar mass at each redshift (directly computed from
the median SFHs).

We remind the reader that the Illustris median SFH shown in Fig. 6.5 was already calculated
in Chapter 5, with the only difference that in the latter chapter we did not remove galaxies in
the sample with 𝑀★ < 1010 M⊙ within the photometric aperture according to the integrated SED
fits (as done here with CEERS galaxies). In fact, the Illustris median SFH shown in Fig. 6.5
is equivalent to the pink SFH in 5.12, but without purging the Illustris sample after the SPS
modeling in the latter. Both SFHs are very similar, except for the final rise in the Illustris SFH
of this chapter. Nevertheless, the formation times inferred from the 2D-SPS analysis in both cases
are almost identical, with differences of less than ∼ 40 Myr in age of the Universe (0.2 in redshift)
for all the considered formation times (see Table 5.4).

6.5.2.2 The diversity of the onset of SFH in CEERS massive galaxies

We now focus on when the star formation began in each of the individual galaxies in our CEERS
sample. For this, we calculate 𝑡5 and 𝑡10 directly from each galaxy SFH derived from the 2D-SPS
analysis and analyze their distributions. Fig. 6.5 shows the distributions for 𝑡5 (top, left panel)
and 𝑡10 (bottom left) for BC03 and SB99 models (orange and blue, respectively), together with
those inferred from the 2D-SPS-derived galaxy SFHs of our sample of Illustris massive galaxies at
1 < 𝑧 < 4 (in pink).

Consistent with what is observed in the median SFH, CEERS massive galaxies present 𝑡5
and 𝑡10 distributions that peak at very early ages of the Universe in both cases, with a signif-
icant fraction of formation times at 𝑧 ≳ 10. The median (and quartiles) for CEERS galaxies
are 𝑡5 = 0.460.78

0.30 (0.651.04
0.39) Gyr and 𝑡10 = 0.701.12

0.40 (0.861.37
0.52) Gyr for BC03 (SB99), or, equivalently,

𝑧5 = 10.213.8
6.8 (7.911.5

5.5 ) and 𝑧10 = 7.411.2
5.2 (6.49.3

4.4) (see Table 6.2). In contrast, the formation times for
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Illustris massive galaxies at 1 < 𝑧 < 4 (pink) are clearly shifted towards lower redshifts, peaking
at 𝑧 ∼ 5.5 (𝑧 ∼ 4.5) for 𝑡5 (𝑡10) and with a very scarce number of galaxies presenting values beyond
𝑧 ∼10. The median (and quartiles) for Illustris massive galaxies at 1 < 𝑧 < 4 are 𝑡5 = 1.101.42

0.85 Gyr
(𝑧5 = 5.26.4

4.3) and 𝑡10 = 1.391.83
1.11 Gyr (𝑧10 = 4.35.2

3.4) (see Table 6.1). These considerably lower-redshift
formation times in Illustris are responsible for delayed beginning of the median SFH for Illustris
when compared to that of CEERS galaxies (Fig. 6.5).

Following a complementary approach to understand our main result, i.e., that real galaxies
started forming earlier and assembled larger amounts of stars compared to the Illustris simulation,
we compare SFHs of galaxies in a narrower redshift range. To investigate this, we select all existing
massive galaxies in the Illustris simulation at 𝑧 = 4 and calculate their 𝑡5 and 𝑡10 from their
galaxy SFHs built from the stellar simulated particles that belong to each galaxy1. We also do
the same with massive, 𝑧 = 4 galaxies from the TNG100 simulation (Springel et al. 2018; Naiman
et al. 2018; Pillepich et al. 2018a; Nelson et al. 2018; Marinacci et al. 2018), the successor of the
Illustris simulation that has the same volume and similar characteristics regarding the number and
resolution of elements. This results in 144 (317) massive, 𝑧 = 4 galaxies in Illustris (TNG100), with
a median stellar mass of log(𝑀★/M⊙) = 10.2310.40

10.09 (10.2210.41
10.09), 0.24−0.34 dex less massive than that

of CEERs galaxies at 1 < 𝑧 < 4.

Since the formation times 𝑡5 and 𝑡10 inferred for 𝑧 = 4 galaxies occur (on average) at earlier
ages of the Universe than those of galaxies at lower redshifts with similar masses, the 𝑡5 and 𝑡10
values derived for massive, 𝑧 = 4 galaxies in Illustris and TNG100 can be used as a lower bound
of massive galaxies at 1 < 𝑧 < 4 in these simulations and compare it to observations. In Fig. 6.6,
we show the 𝑡5 and 𝑡10 distributions for massive, 𝑧 = 4 galaxies in Illustris (black dotted) and
TNG100 (dark red dashed). We find that, even after considering only 𝑧 = 4, massive galaxies
from these simulations do not reach the early ages of the Universe that CEERS does. In fact,
the maximum formation redshifts reached by these 𝑧 = 4 galaxies in Illustris (and TNG100) are
𝑧5,max = 9.5 (8.3), and 𝑧10,max = 7.9 (7.7), with a median value (with quartiles) of 𝑧5 = 7.07.5

6.5 (6.46.7
5.9)

and 𝑧10 = 6.36.7
5.8 (5.96.7

5.5) (see Table 6.2).

One could argue that by setting the 1010 M⊙ cutoff at 𝑧 = 4 in Illustris and TNG100, we
are selecting mainly the most massive dark matter halos in the local Universe, which may have
assembled later compared to less massive halos at those redshifts. To check this, the simplest way
is to select also in Illustris and TNG100 the galaxies with 𝑀★ ≥ 1010 M⊙ at 𝑧 = 1. By setting
this mass cutoff at a lower redshift, we are also including galaxies formed in less massive halos in
the early stages of the Universe. This makes a sample of 3700 (4350) massive, 𝑧 = 1 galaxies in
Illustris (TNG100) with a median stellar mass of log(𝑀★/M⊙) = 10.3710.70

10.17 (10.3710.60
10.16). However,

the maximum redshifts reached by these 𝑧 = 1 galaxies in Illustris (TNG100) are 𝑧5,max = 9.1 (8.9)
and 𝑧10,max = 7.6 (7.8), similar to the maximum values at 𝑧 = 4 in the simulations. The median
values for these massive, 𝑧 = 1 galaxies in Illustris (TNG100) are 𝑧5 = 3.84.4

3.4 (3.74.2
3.2), and 𝑧10 =

3.13.6
2.8 (3.13.6

2.7), well after the CEERS values (and their analogues at 𝑧 = 4 in the simulations). These
values have not been included in Fig. 6.6, but they are included in Table 6.2.

1We select all galaxies in the Illustris simulation at 𝑧 = 4 which have 𝑀★ ≥ 1010 M⊙ within twice the stellar half-
mass radius of the galaxy (2 𝑟hm). In this case, the galaxy SFH is built from the information provided by the individual
stellar particles belonging to the galaxy (i.e., their formation age and stellar masses), only considering particles which
are closer to the galaxy center than 2 𝑟hm (more details in Section 2.4, Chapter 5 and García-Argumánez et al. 2023).
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Table 6.2: Formation times and redshifts for massive galaxies analyzed in Chapter 6.

Galaxy sample Redshift SFHs from 𝑡5 𝑡10 𝑧5 𝑧10 𝑡5×108 M⊙ 𝑡109 M⊙ 𝑧5×108 M⊙ 𝑧109 M⊙

CEERS M★ > 1010 M⊙ gals. 1< 𝑧 < 4 2D SPS (BC03) 0.460.78
0.30 0.701.12

0.40 10.213.8
6.8 7.411.2

5.2 0.320.61
0.20 0.450.88

0.25 13.118.6
8.3 10.415.6

6.3

(SB99) 0.651.04
0.39 0.861.37

0.52 7.911.5
5.5 6.49.3

4.4 0.500.79
0.27 0.641.05

0.35 9.514.9
6.8 8.012.6

5.4

Illustris M★ > 1010 M⊙ gals. 1< 𝑧 < 4 2D SPS (SB99) 1.101.42
0.85 1.391.83

1.11 5.26.4
4.3 4.35.2

3.4 0.941.23
0.61 1.181.55

0.76 5.98.2
4.8 4.97.0

4.0

Illustris M★ > 1010 M⊙ gals. 𝑧 = 4 particles (2 𝑟hm) 0.750.83
0.69 0.880.96

0.81 7.07.5
6.5 6.36.7

5.8 0.680.74
0.60 0.770.87

0.70 7.68.4
7.2 6.97.5

6.3

𝑧 = 1 1.621.88
1.38 2.042.35

1.75 3.84.4
3.4 3.13.6

2.8 1.211.50
0.93 1.501.88

1.15 4.96.0
4.1 4.15.1

3.4

TNG100 M★ > 1010 M⊙ gals. 𝑧 = 4 particles (2 𝑟hm) 0.860.94
0.81 0.961.04

0.89 6.46.7
5.9 5.96.2

5.5 0.790.87
0.71 0.890.97

0.80 6.87.4
6.3 6.26.7

5.8

𝑧 = 1 1.711.99
1.43 2.052.39

1.72 3.74.2
3.2 3.13.6

2.7 1.361.66
1.07 1.652.04

1.28 4.45.4
3.7 3.84.6

3.1

Notes: Median and quartile values from Fig. 6.6, except for 𝑧 = 1 galaxies from Illustris and TNG100 (not included in
Fig. 6.6). The formation times are measured in Gyr since the Big Bang.

Alternatively, to get rid of the impact of the galaxy redshift on the 𝑡5 and 𝑡10 calculations,
we compute from each galaxy SFH the cosmic times at which the first 5 × 108 M⊙ and 109 M⊙ of
the stellar mass were formed (𝑡5 × 108 M⊙ and 𝑡109 M⊙ , respectively). These stellar masses correspond
to the 5% and 10%, respectively, of the minimum galaxy stellar mass in our samples (1010 M⊙),
which means they correspond to the assembly of fewer percentages of the mass of the rest of more
massive galaxies. The distributions for 𝑡5 × 108 M⊙ and 𝑡109 M⊙ are shown in the right panels of Fig. 6.6
(top-right and bottom-right, respectively).

We observe the same tendency as in 𝑡5 and 𝑡10, although the distributions are now shifted to-
wards younger ages of the Universe. The median values for CEERS galaxies with BC03 (SB99)
models are 𝑡5×108 M⊙ = 0.200.61

0.32 (0.500.79
027 ) Gyr and 𝑡109 M⊙ = 0.450.88

0.25 (0.641.05
0.35) Gyr, or, equivalently,

𝑧5×108 M⊙ = 13.118.6
8.3 (9.514.9

6.8 ) and 𝑧109 M⊙ = 10.415.6
6.3 (8.012.4

5.4 ) (see Table 6.2). Regarding Illustris, mas-
sive galaxies at 1 < 𝑧 < 4 (pink), although there is a small fraction of these galaxies with values
above 𝑧 = 10 (and even 20) in both histograms, their median and quartiles are located at con-
siderably lower redshift for both assembled masses: 𝑧5×108 M⊙ = 5.98.2

4.8, and 𝑧5×108 M⊙ = 4.97.0
4.0. This

also happens for Illustris (TNG100) massive galaxies at 𝑧 = 4, with 𝑧5×108 M⊙ = 7.68.4
7.2 (6.87.4

6.3) and
𝑧109 M⊙ = 6.97.5

6.3 (6.26.7
5.8). For completeness, the median values for massive, 𝑧 = 1 galaxies Illustris

(TNG100) are 𝑧5×108 M⊙ = 6.04.9
4.1 (4.45.4

3.7) and 𝑧109 M⊙ = 4.15.1
3.4 (3.84.6

3.1). Again, Table 6.2 shows a sum-
mary of the median and quartile values shown in Fig. 6.6. In Appendix E, we include the individual
formation times (and corresponding formation redshifts) calculated for our sample of 333 massive
galaxies at 1 < 𝑧 < 4 in CEERS (see Table E.1).

6.5.3 On the potential impact of Pop III stars and non-universal IMF

In the following paragraphs, we explore some potential limitations of our study. One of our major
shortcomings is the fact that our estimated formation times have been obtained by considering
both stellar population models and a universal IMF which are based on observations of nearby
stars in the Milky Way. This kind of assumptions, although not necessarily true, are common in
many literature papers when studying galaxies at high redshift, even at the highest redshifts (e.g.,
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Figure 6.6: Left panels: 𝑡5 (top) and 𝑡10 (bottom) distributions calculated from each individual galaxy
SFH in the sample. CEERS galaxies are shown in the filled histograms: BC03 in orange and SB99 in blue.
Illustris massive, 1 < 𝑧 < 4 galaxies, to which the same 2D-SPS method has been applied, are shown in
pink. We include as a comparison the distributions for all Illustris and TNG100 massive galaxies at 𝑧 = 4,
for which the galaxies SFHs have been derived from their simulated stellar particles (instead of via 2D SPS;
see main text). Median and quartiles are shown as segments at the top. Right panels: 𝑡5 × 108 M⊙ (top) and
𝑡109 M⊙ (bottom) distributions computed from each galaxy SFH as the cosmic times at which those stellar
mass were formed (same color code).
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Harikane et al. 2023; Carnall et al. 2023; Pérez-González et al. 2023a; Labbé et al. 2023; Rodighiero
et al. 2023; Yan et al. 2023). It is precisely at the highest redshifts where the largest differences are
expected, due to the presence of Pop III stars (see Chapter 1). In fact, some recent works (e.g.,
Haslbauer et al. 2022; Finkelstein et al. 2023) argue that the top-heavy IMF expected for Pop III
stars would explain the unexpected abundance of bright high-redshift galaxies in the early Universe
(𝑧 > 9) detected with JWST when compared to theoretical models. This top-heavy Pop III IMF,
approximately flat in the logarithm of mass (Klessen & Glover 2023), would result in higher UV
fluxes per unit of stellar mass and higher SFR at such high redshifts than expected for more usual
IMF parametrizations (e.g., Chabrier 2003 and Kroupa 2001).

Elucidating how this would be affecting our formation times is difficult and probably beyond
our reach with current data. The lifetimes of the hypothetical massive Pop III stars responsible for
the large UV emission at high redshift are not long enough to have survived until the observational
redshifts of this work (see Klessen & Glover 2023 for a review). Therefore, they would not have a
direct impact on the SEDs we observe from our galaxies, except from minor effects associated to
the uncertain early chemical enrichment produced by such stars (e.g., high N/O ratios; Cameron
et al. 2023; Isobe et al. 2023). However, they do participate in the early stages of formation of
massive galaxies and, in particular, represent the onset of their SFH. We can neither rule out that
low-mass Pop III stars, with longer lifetimes, have survived until our observational redshifts2, but
we expect that their contribution to the SEDs to be too small to be appreciable, due to their
negligible contribution in stellar mass to the galaxies in which they would reside. Unfortunately,
the understanding of Pop III stars is quite limited, including their IMF and their minimum and
maximum masses, and is not expected to be significantly improved in the coming years (at least
from direct JWST observations of these stars at high redshift; Robertson 2022; Klessen & Glover
2023). However, there is a small hope that the observation of local low-mass Pop III stars that
could have survived to present day, if they exist, will shed some light on the properties of these
stars.

In order to achieve more robust results on the properties of stellar populations of high-redshift
galaxies, an effort is recently being made in the scientific community to use neither a single stellar
population model nor a single fitting code (e.g., Finkelstein et al. 2022b; Adams et al. 2023; Donnan
et al. 2023; Pérez-González et al. 2023b; Yan et al. 2023; Zavala et al. 2023). Nevertheless, the use
of different IMFs (i.e., different from those usually used for low redshift), although desirable, is not
yet widespread, although there are theoretical studies that argue that the IMF can evolve in time by
depending on physical parameters such as the Z or the gas temperature in star-forming molecular
clouds (e.g., Larson 1985; Bernardi et al. 2017). However, although our stellar models and IMF may
not be as realistic as desirable to describe the evolution of stellar populations from high redshift to
our observational redshift, the fact that we use stellar models and an IMF commonly used in the
literature, both in works based on SED analysis and in numerical simulations, allows our results to
be directly comparable with other similar works, while a detailed analysis of the possible systematic
effects derived from this type of simplifications is pending.

Related to the latter point, we also point out that the latter discussion does not apply to the
results derived for Illustris galaxies. The reason for this is that Illustris assumes both a universal

2For example, assuming non-rotating zero-metallicity stars, Pop III stars with 1.7 M⊙ would have a lifetime of
9.06 Gyr, while those with more than 4 M⊙ would only live less than 100 Myr (Murphy et al. 2021). According to our
cosmology, the age of the Universe at the highest redshift of observation of this work (𝑧 = 4) is 1.55 Gyr.
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IMF and stellar populations models (to convert the output of the simulation into observable spectra)
that do not evolve with cosmic time. In this regard, we remind the reader that the stellar particles
that comprise each galaxy in Illustris do not represent individual stars, but a whole SSP consisting
of stars formed with the same metallicity at the same time (see Section 2.2.3). The stellar mass
of each stellar particle would be the sum of the stellar mass distribution of the SSP, for which a
Chabrier (2003) is assumed.

6.6 Discussion and conclusions

The results presented in this chapter on the analysis of the SFH of massive galaxies at 1 < 𝑧 < 4
in the CEERS survey highlight that CEERS galaxies started their star formation at very early
ages in the Universe. According to our BC03 (SB99) results of the median SFH, CEERS galaxies
would have started their formation at 𝑧 ∼ 30 (∼ 20) and would have formed the 5% of their stellar
mass present at 𝑧 ∼ 1 by 𝑧 = 10.9 (7.7), the 10% of this mass at by 𝑧 = 8.4 (6.2), and the 25% by
𝑧 = 5.0 (4.1). If we concentrate on 𝑡5 and 𝑡10, these formation times are similar than the median
values drawn from the distribution of the individual formation times of the CEERS galaxies. Such
early star formation is still more evident in the distributions for 𝑡5×108 M⊙ and 𝑡109 M⊙ of CEERS
galaxies, on which the galaxy redshift should not affect (or affects less) the value of such formation
times.

Although the formation redshifts found with the SB99 models are overall slightly lower than
those of BC03 for CEERS galaxies, in both cases they are well above those found with the same
2D-SPS method for massive Illustris galaxies in the same redshift range. This is seen both in the
median SFH for Illustris massive galaxies at 1 < 𝑧 < 4 and in the distributions of the individual
formation times. Even massive galaxies at 𝑧 = 4 from Illustris or TNG100 are not able to match
such early formation times. These simulations represent the state of the art in our current (until
JWST, at least) knowledge on the onset of star formation in galaxies and galaxy evolution in
general. Although our 2D-SPS method may be biased to assign formation times somewhat younger
than reality (up to ∼8.5%; see Appendix B), such a bias would not be sufficient to explain the large
number of galaxies with such high formation times nor could it account for the differences between
the CEERS galaxies and the simulations.

The fact that our median SFH for CEERS galaxies begins at 𝑧 ≳ 20 implies, because of the way
this median SFH is built, that more than the half of our CEERS galaxies have galaxy SFHs which
begins at redshift higher than those values. This seems to contradict the currently (or, at least,
before JWST) accepted scenario in which the first galaxies formed in ∼ 108 M⊙ dark matter halos
at 𝑧 ∼ 10 (e.g., Wise & Abel 2007, 2008; Greif et al. 2008, 2010; see Section 1.1.2). Nevertheless,
the considerable number of galaxies with 𝑀⊙ = 5×108 M⊙ already at 𝑧 = 10 that our results predict
is in agreement with the unexpected abundance of relatively bright galaxies at 𝑧 > 10 reported
in the recent literature regarding results based on JWST cosmological surveys, some of which
are unusually massive (with up to 𝑀★ ∼ 1011 M⊙; e.g., Finkelstein et al. 2022a; Labbé et al. 2023;
Harikane et al. 2022; Bradley et al. 2022; Naidu et al. 2022; Castellano et al. 2022; Adams et al. 2023;
Atek et al. 2023; Donnan et al. 2023; Yan et al. 2023; Pérez-González et al. 2023a). If confirmed
spectroscopically, these galaxies could be responsible for beginning the reionization of the Universe
at higher redshifts than previously assumed, and their abundance could be hardly explained with
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the current ΛCDM cosmological model unless an unaccounted (probably implausibly) high star
formation efficiency is assumed at high redshift (see Boylan-Kolchin 2023). According to that
work, in case these extremely high efficiencies are actually reached, this would imply very steep
early rising SFHs over time in massive halos, which is precisely what we observe in the median SFH
of the CEERS sample. Other alternatives that have been recently proposed suggest that such early
population of galaxies could be explained if the amplitudes of the primordial density fluctuations
are not Gaussian (e.g., Biagetti et al. 2023) or if other scenarios, such as a more top-heavy IMF
in the stellar populations at high redshift (e.g., Harikane et al. 2023; Finkelstein et al. 2013), are
at play. Nevertheless, due to the novelty of these results, all these possible explanations are still
under debate.

Finally, regarding the comparison of our inferred formation times with those predicted by sim-
ulations, the considerably lower formation redshifts inferred for Illustris and TNG when compared
to those of CEERS highlight a potential problem in the models regarding their (low) efficiency
in forming stars compared with the observations in these early stages of the Universe. Assuming
the ΛCDM is the correct cosmological model to describe our Universe, this would imply the need
to modify the adopted galaxy formation models. As shown in Chapter 2, these simulations rely
on simplistic subgrid models for star formation and feedback by SNe and AGNs which are tuned
to reproduce 𝑧 = 0 galaxy populations. Nevertheless, these subgrid physics models might not be
applicable as such to describe the high-redshift regime. Besides, as discussed in Section 6.5.3, the
fact that both Illustris and IllustrisTNG assume a time-invariant IMF could also be playing a role.
Further investigation is needed in order to disentangle the actual origin of these discrepancies, but
it will likely require an improvement of the currently adopted galaxy formation (and, maybe, cos-
mological) models within the simulations to take into account the results from recent JWST data,
such as those presented in this thesis.



CHAPTER7
Conclusions and Future Work

7.1 General conclusions

The main objective of this thesis has been to address some of the most fundamental open issues
on the formation and evolution of present-day massive galaxies (like the Milky Way and more
massive). In particular, we focus on determining when these galaxies started to form their first
stars or, alternatively, what were their formation redshifts. This has profound implications on key
topics such as the epoch of reionization and the galaxies responsible for it, what is the balance
between in-situ and ex-situ star formation in massive galaxies, to name a few.

The advent of JWST provides a unique opportunity to explore stellar populations with spatial
resolution up to redshifts for which the photometric evolution of the stellar populations (even if
they are as old as the Universe at the redshift of observation) is still measurable, while covering
the spectral region (once combined with HST data) from the UV to the near-infrared rest-frame.
For this purpose, we have taken advantage of the exceptional optical capabilities of both ACS and
WFC3 with HST and the unprecedented infrared capabilities of NIRCam at JWST, and combined
them in order to analyze the spatially-resolved stellar populations of massive 1 < 𝑧 < 4 galaxies.

In order to analyze the stellar populations with spatial resolution in these galaxies we have
implemented a novel method of Stellar Population Synthesis in two dimensions (2D SPS) aimed
at reproducing the global star formation history (SFH) of our galaxies by fitting HST+JWST
Spectral Energy Distributions (SED) in a pixel-by-pixel basis. The method was first tested on
spatially-resolved SEDs composed of broad-band ACS, WFC3 and NIRCam imaging data built
upon the predictions of the Illustris hydrodynamical simulations. Given the scientific interests
outlined above, we select a sample of massive (𝑀★ > 1010 M⊙) galaxies at 1 < 𝑧 < 4 that, according
to the Illustris merger trees, would evolve into local 𝑀★ > 1011 M⊙ galaxies. The results from this
work are published in García-Argumánez et al. (2023) and its main conclusions can be summarized
as follows:

• Our method proves to be successful at recovering the early SFH of the 1 < 𝑧 < 4 precursors
of local massive galaxies. In order to quantify the success of the method we derive individual
formation times (𝑡5, 𝑡10, and 𝑡25, which represent the time since the Big Bang needed for a
galaxy to reach 5%, 10%, and 25% of its mass at the epoch of observation) and compare them
with those determined from the Illustris (ground-truth) SFHs. This comparison results in
an accuracy (median-averaged over the whole sample) below 5%, with our 2D-SPS formation
times happening earlier, and a galaxy-by-galaxy scatter in these formation times of 0.2 −
0.3 dex.

137



138 7. Conclusions and Future Work

• Given that we aim to explore the early formation of all local massive galaxies, we take advan-
tage of the availability of merger trees from Illustris to explore the impact of potential biases
due to the fact that (1) the SFH of local massive galaxies includes the SFH of both massive
and non-massive precursors merged below the redshift of observation and (2) a fraction of
the local massive galaxies have no massive 1 < 𝑧 < 4 precursors. Relative to the formation
times determined for our massive precursors, we conclude:

– Ground-truth formation times of the (𝑧 = 0) descendants of our massive precursors
(1 < 𝑧 < 4) are larger by up top ∼ 200 Myr than those inferred when only massive
precursors are considered. This difference is attributed to the mass cut-off imposed on
our sample of progenitors and which makes our sample to contain only the most massive
(and, possibly older) progenitors.

– Ground-truth formation times of the entire population of 𝑧 = 0 massive galaxies are
larger by ∼ 200 Myr than those having a massive precursor at 1 < 𝑧 < 4.

• Finally, if we relax the condition of our simulated 1 < 𝑧 < 4 galaxies leading to massive local
galaxies (as it would be the case in real cosmological surveys at high redshift), our method
and the Illustris ground-truth both yield similar median SFHs and formation times.

Thus, the selection of massive precursors (which is inherent to any magnitude-limited cosmological
survey at high redshift) does not lead to major biases in terms of the formation epoch of very
massive local galaxies.

The second and most relevant part of the research of this thesis regarding the actual SFH of local
massive galaxies relies on applying our 2D-SPS methodology to real massive galaxies at 1 < 𝑧 < 4
from JWST+ HST observations. In particular, we use imaging data from both CANDELS HST
and CEERS JWST surveys. The conclusions from this work are the following:

• We find that massive galaxies at 1 < 𝑧 < 4 detected in the CEERS NIRCam imaging data
began to form stars at very high redshifts: the onset of star formation in the sample occurred
at 𝑧 ∼ 30 (𝑧 ∼ 20) according to the median SFHs derived from our BC03-based (SB99) 2D-
SPS modeling. Besides, they formed 5% of their stellar mass at 𝑧 ∼ 1 by 𝑧 = 10.9 (7.7) and
10% by 𝑧 = 8.4 (6.2).

• Similar results are obtained when analyzing the distributions for the formation times (𝑡5,
𝑡10, for 5% and 10%, respectively) of individual galaxies, with median associated redshifts
𝑧5 = 10.2 (7.9) and 𝑧10 = 7.4 (6.4) for BC03 (SB99).

• The distributions for the time elapsed in order to form 5×108 M⊙ and 109 M⊙ in stars, 𝑡5×108 M⊙
and 𝑡109 M⊙ , respectively, which are parameters only mildly affected by the redshift distribution
our massive galaxies at 1 < 𝑧 < 4, yet show more evidence of this early star formation in
galaxies, with median values of 𝑧5×108 M⊙∼13 (9.5) and 𝑧109 M⊙∼10 (8) with BC03 (SB99).

• Such early formation times inferred for our sample of massive galaxies at 1 < 𝑧 < 4 are not
reached neither by the Illustris simulation used for the first part of this thesis, both from the
ground-truth SFHs and those derived from our 2D-SPS method. Indeed, the median SFH of
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Illustris massive galaxies at 1 < 𝑧 < 4 predicts a formation redshift of 𝑧5 = 4.4, with a less
steep and postponed onset of star formation. This delayed formation of the stellar mass in
Illustris (and also in the more recent TNG100) simulations is also seen in the distributions
of the individual formation times of massive galaxies. Although our 2D-SPS method could
be biased towards slightly earlier formation times than ground-truth (with a median offset
≲10%), this offset cannot cope with the differences reported in this thesis.

• We thus conclude that, according to our results, either we do not yet fully understand how
massive structures grow in the early Universe or how galaxy formation first occurs in them,
which could be related to ingredients such as primordial gas cooling, initial mass function or
subgrid physical processes in general. We note that our findings seem to be in agreement with
those of recent works based on JWST cosmological surveys, which find a largely unexpected
abundance of luminous galaxies at 𝑧 ∼ 10 (and higher). Due to the novelty of these JWST
results, a definitive consensus regarding the underlying cause of the unexpectedly abundant
population of high-redshift galaxies has not yet been established.

These early results from the exploitation of JWST are testimony of the exciting future that
lies ahead, where JWST is called to lead to a major leap in our understanding on the formation
and evolution of high-redshift galaxies. How far JWST is going to take us? Only time will tell,
hopefully soon.

7.2 Future work

This section presents some future research lines to be conducted taking advantage of the knowledge
gained from this thesis. We have established several follow-up initiatives that will allow us to con-
tinue exploiting our data, together with other strategies that will make use of recent and upcoming
JWST observations. Our primary areas of interest and future research goals are as follows:

• Our first straightforward goal is to extend our sample of 1 < 𝑧 < 4 massive galaxies from
CEERS Epoch 1 observations with analogous galaxies appearing in the CEERS Epoch 2
NIRCam observations (taken in December 2022). This implies adding 6 new NIRCam point-
ings to our previous 4 pointings, increasing our field of view by up to ∼100 arcmin2. Assuming
a constant number of massive galaxies at 1 < 𝑧 < 4 in each pointing, this will result in ∼500
additional galaxies to our previous sample of 333 considered galaxies.

• The results presented in this thesis focus on determining the first stages of formation of
massive galaxies from their inferred integrated SFH. These SFHs are built from a spatially-
resolved analysis, by combining the SFH of the resolution elements in the galaxy. Although
not addressed in this thesis, we are also in the position to analyze the formation times of a
galaxy in a spatially-resolved fashion. This can be done by calculating the formation times of
each resolution element in the galaxy, with the aim to build galaxy maps for 𝑡k. The spatial
(e.g., radial) distribution of these formation times can be helpful to identify structures or
regions of the galaxy that formed at different cosmic times and to establish different formation
mechanisms for them. In addition, it would be interesting to compare the spatially-resolved
formation times in a galaxy with those derived from their 2D-SPS-derived integrated SFH.
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• Similarly, and related to the latter point, a detailed analysis of other properties of spatially-
resolved stellar populations in our massive galaxies is still pending (such as stellar mass, 𝑍,
𝐴V, etc.), although the necessary data for this study are already at our disposal. This would
be very helpful to further investigate the different structures found in our 𝑡k maps.

• Another pending issue is to study the impact of the photometric redshift uncertainties on
our inferred formation times. Although for all the Illustris galaxies analyzed in this work we
assumed spectroscopic redshifts, most of the CEERS galaxies considered in Chapter 6 do not
have spectroscopic redshifts available and rely on photometric redshifts instead. These pho-
tometric redshifts have been estimated from the best-fitting photometric redshift distribution
that results from fitting the integrated SEDs with eazy, and by subsequently considering
the most probable redshift value of this distribution. A way to have an estimate of how the
redshift uncertainties can impact our results could be to repeat the analysis for each galaxy
multiple times by considering different redshift values for the galaxy at each time. These
redshift values would be drawn from the photometric redshift distribution provided by eazy.

• CEERS has 6 MIRI pointings that overlap some of the NIRCam mosaics. With the full
set of CEERS observations already completed and available to us, it would be particularly
instructive to add the photometric bands provided by MIRI in the MIR to our analysis and
study whether better sampling our SEDs in this part of the spectrum impacts the inferred
formation times.

• Finally, the power of the 2D-SPS method developed in this thesis is that it can be applied
to any cosmological field, with not necessarily the same photometric bands available. For
example, the Guaranteed Time Observations (GTO) program called JWST Advanced Deep
Extragalactic Survey (JADES) will survey GOODS-N and GOODS-S using up to 14 JWST
imaging bands and 5 HST ACS bands (see details in Hainline et al. 2023). In addition to this,
as time goes on, more and more data are becoming available from other different cosmological
fields observed with JWST, which can also become potential targets on which to apply our
2D-SPS methodology.



APPENDIXA
Other combinations of

parameters explored in the SED fits

In Chapter 5, we only show the values or ranges of the SED-fitting parameters (see Table 5.3)
that yield the best match between the mass-fraction formation times inferred from our 2D SPS-
derived SFHs and those calculated from the ground-truth SFHs. Nevertheless, the choice of those
best-fitting parameters was not something obvious from the beginning, but their values were found
after spending a significant amount of the time of this thesis on exploring the parameter space and
testing different combinations of them. For this reason, we have decided to dedicate an appendix
to briefly explain how this search of the best-fitting parameters was conducted, and to show some
examples of the explored combinations.

In the beginning of this thesis, we started our search by considering only a single time-delayed
exponential SFH (instead of two populations). However, as commented in Section 5.5, it was
obvious in all of the tests performed that such simple parametrization for the SFH clearly under-
estimated most of the mass-fraction formation times considered in all our redshift interval. This
made us adopt the 2-burst time-delayed exponential described in Section 5.4.1. The subsequent
tests with this double-burst SFH parametrization revealed that the most relevant parameters in
the SED fits (for our comparison of our 2D-SPS-derived formation times with those provided by Il-
lustris ground-truth SFHs) were the age frontier between the young and the old population (agelim)
and the star formation time-scale of the young population (𝜏young). A great amount of tests were
then performed by varying only the values of the two latter parameters (and keeping fixed the
rest of the parameters shown in Table 5.3). Among the values explored for agelim, this was fixed
to several percentages of the age of the Universe (from 10% to 90%). Regarding 𝜏young, this was
either kept fixed (to, among other, 10 Myr, 50 Myr, 100 Myr, or 200 Myr) or free to adopt values in
different ranges (e.g., 10 − 100 Myr, 10 − 150 Myr, or 10 − 200 Myr). Those tests were made both
for SB99 and for BC03 models, finding with SB99 a better agreement with ground-truth.

In this appendix, we show the different versions of Fig. 5.9 (our “method validation figure”) that
were used in our search of the best SED-fitting parameters for a selected number of tests in which
we explored different values of agelim and 𝜏young (Figures A.1 to A.12). Table A.1 shows the median
relative offsets (with respect to ground-truth) and the scatter (calculated from the 68% interval
of these offsets) for the formation times shown in each figure. We found that the combinations
that best reproduced the ground-truth formation times were those with agelim equal to 50% or
40%, and 𝜏young = 10 Myr (fixed). Those two combinations correspond to tests (6) and (10) in
Table A.1, respectively. If we have a closer look at their method validation figures, we see that
for 𝜏young = 10 Myr and agelim = 50% (Fig. A.6), our 2D-SPS method overpredicts the formation
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Table A.1: Results for the validation of the 2D-SPS method for some other combinations of parameters
explored for different values of agelim and 𝜏young. We have highlighted the best-fitting parameters presented
in Chapter 5 with a gray shade.

Test agelim 𝜏young Models Median Relative Offset (%) Scatter (%) Figure
(%) (Myr) 𝑡5 𝑡10 𝑡25 𝑡mw Median 𝑡5 𝑡10 𝑡25 𝑡mw Median

(1) 60 10 BC03 +18 +23 +35 +31 +27 20 27 41 39 33 Fig. A.1

(2) 60 10 SB99 +21 +28 +39 +26 +27 22 28 46 46 37 Fig. A.2

(3) 60 10 − 100 SB99 +18 +18 +17 −5.8 +17 20 26 44 28 27 Fig. A.3

(4) 60 10 − 150 SB99 +17 +18 +16 −7.8 +17 20 26 45 28 27 Fig. A.4

(5) 60 10 − 200 SB99 +17 +17 +15 −8.9 +16 20 25 45 26 26 Fig. A.5

(6) 50 10 SB99 +9.7 +12 +13 +7.3 +11 25 29 42 34 32 Fig. A.6

(7) 50 10 − 100 SB99 +8.8 +6.5 −2.7 −16 +1.9 23 26 41 25 26 Fig. A.7

(8) 50 10 − 100 BC03 +27 +29 +20 +0.9 +23 20 27 57 34 30 Fig. A.8

(9) 30 10 SB99 −28 −35 −36 −35 −35 26 22 20 17 21 Fig. A.9

(10) 40 10 SB99 −5.6 −9.6 −13 −16 −11 27 28 28 24 27 Fig. A.10

(11) 70 10 SB99 +29 +37 +59 +45 +41 20 29 51 53 40 Fig. A.11

(12) 80 10 SB99 +37 +50 +75 +62 +56 21 30 53 54 41 Fig. A.12

40 for 1 < 𝑧 < 2Final
50 for 2 < 𝑧 < 4

10 SB99 +4.4 +1.8 −0.13 -5.2 +0.81 25 29 35 30 30 Fig. 5.9

times inferred for the lowest-redshift galaxies (at 1 < 𝑧 < 2; dark blue dots) with respect to ground-
truth, while it seems to recover fairly well the one-to-one relation for the rest of the galaxies at
higher redshifts (at 2 < 𝑧 < 4; all other colors). If we now look at what happens in Fig. A.10 for
𝜏young = 10 Myr and agelim = 40%, we see that the one-to-one relation is generally recovered for
all the formation times of 1 < 𝑧 < 2 galaxies (dark blue dots), but our method underestimates the
formation times for higher-redshift galaxies.

That was the reason that led us to adopt a combination of both tests (6) and (10) for our choice
of the best-fitting parameters, with agelim being 50% or 40% depending of the two latter redshift
intervals. This final test has been included as a comparison in Table A.1 with a gray shade. As
commented in Chapter 5 and shown in Table A.1, only when allowing the value of agelim to depend
on the redshift of the galaxy, we were able to obtain the minimum median relative offsets for each
of the formation times (and for the median of all of them). In addition, the median scatter (30%)
of our final test is comparable to that of the other tests, except for test (9) which has a smaller
scatter (21%), but which yields formation times which are clearly underestimated with respect to
ground-truth (with median relative offsets from −28% to −36%).
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Figure A.1: Method validation figure for agelim = 60% of the age of the Universe, and 𝜏young = 10 Myr, for
BC03 models.
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Figure A.2: Method validation figure for agelim = 60% of the age of the Universe, and 𝜏young = 10 Myr, for
SB99 models.
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Figure A.3: Method validation figure for agelim = 60% of the age of the Universe, and 𝜏young = 10−100 Myr,
for SB99 models.
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Figure A.4: Method validation figure for agelim = 60% of the age of the Universe, and 𝜏young = 10−150 Myr,
for SB99 models.
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Figure A.5: Method validation figure for agelim = 60% of the age of the Universe, and 𝜏young = 10−200 Myr,
for SB99 models.



148 Appendix A: Other combinations of parameters explored in the SED fits

Figure A.6: Method validation figure for agelim = 50% of the age of the Universe, and 𝜏young = 10 Myr, for
SB99 models.
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Figure A.7: Method validation figure for agelim = 50% of the age of the Universe, and 𝜏young = 10−100 Myr,
for SB99 models.
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Figure A.8: Method validation figure for agelim = 50% of the age of the Universe, and 𝜏young = 10−100 Myr,
for BC03 models.



151

Figure A.9: Method validation figure for agelim = 30% of the age of the Universe, and 𝜏young = 10 Myr, for
SB99 models.
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Figure A.10: Method validation figure for agelim = 40% of the age of the Universe, and 𝜏young = 10 Myr, for
SB99 models.
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Figure A.11: Method validation figure for agelim = 70% of the age of the Universe, and 𝜏young = 10 Myr, for
SB99 models.
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Figure A.12: Method validation figure for agelim = 80% of the age of the Universe, and 𝜏young = 10 Myr, for
SB99 models.



APPENDIXB
2D-SPS method validation for a reduced

number of filters

In Chapter 5, we demonstrated our 2D-SPS method could successfully recover the mass-fraction
formation times 𝑡5, 𝑡10, 𝑡25, and 𝑡mw with a median systematic offset of less than ∼5.5% in all the
four formation times (see Section 5.5 and Fig. 5.9). This analysis was performed by considering 15
filters in total (i.e., 5 ACS + 4 WFC3 + 6 NIRCam filters), for the 2D-SPS analysis. Nevertheless,
as commented in Chapter 6, the number of filters considered for this chapter is only 8 (2 ACS +
6 NIRCam filters). For this reason, to ensure that our method is still effective in recovering the
above formation times, we must repeat the method validation analysis considering only those 8
filters.

Fig. B.1 is equivalent to Fig. 5.9 and shows the formation times 𝑡5, 𝑡10, 𝑡25, and 𝑡mw derived from
2D-SPS-derived galaxy SFHs as a function of their ground-truth values, but in this case the 2D-SPS-
derived galaxy SFHs have been built by fitting the SEDs to only the 8 filters in Chapter 6. A priori,
we can see the aspect of this figure is very similar to Fig. 5.9 in the sense that our formation times
seem to follow the one-to-one relation given by their ground-truth values, with no evident systematic
offsets. We find that our 2D-SPS-derived 𝑡5, 𝑡10, 𝑡25, and 𝑡mw, expressed in lookback time with
respect to each galaxy, for the 8 (15) filters in Chapter 6 (Chapter 5) are consistent with the ground-
truth values with a median relative offset of +8.5% (+4.4%), +8.4% (+1.8%), +8.0% (−0.1%), and
+4.7% (+5.2%). This means our 2D-SPS inferred formation times slightly predict earlier formation
times than ground-truth, but with median relative offsets below ∼8.5% values for all cases. This
was one of the limitations of our 2D-SPS method which already happened when using all the 15
filters, although in that case the median relative offsets were all below ∼5% values. Regarding
the scatter (68% interval) of the individual offsets using 8 filters (15 filters), shown as an inset
in each panel, these are 0.35 (0.33), 0.34 (0.31), 0.26 (0.27), and 0.17 (0.17) Gyr for 𝑡5, 𝑡10, 𝑡25, and
𝑡mw, respectively, which suggests that the previous scatter found when using the 15 filters is almost
unaffected when reducing the number of filters to 8.

We can conclude that, as a consequence of using only the 8 filters in Chapter 6 for the SPS
analysis, the previous limitation of our 2D-SPS method of predicting slightly earlier formation
times than ground-truth is somewhat aggravated. Nevertheless, the differences with respect to the
ground-truth values are still small.
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Figure B.1: Comparison between the mass-fraction formation times of our 2D-SPS method, considering
only the 8 filters in Chapter 6, and their ground-truth values: 𝑡5 (upper-left), 𝑡10 (upper-right), 𝑡25 (lower-
left) and 𝑡mw (lower-right) calculated from our 2D-SPS-derived SFHs versus their reference values calculated
from the SFHs built from the simulated stellar particles in galaxies. Each galaxy is represented by 300
vertically spread points, which correspond to the mass-fraction formation times of the 300 2D-SPS SFHs,
built from the 300 MC particles in each resolution element in the grid. The median of these values for
each galaxy is shown as bigger circles and error bars represent the standard deviation of these values (68%
interval). All points are color-coded by galaxy redshift. On the top of each panel, we show the ratio between
the 𝑡k of our 2D-SPS method and their ground-truth values as a function of the latter. As an inset, we
include the offsets of the galaxies in the sample.



APPENDIXC
Flashcards of CEERS galaxies

In this appendix, we include flashcards of the 333 CEERS massive galaxies at 1 < 𝑧 < 4 considered
in Chapter 6. Galaxies are first sorted by the CEERS pointing to which they belong and, within
each CEERS pointing, according to their ID. We include three galaxy flashcards per page.

In each flashcard, the left panel shows the integrated SED measured for each galaxy as a function
of both the observed wavelength (bottom x-axis) and rest-frame wavelength (top x-axis). ACS and
NIRCam integrated fluxes are shown as purple and cyan markers, respectively. The FWHM (in
wavelength) for each filter’s response curve is shown as an horizontal error bar. As an example,
we show one of the model realizations (in red) that fits the integrated SED using SB99 stellar
population models. This red model is the sum of the contribution of the model corresponding to
the young population (in green) and the old population (orange).

On the top right of each flashcard we show four postage stamps of the considered galaxy, in
which the angular scale corresponding to 1 arcsec is marked with a white segment on the bottom
left. The first three postage stamps show RGB images generated using the PSF-matched images
in different NIRCam filters: F115W, F150W, and F200W for the first panel, F277W, F356W, and
F444W for the second, and F115W, F200W, and F356W for the third. These RGB images have
been produced using an asinh scale, with the minimum value set to zero in flux units, and the
maximum value set to 80% of the flux (in μJy) corresponding to the brightest pixel within the
integrated elliptical aperture (cyan ellipse). The fourth top-right panel shows the segmentation
map. In this map, the pixels belonging to the considered galaxy are shown in red, the pixels
identified as sky are in black, and those belonging to other nearby sources are shown in other
different colors. In the two rightmost postage stamps, the grid is included in cyan. The size of the
integrated aperture and number of cells in the grid for each galaxy are given in Appendix D (see
Table D.1).

The galaxy SFH is shown in the bottom right panel, similar to that shown in Section 6.3 (see
Fig. 6.3). The light blue SFH is the 2D-SPS-derived SFH obtained for the SB99 models. This SFH
is computed as the median of the different SFH realizations (thin gray lines) that result from the
MC solutions obtained for each of the 2D SEDs. The median SFH from all the integrated SED
fits using SB99 models is shown in dotted blue. Finally, as a comparison, the 2D-SPS-derived SFH
obtained for BC03 is shown in dashed orange. The stellar mass and SFR of the galaxy for both
SB99 and BC03 are included in the legend of this panel. The galaxy mass is calculated as the
median mass from the integrated SED fits, and is used to normalize the 2D-SPS-derived SFHs.
The SFR is given by the 2D-SPS-derived SFH at the redshift of observation of the galaxy.
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nircam1-1659 (z= 1.36)
M∗, SB99 (BC03) = 1.8×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.8 (0.6)M¯/yr
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nircam1-1660 (z= 1.03)
M∗, SB99 (BC03) = 7.8×1010 (6.0×1010)M¯
SFRSB99 (BC03) = 0.3 (0.1)M¯/yr
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nircam1-1685 (z= 1.11)
M∗, SB99 (BC03) = 5.7×1010 (6.1×1010)M¯
SFRSB99 (BC03) = 0.1 (0.1)M¯/yr
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nircam1-1794 (z= 1.11)
M∗, SB99 (BC03) = 6.9×1010 (8.9×1010)M¯
SFRSB99 (BC03) = 0.07 (0.08)M¯/yr
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nircam1-1808 (z= 1.51)
M∗, SB99 (BC03) = 3.1×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 1.9 (0.4)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam1-1808
  (z= 1.51)

25

23

21

m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



164 Appendix C: Flashcards of CEERS galaxies
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nircam1-1941 (z= 2.44)
M∗, SB99 (BC03) = 5.5×1010 (4.1×1010)M¯
SFRSB99 (BC03) = 2.4 (1.7)M¯/yr
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nircam1-2251 (z= 1.23)
M∗, SB99 (BC03) = 4.5×1010 (4.6×1010)M¯
SFRSB99 (BC03) = 0.1 (0.02)M¯/yr
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nircam1-2260 (z= 2.48)
M∗, SB99 (BC03) = 5.8×1010 (4.4×1010)M¯
SFRSB99 (BC03) = 0.4 (0.4)M¯/yr
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nircam1-2459 (z= 1.09)
M∗, SB99 (BC03) = 2.0×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.7 (0.2)M¯/yr
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nircam1-2518 (z= 1.12)
M∗, SB99 (BC03) = 4.8×1010 (3.8×1010)M¯
SFRSB99 (BC03) = 2.9 (1.6)M¯/yr
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nircam1-2662 (z= 3.41)
M∗, SB99 (BC03) = 8.2×1010 (4.9×1010)M¯
SFRSB99 (BC03) = 3.4 (1.9)M¯/yr
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nircam1-2720 (z= 1.71)
M∗, SB99 (BC03) = 1.1×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr
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nircam1-3088 (z= 2.19)
M∗, SB99 (BC03) = 6.0×1010 (1.1×1011)M¯
SFRSB99 (BC03) = 4.8 (4.9)M¯/yr
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nircam1-3310 (z= 1.72)
M∗, SB99 (BC03) = 2.7×1010 (2.8×1010)M¯
SFRSB99 (BC03) = 0.6 (0.5)M¯/yr
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nircam1-3578

0 1 2 3 4
Age of the Universe [Gyr]

0

30

60

SF
R

 [M
¯
/y

r]

nircam1-3578 (z= 1.52)
M∗, SB99 (BC03) = 5.8×1010 (3.5×1010)M¯
SFRSB99 (BC03) = 0.4 (0.1)M¯/yr
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nircam1-3670 (z= 1.13)
M∗, SB99 (BC03) = 1.4×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.8 (0.4)M¯/yr
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nircam1-3756 (z= 1.40)
M∗, SB99 (BC03) = 1.6×1010 (2.3×1010)M¯
SFRSB99 (BC03) = 4.0 (5.9)M¯/yr
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nircam1-4022 (z= 2.91)
M∗, SB99 (BC03) = 1.7×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 1.4 (1.2)M¯/yr
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nircam1-4241 (z= 1.32)
M∗, SB99 (BC03) = 3.8×1010 (4.6×1010)M¯
SFRSB99 (BC03) = 1.9 (1.5)M¯/yr
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nircam1-4312 (z= 2.37)
M∗, SB99 (BC03) = 1.7×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 2.3 (1.9)M¯/yr
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nircam1-4331
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nircam1-4331 (z= 1.53)
M∗, SB99 (BC03) = 8.7×1010 (7.4×1010)M¯
SFRSB99 (BC03) = 0.4 (0.5)M¯/yr
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nircam1-4341 (z= 3.35)
M∗, SB99 (BC03) = 2.3×1010 (1.8×1010)M¯
SFRSB99 (BC03) = 7.2 (9.2)M¯/yr
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nircam1-4371 (z= 1.22)
M∗, SB99 (BC03) = 5.9×1010 (7.5×1010)M¯
SFRSB99 (BC03) = 2.0 (1.4)M¯/yr
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nircam1-4630 (z= 1.77)
M∗, SB99 (BC03) = 1.1×1010 (1.0×1010)M¯
SFRSB99 (BC03) = 0.5 (0.3)M¯/yr
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nircam1-5041 (z= 1.12)
M∗, SB99 (BC03) = 4.5×1010 (3.8×1010)M¯
SFRSB99 (BC03) = 1.6 (0.7)M¯/yr
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nircam1-5060 (z= 1.24)
M∗, SB99 (BC03) = 6.6×1010 (4.7×1010)M¯
SFRSB99 (BC03) = 2.8 (0.7)M¯/yr
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nircam1-5171 (z= 1.28)
M∗, SB99 (BC03) = 3.5×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 1.5 (0.3)M¯/yr
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nircam1-5344 (z= 1.23)
M∗, SB99 (BC03) = 5.4×1010 (5.3×1010)M¯
SFRSB99 (BC03) = 1.2 (0.08)M¯/yr
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nircam1-5450 (z= 2.42)
M∗, SB99 (BC03) = 1.7×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 1.2 (0.6)M¯/yr
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nircam1-5714 (z= 1.76)
M∗, SB99 (BC03) = 1.9×1011 (1.2×1011)M¯
SFRSB99 (BC03) = 1.8 (2.1)M¯/yr
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nircam1-5868 (z= 1.54)
M∗, SB99 (BC03) = 2.5×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 0.4 (0.5)M¯/yr
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nircam1-5968 (z= 1.55)
M∗, SB99 (BC03) = 2.0×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.4 (0.2)M¯/yr
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nircam1-6027

0 1 2
Age of the Universe [Gyr]

0

60

120

SF
R

 [M
¯
/y

r]

nircam1-6027 (z= 2.52)
M∗, SB99 (BC03) = 6.2×1010 (5.0×1010)M¯
SFRSB99 (BC03) = 0.3 (0.5)M¯/yr
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nircam1-6028 (z= 2.04)
M∗, SB99 (BC03) = 1.2×1011 (9.9×1010)M¯
SFRSB99 (BC03) = 1.4 ( 1)M¯/yr

3451030
z
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-6070 (z= 1.46)
M∗, SB99 (BC03) = 3.7×1010 (3.1×1010)M¯
SFRSB99 (BC03) = 0.2 (0.1)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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nircam1-6122 (z= 2.24)
M∗, SB99 (BC03) = 2.9×1010 (2.0×1010)M¯
SFRSB99 (BC03) = 0.7 (0.6)M¯/yr
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z
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obs [ m]
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rest [ m]
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nircam1-6205 (z= 1.32)
M∗, SB99 (BC03) = 9.2×1010 (7.0×1010)M¯
SFRSB99 (BC03) = 0.2 (0.08)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
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nircam1-6554 (z= 1.68)
M∗, SB99 (BC03) = 1.1×1011 (9.9×1010)M¯
SFRSB99 (BC03) = 0.7 (0.8)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-6554
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rest [ m]
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175

nircam1-6676
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nircam1-6676 (z= 2.56)
M∗, SB99 (BC03) = 2.0×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.3 (0.5)M¯/yr

3451030
z
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]

 nircam1-6676
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-6696 (z= 1.43)
M∗, SB99 (BC03) = 1.5×1011 (2.5×1011)M¯
SFRSB99 (BC03) = 2.9 (4.2)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
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 nircam1-6696
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rest [ m]
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nircam1-6857 (z= 2.40)
M∗, SB99 (BC03) = 7.3×1010 (5.3×1010)M¯
SFRSB99 (BC03) = 1.1 (0.5)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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 nircam1-6857
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rest [ m]
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nircam1-6917 (z= 1.37)
M∗, SB99 (BC03) = 1.8×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.8 (0.3)M¯/yr

1.523451030
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]

 nircam1-6917
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-6972 (z= 1.28)
M∗, SB99 (BC03) = 1.4×1011 (1.3×1011)M¯
SFRSB99 (BC03) = 0.6 (0.3)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]
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rest [ m]
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nircam1-7539 (z= 1.25)
M∗, SB99 (BC03) = 5.4×1010 (5.3×1010)M¯
SFRSB99 (BC03) = 2.8 (0.9)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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 nircam1-7539
  (z= 1.25)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-7881 (z= 1.42)
M∗, SB99 (BC03) = 4.2×1010 (3.4×1010)M¯
SFRSB99 (BC03) = 1.0 (0.1)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-7881
  (z= 1.42)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-7915 (z= 1.08)
M∗, SB99 (BC03) = 5.8×1010 (4.9×1010)M¯
SFRSB99 (BC03) = 2.3 (0.7)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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 nircam1-7915
  (z= 1.08)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8004 (z= 2.35)
M∗, SB99 (BC03) = 3.4×1010 (2.4×1010)M¯
SFRSB99 (BC03) = 6.0 (4.2)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8217

0 1 2 3
Age of the Universe [Gyr]

0

150

300

SF
R

 [M
¯
/y

r]

nircam1-8217 (z= 2.14)
M∗, SB99 (BC03) = 1.8×1011 (1.3×1011)M¯
SFRSB99 (BC03) = 3.6 (1.9)M¯/yr
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8314 (z= 2.37)
M∗, SB99 (BC03) = 1.4×1011 (1.3×1011)M¯
SFRSB99 (BC03) = 9.2 (6.8)M¯/yr
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  (z= 2.37)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8402 (z= 1.23)
M∗, SB99 (BC03) = 6.1×1010 (4.1×1010)M¯
SFRSB99 (BC03) = 2.8 (0.3)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8416
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nircam1-8416 (z= 1.41)
M∗, SB99 (BC03) = 3.1×1010 (2.4×1010)M¯
SFRSB99 (BC03) = 1.1 (0.4)M¯/yr

1.523451030
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obs [ m]
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 nircam1-8416
  (z= 1.41)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8464 (z= 1.84)
M∗, SB99 (BC03) = 2.3×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 0.5 (0.2)M¯/yr

23451030
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obs [ m]
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8588 (z= 1.73)
M∗, SB99 (BC03) = 7.0×1010 (3.7×1010)M¯
SFRSB99 (BC03) = 1.7 (0.3)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-8588
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



180 Appendix C: Flashcards of CEERS galaxies

nircam1-8729
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nircam1-8729 (z= 3.90)
M∗, SB99 (BC03) = 4.5×1010 (2.7×1010)M¯
SFRSB99 (BC03) = 1.5 (0.5)M¯/yr
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rest [ m]
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nircam1-8904 (z= 1.45)
M∗, SB99 (BC03) = 1.5×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 1.4 (1.3)M¯/yr

1.523451030
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]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-8959 (z= 2.41)
M∗, SB99 (BC03) = 2.1×1010 (1.8×1010)M¯
SFRSB99 (BC03) = 3.9 (2.0)M¯/yr

3451030
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1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-8959
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



181

nircam1-9090
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nircam1-9090 (z= 1.73)
M∗, SB99 (BC03) = 1.1×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.5 (0.4)M¯/yr

23451030
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obs [ m]
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]

 nircam1-9090
  (z= 1.73)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-9185 (z= 1.69)
M∗, SB99 (BC03) = 3.1×1010 (2.8×1010)M¯
SFRSB99 (BC03) = 0.8 (0.9)M¯/yr
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 nircam1-9185
  (z= 1.69)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-9293 (z= 2.04)
M∗, SB99 (BC03) = 7.2×1010 (5.4×1010)M¯
SFRSB99 (BC03) = 1.8 (1.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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 nircam1-9293
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28

26

24

22

20

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-9476 (z= 1.99)
M∗, SB99 (BC03) = 9.2×1010 (5.6×1010)M¯
SFRSB99 (BC03) = 0.9 (0.5)M¯/yr
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 nircam1-9476
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rest [ m]
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nircam1-9565 (z= 1.11)
M∗, SB99 (BC03) = 1.2×1011 (1.3×1011)M¯
SFRSB99 (BC03) = 0.4 (0.1)M¯/yr

1.523451030
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1.00.5 2.0 5.0
obs [ m]
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 nircam1-9565
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1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-9691 (z= 1.71)
M∗, SB99 (BC03) = 7.1×1010 (4.7×1010)M¯
SFRSB99 (BC03) = 0.9 (0.3)M¯/yr
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29

27

25

23

21

m
A

B  [m
ag]

0.1 1.0
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nircam1-9825
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nircam1-9825 (z= 1.69)
M∗, SB99 (BC03) = 1.0×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.2 (0.3)M¯/yr
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 nircam1-9825
  (z= 1.69)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-9859 (z= 3.52)
M∗, SB99 (BC03) = 4.2×1010 (6.5×1010)M¯
SFRSB99 (BC03) = 4.9 (5.2)M¯/yr
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1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-9859
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-10038 (z= 1.01)
M∗, SB99 (BC03) = 6.8×1010 (6.3×1010)M¯
SFRSB99 (BC03) = 0.4 (0.7)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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F
ν
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]

 nircam1-10038
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rest [ m]
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nircam1-10087
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nircam1-10087 (z= 1.65)
M∗, SB99 (BC03) = 4.0×1010 (5.4×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-10087
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rest [ m]
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nircam1-10163 (z= 1.27)
M∗, SB99 (BC03) = 4.4×1010 (4.1×1010)M¯
SFRSB99 (BC03) = 0.08 (0.05)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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ν
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]

 nircam1-10163
  (z= 1.27)
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rest [ m]
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nircam1-10234 (z= 1.73)
M∗, SB99 (BC03) = 3.1×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 1.1 (1.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0
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4.0

F
ν
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]

 nircam1-10234
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-10398
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nircam1-10398 (z= 2.39)
M∗, SB99 (BC03) = 1.5×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 1.3 (1.0)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0
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4.0

F
ν
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]

 nircam1-10398
  (z= 2.39)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-10564 (z= 1.45)
M∗, SB99 (BC03) = 6.7×1010 (5.8×1010)M¯
SFRSB99 (BC03) = 1.2 (1.7)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

40.0

F
ν
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]

 nircam1-10564
  (z= 1.45)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-10634 (z= 1.52)
M∗, SB99 (BC03) = 1.4×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.8 (0.8)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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4.0

F
ν
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]

 nircam1-10634
  (z= 1.52)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-10770 (z= 2.06)
M∗, SB99 (BC03) = 3.5×1010 (2.4×1010)M¯
SFRSB99 (BC03) = 0.5 (0.2)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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F
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]

 nircam1-10770
  (z= 2.06)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-10795 (z= 1.28)
M∗, SB99 (BC03) = 1.5×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.2 (0.04)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-10795
  (z= 1.28)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11025 (z= 1.21)
M∗, SB99 (BC03) = 2.0×1010 (2.0×1010)M¯
SFRSB99 (BC03) = 0.2 (0.007)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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F
ν
 [

Jy
]

 nircam1-11025
  (z= 1.21)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11036
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nircam1-11036 (z= 1.26)
M∗, SB99 (BC03) = 2.8×1010 (2.9×1010)M¯
SFRSB99 (BC03) = 0.5 (0.8)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-11036
  (z= 1.26)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11038 (z= 1.10)
M∗, SB99 (BC03) = 3.4×1010 (2.4×1010)M¯
SFRSB99 (BC03) = 0.05 (0.02)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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ν
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]

 nircam1-11038
  (z= 1.10)

27

25

23

21
m

A
B  [m

ag]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11048 (z= 1.27)
M∗, SB99 (BC03) = 5.7×1010 (6.8×1010)M¯
SFRSB99 (BC03) = 0.2 (0.06)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-11048
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11082 (z= 1.66)
M∗, SB99 (BC03) = 2.8×1010 (3.0×1010)M¯
SFRSB99 (BC03) = 0.5 (1.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
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ν
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]

 nircam1-11082
  (z= 1.66)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11242 (z= 1.65)
M∗, SB99 (BC03) = 1.4×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.8 (1.5)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-11242
  (z= 1.65)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11292 (z= 1.59)
M∗, SB99 (BC03) = 2.2×1010 (2.5×1010)M¯
SFRSB99 (BC03) = 0.6 (1.1)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-11292
  (z= 1.59)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam1-11387
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nircam1-11387 (z= 1.24)
M∗, SB99 (BC03) = 1.8×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.8 (0.3)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam1-11387
  (z= 1.24)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-327 (z= 2.98)
M∗, SB99 (BC03) = 1.0×1011 (1.6×1011)M¯
SFRSB99 (BC03) = 3.3 (7.3)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-526 (z= 2.10)
M∗, SB99 (BC03) = 3.1×1010 (2.7×1010)M¯
SFRSB99 (BC03) = 0.04 (0.08)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.0
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]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-640
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nircam2-640 (z= 1.05)
M∗, SB99 (BC03) = 7.9×1010 (8.2×1010)M¯
SFRSB99 (BC03) = 0.02 (0.006)M¯/yr

1.523451030
z
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obs [ m]
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 nircam2-640
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rest [ m]
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nircam2-739 (z= 1.58)
M∗, SB99 (BC03) = 2.7×1010 (2.4×1010)M¯
SFRSB99 (BC03) = 1.4 (0.4)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-739
  (z= 1.58)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-797 (z= 2.02)
M∗, SB99 (BC03) = 6.2×1010 (5.0×1010)M¯
SFRSB99 (BC03) = 0.6 (0.7)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-797
  (z= 2.02)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-887 (z= 2.56)
M∗, SB99 (BC03) = 5.9×1010 (6.0×1010)M¯
SFRSB99 (BC03) = 0.5 (0.8)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-887
  (z= 2.56)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-950 (z= 2.07)
M∗, SB99 (BC03) = 7.3×1010 (5.2×1010)M¯
SFRSB99 (BC03) = 0.2 (0.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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 nircam2-950
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29

27

25

23

21
m

A
B  [m

ag]
0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-1810 (z= 2.33)
M∗, SB99 (BC03) = 1.7×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 0.6 (0.8)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-1810
  (z= 2.33)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-1823 (z= 1.18)
M∗, SB99 (BC03) = 6.3×1010 (4.9×1010)M¯
SFRSB99 (BC03) = 0.2 (0.05)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-1823
  (z= 1.18)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-2305 (z= 2.30)
M∗, SB99 (BC03) = 5.8×1010 (4.5×1010)M¯
SFRSB99 (BC03) = 1.0 (1.2)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-2305
  (z= 2.30)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-2368 (z= 1.45)
M∗, SB99 (BC03) = 2.7×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 2.0 (0.9)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-2368
  (z= 1.45)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-2572
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nircam2-2572 (z= 2.09)
M∗, SB99 (BC03) = 2.2×1010 (2.3×1010)M¯
SFRSB99 (BC03) = 0.05 (0.02)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-2572
  (z= 2.09)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-2853 (z= 1.18)
M∗, SB99 (BC03) = 8.6×1010 (9.6×1010)M¯
SFRSB99 (BC03) = 0.2 (0.06)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam2-2853
  (z= 1.18)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-2927 (z= 3.37)
M∗, SB99 (BC03) = 4.5×1010 (2.7×1010)M¯
SFRSB99 (BC03) = 3.1 (1.8)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1
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]

 nircam2-2927
  (z= 3.37)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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R

 [M
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r]

nircam2-3010 (z= 3.60)
M∗, SB99 (BC03) = 1.9×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 2.9 (2.7)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

F
ν
 [

Jy
]

 nircam2-3010
  (z= 3.60)

28

26

24

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-3181
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Age of the Universe [Gyr]
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 [M
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r]

nircam2-3181 (z= 1.46)
M∗, SB99 (BC03) = 3.5×1010 (3.1×1010)M¯
SFRSB99 (BC03) = 0.1 (0.06)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-3181
  (z= 1.46)

27

25

23

21
m

A
B  [m

ag]
1.00.2 0.5 2.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-3236
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Age of the Universe [Gyr]
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 [M
¯
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r]

nircam2-3236 (z= 3.03)
M∗, SB99 (BC03) = 2.3×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 1.2 (1.1)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-3236
  (z= 3.03)

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-3270
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Age of the Universe [Gyr]
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 [M
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r]

nircam2-3270 (z= 2.79)
M∗, SB99 (BC03) = 5.1×1010 (4.1×1010)M¯
SFRSB99 (BC03) = 0.7 (2.4)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-3270
  (z= 2.79)

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4057
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Age of the Universe [Gyr]
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200
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 [M
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r]

nircam2-4057 (z= 2.79)
M∗, SB99 (BC03) = 1.3×1011 (9.0×1010)M¯
SFRSB99 (BC03) = 3.2 (2.0)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-4057
  (z= 2.79)

25

23

21

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4165
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nircam2-4165 (z= 3.41)
M∗, SB99 (BC03) = 1.1×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 1.6 (2.4)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.0

0.1

1.0

0.04

0.4

F
ν
 [

Jy
]

 nircam2-4165
  (z= 3.41)

29

27

25

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-4240
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nircam2-4240 (z= 1.74)
M∗, SB99 (BC03) = 9.0×1010 (5.3×1010)M¯
SFRSB99 (BC03) = 3.1 (2.4)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

40.0

F
ν
 [

Jy
]

 nircam2-4240
  (z= 1.74)

26

24

22

20

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4386
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nircam2-4386 (z= 1.10)
M∗, SB99 (BC03) = 1.1×1011 (7.4×1010)M¯
SFRSB99 (BC03) = 2.4 (0.8)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

100.0

4.0

40.0

F
ν
 [

Jy
]

 nircam2-4386
  (z= 1.10)

23

21

19
m

A
B  [m

ag]
1.00.2 0.5 2.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4406
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nircam2-4406 (z= 1.72)
M∗, SB99 (BC03) = 2.7×1010 (2.0×1010)M¯
SFRSB99 (BC03) = 1.6 (1.1)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-4406
  (z= 1.72)

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-4491

0 1 2 3 4
Age of the Universe [Gyr]
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nircam2-4491 (z= 1.29)
M∗, SB99 (BC03) = 2.6×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 1.6 (0.2)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

F
ν
 [

Jy
]

 nircam2-4491
  (z= 1.29)

24

22 m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4610
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nircam2-4610 (z= 1.74)
M∗, SB99 (BC03) = 2.3×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 0.5 (1.1)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-4610
  (z= 1.74)

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4650
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nircam2-4650 (z= 1.69)
M∗, SB99 (BC03) = 1.9×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 2.9 (3.6)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

F
ν
 [

Jy
]

 nircam2-4650
  (z= 1.69)

24

22 m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-4680
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nircam2-4680 (z= 2.15)
M∗, SB99 (BC03) = 1.8×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.3 (0.2)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-4680
  (z= 2.15)

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4733
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nircam2-4733 (z= 1.35)
M∗, SB99 (BC03) = 6.0×1010 (4.0×1010)M¯
SFRSB99 (BC03) = 2.1 (0.5)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

40.0

F
ν
 [

Jy
]

 nircam2-4733
  (z= 1.35)

24

22

20

m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-4789
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0

40

80

SF
R

 [M
¯
/y

r]

nircam2-4789 (z= 2.29)
M∗, SB99 (BC03) = 4.8×1010 (3.5×1010)M¯
SFRSB99 (BC03) = 1.8 (1.2)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-4789
  (z= 2.29)

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-5041
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nircam2-5041 (z= 1.23)
M∗, SB99 (BC03) = 4.6×1010 (2.3×1010)M¯
SFRSB99 (BC03) = 4.0 (1.1)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

40.0

F
ν
 [

Jy
]

 nircam2-5041
  (z= 1.23)

24

22

20

m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-5342
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nircam2-5342 (z= 2.21)
M∗, SB99 (BC03) = 3.0×1010 (3.4×1010)M¯
SFRSB99 (BC03) = 0.8 (0.9)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.0

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-5342
  (z= 2.21)

29

27

25

23

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-5418

0.0 0.5 1.0 1.5
Age of the Universe [Gyr]

0

80

160

SF
R

 [M
¯
/y

r]

nircam2-5418 (z= 3.22)
M∗, SB99 (BC03) = 1.1×1011 (5.5×1010)M¯
SFRSB99 (BC03) = 11 (4.8)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-5418
  (z= 3.22)

28

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-5904
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nircam2-5904 (z= 1.71)
M∗, SB99 (BC03) = 1.6×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.3 (0.9)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-5904
  (z= 1.71)

25

23

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-6479
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Age of the Universe [Gyr]

0

60

120

SF
R

 [M
¯
/y

r]

nircam2-6479 (z= 2.47)
M∗, SB99 (BC03) = 3.4×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 3.4 (1.8)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-6479
  (z= 2.47)

25

23

21
m

A
B  [m

ag]
0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-6539
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Age of the Universe [Gyr]
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nircam2-6539 (z= 3.06)
M∗, SB99 (BC03) = 2.1×1010 (1.8×1010)M¯
SFRSB99 (BC03) = 3.1 (1.9)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-6539
  (z= 3.06)

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-7078
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nircam2-7078 (z= 1.73)
M∗, SB99 (BC03) = 4.2×1010 (3.5×1010)M¯
SFRSB99 (BC03) = 0.01 (0.009)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

0.0

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7078
  (z= 1.73)

29

27
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m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-7220
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nircam2-7220 (z= 1.26)
M∗, SB99 (BC03) = 1.1×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.2 (0.1)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7220
  (z= 1.26)

27

25

23

m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-7309
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nircam2-7309 (z= 2.11)
M∗, SB99 (BC03) = 1.7×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 0.2 (0.07)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7309
  (z= 2.11)

27

25

23

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-7394
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nircam2-7394 (z= 2.84)
M∗, SB99 (BC03) = 1.1×1011 (6.7×1010)M¯
SFRSB99 (BC03) = 1.4 (0.6)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7394
  (z= 2.84)

27

25
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m
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B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-7419
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nircam2-7419 (z= 3.45)
M∗, SB99 (BC03) = 8.6×1010 (6.2×1010)M¯
SFRSB99 (BC03) = 3.4 (0.5)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.0

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7419
  (z= 3.45)

29

27

25
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21
m

A
B  [m

ag]
0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-7423
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nircam2-7423 (z= 1.75)
M∗, SB99 (BC03) = 2.0×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 0.03 (0.04)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7423
  (z= 1.75)

27

25

23

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-7435
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nircam2-7435 (z= 3.47)
M∗, SB99 (BC03) = 6.8×1010 (4.1×1010)M¯
SFRSB99 (BC03) = 5.1 (4.2)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7435
  (z= 3.47)

27

25

23

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-7735
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nircam2-7735 (z= 3.49)
M∗, SB99 (BC03) = 3.7×1010 (2.0×1010)M¯
SFRSB99 (BC03) = 11 (7.7)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-7735
  (z= 3.49)

27

25

23

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-7952
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nircam2-7952 (z= 1.17)
M∗, SB99 (BC03) = 1.4×1011 (8.4×1010)M¯
SFRSB99 (BC03) = 6.7 (1.0)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

10.0

100.0

4.0

40.0

F
ν
 [

Jy
]

 nircam2-7952
  (z= 1.17)

23
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m
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B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



204 Appendix C: Flashcards of CEERS galaxies

nircam2-8036
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nircam2-8036 (z= 1.19)
M∗, SB99 (BC03) = 1.2×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.2 (0.08)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-8036
  (z= 1.19)

25

23

m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam2-8313

0 1 2 3 4
Age of the Universe [Gyr]

0

25

50

SF
R

 [M
¯
/y

r]

nircam2-8313 (z= 1.28)
M∗, SB99 (BC03) = 1.7×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.9 (0.7)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

F
ν
 [

Jy
]

 nircam2-8313
  (z= 1.28)

24

22 m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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0 1 2 3 4 5
Age of the Universe [Gyr]

0

15

30

SF
R

 [M
¯
/y

r]

nircam2-8320 (z= 1.18)
M∗, SB99 (BC03) = 2.3×1010 (2.6×1010)M¯
SFRSB99 (BC03) = 0.04 (0.02)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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10.0

0.04
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F
ν
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]

 nircam2-8320
  (z= 1.18)

27

25

23 m
A

B  [m
ag]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-8386
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nircam2-8386 (z= 2.74)
M∗, SB99 (BC03) = 2.9×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 3.8 (2.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-8386
  (z= 2.74)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-8529 (z= 3.47)
M∗, SB99 (BC03) = 2.6×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 2.3 (0.9)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-8529
  (z= 3.47)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-8542 (z= 2.32)
M∗, SB99 (BC03) = 8.6×1010 (1.1×1011)M¯
SFRSB99 (BC03) = 3.2 (5.7)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

40.0

F
ν
 [

Jy
]

 nircam2-8542
  (z= 2.32)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-9030
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nircam2-9030 (z= 3.27)
M∗, SB99 (BC03) = 3.0×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 2.8 (1.4)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

F
ν
 [

Jy
]

 nircam2-9030
  (z= 3.27)

28
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-9096 (z= 2.18)
M∗, SB99 (BC03) = 7.8×1010 (1.1×1011)M¯
SFRSB99 (BC03) = 1.0 (1.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.0

0.1

1.0

10.0

0.04

0.4
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F
ν
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]

 nircam2-9096
  (z= 2.18)
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0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-9208 (z= 1.70)
M∗, SB99 (BC03) = 2.8×1010 (2.7×1010)M¯
SFRSB99 (BC03) = 1.0 (1.0)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-9208
  (z= 1.70)

25
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m
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B  [m
ag]

0.1 1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-9269
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nircam2-9269 (z= 2.93)
M∗, SB99 (BC03) = 8.4×1010 (6.3×1010)M¯
SFRSB99 (BC03) = 12 (10)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
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]

 nircam2-9269
  (z= 2.93)

27
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-9307 (z= 2.40)
M∗, SB99 (BC03) = 6.0×1010 (3.8×1010)M¯
SFRSB99 (BC03) = 3.4 (2.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-9307
  (z= 2.40)

27
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0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-9610 (z= 2.50)
M∗, SB99 (BC03) = 1.9×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.2 (0.3)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-9610
  (z= 2.50)
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24

22
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



208 Appendix C: Flashcards of CEERS galaxies

nircam2-9876
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nircam2-9876 (z= 2.29)
M∗, SB99 (BC03) = 4.1×1010 (3.0×1010)M¯
SFRSB99 (BC03) = 0.9 (0.9)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
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Jy
]

 nircam2-9876
  (z= 2.29)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10017 (z= 1.07)
M∗, SB99 (BC03) = 1.4×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

F
ν
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Jy
]

 nircam2-10017
  (z= 1.07)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10149 (z= 2.10)
M∗, SB99 (BC03) = 1.5×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.2 (0.02)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam2-10149
  (z= 2.10)

27
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10186
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nircam2-10186 (z= 2.67)
M∗, SB99 (BC03) = 1.5×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.2 (0.04)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-10186
  (z= 2.67)

26
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10266 (z= 1.58)
M∗, SB99 (BC03) = 1.9×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 0.5 ( 1)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-10266
  (z= 1.58)

25
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B  [m
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1.00.2 0.5 2.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10267 (z= 1.57)
M∗, SB99 (BC03) = 9.1×1010 (1.5×1011)M¯
SFRSB99 (BC03) = 1.5 (1.9)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

100.0

0.4

4.0

40.0

F
ν
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]

 nircam2-10267
  (z= 1.57)

25
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



210 Appendix C: Flashcards of CEERS galaxies

nircam2-10367
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nircam2-10367 (z= 1.50)
M∗, SB99 (BC03) = 2.6×1010 (2.3×1010)M¯
SFRSB99 (BC03) = 1.3 (2.9)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0
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F
ν
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]

 nircam2-10367
  (z= 1.50)

24
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B  [m
ag]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10433 (z= 2.84)
M∗, SB99 (BC03) = 4.2×1010 (3.0×1010)M¯
SFRSB99 (BC03) = 4.1 (1.8)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1
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4.0

F
ν
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]

 nircam2-10433
  (z= 2.84)

26
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10446 (z= 1.57)
M∗, SB99 (BC03) = 3.6×1010 (3.6×1010)M¯
SFRSB99 (BC03) = 1.1 (0.9)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
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Jy
]

 nircam2-10446
  (z= 1.57)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10496
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nircam2-10496 (z= 2.29)
M∗, SB99 (BC03) = 1.8×1010 (1.4×1010)M¯
SFRSB99 (BC03) =  1 (1.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04
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4.0

F
ν
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]

 nircam2-10496
  (z= 2.29)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10573 (z= 1.83)
M∗, SB99 (BC03) = 8.0×1010 (6.1×1010)M¯
SFRSB99 (BC03) = 0.6 (0.1)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

40.0

F
ν
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]

 nircam2-10573
  (z= 1.83)
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0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10590 (z= 1.40)
M∗, SB99 (BC03) = 1.3×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 0.5 (0.5)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam2-10590
  (z= 1.40)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10591
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nircam2-10591 (z= 1.67)
M∗, SB99 (BC03) = 4.7×1010 (3.9×1010)M¯
SFRSB99 (BC03) = 1.2 (1.5)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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4.0

F
ν
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]

 nircam2-10591
  (z= 1.67)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10669 (z= 3.12)
M∗, SB99 (BC03) = 3.0×1011 (2.1×1011)M¯
SFRSB99 (BC03) = 5.0 (12)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1
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4.0

40.0

F
ν
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]

 nircam2-10669
  (z= 3.12)
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0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam2-10683 (z= 2.73)
M∗, SB99 (BC03) = 1.2×1011 (9.6×1010)M¯
SFRSB99 (BC03) = 6.8 (10)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1
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10.0
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40.0
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]

 nircam2-10683
  (z= 2.73)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-64
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nircam3-64 (z= 1.34)
M∗, SB99 (BC03) = 1.1×1011 (1.0×1011)M¯
SFRSB99 (BC03) = 1.8 (0.3)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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F
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]

 nircam3-64
  (z= 1.34)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam3-185

0 1 2
Age of the Universe [Gyr]

0

40

80

SF
R

 [M
¯
/y

r]

nircam3-185 (z= 2.82)
M∗, SB99 (BC03) = 1.4×1010 (1.0×1010)M¯
SFRSB99 (BC03) = 0.2 (0.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1
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F
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Jy
]

 nircam3-185
  (z= 2.82)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-254 (z= 1.44)
M∗, SB99 (BC03) = 2.4×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1
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10.0
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]

 nircam3-254
  (z= 1.44)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-335
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nircam3-335 (z= 2.16)
M∗, SB99 (BC03) = 1.9×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-335
  (z= 2.16)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam3-395

0 1 2 3 4
Age of the Universe [Gyr]

0

15

30

SF
R

 [M
¯
/y

r]

nircam3-395 (z= 1.26)
M∗, SB99 (BC03) = 1.5×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.02 (0.02)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam3-395
  (z= 1.26)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-513 (z= 3.42)
M∗, SB99 (BC03) = 2.5×1011 (1.5×1011)M¯
SFRSB99 (BC03) = 7.7 (7.6)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-513
  (z= 3.42)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-515
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nircam3-515 (z= 2.91)
M∗, SB99 (BC03) = 4.7×1010 (4.3×1010)M¯
SFRSB99 (BC03) = 3.4 (2.2)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-515
  (z= 2.91)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-516 (z= 3.63)
M∗, SB99 (BC03) = 5.6×1010 (3.2×1010)M¯
SFRSB99 (BC03) = 4.9 (4.3)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]
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0.04

0.4
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]
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rest [ m]
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nircam3-592 (z= 2.72)
M∗, SB99 (BC03) = 2.8×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 0.8 (0.5)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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nircam3-735 (z= 1.27)
M∗, SB99 (BC03) = 1.9×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.8 (0.2)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
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]

 nircam3-735
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-924 (z= 3.56)
M∗, SB99 (BC03) = 1.1×1011 (8.4×1010)M¯
SFRSB99 (BC03) = 33 (34)M¯/yr

451030
z

1.00.5 2.0 5.0
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]
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nircam3-980

0 1 2 3 4 5
Age of the Universe [Gyr]

0

50

100

SF
R

 [M
¯
/y

r]

nircam3-980 (z= 1.11)
M∗, SB99 (BC03) = 1.5×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.08 (0.007)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-980
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rest [ m]
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nircam3-1033
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nircam3-1033 (z= 1.68)
M∗, SB99 (BC03) = 3.1×1010 (2.6×1010)M¯
SFRSB99 (BC03) = 0.6 (2.3)M¯/yr

23451030
z

1.00.5 2.0 5.0
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ν
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]

 nircam3-1033
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rest [ m]
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nircam3-1095 (z= 2.58)
M∗, SB99 (BC03) = 4.2×1010 (2.3×1010)M¯
SFRSB99 (BC03) = 1.5 (0.6)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-1095
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-1143 (z= 2.72)
M∗, SB99 (BC03) = 3.0×1010 (3.0×1010)M¯
SFRSB99 (BC03) = 1.1 (1.9)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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10.0
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4.0
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ν
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]

 nircam3-1143
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-1144 (z= 1.06)
M∗, SB99 (BC03) = 3.3×1010 (3.3×1010)M¯
SFRSB99 (BC03) = 0.09 (0.03)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
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]

 nircam3-1144
  (z= 1.06)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-1481 (z= 3.00)
M∗, SB99 (BC03) = 1.8×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 1.9 (1.1)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.0
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 nircam3-1481
  (z= 3.00)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-1548 (z= 3.47)
M∗, SB99 (BC03) = 4.0×1010 (3.1×1010)M¯
SFRSB99 (BC03) = 58 (39)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

10.0

4.0
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]

 nircam3-1548
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nircam3-1668
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nircam3-1668 (z= 1.66)
M∗, SB99 (BC03) = 1.8×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 1.8 (1.8)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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ν
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]

 nircam3-1668
  (z= 1.66)
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rest [ m]
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nircam3-1760 (z= 1.10)
M∗, SB99 (BC03) = 6.8×1010 (5.3×1010)M¯
SFRSB99 (BC03) = 0.8 (0.3)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-1760
  (z= 1.10)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-1779 (z= 2.95)
M∗, SB99 (BC03) = 4.2×1010 (3.6×1010)M¯
SFRSB99 (BC03) = 3.7 (1.9)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-1779
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nircam3-1787 (z= 1.23)
M∗, SB99 (BC03) = 3.8×1010 (3.6×1010)M¯
SFRSB99 (BC03) = 0.5 (0.08)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
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]

 nircam3-1787
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rest [ m]
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nircam3-2119 (z= 1.71)
M∗, SB99 (BC03) = 3.2×1010 (2.5×1010)M¯
SFRSB99 (BC03) = 0.6 (0.5)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-2119
  (z= 1.71)
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1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-2161 (z= 2.71)
M∗, SB99 (BC03) = 5.2×1010 (3.5×1010)M¯
SFRSB99 (BC03) = 0.3 (0.4)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.0
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0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam3-2161
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rest [ m]
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nircam3-2223
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nircam3-2223 (z= 1.83)
M∗, SB99 (BC03) = 3.0×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 0.07 (0.06)M¯/yr

23451030
z

1.00.5 2.0 5.0
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1.0

10.0

0.4

4.0
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]

 nircam3-2223
  (z= 1.83)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-2238 (z= 1.72)
M∗, SB99 (BC03) = 4.5×1010 (4.2×1010)M¯
SFRSB99 (BC03) = 0.5 (0.9)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-2238
  (z= 1.72)

27

25

23

21
m

A
B  [m

ag]
0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-2387 (z= 1.64)
M∗, SB99 (BC03) = 3.3×1010 (3.4×1010)M¯
SFRSB99 (BC03) = 0.5 (1.6)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]
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  (z= 1.64)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



222 Appendix C: Flashcards of CEERS galaxies
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nircam3-2521 (z= 1.77)
M∗, SB99 (BC03) = 9.3×1010 (7.8×1010)M¯
SFRSB99 (BC03) = 0.8 (0.8)M¯/yr
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 nircam3-2521
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rest [ m]
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nircam3-2527 (z= 1.74)
M∗, SB99 (BC03) = 3.1×1010 (2.5×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-2527
  (z= 1.74)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-2552 (z= 1.71)
M∗, SB99 (BC03) = 4.3×1010 (3.2×1010)M¯
SFRSB99 (BC03) = 0.7 (0.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



223

nircam3-2578
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nircam3-2578 (z= 1.70)
M∗, SB99 (BC03) = 2.3×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 1.1 (2.9)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-2578
  (z= 1.70)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-2598 (z= 3.01)
M∗, SB99 (BC03) = 5.2×1011 (4.1×1011)M¯
SFRSB99 (BC03) = 28 (21)M¯/yr
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obs [ m]
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 nircam3-2598
  (z= 3.01)
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nircam3-2789 (z= 2.56)
M∗, SB99 (BC03) = 2.8×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 0.6 (1.3)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam3-2789
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nircam3-2885 (z= 1.70)
M∗, SB99 (BC03) = 1.2×1010 (1.0×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr
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z
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]

 nircam3-2885
  (z= 1.70)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-2944 (z= 2.78)
M∗, SB99 (BC03) = 1.5×1011 (1.2×1011)M¯
SFRSB99 (BC03) = 2.7 (2.9)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam3-2956 (z= 2.17)
M∗, SB99 (BC03) = 2.1×1010 (2.8×1010)M¯
SFRSB99 (BC03) = 0.6 (0.7)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]
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 nircam3-2956
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nircam3-3069
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nircam3-3069 (z= 2.32)
M∗, SB99 (BC03) = 2.6×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 2.4 (1.0)M¯/yr
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z
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 nircam3-3069
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nircam3-3104 (z= 3.42)
M∗, SB99 (BC03) = 2.2×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 11 (8.3)M¯/yr
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z
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0.1

1.0

0.4

4.0

F
ν
 [

Jy
]
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nircam3-3217 (z= 1.71)
M∗, SB99 (BC03) = 2.5×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 0.6 (1.1)M¯/yr
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 nircam3-3217
  (z= 1.71)
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nircam3-3243
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nircam3-3243 (z= 1.82)
M∗, SB99 (BC03) = 1.4×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.6 (0.6)M¯/yr
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nircam3-3339 (z= 1.70)
M∗, SB99 (BC03) = 5.9×1010 (5.0×1010)M¯
SFRSB99 (BC03) = 0.1 (0.1)M¯/yr
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nircam3-3461 (z= 1.61)
M∗, SB99 (BC03) = 5.5×1010 (3.3×1010)M¯
SFRSB99 (BC03) = 0.2 (0.09)M¯/yr
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nircam3-3539
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nircam3-3539 (z= 1.01)
M∗, SB99 (BC03) = 1.1×1011 (9.5×1010)M¯
SFRSB99 (BC03) = 0.03 (0.09)M¯/yr
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nircam3-3544 (z= 1.63)
M∗, SB99 (BC03) = 3.8×1010 (3.2×1010)M¯
SFRSB99 (BC03) = 0.8 (0.3)M¯/yr
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nircam3-3622 (z= 1.09)
M∗, SB99 (BC03) = 1.6×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.3 (0.3)M¯/yr
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nircam3-3679 (z= 2.60)
M∗, SB99 (BC03) = 2.2×1011 (3.1×1011)M¯
SFRSB99 (BC03) = 4.8 (20)M¯/yr
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nircam3-3864 (z= 2.42)
M∗, SB99 (BC03) = 6.2×1010 (4.7×1010)M¯
SFRSB99 (BC03) =  1 (0.4)M¯/yr
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nircam3-4244 (z= 1.18)
M∗, SB99 (BC03) = 7.1×1010 (4.8×1010)M¯
SFRSB99 (BC03) = 0.8 (0.6)M¯/yr
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nircam3-4581
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nircam3-4581 (z= 2.85)
M∗, SB99 (BC03) = 1.4×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 1.1 (0.8)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam3-4581
  (z= 2.85)

26

24

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam3-4769

0 1 2
Age of the Universe [Gyr]

0

30

60

SF
R

 [M
¯
/y

r]

nircam3-4769 (z= 2.31)
M∗, SB99 (BC03) = 1.1×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 1.8 (2.1)M¯/yr
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nircam3-5478 (z= 1.12)
M∗, SB99 (BC03) = 3.5×1010 (2.9×1010)M¯
SFRSB99 (BC03) = 0.3 (0.07)M¯/yr
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nircam3-5633 (z= 1.39)
M∗, SB99 (BC03) = 6.3×1010 (5.0×1010)M¯
SFRSB99 (BC03) = 0.1 (0.1)M¯/yr
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nircam3-5757 (z= 2.72)
M∗, SB99 (BC03) = 2.6×1010 (1.8×1010)M¯
SFRSB99 (BC03) = 0.9 (0.5)M¯/yr
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nircam3-5848 (z= 3.28)
M∗, SB99 (BC03) = 3.2×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 5.1 (2.7)M¯/yr
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nircam3-6288
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nircam3-6288 (z= 1.72)
M∗, SB99 (BC03) = 2.6×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 0.2 (0.2)M¯/yr
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nircam3-6437 (z= 3.34)
M∗, SB99 (BC03) = 4.7×1010 (2.9×1010)M¯
SFRSB99 (BC03) = 1.2 (2.2)M¯/yr
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nircam3-6471 (z= 1.54)
M∗, SB99 (BC03) = 3.1×1010 (3.5×1010)M¯
SFRSB99 (BC03) = 0.5 (2.0)M¯/yr
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nircam3-6517 (z= 2.32)
M∗, SB99 (BC03) = 3.4×1010 (6.1×1010)M¯
SFRSB99 (BC03) = 2.3 (3.7)M¯/yr
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nircam3-6621 (z= 2.18)
M∗, SB99 (BC03) = 3.8×1010 (2.8×1010)M¯
SFRSB99 (BC03) = 0.1 (0.02)M¯/yr
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nircam3-6644 (z= 3.13)
M∗, SB99 (BC03) = 2.7×1010 (2.9×1010)M¯
SFRSB99 (BC03) = 2.3 (2.5)M¯/yr
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nircam3-6739
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nircam3-6739 (z= 1.68)
M∗, SB99 (BC03) = 1.7×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.7 (1.1)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

F
ν
 [

Jy
]

 nircam3-6739
  (z= 1.68)

24

22 m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam3-7007

0.0 0.5 1.0 1.5
Age of the Universe [Gyr]

0

600

1200

SF
R

 [M
¯
/y

r]

nircam3-7007 (z= 3.45)
M∗, SB99 (BC03) = 2.8×1011 (1.9×1011)M¯
SFRSB99 (BC03) = 21 (13)M¯/yr
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nircam3-7412 (z= 1.43)
M∗, SB99 (BC03) = 2.1×1010 (1.8×1010)M¯
SFRSB99 (BC03) = 0.1 (0.1)M¯/yr
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nircam3-7579 (z= 2.27)
M∗, SB99 (BC03) = 5.0×1010 (3.5×1010)M¯
SFRSB99 (BC03) = 0.5 (0.4)M¯/yr
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nircam3-7695 (z= 3.47)
M∗, SB99 (BC03) = 3.5×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 1.7 (1.3)M¯/yr
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nircam3-7701 (z= 2.76)
M∗, SB99 (BC03) = 4.0×1010 (3.2×1010)M¯
SFRSB99 (BC03) = 0.7 (0.3)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam3-7701
  (z= 2.76)

25

23

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



235

nircam3-7956
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nircam3-7956 (z= 1.24)
M∗, SB99 (BC03) = 2.6×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 0.9 (0.5)M¯/yr
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nircam3-8098 (z= 1.62)
M∗, SB99 (BC03) = 2.3×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 0.2 (0.4)M¯/yr
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nircam3-8401 (z= 1.71)
M∗, SB99 (BC03) = 1.1×1011 (1.3×1011)M¯
SFRSB99 (BC03) = 4.6 (5.9)M¯/yr
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nircam3-8558 (z= 2.31)
M∗, SB99 (BC03) = 1.8×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 1.6 (1.1)M¯/yr
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nircam3-8596 (z= 2.44)
M∗, SB99 (BC03) = 2.7×1010 (2.1×1010)M¯
SFRSB99 (BC03) = 1.3 (0.5)M¯/yr
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nircam3-8852 (z= 3.32)
M∗, SB99 (BC03) = 9.5×1010 (6.0×1010)M¯
SFRSB99 (BC03) = 12 (8.2)M¯/yr
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nircam3-8980 (z= 1.73)
M∗, SB99 (BC03) = 2.9×1010 (2.4×1010)M¯
SFRSB99 (BC03) = 0.4 (0.3)M¯/yr
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nircam3-9142 (z= 3.39)
M∗, SB99 (BC03) = 1.7×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 2.9 (3.4)M¯/yr
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0.1

1.0

0.04

0.4

F
ν
 [

Jy
]

 nircam3-9142
  (z= 3.39)

28

26

24

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam3-9199

0 1 2 3
Age of the Universe [Gyr]

0

60

120

SF
R

 [M
¯
/y

r]

nircam3-9199 (z= 1.76)
M∗, SB99 (BC03) = 4.5×1010 (5.4×1010)M¯
SFRSB99 (BC03) = 1.1 (1.6)M¯/yr
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nircam3-9667

0 1 2
Age of the Universe [Gyr]

0

50

100

SF
R

 [M
¯
/y

r]

nircam3-9667 (z= 2.29)
M∗, SB99 (BC03) = 3.3×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 1.3 (0.5)M¯/yr
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nircam3-9784 (z= 1.73)
M∗, SB99 (BC03) = 1.5×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.2 (0.3)M¯/yr
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nircam3-9865 (z= 3.68)
M∗, SB99 (BC03) = 8.4×1010 (5.2×1010)M¯
SFRSB99 (BC03) = 2.5 (1.6)M¯/yr
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nircam3-9866 (z= 2.48)
M∗, SB99 (BC03) = 1.9×1011 (1.4×1011)M¯
SFRSB99 (BC03) = 6.3 (3.4)M¯/yr
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nircam3-10039 (z= 1.70)
M∗, SB99 (BC03) = 3.6×1010 (2.9×1010)M¯
SFRSB99 (BC03) = 0.7 (2.2)M¯/yr
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nircam3-10103 (z= 1.71)
M∗, SB99 (BC03) = 3.3×1010 (2.7×1010)M¯
SFRSB99 (BC03) = 0.9 (1.9)M¯/yr
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nircam3-10226 (z= 2.77)
M∗, SB99 (BC03) = 1.6×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 1.4 (0.5)M¯/yr
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nircam3-10290 (z= 1.84)
M∗, SB99 (BC03) = 1.5×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.3 (0.2)M¯/yr
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nircam3-10630 (z= 3.56)
M∗, SB99 (BC03) = 1.1×1011 (1.2×1011)M¯
SFRSB99 (BC03) = 23 (19)M¯/yr
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nircam3-10688 (z= 1.81)
M∗, SB99 (BC03) = 1.5×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 0.4 (0.3)M¯/yr
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nircam3-10755 (z= 1.33)
M∗, SB99 (BC03) = 4.0×1010 (3.9×1010)M¯
SFRSB99 (BC03) = 0.2 (0.06)M¯/yr
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nircam3-10791 (z= 1.23)
M∗, SB99 (BC03) = 1.2×1011 (1.2×1011)M¯
SFRSB99 (BC03) = 1.2 (0.7)M¯/yr
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nircam3-11158 (z= 1.70)
M∗, SB99 (BC03) = 1.7×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.4 (0.6)M¯/yr
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nircam3-11245 (z= 3.52)
M∗, SB99 (BC03) = 2.4×1011 (1.5×1011)M¯
SFRSB99 (BC03) = 5.3 (4.0)M¯/yr
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nircam3-11248 (z= 1.27)
M∗, SB99 (BC03) = 3.7×1010 (3.0×1010)M¯
SFRSB99 (BC03) = 0.1 (0.02)M¯/yr
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nircam3-11615 (z= 1.77)
M∗, SB99 (BC03) = 1.3×1010 (1.0×1010)M¯
SFRSB99 (BC03) = 0.3 (0.2)M¯/yr
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nircam3-11637 (z= 3.30)
M∗, SB99 (BC03) = 2.0×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.7 (0.5)M¯/yr
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nircam6-444 (z= 1.29)
M∗, SB99 (BC03) = 5.3×1010 (4.3×1010)M¯
SFRSB99 (BC03) = 0.1 (0.04)M¯/yr
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nircam6-575 (z= 3.46)
M∗, SB99 (BC03) = 1.2×1011 (7.9×1010)M¯
SFRSB99 (BC03) = 17 (11)M¯/yr
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nircam6-660 (z= 2.68)
M∗, SB99 (BC03) = 4.8×1010 (4.3×1010)M¯
SFRSB99 (BC03) = 5.3 (6.9)M¯/yr
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nircam6-688 (z= 2.12)
M∗, SB99 (BC03) = 3.2×1010 (2.9×1010)M¯
SFRSB99 (BC03) = 0.5 (0.3)M¯/yr
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nircam6-775 (z= 1.20)
M∗, SB99 (BC03) = 2.1×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 2.4 (1.0)M¯/yr
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nircam6-939 (z= 1.40)
M∗, SB99 (BC03) = 5.6×1010 (4.4×1010)M¯
SFRSB99 (BC03) = 0.3 (0.09)M¯/yr
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nircam6-968 (z= 1.30)
M∗, SB99 (BC03) = 5.6×1010 (4.0×1010)M¯
SFRSB99 (BC03) = 0.1 (0.01)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-968
  (z= 1.30)

27

25

23

21

m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec



246 Appendix C: Flashcards of CEERS galaxies
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nircam6-1029 (z= 1.39)
M∗, SB99 (BC03) = 6.2×1010 (6.5×1010)M¯
SFRSB99 (BC03) = 0.9 (0.6)M¯/yr
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nircam6-1177 (z= 1.29)
M∗, SB99 (BC03) = 3.1×1011 (3.2×1011)M¯
SFRSB99 (BC03) = 12 (1.1)M¯/yr
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nircam6-1868 (z= 1.40)
M∗, SB99 (BC03) = 4.5×1010 (3.4×1010)M¯
SFRSB99 (BC03) = 1.3 (0.6)M¯/yr
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nircam6-1890 (z= 1.19)
M∗, SB99 (BC03) = 3.5×1010 (3.1×1010)M¯
SFRSB99 (BC03) = 0.3 (0.04)M¯/yr
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nircam6-1959 (z= 1.39)
M∗, SB99 (BC03) = 4.4×1010 (3.9×1010)M¯
SFRSB99 (BC03) = 0.2 (0.1)M¯/yr
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nircam6-2317 (z= 1.69)
M∗, SB99 (BC03) = 1.8×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.7 (2.4)M¯/yr
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nircam6-2347 (z= 3.12)
M∗, SB99 (BC03) = 1.4×1011 (1.1×1011)M¯
SFRSB99 (BC03) = 5.1 (4.9)M¯/yr
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nircam6-2383 (z= 1.97)
M∗, SB99 (BC03) = 3.2×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 0.6 (0.2)M¯/yr
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nircam6-2762 (z= 2.82)
M∗, SB99 (BC03) = 1.9×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 0.8 (0.9)M¯/yr
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nircam6-2958
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nircam6-2958 (z= 1.71)
M∗, SB99 (BC03) = 6.2×1010 (1.3×1011)M¯
SFRSB99 (BC03) = 1.5 (1.4)M¯/yr
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nircam6-2991 (z= 1.80)
M∗, SB99 (BC03) = 1.4×1010 (1.8×1010)M¯
SFRSB99 (BC03) = 0 (0.0003)M¯/yr
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obs [ m]

0.0

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam6-2991
  (z= 1.80)

30

28

26

24

22
m

A
B  [m

ag]
0.1 1.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam6-3216

0 1 2 3
Age of the Universe [Gyr]

0

30

60

SF
R

 [M
¯
/y

r]

nircam6-3216 (z= 2.15)
M∗, SB99 (BC03) = 5.8×1010 (4.8×1010)M¯
SFRSB99 (BC03) = 0.5 (0.3)M¯/yr
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nircam6-3217
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nircam6-3217 (z= 2.88)
M∗, SB99 (BC03) = 3.4×1010 (3.3×1010)M¯
SFRSB99 (BC03) = 1.7 (1.3)M¯/yr
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nircam6-3231 (z= 2.65)
M∗, SB99 (BC03) = 8.0×1010 (6.1×1010)M¯
SFRSB99 (BC03) = 0.5 (0.8)M¯/yr
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nircam6-3604 (z= 1.84)
M∗, SB99 (BC03) = 1.4×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 4.4 (3.3)M¯/yr

23451030
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  (z= 1.84)

25

23 m
A

B  [m
ag]

0.1 1.0
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nircam6-3650
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nircam6-3650 (z= 3.08)
M∗, SB99 (BC03) = 5.5×1010 (3.6×1010)M¯
SFRSB99 (BC03) = 0.6 (0.4)M¯/yr
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nircam6-3730 (z= 3.31)
M∗, SB99 (BC03) = 1.4×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 1.4 (1.8)M¯/yr
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nircam6-3995 (z= 1.08)
M∗, SB99 (BC03) = 4.8×1010 (4.6×1010)M¯
SFRSB99 (BC03) = 0.03 (0.004)M¯/yr
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nircam6-4042 (z= 1.70)
M∗, SB99 (BC03) = 2.7×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 1.4 (1.9)M¯/yr
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nircam6-4751 (z= 1.43)
M∗, SB99 (BC03) = 1.4×1010 (1.3×1010)M¯
SFRSB99 (BC03) = 0.7 (0.6)M¯/yr
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nircam6-4891 (z= 1.93)
M∗, SB99 (BC03) = 5.0×1010 (3.8×1010)M¯
SFRSB99 (BC03) = 0.2 (0.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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nircam6-5284 (z= 2.89)
M∗, SB99 (BC03) = 1.1×1011 (7.1×1010)M¯
SFRSB99 (BC03) = 1.9 (2.7)M¯/yr
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nircam6-5398 (z= 3.67)
M∗, SB99 (BC03) = 2.8×1010 (1.7×1010)M¯
SFRSB99 (BC03) = 2.1 (1.1)M¯/yr
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nircam6-5655 (z= 3.46)
M∗, SB99 (BC03) = 8.9×1010 (6.7×1010)M¯
SFRSB99 (BC03) = 4.2 (9.1)M¯/yr
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26

24

22

m
A

B  [m
ag]

0.1 1.0
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nircam6-5662 (z= 1.04)
M∗, SB99 (BC03) = 2.5×1011 (2.6×1011)M¯
SFRSB99 (BC03) = 0.3 (0.2)M¯/yr
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nircam6-5824 (z= 1.29)
M∗, SB99 (BC03) = 6.6×1010 (6.7×1010)M¯
SFRSB99 (BC03) = 0.8 (0.4)M¯/yr
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1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

40.0

F
ν
 [

Jy
]

 nircam6-5824
  (z= 1.29)

27

25

23

21

m
A

B  [m
ag]

1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam6-5946

0.0 0.5 1.0 1.5
Age of the Universe [Gyr]

0

20

40

SF
R

 [M
¯
/y

r]

nircam6-5946 (z= 3.67)
M∗, SB99 (BC03) = 1.5×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 11 (9.5)M¯/yr
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nircam6-6491 (z= 2.34)
M∗, SB99 (BC03) = 4.4×1010 (2.9×1010)M¯
SFRSB99 (BC03) = 1.1 (0.3)M¯/yr
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nircam6-6558 (z= 1.27)
M∗, SB99 (BC03) = 3.9×1010 (4.7×1010)M¯
SFRSB99 (BC03) = 0.07 (0.05)M¯/yr
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nircam6-6710 (z= 1.67)
M∗, SB99 (BC03) = 3.0×1010 (2.4×1010)M¯
SFRSB99 (BC03) = 2.5 (2.7)M¯/yr
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nircam6-6741 (z= 1.03)
M∗, SB99 (BC03) = 2.5×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 0.7 (0.2)M¯/yr
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nircam6-6830 (z= 1.53)
M∗, SB99 (BC03) = 2.2×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 1.5 (1.1)M¯/yr
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nircam6-6832 (z= 1.72)
M∗, SB99 (BC03) = 1.9×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 0.5 (1.0)M¯/yr
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nircam6-7113 (z= 3.13)
M∗, SB99 (BC03) = 1.2×1011 (7.8×1010)M¯
SFRSB99 (BC03) =  1 (0.4)M¯/yr
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 nircam6-7113
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nircam6-7223 (z= 1.50)
M∗, SB99 (BC03) = 2.8×1010 (1.8×1010)M¯
SFRSB99 (BC03) = 0.9 (0.4)M¯/yr
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-7384 (z= 1.89)
M∗, SB99 (BC03) = 1.5×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.4 (0.3)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-7384
  (z= 1.89)

25
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-7452
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nircam6-7452 (z= 1.52)
M∗, SB99 (BC03) = 1.2×1010 (1.2×1010)M¯
SFRSB99 (BC03) = 0.4 (0.4)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam6-7452
  (z= 1.52)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam6-7600
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nircam6-7600 (z= 1.69)
M∗, SB99 (BC03) = 1.2×1010 (1.1×1010)M¯
SFRSB99 (BC03) = 0.2 (0.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

F
ν
 [

Jy
]

 nircam6-7600
  (z= 1.69)

24
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-7645 (z= 3.05)
M∗, SB99 (BC03) = 5.7×1010 (4.1×1010)M¯
SFRSB99 (BC03) = 0.3 (2.1)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.0

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam6-7645
  (z= 3.05)

28
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m
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-7670
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nircam6-7670 (z= 2.00)
M∗, SB99 (BC03) = 4.0×1010 (3.0×1010)M¯
SFRSB99 (BC03) = 0.5 (0.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-7670
  (z= 2.00)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-7699 (z= 1.55)
M∗, SB99 (BC03) = 2.5×1011 (2.1×1011)M¯
SFRSB99 (BC03) = 0.4 (0.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

100.0

0.4

4.0

40.0

F
ν
 [

Jy
]

 nircam6-7699
  (z= 1.55)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-7837 (z= 1.48)
M∗, SB99 (BC03) = 5.7×1010 (4.1×1010)M¯
SFRSB99 (BC03) = 0.2 (0.09)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-7837
  (z= 1.48)

26
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B  [m
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-7928
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nircam6-7928 (z= 1.42)
M∗, SB99 (BC03) = 3.0×1010 (2.3×1010)M¯
SFRSB99 (BC03) = 1.5 (0.6)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-7928
  (z= 1.42)
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A

B  [m
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8012 (z= 1.57)
M∗, SB99 (BC03) = 4.2×1010 (3.7×1010)M¯
SFRSB99 (BC03) = 0.03 (0.04)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-8012
  (z= 1.57)

27
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A
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1.00.2 0.5 2.0

rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8094 (z= 2.32)
M∗, SB99 (BC03) = 1.9×1010 (1.5×1010)M¯
SFRSB99 (BC03) =  1 (0.2)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-8094
  (z= 2.32)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8103
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nircam6-8103 (z= 1.44)
M∗, SB99 (BC03) = 3.7×1010 (3.5×1010)M¯
SFRSB99 (BC03) = 0.9 (0.5)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

40.0

F
ν
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]

 nircam6-8103
  (z= 1.44)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8159 (z= 2.93)
M∗, SB99 (BC03) = 1.4×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.9 (0.4)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-8159
  (z= 2.93)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8295 (z= 1.70)
M∗, SB99 (BC03) = 1.5×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.4 (0.8)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-8295
  (z= 1.70)

26
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0.1 1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8355
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nircam6-8355 (z= 3.05)
M∗, SB99 (BC03) = 3.0×1011 (2.1×1011)M¯
SFRSB99 (BC03) = 6.5 (8.7)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1
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10.0
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4.0

40.0

F
ν
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]

 nircam6-8355
  (z= 3.05)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8473 (z= 1.59)
M∗, SB99 (BC03) = 8.5×1010 (6.0×1010)M¯
SFRSB99 (BC03) =  1 (0.5)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

40.0

F
ν
 [
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]

 nircam6-8473
  (z= 1.59)

24
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8572 (z= 1.74)
M∗, SB99 (BC03) = 1.3×1011 (7.8×1010)M¯
SFRSB99 (BC03) = 2.1 (0.6)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.4

4.0

40.0

F
ν
 [
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]

 nircam6-8572
  (z= 1.74)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8691
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nircam6-8691 (z= 1.54)
M∗, SB99 (BC03) = 5.7×1010 (4.0×1010)M¯
SFRSB99 (BC03) = 1.5 (2.0)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

40.0

F
ν
 [

Jy
]

 nircam6-8691
  (z= 1.54)
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B  [m
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8778 (z= 1.75)
M∗, SB99 (BC03) = 4.0×1010 (2.8×1010)M¯
SFRSB99 (BC03) = 0.3 (0.2)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam6-8778
  (z= 1.75)

28

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8796 (z= 2.74)
M∗, SB99 (BC03) = 3.1×1010 (2.2×1010)M¯
SFRSB99 (BC03) = 0.8 (0.4)M¯/yr

3451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.04

0.4

4.0

F
ν
 [

Jy
]

 nircam6-8796
  (z= 2.74)

28

26

24

22

m
A

B  [m
ag]

0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-8878
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nircam6-8878 (z= 1.49)
M∗, SB99 (BC03) = 6.1×1010 (3.2×1010)M¯
SFRSB99 (BC03) = 3.7 (0.8)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-8878
  (z= 1.49)
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B  [m
ag]
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec

nircam6-9375
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nircam6-9375 (z= 1.75)
M∗, SB99 (BC03) = 3.6×1010 (3.6×1010)M¯
SFRSB99 (BC03) = 0.6 (0.9)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-9375
  (z= 1.75)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-9559 (z= 1.69)
M∗, SB99 (BC03) = 1.7×1010 (1.5×1010)M¯
SFRSB99 (BC03) = 0.7 (2.0)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

4.0

F
ν
 [

Jy
]

 nircam6-9559
  (z= 1.69)

24
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-10556
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nircam6-10556 (z= 3.89)
M∗, SB99 (BC03) = 2.4×1011 (1.9×1011)M¯
SFRSB99 (BC03) = 26 (18)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

10.0

0.04

0.4

4.0

F
ν
 [
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]

 nircam6-10556
  (z= 3.89)

27
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-10988 (z= 1.73)
M∗, SB99 (BC03) = 3.7×1010 (3.4×1010)M¯
SFRSB99 (BC03) = 1.1 (2.6)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

F
ν
 [

Jy
]

 nircam6-10988
  (z= 1.73)

26
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11098 (z= 1.39)
M∗, SB99 (BC03) = 6.7×1010 (4.4×1010)M¯
SFRSB99 (BC03) = 2.9 (0.4)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

40.0

F
ν
 [
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]

 nircam6-11098
  (z= 1.39)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11125
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nircam6-11125 (z= 1.28)
M∗, SB99 (BC03) = 1.6×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 0.3 (0.09)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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10.0

0.4

4.0

F
ν
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]

 nircam6-11125
  (z= 1.28)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11371 (z= 1.20)
M∗, SB99 (BC03) = 5.8×1010 (3.7×1010)M¯
SFRSB99 (BC03) = 0.8 (0.2)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0

10.0

0.4

4.0

40.0

F
ν
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]

 nircam6-11371
  (z= 1.20)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11443 (z= 1.02)
M∗, SB99 (BC03) = 2.4×1010 (1.6×1010)M¯
SFRSB99 (BC03) = 0.3 (0.2)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]

1.0
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4.0

F
ν
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]

 nircam6-11443
  (z= 1.02)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11480
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nircam6-11480 (z= 1.43)
M∗, SB99 (BC03) = 4.1×1010 (3.0×1010)M¯
SFRSB99 (BC03) = 0.4 (0.1)M¯/yr

1.523451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam6-11480
  (z= 1.43)
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1.00.2 0.5 2.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11797 (z= 1.72)
M∗, SB99 (BC03) = 4.3×1010 (4.6×1010)M¯
SFRSB99 (BC03) = 0.1 (0.4)M¯/yr

23451030
z

1.00.5 2.0 5.0
obs [ m]
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]

 nircam6-11797
  (z= 1.72)
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rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11812 (z= 3.20)
M∗, SB99 (BC03) = 1.6×1010 (1.4×1010)M¯
SFRSB99 (BC03) = 3.7 (0.9)M¯/yr

451030
z

1.00.5 2.0 5.0
obs [ m]

0.1

1.0

0.4

4.0

F
ν
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]

 nircam6-11812
  (z= 3.20)
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0.1 1.0
rest [ m]

1 arcsec 1 arcsec 1 arcsec 1 arcsec
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nircam6-11843 (z= 1.55)
M∗, SB99 (BC03) = 2.5×1010 (1.9×1010)M¯
SFRSB99 (BC03) = 0.4 (0.2)M¯/yr
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z

1.00.5 2.0 5.0
obs [ m]
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APPENDIXD
Table of CEERS galaxies

Table D.1 presents some general characteristics of our sample of 333 CEERS galaxies at 1 < 𝑧 < 4
with 𝑀★ > 1010 M⊙ considered in Chapter 6. Galaxies in the table are first sorted by CEERS
pointing to which they belong and, within each CEERS pointing, according to their ID.

The columns of the table are as follows:

(1) Galaxy identifier: CEERS pointing in which the galaxy appears, followed by the galaxy ID
within that pointing.

(2) Galaxy redshift: spectroscopic redshift if available and photometric redshift otherwise.

(3) Whether the spectroscopic redshift is available for the galaxy.

(4-5) Galaxy sky position in equatorial coordinates for the J2000 equinox: right ascension (4) and
declination (5).

(6-7) Size of the semi-major axis of the integrated aperture which is used to measure the integrated
photometry. The size of the semi-major axis of this aperture is given in arcsecs (6) and
physical kiloparsecs (7).

(8) Number of cells in the grid in which the 2D photometry is measured.

(9-10) Galaxy stellar mass obtained from the SB99 (9) and BC03 (10) models. This mass corresponds
to the median mass obtained from all the fits to the integrated SED of the galaxy and is used
to normalize the 2D-SPS-derived galaxy SFH. Quartile values for this mass are included as
subscripts and superscripts.
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270 Appendix D: Table of CEERS galaxies

Table D.1: Characteristics of CEERS massive galaxies at 1 < 𝑧 < 4 in this work (see description above).

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam1-1 1.05 Yes 214.98321556 52.95202330 1.66 13.9 261 1.5+0.008
−0.005 × 1011 1.3+0.02

−0.05 × 1011

nircam1-78 1.08 No 214.94003733 52.97350421 0.74 6.2 67 2.4+0.02
−0.03 × 1010 1.4+0.2

−0.04 × 1010

nircam1-106 1.71 No 214.94873886 52.97982488 0.68 5.9 48 1.5+0.05
−0.07 × 1010 1.2+0.07

−0.07 × 1010

nircam1-172 1.20 No 214.95119999 52.98065782 2.08 17.7 390 5.0+1.8
−0.9 × 1010 3.2+0.2

−0.08 × 1010

nircam1-792 1.12 No 214.93156438 52.96358407 1.02 8.6 99 9.9+0.07
−0.08 × 1010 6.5+0.7

−0.2 × 1010

nircam1-868 1.72 No 214.94780321 52.97494854 1.76 15.3 371 8.1+0.09
−0.1 × 1010 6.9+0.2

−0.09 × 1010

nircam1-957 1.10 No 214.93082669 52.96342130 1.81 15.2 258 1.2+0.03
−0.02 × 1011 8.4+0.9

−0.6 × 1010

nircam1-1047 2.58 No 214.97614257 52.99148810 1.23 10.1 165 2.6+0.2
−0.04 × 1010 2.3+0.2

−0.008 × 1010

nircam1-1211 1.21 No 214.92982314 52.96318555 1.50 12.8 163 1.8+0.005
−0.2 × 1011 1.2+0.004

−0.002 × 1011

nircam1-1319 1.10 Yes 214.93082530 52.96107213 1.20 10.1 163 5.0+0.03
−0.01 × 1010 4.0+0.3

−0.3 × 1010

nircam1-1394 3.49 No 214.95787657 52.98030101 0.54 4.1 35 3.6+0.03
−0.03 × 1010 2.3+0.05

−0.01 × 1010

nircam1-1405 1.24 Yes 214.99677903 53.00740099 1.52 13.0 238 1.7+0.03
−0.2 × 1010 1.4+0.03

−0.03 × 1010

nircam1-1498 1.06 Yes 214.95230344 52.97640961 1.55 13.0 246 2.6+0.1
−0.02 × 1010 2.8+0.5

−0.7 × 1010

nircam1-1659 1.36 Yes 214.98641199 52.99872645 1.77 15.3 209 1.8+0.2
−0.2 × 1010 1.4+0.1

−0.05 × 1010

nircam1-1660 1.03 No 214.98683863 52.99796261 1.88 15.6 308 7.8+0.1
−0.6 × 1010 6.0+0.05

−0.05 × 1010

nircam1-1685 1.11 No 214.97854928 52.99247250 1.32 11.1 221 5.7+0.4
−0.05 × 1010 6.1+0.2

−0.2 × 1010

nircam1-1794 1.11 No 214.97423175 52.99168337 1.28 10.8 176 6.9+0.1
−0.2 × 1010 8.9+0.2

−0.1 × 1010

nircam1-1808 1.51 No 214.94814139 52.97118671 1.08 9.4 85 3.1+0.1
−0.08 × 1010 1.5+0.07

−0.05 × 1010

nircam1-1941 2.44 No 214.99662652 53.00452190 1.15 9.5 115 5.5+0.9
−0.8 × 1010 4.1+0.3

−0.4 × 1010

nircam1-2251 1.23 No 214.98175159 52.99318283 0.89 7.7 67 4.5+0.3
−0.3 × 1010 4.6+0.2

−0.2 × 1010

nircam1-2260 2.48 No 214.98272687 52.99335774 0.94 7.8 98 5.8+0.3
−0.2 × 1010 4.4+0.03

−0.03 × 1010

nircam1-2459 1.09 No 214.98950203 52.99753657 1.23 10.3 196 2.0+0.08
−0.3 × 1010 1.4+0.1

−0.1 × 1010

nircam1-2518 1.12 Yes 214.95385063 52.97550767 1.51 12.8 312 4.8+0.1
−0.05 × 1010 3.8+0.1

−0.1 × 1010

nircam1-2662 3.41 No 214.98181750 52.99123408 0.72 5.5 61 8.2+0.08
−0.2 × 1010 4.9+0.1

−0.09 × 1010

nircam1-2720 1.71 No 215.01407868 53.01481065 1.21 10.5 118 1.1+0.07
−0.1 × 1010 1.1+0.1

−0.08 × 1010

nircam1-3088 2.19 No 215.01489826 53.01422108 1.50 12.7 136 6.0+0.5
−0.09 × 1010 1.1+0.02

−0.04 × 1011

nircam1-3310 1.72 No 215.01354005 53.00990883 1.39 12.0 189 2.7+0.09
−0.2 × 1010 2.8+0.4

−0.2 × 1010

nircam1-3578 1.52 No 214.96411221 52.97426866 1.37 11.9 160 5.8+0.2
−0.2 × 1010 3.5+0.4

−0.4 × 1010

nircam1-3670 1.13 No 214.98944847 52.98984775 1.35 11.4 148 1.4+0.1
−0.1 × 1010 1.2+0.1

−0.08 × 1010

nircam1-3756 1.40 No 214.98913972 52.99062529 0.67 5.8 21 1.6+0.2
−0.1 × 1010 2.3+0.2

−0.4 × 1010

nircam1-4022 2.91 No 214.94697119 52.96026370 1.32 10.5 73 1.7+0.02
−0.009 × 1010 1.6+0.02

−0.02 × 1010

nircam1-4241 1.32 No 214.99002592 52.99115385 1.86 16.0 155 3.8+0.2
−0.2 × 1010 4.6+1.5

−0.1 × 1010

nircam1-4312 2.37 Yes 214.93685058 52.95172863 0.84 7.0 80 1.7+0.3
−0.03 × 1010 1.5+0.08

−0.04 × 1010

nircam1-4331 1.53 No 215.02021003 53.01022970 0.93 8.1 90 8.7+0.2
−0.3 × 1010 7.4+0.5

−0.4 × 1010

nircam1-4341 3.35 No 215.00714599 53.00124264 0.90 6.9 77 2.3+0.3
−0.3 × 1010 1.8+0.2

−0.08 × 1010

nircam1-4371 1.22 No 214.99264985 52.99180764 2.86 24.5 341 5.9+0.2
−0.2 × 1010 7.5+7.3

−0.07 × 1010

nircam1-4630 1.77 No 215.00925650 53.00125743 1.19 10.3 93 1.1+0.05
−0.1 × 1010 1.0+0.1

−0.07 × 1010

nircam1-5041 1.12 Yes 214.99115164 52.98610157 1.69 14.2 279 4.5+1.8
−0.04 × 1010 3.8+0.2

−0.1 × 1010

nircam1-5060 1.24 Yes 215.00665160 52.99616489 1.55 13.3 306 6.6+0.2
−0.2 × 1010 4.7+0.7

−0.4 × 1010

nircam1-5171 1.28 No 214.93620761 52.94830038 1.83 15.7 314 3.5+0.1
−0.2 × 1010 2.1+0.2

−0.2 × 1010

nircam1-5344 1.23 No 214.96436608 52.96710175 1.25 10.7 200 5.4+0.03
−0.02 × 1010 5.3+0.5

−0.4 × 1010

nircam1-5450 2.42 No 215.02614794 53.00863204 1.46 12.2 116 1.7+0.02
−0.01 × 1010 1.7+0.3

−0.07 × 1010

(Continued on next page)
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Table D.1: (Continued)

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam1-5714 1.76 No 215.02828906 53.00920605 1.18 10.3 165 1.9+0.002
−0.1 × 1011 1.2+0.007

−0.02 × 1011

nircam1-5868 1.54 Yes 215.01118565 52.99391255 1.68 14.7 240 2.5+0.1
−0.09 × 1010 1.9+0.2

−0.2 × 1010

nircam1-5968 1.55 No 214.97370815 52.96950823 0.84 7.3 74 2.0+0.1
−0.08 × 1010 1.4+0.2

−0.07 × 1010

nircam1-6027 2.52 No 214.94159023 52.94627766 0.81 6.7 66 6.2+0.2
−0.08 × 1010 5.0+0.3

−0.2 × 1010

nircam1-6028 2.04 No 214.94214802 52.94641413 1.95 16.7 358 1.2+0.08
−0.08 × 1011 9.9+0.5

−0.5 × 1010

nircam1-6070 1.46 No 215.01353362 52.99602772 1.00 8.6 112 3.7+0.2
−0.1 × 1010 3.1+0.2

−0.06 × 1010

nircam1-6122 2.24 Yes 214.97749522 52.97162650 0.74 6.2 55 2.9+0.2
−0.1 × 1010 2.0+0.1

−0.06 × 1010

nircam1-6205 1.32 No 214.95313048 52.95377059 0.77 6.7 77 9.2+0.06
−0.08 × 1010 7.0+0.06

−0.1 × 1010

nircam1-6554 1.68 No 214.96627688 52.96134308 1.34 11.7 185 1.1+0.07
−0.1 × 1011 9.9+0.03

−0.02 × 1010

nircam1-6676 2.56 No 215.01853044 52.99800743 0.79 6.5 83 2.0+0.04
−0.008 × 1010 1.5+0.02

−0.03 × 1010

nircam1-6696 1.43 No 215.01105937 52.99255913 1.95 16.9 461 1.5+0.1
−0.05 × 1011 2.5+0.1

−0.5 × 1011

nircam1-6857 2.40 No 215.01989869 52.99855777 1.12 9.3 135 7.3+0.05
−0.6 × 1010 5.3+0.2

−0.2 × 1010

nircam1-6917 1.37 No 214.95901164 52.95474389 0.76 6.6 71 1.8+0.09
−0.1 × 1010 1.3+0.06

−0.08 × 1010

nircam1-6972 1.28 Yes 214.95534821 52.95128913 1.87 16.1 354 1.4+0.03
−0.03 × 1011 1.3+0.07

−0.08 × 1011

nircam1-7539 1.25 No 214.95706858 52.94944155 1.02 8.7 75 5.4+1.5
−3 × 1010 5.3+0.4

−0.2 × 1010

nircam1-7881 1.42 No 214.94986835 52.94355795 0.86 7.5 75 4.2+0.2
−0.2 × 1010 3.4+0.4

−0.4 × 1010

nircam1-7915 1.08 No 214.97695194 52.96232643 1.03 8.7 120 5.8+0.03
−0.06 × 1010 4.9+0.3

−0.3 × 1010

nircam1-8004 2.35 Yes 214.97098414 52.95733745 0.90 7.5 73 3.4+0.4
−0.4 × 1010 2.4+0.4

−0.2 × 1010

nircam1-8217 2.14 No 215.00791709 52.98072325 2.76 23.5 692 1.8+0.1
−0.09 × 1011 1.3+0.09

−0.04 × 1011

nircam1-8314 2.37 Yes 214.97095742 52.95767415 1.83 15.3 178 1.4+0.7
−0.3 × 1011 1.3+0.4

−0.2 × 1011

nircam1-8402 1.23 Yes 214.95436623 52.94411414 0.81 6.9 88 6.1+0.1
−0.2 × 1010 4.1+0.3

−0.3 × 1010

nircam1-8416 1.41 No 214.95401916 52.94341522 0.99 8.6 96 3.1+0.1
−0.1 × 1010 2.4+0.1

−0.1 × 1010

nircam1-8464 1.84 No 215.00949770 52.98055850 0.78 6.7 56 2.3+0.2
−0.2 × 1010 1.9+0.07

−0.06 × 1010

nircam1-8588 1.73 No 215.00308430 52.97792460 0.90 7.8 76 7.0+1.0
−0.4 × 1010 3.7+1.1

−0.1 × 1010

nircam1-8729 3.90 No 215.03905173 53.00277846 0.52 3.8 31 4.5+0.02
−0.03 × 1010 2.7+0.03

−0.1 × 1010

nircam1-8904 1.45 No 215.00581678 52.97808877 1.47 12.8 144 1.5+0.1
−0.06 × 1010 1.6+0.3

−0.2 × 1010

nircam1-8959 2.41 No 215.01166331 52.98204542 1.10 9.2 108 2.1+0.09
−0.08 × 1010 1.8+0.03

−0.04 × 1010

nircam1-9090 1.73 No 215.00808663 52.98196550 1.20 10.4 63 1.1+0.09
−0.07 × 1010 1.1+0.2

−0.1 × 1010

nircam1-9185 1.69 No 214.95259082 52.93912216 1.05 9.1 137 3.1+0.09
−0.1 × 1010 2.8+0.1

−0.1 × 1010

nircam1-9293 2.04 No 215.04123117 53.00102285 1.92 16.4 195 7.2+0.1
−0.08 × 1010 5.4+0.3

−0.2 × 1010

nircam1-9476 1.99 No 215.01016118 52.97839966 1.02 8.8 97 9.2+0.1
−0.4 × 1010 5.6+0.1

−0.1 × 1010

nircam1-9565 1.11 No 214.98433623 52.96131846 1.86 15.7 341 1.2+0.01
−0.01 × 1011 1.3+0.01

−0.01 × 1011

nircam1-9691 1.71 No 215.02855779 52.99047437 1.17 10.2 107 7.1+0.9
−0.3 × 1010 4.7+0.3

−0.4 × 1010

nircam1-9825 1.69 No 215.02974416 52.99091638 1.12 9.8 103 1.0+0.05
−0.02 × 1010 1.1+0.1

−0.1 × 1010

nircam1-9859 3.52 No 214.97748276 52.95349135 1.20 8.9 87 4.2+0.3
−0.09 × 1010 6.5+0.1

−0.1 × 1010

nircam1-10038 1.01 Yes 215.02490555 52.98689335 1.87 15.5 296 6.8+0.4
−0.8 × 1010 6.3+0.2

−0.3 × 1010

nircam1-10087 1.65 No 214.98274720 52.95566706 1.11 9.7 110 4.0+0.6
−0.3 × 1010 5.4+0.4

−0.2 × 1010

nircam1-10163 1.27 No 214.96596497 52.94365385 0.77 6.6 78 4.4+0.4
−0.6 × 1010 4.1+0.3

−0.3 × 1010

nircam1-10234 1.73 No 215.04548942 52.99954523 1.17 10.2 159 3.1+0.2
−0.3 × 1010 2.2+0.1

−0.1 × 1010

nircam1-10398 2.39 Yes 214.96612575 52.94277829 1.25 10.4 164 1.5+0.02
−0.01 × 1010 1.3+0.009

−0.005 × 1010

nircam1-10564 1.45 No 215.01930089 52.98055823 1.72 15.0 320 6.7+0.7
−0.4 × 1010 5.8+0.3

−0.2 × 1010

nircam1-10634 1.52 No 215.01399066 52.97504813 1.03 9.0 114 1.4+0.1
−0.06 × 1010 1.4+0.2

−0.1 × 1010

(Continued on next page)
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Table D.1: (Continued)

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam1-10770 2.06 No 215.03903446 52.99254487 1.23 10.5 150 3.5+0.1
−0.2 × 1010 2.4+0.2

−0.03 × 1010

nircam1-10795 1.28 No 215.02854906 52.98513613 0.98 8.4 88 1.5+0.03
−0.01 × 1010 1.1+0.5

−0.1 × 1010

nircam1-11025 1.21 No 214.97322597 52.94472259 0.63 5.4 49 2.0+0.02
−0.01 × 1010 2.0+0.04

−0.009 × 1010

nircam1-11036 1.26 Yes 215.04084421 52.99210950 1.27 10.9 141 2.8+0.2
−0.1 × 1010 2.9+0.2

−0.4 × 1010

nircam1-11038 1.10 No 215.04530052 52.99538146 0.99 8.3 114 3.4+0.1
−0.4 × 1010 2.4+0.3

−0.3 × 1010

nircam1-11048 1.27 No 214.98123276 52.94998185 0.76 6.5 76 5.7+0.9
−0.03 × 1010 6.8+0.2

−0.2 × 1010

nircam1-11082 1.66 Yes 214.97575421 52.94622220 1.24 10.8 116 2.8+0.4
−0.1 × 1010 3.0+0.02

−0.06 × 1010

nircam1-11242 1.65 No 214.97184638 52.94256186 1.04 9.1 141 1.4+0.1
−0.04 × 1010 1.3+0.09

−0.07 × 1010

nircam1-11292 1.59 No 215.03896341 52.98979201 0.69 6.0 57 2.2+1.0
−0.1 × 1010 2.5+0.01

−0.004 × 1010

nircam1-11387 1.24 Yes 215.04930137 52.99654317 1.11 9.5 136 1.8+0.1
−0.1 × 1010 1.3+0.05

−0.08 × 1010

nircam2-327 2.98 No 214.82930754 52.89392460 0.99 7.8 95 1.0+0.05
−0.06 × 1011 1.6+0.06

−0.09 × 1011

nircam2-526 2.10 No 214.82800412 52.89410944 0.61 5.2 42 3.1+0.01
−0.03 × 1010 2.7+0.1

−0.1 × 1010

nircam2-640 1.05 Yes 214.90651421 52.94605104 1.04 8.7 127 7.9+0.4
−0.3 × 1010 8.2+0.4

−0.2 × 1010

nircam2-739 1.58 Yes 214.84634409 52.90510117 1.17 10.2 159 2.7+0.2
−0.2 × 1010 2.4+0.2

−0.5 × 1010

nircam2-797 2.02 No 214.83050576 52.89349776 1.34 11.5 174 6.2+0.6
−0.2 × 1010 5.0+0.05

−0.02 × 1010

nircam2-887 2.56 No 214.85925960 52.91154006 0.84 6.9 63 5.9+0.7
−0.1 × 1010 6.0+0.6

−0.5 × 1010

nircam2-950 2.07 No 214.85905617 52.91171387 0.82 7.0 55 7.3+0.03
−0.04 × 1010 5.2+0.8

−0.3 × 1010

nircam2-1810 2.33 No 214.85208320 52.90975654 0.87 7.3 86 1.7+0.02
−0.03 × 1010 1.6+0.6

−0.3 × 1010

nircam2-1823 1.18 Yes 214.91309409 52.94551238 1.00 8.5 111 6.3+0.1
−0.2 × 1010 4.9+0.4

−0.4 × 1010

nircam2-2305 2.30 No 214.83749946 52.88945839 1.02 8.6 139 5.8+0.3
−0.2 × 1010 4.5+0.3

−0.3 × 1010

nircam2-2368 1.45 No 214.84322710 52.89394828 0.94 8.1 103 2.7+0.5
−0.3 × 1010 2.2+0.2

−0.1 × 1010

nircam2-2572 2.09 No 214.83816115 52.88885774 0.68 5.8 54 2.2+0.009
−0.02 × 1010 2.3+0.005

−0.01 × 1010

nircam2-2853 1.18 No 214.91329877 52.94074239 1.51 12.9 221 8.6+0.1
−0.07 × 1010 9.6+0.6

−0.6 × 1010

nircam2-2927 3.37 No 214.90484984 52.93535040 0.59 4.5 43 4.5+0.2
−0.2 × 1010 2.7+0.06

−0.04 × 1010

nircam2-3010 3.60 No 214.87519058 52.91347925 0.63 4.7 51 1.9+0.06
−0.05 × 1010 1.1+0.03

−0.02 × 1010

nircam2-3181 1.46 No 214.86603202 52.90607534 0.73 6.4 53 3.5+0.05
−0.06 × 1010 3.1+0.2

−0.2 × 1010

nircam2-3236 3.03 No 214.87711333 52.91280748 1.12 8.8 112 2.3+0.3
−0.06 × 1010 2.1+0.3

−0.06 × 1010

nircam2-3270 2.79 No 214.90403458 52.93270355 0.62 5.0 43 5.1+0.5
−0.2 × 1010 4.1+0.02

−0.1 × 1010

nircam2-4057 2.79 No 214.91105833 52.93312137 0.98 7.9 88 1.3+0.02
−0.03 × 1011 9.0+0.5

−0.3 × 1010

nircam2-4165 3.41 No 214.91838652 52.93789103 0.69 5.2 35 1.1+0.3
−0.06 × 1010 1.4+0.04

−0.06 × 1010

nircam2-4240 1.74 No 214.86468324 52.89908392 1.32 11.5 151 9.0+0.6
−2 × 1010 5.3+1.6

−0.1 × 1010

nircam2-4386 1.10 Yes 214.92110802 52.93793175 2.30 19.3 533 1.1+0.04
−0.01 × 1011 7.4+2.9

−0.4 × 1010

nircam2-4406 1.72 No 214.85846242 52.89259307 0.98 8.5 65 2.7+0.2
−0.1 × 1010 2.0+0.08

−0.1 × 1010

nircam2-4491 1.29 No 214.88055315 52.90914280 1.33 11.5 155 2.6+0.1
−0.08 × 1010 1.5+0.2

−0.1 × 1010

nircam2-4610 1.74 No 214.85813594 52.89115753 1.17 10.2 122 2.3+0.2
−0.2 × 1010 1.9+0.07

−0.06 × 1010

nircam2-4650 1.69 No 214.86637529 52.89834988 0.81 7.1 86 1.9+0.1
−0.2 × 1010 1.4+0.06

−0.07 × 1010

nircam2-4680 2.15 No 214.87662944 52.90501172 1.14 9.7 135 1.8+0.05
−0.04 × 1010 1.3+0.04

−0.03 × 1010

nircam2-4733 1.35 Yes 214.90873387 52.92785571 1.20 10.4 168 6.0+0.4
−0.4 × 1010 4.0+0.5

−0.2 × 1010

nircam2-4789 2.29 Yes 214.87590835 52.90459869 1.04 8.7 118 4.8+0.09
−0.3 × 1010 3.5+0.1

−0.1 × 1010

nircam2-5041 1.23 No 214.88361806 52.90994213 0.93 8.0 99 4.6+1.5
−1 × 1010 2.3+0.2

−0.08 × 1010

nircam2-5342 2.21 No 214.93696020 52.94546289 0.71 6.0 55 3.0+0.2
−0.1 × 1010 3.4+0.1

−0.2 × 1010

nircam2-5418 3.22 Yes 214.90496617 52.92240942 1.18 9.1 122 1.1+0.04
−0.05 × 1011 5.5+0.3

−1 × 1010
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Table D.1: (Continued)

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam2-5904 1.71 No 214.85613887 52.88510518 0.73 6.3 48 1.6+0.1
−0.1 × 1010 1.5+0.1

−0.1 × 1010

nircam2-6479 2.47 No 214.85393805 52.88056064 1.36 11.3 136 3.4+1.2
−0.5 × 1010 2.1+0.4

−0.05 × 1010

nircam2-6539 3.06 Yes 214.93147784 52.93552773 0.91 7.1 75 2.1+0.5
−0.01 × 1010 1.8+0.06

−0.02 × 1010

nircam2-7078 1.73 No 214.88153732 52.89728689 0.55 4.8 37 4.2+0.003
−0.01 × 1010 3.5+0.002

−0.002 × 1010

nircam2-7220 1.26 No 214.88839527 52.90143406 0.70 6.0 50 1.1+0.005
−0.001 × 1010 1.2+0.2

−0.1 × 1010

nircam2-7309 2.11 No 214.94515346 52.94108039 0.72 6.2 59 1.7+0.2
−0.05 × 1010 1.6+0.2

−0.2 × 1010

nircam2-7394 2.84 No 214.86017128 52.88239635 1.48 11.9 207 1.1+0.04
−0.03 × 1011 6.7+0.1

−0.04 × 1010

nircam2-7419 3.45 No 214.86605229 52.88425171 0.58 4.4 33 8.6+0.04
+0 × 1010 6.2+0

+0 × 1010

nircam2-7423 1.75 No 214.89454935 52.90469884 0.55 4.8 31 2.0+0.008
−0.02 × 1010 1.7+0.04

−0.02 × 1010

nircam2-7435 3.47 No 214.86604381 52.88408282 0.75 5.6 45 6.8+0.1
−0.09 × 1010 4.1+0.06

−0.08 × 1010

nircam2-7735 3.49 No 214.86704322 52.88327368 0.90 6.8 72 3.7+0.2
−0.4 × 1010 2.0+0.3

−0.1 × 1010

nircam2-7952 1.17 Yes 214.87426920 52.88693657 1.89 16.1 365 1.4+0.05
−0.03 × 1011 8.4+0.8

−0.6 × 1010

nircam2-8036 1.19 No 214.87263244 52.88550454 1.13 9.6 152 1.2+0.2
−0.03 × 1010 1.2+0.1

−0.07 × 1010

nircam2-8313 1.28 No 214.93751082 52.93015741 1.13 9.7 110 1.7+0.07
−0.1 × 1010 1.2+0.06

−0.1 × 1010

nircam2-8320 1.18 No 214.87732642 52.88763336 0.81 6.9 79 2.3+0.1
−0.2 × 1010 2.6+0.004

−0.004 × 1010

nircam2-8386 2.74 No 214.88830761 52.89492719 0.76 6.1 41 2.9+0.2
−0.08 × 1010 2.2+0.1

−0.1 × 1010

nircam2-8529 3.47 No 214.87909817 52.88805928 0.50 3.8 30 2.6+0.04
−0.03 × 1010 1.6+0.03

−0.01 × 1010

nircam2-8542 2.32 No 214.95011265 52.93819648 0.77 6.5 75 8.6+0.2
−0.1 × 1010 1.1+0.3

−0.02 × 1011

nircam2-9030 3.27 No 214.92575919 52.91852424 0.92 7.1 49 3.0+0.07
−0.1 × 1010 1.9+0.06

−0.2 × 1010

nircam2-9096 2.18 No 214.92004560 52.91356745 1.03 8.7 100 7.8+2.3
−0.4 × 1010 1.1+0.03

−0.3 × 1011

nircam2-9208 1.70 No 214.95259324 52.93912123 1.30 11.3 196 2.8+0.4
−0.3 × 1010 2.7+0.4

−0.4 × 1010

nircam2-9269 2.93 No 214.87874101 52.88356208 1.34 10.7 100 8.4+7.2
−0.4 × 1010 6.3+0.2

−0.06 × 1010

nircam2-9307 2.40 No 214.93952957 52.92660526 0.86 7.1 83 6.0+0.5
−0.4 × 1010 3.8+0.2

−0.7 × 1010

nircam2-9610 2.50 No 214.87827289 52.88183168 0.54 4.5 39 1.9+0.1
−0.1 × 1010 1.3+0.02

−0.02 × 1010

nircam2-9876 2.29 Yes 214.90477374 52.89959323 0.91 7.7 92 4.1+0.2
−0.3 × 1010 3.0+0.2

−0.2 × 1010

nircam2-10017 1.07 No 214.94312334 52.92532528 1.80 15.0 396 1.4+0.04
−0.03 × 1010 1.1+0.04

−0.05 × 1010

nircam2-10149 2.10 No 214.95007167 52.92991472 0.52 4.4 34 1.5+0.03
−0.03 × 1010 1.3+0.1

−0.1 × 1010

nircam2-10186 2.67 No 214.88108076 52.88082333 0.66 5.4 49 1.5+0.04
−0.02 × 1010 1.1+0.02

−0.07 × 1010

nircam2-10266 1.58 No 214.87773497 52.87714980 2.08 18.1 175 1.9+0.06
−0.09 × 1010 1.7+0.2

−0.2 × 1010

nircam2-10267 1.57 No 214.87811459 52.87650884 2.72 23.7 401 9.1+3.9
−0.8 × 1010 1.5+0.02

−0.02 × 1011

nircam2-10367 1.50 Yes 214.93631335 52.91857836 0.98 8.5 117 2.6+0.2
−0.3 × 1010 2.3+0.1

−0.07 × 1010

nircam2-10433 2.84 No 214.90242866 52.89423963 1.08 8.7 85 4.2+0.1
−0.1 × 1010 3.0+0.7

−0.01 × 1010

nircam2-10446 1.57 No 214.87828463 52.87577860 1.49 13.0 258 3.6+0.1
−0.08 × 1010 3.6+0.3

−0.2 × 1010

nircam2-10496 2.29 No 214.87738725 52.87816610 0.98 8.3 85 1.8+0.1
−0.06 × 1010 1.4+0.1

−0.09 × 1010

nircam2-10573 1.83 No 214.94797942 52.92576763 0.67 5.8 50 8.0+0.07
+0 × 1010 6.1+0.04

+0 × 1010

nircam2-10590 1.40 Yes 214.94016590 52.92061841 1.79 15.5 143 1.3+0.04
−0.02 × 1010 2.2+0.008

−0.004 × 1010

nircam2-10591 1.67 Yes 214.95894371 52.93444233 1.27 11.0 136 4.7+0.6
−0.6 × 1010 3.9+0.5

−1 × 1010

nircam2-10669 3.12 No 214.87687445 52.87721998 1.42 11.1 213 3.0+0.1
−0.2 × 1011 2.1+0.05

−0.06 × 1011

nircam2-10683 2.73 No 214.94564437 52.92424343 1.15 9.3 114 1.2+0.04
−0.04 × 1011 9.6+0.5

−0.6 × 1010

nircam3-64 1.34 No 214.74080166 52.83467533 1.39 12.0 180 1.1+0.003
−0.002 × 1011 1.0+0.1

−0.1 × 1011

nircam3-185 2.82 No 214.74564897 52.83663176 0.68 5.4 47 1.4+0.08
−0.02 × 1010 1.0+0.04

−0.01 × 1010

nircam3-254 1.44 No 214.80003574 52.87594194 0.72 6.2 53 2.4+0.06
−0.08 × 1010 2.1+0.01

−0.003 × 1010
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Table D.1: (Continued)

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam3-335 2.16 No 214.74420717 52.83544843 0.95 8.0 93 1.9+0.1
−0.05 × 1010 1.5+0.2

−0.08 × 1010

nircam3-395 1.26 No 214.79580339 52.87166230 0.69 6.0 57 1.5+0.04
−0.02 × 1010 1.5+0.1

−0.2 × 1010

nircam3-513 3.42 No 214.76062446 52.84531499 1.29 9.7 201 2.5+0.09
−0.1 × 1011 1.5+0.02

−0.02 × 1011

nircam3-515 2.91 No 214.79377446 52.86896322 1.30 10.3 177 4.7+0.2
−0.2 × 1010 4.3+0.03

−0.04 × 1010

nircam3-516 3.63 No 214.76340141 52.84779563 0.99 7.3 84 5.6+0.1
−0.2 × 1010 3.2+0.04

−0.05 × 1010

nircam3-592 2.72 No 214.81036349 52.88317959 0.57 4.6 31 2.8+0.03
−0.3 × 1010 2.1+0.02

−0.02 × 1010

nircam3-735 1.27 No 214.76872496 52.84869203 1.66 14.2 304 1.9+0.2
−0.05 × 1010 1.2+0.07

−0.05 × 1010

nircam3-924 3.56 No 214.79665315 52.86955279 3.08 23.0 240 1.1+0.005
+0 × 1011 8.4+0.02

−0.01 × 1010

nircam3-980 1.11 No 214.74198255 52.83032302 0.70 5.9 64 1.5+0.01
−0.02 × 1010 1.5+0.03

−0.02 × 1010

nircam3-1033 1.68 No 214.74078117 52.82926986 0.99 8.6 122 3.1+0.4
−0.3 × 1010 2.6+0.3

−0.2 × 1010

nircam3-1095 2.58 No 214.82802143 52.89410982 0.56 4.6 41 4.2+0.02
−0.1 × 1010 2.3+0.3

−0.03 × 1010

nircam3-1143 2.72 No 214.81988023 52.88486911 1.54 12.5 115 3.0+0.05
−0.03 × 1010 3.0+0.08

−0.04 × 1010

nircam3-1144 1.06 No 214.82476904 52.88821225 0.94 7.9 114 3.3+0.04
−0.06 × 1010 3.3+0.005

−0.2 × 1010

nircam3-1481 3.00 No 214.76316919 52.84287430 0.79 6.3 69 1.8+0.3
−0.05 × 1010 1.6+0.07

−0.06 × 1010

nircam3-1548 3.47 Yes 214.75524370 52.83678948 0.59 4.4 44 4.0+0.04
−0.02 × 1010 3.1+0.03

−0.02 × 1010

nircam3-1668 1.66 No 214.76432567 52.84323037 1.09 9.4 129 1.8+0.1
−0.3 × 1010 1.1+0.04

−0.04 × 1010

nircam3-1760 1.10 Yes 214.82244814 52.88349661 1.41 11.8 205 6.8+0.07
−0.06 × 1010 5.3+0.4

−0.2 × 1010

nircam3-1779 2.95 No 214.77240019 52.84804407 0.73 5.8 56 4.2+0.1
−0.1 × 1010 3.6+0.07

−0.08 × 1010

nircam3-1787 1.23 No 214.76331363 52.84098645 0.75 6.4 69 3.8+0.03
−0.01 × 1010 3.6+0.5

−0.5 × 1010

nircam3-2119 1.71 No 214.76935395 52.84404602 1.23 10.7 117 3.2+0.2
−0.4 × 1010 2.5+0.1

−0.1 × 1010

nircam3-2161 2.71 No 214.82472625 52.88359245 0.54 4.4 36 5.2+0.2
−0.1 × 1010 3.5+0.01

−0.008 × 1010

nircam3-2223 1.83 No 214.80732674 52.87114049 0.45 3.9 26 3.0+0.02
+0 × 1010 2.2+0.01

+0 × 1010

nircam3-2238 1.72 No 214.75018765 52.83084761 1.78 15.4 152 4.5+0.7
−0.4 × 1010 4.2+0.04

−0.05 × 1010

nircam3-2387 1.64 No 214.76195760 52.83771710 0.83 7.3 71 3.3+0.3
−0.5 × 1010 3.4+0.3

−0.1 × 1010

nircam3-2521 1.77 No 214.74890056 52.82996380 1.24 10.8 159 9.3+0.3
−0.9 × 1010 7.8+0.2

−0.2 × 1010

nircam3-2527 1.74 No 214.75073696 52.82985729 0.71 6.2 54 3.1+0.05
−0.08 × 1010 2.5+0.2

−0.1 × 1010

nircam3-2552 1.71 No 214.74943762 52.82947943 1.07 9.3 104 4.3+0.1
−0.9 × 1010 3.2+0.2

−0.1 × 1010

nircam3-2578 1.70 No 214.75254237 52.83105745 0.85 7.4 72 2.3+0.2
−0.2 × 1010 1.5+0.1

−0.06 × 1010

nircam3-2598 3.01 No 214.75113049 52.83007884 0.76 6.0 52 5.2+0.1
−0.1 × 1011 4.1+0.03

−0.03 × 1011

nircam3-2789 2.56 No 214.77808248 52.84755691 1.22 10.0 142 2.8+0.1
−0.1 × 1010 2.1+0.2

−0.1 × 1010

nircam3-2885 1.70 No 214.75629852 52.83184792 1.01 8.8 78 1.2+0.009
−0.1 × 1010 1.0+0.08

−0.07 × 1010

nircam3-2944 2.78 No 214.81194898 52.87090005 1.07 8.6 117 1.5+0.08
−0.06 × 1011 1.2+0.04

−0.05 × 1011

nircam3-2956 2.17 Yes 214.81242858 52.87089931 1.04 8.8 90 2.1+0.08
−0.1 × 1010 2.8+0.5

−0.5 × 1010

nircam3-3069 2.32 No 214.83651309 52.88797625 1.10 9.2 94 2.6+0.2
−0.1 × 1010 1.9+0.1

−0.08 × 1010

nircam3-3104 3.42 No 214.82580314 52.88008725 1.08 8.2 105 2.2+0.05
−0.02 × 1010 1.6+0.02

−0.01 × 1010

nircam3-3217 1.71 No 214.74877180 52.82503854 1.13 9.8 119 2.5+0.2
−0.2 × 1010 1.9+0.1

−0.2 × 1010

nircam3-3243 1.82 No 214.77552077 52.84408293 0.62 5.4 43 1.4+0.1
−0.2 × 1010 1.5+0.5

−0.04 × 1010

nircam3-3339 1.70 No 214.76419696 52.83533990 1.37 11.9 141 5.9+0
−0.004 × 1010 5.0+0.005

−0.01 × 1010

nircam3-3461 1.61 No 214.77188523 52.84268569 1.15 10.0 109 5.5+0.03
−0.1 × 1010 3.3+0.07

−0.1 × 1010

nircam3-3539 1.01 Yes 214.83097324 52.88168808 1.29 10.7 145 1.1+0.04
−0.05 × 1011 9.5+2.1

−0.2 × 1010

nircam3-3544 1.63 Yes 214.77804805 52.84429968 1.36 11.9 174 3.8+0.2
−0.2 × 1010 3.2+0.04

−0.2 × 1010

nircam3-3622 1.09 No 214.83582410 52.88556261 1.43 12.0 216 1.6+0.05
−0.02 × 1010 1.3+0.05

−0.04 × 1010
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Table D.1: (Continued)

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam3-3679 2.60 No 214.81946888 52.87287895 1.43 11.8 215 2.2+0.3
−0.1 × 1011 3.1+0.03

−0.09 × 1011

nircam3-3864 2.42 No 214.83817447 52.88738449 0.76 6.4 66 6.2+0.5
−0.2 × 1010 4.7+0.3

−0.3 × 1010

nircam3-4244 1.18 Yes 214.82961246 52.87776893 1.32 11.2 159 7.1+0.03
−0.3 × 1010 4.8+0.6

−0.2 × 1010

nircam3-4581 2.85 No 214.80535506 52.85932281 0.68 5.5 67 1.4+0.1
−0.2 × 1010 1.1+0.02

−0.02 × 1010

nircam3-4769 2.31 No 214.81149286 52.86267503 0.66 5.6 41 1.1+0.1
−0.09 × 1010 1.5+0.2

−0.3 × 1010

nircam3-5478 1.12 No 214.78532914 52.84023969 0.82 7.0 92 3.5+0.01
−0.009 × 1010 2.9+0.08

−0.08 × 1010

nircam3-5633 1.39 No 214.83773024 52.87705702 1.15 10.0 142 6.3+0.2
−0.2 × 1010 5.0+0.1

−0.2 × 1010

nircam3-5757 2.72 No 214.83571036 52.87530890 0.68 5.5 47 2.6+0.1
−0.09 × 1010 1.8+0.002

−0.002 × 1010

nircam3-5848 3.28 No 214.81315640 52.85891774 0.68 5.2 52 3.2+0.2
−0.2 × 1010 1.7+0.1

−0.3 × 1010

nircam3-6288 1.72 No 214.78223969 52.83491277 0.66 5.7 51 2.6+0.3
−0.1 × 1010 2.1+0.2

−0.2 × 1010

nircam3-6437 3.34 No 214.83685708 52.87344970 0.61 4.7 44 4.7+0.2
−0.2 × 1010 2.9+0.09

−0.1 × 1010

nircam3-6471 1.54 Yes 214.84318223 52.87671526 1.29 11.2 189 3.1+0.4
−0.5 × 1010 3.5+0.4

−0.4 × 1010

nircam3-6517 2.32 Yes 214.83404417 52.87010221 0.93 7.8 61 3.4+0.06
−0.03 × 1010 6.1+0.1

−0.2 × 1010

nircam3-6621 2.18 No 214.78571042 52.83607275 0.52 4.4 35 3.8+0.03
−0.03 × 1010 2.8+0.04

−0.02 × 1010

nircam3-6644 3.13 No 214.79593389 52.84319598 1.30 10.1 110 2.7+0.06
−0.07 × 1010 2.9+0.2

−0.3 × 1010

nircam3-6739 1.68 No 214.78266657 52.83259120 1.66 14.4 271 1.7+0.05
−0.08 × 1010 1.4+0.09

−0.07 × 1010

nircam3-7007 3.45 No 214.79149194 52.83803597 1.04 7.9 95 2.8+0.1
−0.2 × 1011 1.9+0.05

−0.03 × 1011

nircam3-7412 1.43 No 214.84763250 52.87610052 0.89 7.7 86 2.1+0.1
−0.08 × 1010 1.8+0.04

−0.03 × 1010

nircam3-7579 2.27 Yes 214.77684315 52.82587999 0.74 6.2 71 5.0+0.1
−0.08 × 1010 3.5+0.1

−0.1 × 1010

nircam3-7695 3.47 No 214.76722738 52.81771171 0.84 6.3 75 3.5+0.04
−0.04 × 1010 2.2+0.03

−0.07 × 1010

nircam3-7701 2.76 No 214.80105351 52.84164136 0.96 7.8 107 4.0+0.01
−0.02 × 1010 3.2+0.1

−0.2 × 1010

nircam3-7956 1.24 No 214.82413599 52.85699419 1.17 10.0 150 2.6+0.1
−0.3 × 1010 1.7+0.1

−0.07 × 1010

nircam3-8098 1.62 No 214.84732408 52.87320953 0.81 7.0 66 2.3+0.3
−0.2 × 1010 1.7+0.06

−0.1 × 1010

nircam3-8401 1.71 No 214.79301829 52.83249678 1.04 9.1 112 1.1+0.09
−0.4 × 1011 1.3+0.06

−0.07 × 1011

nircam3-8558 2.31 Yes 214.85091117 52.87345377 1.07 9.0 121 1.8+0.05
−0.08 × 1010 1.6+0.08

−0.1 × 1010

nircam3-8596 2.44 No 214.84941093 52.87304314 0.90 7.4 86 2.7+0.5
−0.06 × 1010 2.1+0.04

−0.02 × 1010

nircam3-8852 3.32 No 214.78568917 52.82581880 0.80 6.1 65 9.5+0.3
−0.3 × 1010 6.0+0.2

−0.1 × 1010

nircam3-8980 1.73 No 214.79485889 52.83152414 1.11 9.6 155 2.9+0.05
−0.03 × 1010 2.4+0.2

−0.1 × 1010

nircam3-9142 3.39 No 214.85825942 52.87609018 0.53 4.0 25 1.7+0.2
−0.2 × 1010 1.2+0.05

−0.05 × 1010

nircam3-9199 1.76 No 214.78196558 52.82095742 1.58 13.7 225 4.5+0.4
−0.1 × 1010 5.4+1.4

−0.3 × 1010

nircam3-9667 2.29 Yes 214.83911979 52.86007024 0.59 4.9 41 3.3+0.3
−0.2 × 1010 1.9+0.1

−0.05 × 1010

nircam3-9784 1.73 No 214.80112587 52.83110479 1.32 11.4 126 1.5+0.06
−0.05 × 1010 1.4+0.2

−0.08 × 1010

nircam3-9865 3.68 No 214.85057925 52.86601995 0.55 4.1 26 8.4+0.1
−0.1 × 1010 5.2+0.05

−0.05 × 1010

nircam3-9866 2.48 No 214.85058830 52.86641404 1.51 12.5 271 1.9+0.1
−0.09 × 1011 1.4+0.07

−0.04 × 1011

nircam3-10039 1.70 No 214.80059393 52.83162516 1.43 12.4 144 3.6+0.3
−0.3 × 1010 2.9+0.2

−0.2 × 1010

nircam3-10103 1.71 No 214.79958394 52.82898913 1.01 8.8 97 3.3+0.3
−0.4 × 1010 2.7+0.5

−0.3 × 1010

nircam3-10226 2.77 No 214.77737193 52.81260531 1.05 8.5 127 1.6+0.01
−0.01 × 1010 1.5+0.02

−0.03 × 1010

nircam3-10290 1.84 No 214.85386020 52.86680097 0.97 8.4 127 1.5+0.1
−0.1 × 1010 1.2+0.09

−0.08 × 1010

nircam3-10630 3.56 No 214.80029871 52.82706344 0.98 7.3 79 1.1+0.09
−0.04 × 1011 1.2+0.4

−0.3 × 1011

nircam3-10688 1.81 No 214.82944473 52.84760732 0.63 5.4 41 1.5+1.5
−0.3 × 1010 1.6+0.06

−0.03 × 1010

nircam3-10755 1.33 No 214.78611520 52.81594121 1.15 10.0 127 4.0+0.04
−0.03 × 1010 3.9+0.2

−0.2 × 1010

nircam3-10791 1.23 No 214.83391039 52.84955038 1.45 12.4 226 1.2+0.07
−0.09 × 1011 1.2+0.02

−0.4 × 1011

(Continued on next page)
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Table D.1: (Continued)

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam3-11158 1.70 No 214.81173070 52.83275015 0.85 7.4 80 1.7+0.1
−0.1 × 1010 1.5+0.08

−0.08 × 1010

nircam3-11245 3.52 No 214.85390175 52.86135518 1.00 7.5 89 2.4+0.009
−0.04 × 1011 1.5+0.01

−0.03 × 1011

nircam3-11248 1.27 No 214.85338584 52.86164262 0.79 6.8 58 3.7+0.02
−0.01 × 1010 3.0+0.08

−0.06 × 1010

nircam3-11615 1.77 No 214.86408634 52.86794846 0.72 6.2 58 1.3+0.1
−0.06 × 1010 1.0+0.09

−0.03 × 1010

nircam3-11637 3.30 No 214.79996984 52.82209160 0.47 3.6 24 2.0+0.01
−0.04 × 1010 1.1+0.02

−0.01 × 1010

nircam6-444 1.29 No 214.84496799 52.84928779 0.84 7.2 81 5.3+0.4
−0.05 × 1010 4.3+0.2

−0.2 × 1010

nircam6-575 3.46 No 214.85982010 52.86065583 1.08 8.1 108 1.2+0.04
−0.04 × 1011 7.9+0.2

−0.2 × 1010

nircam6-660 2.68 No 214.80457131 52.81976629 0.83 6.7 61 4.8+0.1
−0.06 × 1010 4.3+0.2

−0.07 × 1010

nircam6-688 2.12 No 214.84461133 52.85011675 1.57 13.4 221 3.2+0.07
−0.04 × 1010 2.9+0.06

−0.04 × 1010

nircam6-775 1.20 No 214.81232459 52.82476213 0.51 4.3 22 2.1+0.1
−0.05 × 1010 1.5+0.3

−0.07 × 1010

nircam6-939 1.40 No 214.88093781 52.87360026 0.89 7.7 86 5.6+0.2
−0.2 × 1010 4.4+0.07

−0.06 × 1010

nircam6-968 1.30 No 214.87025675 52.86508183 0.70 6.1 53 5.6+0.1
−0.1 × 1010 4.0+0.2

−0.2 × 1010

nircam6-1029 1.39 No 214.87076745 52.86482345 2.10 18.2 179 6.2+1.3
−0.2 × 1010 6.5+0.03

−0.1 × 1010

nircam6-1177 1.29 No 214.81232300 52.82501783 1.48 12.8 218 3.1+0.01
−0.01 × 1011 3.2+0.03

−0.04 × 1011

nircam6-1868 1.40 Yes 214.86109429 52.85466711 1.46 12.7 183 4.5+0.3
−0.2 × 1010 3.4+0.03

−0.01 × 1010

nircam6-1890 1.19 No 214.82329166 52.82763015 0.84 7.2 87 3.5+0.04
−0.02 × 1010 3.1+0.5

−0.3 × 1010

nircam6-1959 1.39 No 214.88510978 52.87122517 0.87 7.5 85 4.4+0.2
−0.2 × 1010 3.9+0.07

−0.07 × 1010

nircam6-2317 1.69 No 214.82912182 52.83016913 0.76 6.6 57 1.8+0.2
−0.1 × 1010 1.3+0.08

−0.05 × 1010

nircam6-2347 3.12 No 214.85540774 52.84880879 1.18 9.2 133 1.4+0.06
−0.2 × 1011 1.1+0.04

−0.05 × 1011

nircam6-2383 1.97 No 214.85080041 52.84544039 0.67 5.7 51 3.2+0.07
−0.2 × 1010 1.9+0.04

−0.01 × 1010

nircam6-2762 2.82 No 214.83488277 52.83239077 0.64 5.1 45 1.9+0.2
−0.08 × 1010 1.7+0.01

−0.009 × 1010

nircam6-2958 1.71 No 214.82268344 52.82268850 1.00 8.7 109 6.2+0.2
−0.04 × 1010 1.3+0.004

−0.01 × 1011

nircam6-2991 1.80 Yes 214.82273417 52.82260294 0.20 1.8 2 1.4+0.1
−0.2 × 1010 1.8+0.04

−0.05 × 1010

nircam6-3216 2.15 No 214.81131879 52.81356818 0.72 6.1 52 5.8+0.1
−0.1 × 1010 4.8+0.4

−0.3 × 1010

nircam6-3217 2.88 No 214.87694152 52.86038916 0.90 7.2 72 3.4+0.2
−0.2 × 1010 3.3+0.02

−0.02 × 1010

nircam6-3231 2.65 No 214.86648013 52.85269687 0.96 7.9 103 8.0+0.4
−0.4 × 1010 6.1+0.4

−0.1 × 1010

nircam6-3604 1.84 No 214.83728353 52.83038716 0.80 6.9 64 1.4+0.06
−0.09 × 1010 1.2+0.07

−0.1 × 1010

nircam6-3650 3.08 No 214.82773594 52.82376795 0.68 5.3 47 5.5+0.08
−0.07 × 1010 3.6+0.06

−0.04 × 1010

nircam6-3730 3.31 No 214.86940649 52.85253584 0.85 6.5 71 1.4+0.08
−0.03 × 1010 1.1+0.02

−0.01 × 1010

nircam6-3995 1.08 No 214.88298264 52.86166618 0.77 6.5 70 4.8+0.3
−0.1 × 1010 4.6+0.01

−0.06 × 1010

nircam6-4042 1.70 No 214.83586087 52.82573098 1.43 12.4 128 2.7+0.4
−0.5 × 1010 1.5+0.1

−0.09 × 1010

nircam6-4751 1.43 No 214.86638951 52.84567402 0.93 8.1 95 1.4+0.1
−0.07 × 1010 1.3+0.09

−0.05 × 1010

nircam6-4891 1.93 No 214.82116115 52.81247671 0.74 6.4 68 5.0+0.2
−0.07 × 1010 3.8+0.2

−0.6 × 1010

nircam6-5284 2.89 No 214.84034065 52.82495510 0.73 5.9 40 1.1+0.02
−0.07 × 1011 7.1+0.4

−2 × 1010

nircam6-5398 3.67 No 214.87066962 52.84610637 0.67 4.9 29 2.8+0.05
−0.08 × 1010 1.7+0.03

−0.03 × 1010

nircam6-5655 3.46 No 214.87123380 52.84506790 1.06 7.9 144 8.9+0.2
−0.4 × 1010 6.7+0.2

−0.5 × 1010

nircam6-5662 1.04 No 214.88619519 52.85712320 2.52 21.0 769 2.5+0.1
−0.06 × 1011 2.6+0.08

−0.08 × 1011

nircam6-5824 1.29 No 214.86897154 52.84275338 1.22 10.5 118 6.6+0.2
−0.1 × 1010 6.7+0.2

−2 × 1010

nircam6-5946 3.67 No 214.81265674 52.80517326 1.15 8.5 76 1.5+0.008
−0.008 × 1010 1.1+0.05

−0.02 × 1010

nircam6-6491 2.34 Yes 214.87240920 52.84244733 0.91 7.7 80 4.4+0.2
−0.2 × 1010 2.9+0.2

−0.2 × 1010

nircam6-6558 1.27 No 214.83287382 52.81429157 0.85 7.3 84 3.9+0.2
−0.02 × 1010 4.7+0.2

−0.2 × 1010

nircam6-6710 1.67 Yes 214.81554711 52.80001477 1.12 9.7 103 3.0+0.3
−0.4 × 1010 2.4+0.3

−0.2 × 1010

(Continued on next page)
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Table D.1: (Continued)

Galaxy name 𝑧 𝑧spec? RA2000 Dec2000 Semi-major axis
𝑁cells

MSB99 MBC03
[deg] [deg] [arcsec] [kpc] [M⊙ ] [M⊙ ]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

nircam6-6741 1.03 No 214.89942466 52.86030461 1.40 11.6 174 2.5+0.1
−0.04 × 1010 2.2+0.3

−0.3 × 1010

nircam6-6830 1.53 Yes 214.85085129 52.82586813 1.04 9.0 98 2.2+0.1
−0.2 × 1010 1.2+0.05

−0.02 × 1010

nircam6-6832 1.72 No 214.85126530 52.82560650 1.00 8.7 93 1.9+0.1
−0.1 × 1010 1.6+0.2

−0.1 × 1010

nircam6-7113 3.13 No 214.89561652 52.85649304 0.71 5.5 65 1.2+0.01
−0.01 × 1011 7.8+0.03

−0.007 × 1010

nircam6-7223 1.50 No 214.81780708 52.80111690 1.03 9.0 92 2.8+0.1
−0.09 × 1010 1.8+0.2

−0.2 × 1010

nircam6-7384 1.89 No 214.90188439 52.85985089 0.87 7.5 86 1.5+0.04
−0.02 × 1010 1.2+0.07

−0.03 × 1010

nircam6-7452 1.52 No 214.86821835 52.83549506 0.90 7.8 85 1.2+0.01
−0.05 × 1010 1.2+0.02

−0.2 × 1010

nircam6-7600 1.69 No 214.88018496 52.84331802 1.03 9.0 129 1.2+0.02
−0.007 × 1010 1.1+0.07

−0.06 × 1010

nircam6-7645 3.05 No 214.82909042 52.80846397 0.20 1.6 5 5.7+0.09
−0.04 × 1010 4.1+0.1

−0.1 × 1010

nircam6-7670 2.00 No 214.88127734 52.84377593 1.37 11.8 197 4.0+0.3
−0.2 × 1010 3.0+0.1

−0.2 × 1010

nircam6-7699 1.55 No 214.82924776 52.80843600 1.89 16.5 305 2.5+0.09
−0.1 × 1011 2.1+0.05

−0.07 × 1011

nircam6-7837 1.48 No 214.82950647 52.80554676 0.80 7.0 79 5.7+0.08
−0.2 × 1010 4.1+0.06

−0.06 × 1010

nircam6-7928 1.42 No 214.87462407 52.83793640 1.14 9.9 130 3.0+0.2
−0.1 × 1010 2.3+0.3

−0.1 × 1010

nircam6-8012 1.57 No 214.82507189 52.80209427 0.95 8.3 99 4.2+0.3
−0.2 × 1010 3.7+0.2

−0.2 × 1010

nircam6-8094 2.32 No 214.87317757 52.83632713 0.86 7.3 77 1.9+0.3
−0.09 × 1010 1.5+0.06

−0.1 × 1010

nircam6-8103 1.44 No 214.87455928 52.83731456 1.85 16.0 168 3.7+0.2
−1 × 1010 3.5+0.04

−0.02 × 1010

nircam6-8159 2.93 No 214.81809995 52.79687080 0.55 4.4 40 1.4+0.008
−0.004 × 1010 1.4+0.02

−0.04 × 1010

nircam6-8295 1.70 No 214.84961067 52.81844090 1.14 9.9 101 1.5+0.8
−0.2 × 1010 1.5+0.3

−0.2 × 1010

nircam6-8355 3.05 No 214.83257820 52.80542414 1.40 11.0 243 3.0+0.02
−0.03 × 1011 2.1+0.03

−0.03 × 1011

nircam6-8473 1.59 Yes 214.82138084 52.79782889 1.83 16.0 416 8.5+0.7
−0.6 × 1010 6.0+0.06

−0.06 × 1010

nircam6-8572 1.74 No 214.90642983 52.85720090 1.91 16.6 365 1.3+0.05
−0.03 × 1011 7.8+1.0

−0.8 × 1010

nircam6-8691 1.54 Yes 214.83206252 52.80398896 1.36 11.8 223 5.7+0.4
−0.5 × 1010 4.0+0.2

−0.1 × 1010

nircam6-8778 1.75 No 214.84479784 52.81284317 0.89 7.7 87 4.0+0.3
−0.3 × 1010 2.8+0.3

−0.3 × 1010

nircam6-8796 2.74 No 214.89670579 52.84979078 0.84 6.8 63 3.1+0.3
−0.03 × 1010 2.2+0.008

−0.005 × 1010

nircam6-8878 1.49 No 214.84145045 52.81096964 0.63 5.5 26 6.1+0.1
−0.1 × 1010 3.2+0.4

−0.3 × 1010

nircam6-9375 1.75 No 214.88583115 52.83973754 1.05 9.1 114 3.6+0.009
−0.01 × 1010 3.6+0.5

−0.5 × 1010

nircam6-9559 1.69 No 214.84546341 52.81043802 0.82 7.1 78 1.7+0.04
−0.1 × 1010 1.5+0.2

−0.1 × 1010

nircam6-10556 3.89 No 214.85021575 52.80899032 1.36 9.8 156 2.4+0.09
−0.1 × 1011 1.9+0.1

−0.09 × 1011

nircam6-10988 1.73 No 214.86350399 52.81561097 0.86 7.5 82 3.7+0.5
−0.2 × 1010 3.4+0.1

−0.2 × 1010

nircam6-11098 1.39 No 214.85631023 52.81067658 1.30 11.2 158 6.7+0.4
−0.3 × 1010 4.4+0.9

−0.5 × 1010

nircam6-11125 1.28 No 214.85709917 52.81090024 1.01 8.6 115 1.6+0.05
−0.02 × 1010 1.4+0.1

−0.1 × 1010

nircam6-11371 1.20 No 214.88286592 52.83598877 1.22 10.4 143 5.8+0.2
−0.2 × 1010 3.7+0.2

−0.08 × 1010

nircam6-11443 1.02 Yes 214.83792989 52.79605613 1.35 11.2 187 2.4+0.5
−0.5 × 1010 1.6+0.2

−0.2 × 1010

nircam6-11480 1.43 No 214.90607441 52.84439819 0.84 7.3 81 4.1+0.04
−0.06 × 1010 3.0+0.03

−0.03 × 1010

nircam6-11797 1.72 No 214.84889352 52.80241390 0.86 7.5 86 4.3+0.2
−0.07 × 1010 4.6+0.4

−0.3 × 1010

nircam6-11812 3.20 No 214.88707207 52.82938978 0.51 3.9 27 1.6+0.02
−0.01 × 1010 1.4+0.01

−0.02 × 1010

nircam6-11843 1.55 No 214.83238927 52.79032232 0.94 8.1 84 2.5+0.2
−0.2 × 1010 1.9+0.1

−0.1 × 1010

nircam6-11936 1.28 No 214.90643357 52.84263784 0.66 5.7 53 1.2+0.07
−0.06 × 1010 1.2+0.06

−0.2 × 1010

nircam6-12061 3.11 No 214.90114482 52.83810191 1.15 8.9 68 3.6+0.2
−0.1 × 1010 7.7+0.07

−0.2 × 1010





APPENDIXE
Table with formation times for CEERS galaxies

Table E.1 presents the formation times inferred for our sample of 333 CEERS galaxies at 1 < 𝑧 < 4
with 𝑀★ > 1010 M⊙ considered in Chapter 6. The formation times for each galaxy, expressed in ages
of the Universe and in their corresponding redshifts, have been calculated from the 2D-SPS-derived
SFH (shown in Appendix C). Formation times and redshifts are given for both the galaxy SFH
built from SB99 and BC03 models. Galaxies in the table are first sorted by CEERS pointing to
which they belong and, within each CEERS pointing, according to their ID.
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T

ab
le

E
.1

:
(C

on
tin

ue
d)

G
al

ax
y

na
m

e
𝑡SB

99
(B

C
03

)
5

𝑡SB
99

(B
C

03
)

10
𝑡SB

99
(B

C
03

)
5×

10
8

M
⊙

𝑡SB
99

(B
C

03
)

10
9

M
⊙

𝑧SB
99

(B
C

03
)

5
𝑧SB

99
(B

C
03

)
10

𝑧SB
99

(B
C

03
)

5×
10

8
M

⊙
𝑧SB

99
(B

C
03

)
10

9
M

⊙

[G
yr

]
[G

yr
]

[G
yr

]
[G

yr
]

ni
rc

am
6-

59
46

0.
71

0.
77

0.
63

(0
.9

40.
95

0.
93

)
0.

89
0.

92
0.

85
(1

.0
51.

06
1.

04
)

0.
64

0.
71

0.
55

(0
.9

50.
96

0.
94

)
0.

82
0.

87
0.

76
(1

.0
61.

07
1.

05
)

7.
38.

0
6.

9
(5

.9
6.

0
5.

9)
6.

26.
4

6.
0

(5
.5

5.
5

5.
4)

8.
08.

9
7.

3
(5

.9
5.

9
5.

8)
6.

67.
0

6.
3

(5
.4

5.
4

5.
4)

ni
rc

am
6-

64
91

0.
78

0.
85

0.
71

(0
.3

20.
38

0.
28

)
0.

98
1.

02
0.

90
(0

.4
60.

52
0.

41
)

0.
57

0.
65

0.
52

(0
.2

00.
25

0.
17

)
0.

71
0.

78
0.

64
(0

.2
80.

34
0.

24
)

6.
97.

4
6.

4
(1

3.
114

.5
11

.8
)

5.
86.

1
5.

6
(1

0.
111

.0
9.

3
)

8.
79.

3
7.

9
(1

8.
620

.5
15

.7
)

7.
47.

9
6.

9
(1

4.
616

.0
12

.8
)

ni
rc

am
6-

65
58

0.
74

0.
76

0.
71

(0
.2

60.
28

0.
25

)
0.

83
0.

87
0.

79
(0

.3
40.

36
0.

31
)

0.
68

0.
70

0.
67

(0
.1

90.
20

0.
18

)
0.

74
0.

76
0.

71
(0

.2
20.

23
0.

21
)

7.
27.

3
7.

0
(1

5.
215

.8
14

.5
)

6.
56.

8
6.

3
(1

2.
813

.6
12

.1
)

7.
67.

7
7.

5
(1

9.
119

.5
18

.6
)

7.
27.

3
7.

0
(1

7.
217

.9
16

.5
)

ni
rc

am
6-

67
10

0.
56

0.
70

0.
47

(0
.4

00.
51

0.
34

)
0.

80
0.

92
0.

72
(0

.6
10.

76
0.

49
)

0.
37

0.
46

0.
32

(0
.3

00.
37

0.
25

)
0.

52
0.

67
0.

44
(0

.4
10.

51
0.

33
)

8.
810

.0
7.

4
(1

1.
212

.7
9.

4
)

6.
77.

3
6.

0
(8

.2
9.

7
7.

0)
12

.0
13

.1
10

.2
(1

3.
815

.5
11

.9
)

9.
310

.5
7.

7
(1

1.
112

.8
9.

4
)

ni
rc

am
6-

67
41

0.
49

0.
56

0.
42

(0
.8

30.
99

0.
70

)
1.

37
2.

12
1.

04
(1

.1
41.

32
1.

00
)

0.
28

0.
30

0.
25

(0
.6

40.
75

0.
53

)
0.

46
0.

53
0.

40
(0

.8
31.

00
0.

70
)

9.
710

.8
8.

8
(6

.6
7.

4
5.

7)
4.

45.
5

3.
0

(5
.1

5.
7

4.
5)

14
.6

15
.8

13
.7

(8
.0

9.
1

7.
1)

10
.2

11
.3

9.
1

(6
.5

7.
4

5.
7)

ni
rc

am
6-

68
30

1.
35

1.
45

1.
24

(0
.7

10.
80

0.
64

)
1.

68
1.

76
1.

58
(0

.9
91.

11
0.

89
)

1.
12

1.
24

1.
02

(0
.6

30.
73

0.
56

)
1.

41
1.

51
1.

29
(0

.8
60.

98
0.

77
)

4.
44.

8
4.

2
(7

.3
8.

0
6.

7)
3.

73.
9

3.
6

(5
.7

6.
2

5.
2)

5.
25.

6
4.

8
(8

.0
8.

8
7.

2)
4.

34.
6

4.
1

(6
.3

6.
9

5.
7)

ni
rc

am
6-

68
32

0.
76

0.
87

0.
69

(0
.9

41.
06

0.
82

)
1.

02
1.

10
0.

95
(1

.2
81.

37
1.

17
)

0.
66

0.
74

0.
58

(0
.8

40.
96

0.
74

)
0.

88
0.

98
0.

78
(1

.1
41.

25
1.

02
)

7.
07.

6
6.

3
(5

.9
6.

6
5.

4)
5.

65.
9

5.
2

(4
.6

5.
0

4.
4)

7.
88.

5
7.

1
(6

.5
7.

2
5.

8)
6.

36.
8

5.
8

(5
.1

5.
5

4.
7)

ni
rc

am
6-

71
13

0.
53

0.
57

0.
49

(0
.5

20.
69

0.
40

)
0.

73
0.

79
0.

68
(1

.1
31.

33
0.

69
)

0.
26

0.
29

0.
25

(0
.2

30.
27

0.
18

)
0.

32
0.

36
0.

30
(0

.3
30.

40
0.

26
)

9.
29.

7
8.

7
(9

.3
11

.3
7.

5
)

7.
27.

6
6.

8
(5

.1
7.

5
4.

5)
15

.3
15

.9
14

.1
(1

6.
819

.7
14

.9
)

13
.3

13
.9

12
.1

(1
2.

915
.5

11
.2

)
ni

rc
am

6-
72

23
1.

26
1.

39
1.

15
(0

.3
50.

42
0.

29
)

1.
58

1.
67

1.
46

(0
.5

40.
62

0.
45

)
1.

02
1.

11
0.

89
(0

.2
40.

32
0.

20
)

1.
20

1.
33

1.
10

(0
.3

70.
45

0.
30

)
4.

75.
1

4.
3

(1
2.

414
.3

10
.8

)
3.

94.
2

3.
7

(9
.0

10
.3

8.
2

)
5.

66.
2

5.
2

(1
6.

118
.7

13
.3

)
4.

95.
3

4.
5

(1
1.

813
.7

10
.3

)
ni

rc
am

6-
73

84
1.

84
1.

88
1.

81
(0

.7
40.

83
0.

66
)

1.
97

2.
00

1.
95

(0
.9

91.
08

0.
92

)
1.

72
1.

76
1.

67
(0

.6
90.

79
0.

62
)

1.
85

1.
88

1.
82

(0
.9

41.
02

0.
85

)
3.

43.
5

3.
4

(7
.2

7.
8

6.
5)

3.
23.

3
3.

2
(5

.7
6.

0
5.

3)
3.

63.
7

3.
6

(7
.5

8.
2

6.
8)

3.
43.

5
3.

4
(5

.9
6.

4
5.

6)
ni

rc
am

6-
74

52
1.

12
1.

20
1.

02
(0

.6
70.

78
0.

58
)

1.
44

1.
54

1.
34

(1
.1

01.
30

0.
92

)
1.

38
1.

48
1.

28
(0

.9
51.

16
0.

80
)

1.
82

1.
89

1.
72

(1
.9

22.
11

1.
64

)
5.

25.
6

4.
9

(7
.7

8.
6

6.
9)

4.
24.

5
4.

0
(5

.3
6.

0
4.

6)
4.

44.
7

4.
1

(5
.9

6.
7

5.
0)

3.
53.

6
3.

3
(3

.3
3.

8
3.

0)
ni

rc
am

6-
76

00
0.

78
0.

94
0.

65
(1

.1
91.

34
0.

96
)

1.
11

1.
25

0.
93

(1
.5

41.
65

1.
39

)
0.

78
0.

93
0.

64
(1

.1
61.

33
0.

95
)

1.
09

1.
24

0.
91

(1
.5

21.
63

1.
35

)
6.

87.
9

5.
9

(4
.9

5.
8

4.
5)

5.
26.

0
4.

7
(4

.0
4.

4
3.

8)
6.

97.
9

6.
0

(5
.0

5.
9

4.
5)

5.
36.

1
4.

8
(4

.0
4.

4
3.

8)
ni

rc
am

6-
76

45
0.

42
0.

48
0.

38
(0

.2
70.

36
0.

20
)

0.
56

0.
69

0.
49

(0
.4

20.
56

0.
32

)
0.

31
0.

33
0.

30
(0

.1
80.

26
0.

15
)

0.
37

0.
39

0.
35

(0
.2

70.
36

0.
22

)
10

.9
11

.6
9.

8
(1

4.
718

.2
12

.3
)

8.
89.

7
7.

5
(1

0.
813

.1
8.

8
)

13
.5

13
.8

13
.0

(1
9.

523
.0

15
.5

)
12

.0
12

.3
11

.5
(1

4.
817

.3
12

.2
)

ni
rc

am
6-

76
70

1.
39

1.
44

1.
31

(0
.5

60.
63

0.
49

)
1.

70
1.

73
1.

67
(0

.9
51.

02
0.

86
)

0.
70

0.
79

0.
61

(0
.3

00.
34

0.
26

)
1.

03
1.

14
0.

95
(0

.4
70.

53
0.

42
)

4.
34.

6
4.

2
(8

.8
9.

6
8.

1)
3.

73.
7

3.
6

(5
.9

6.
4

5.
6)

7.
48.

3
6.

8
(1

3.
815

.3
12

.7
)

5.
55.

9
5.

1
(9

.9
10

.9
9.

2
)

ni
rc

am
6-

76
99

0.
53

0.
54

0.
52

(0
.2

50.
25

0.
24

)
0.

61
0.

63
0.

60
(0

.3
10.

32
0.

31
)

0.
42

0.
42

0.
41

(0
.1

50.
15

0.
15

)
0.

42
0.

43
0.

42
(0

.1
60.

16
0.

16
)

9.
29.

3
9.

1
(1

5.
816

.0
15

.7
)

8.
38.

4
8.

1
(1

3.
413

.6
13

.2
)

10
.9

11
.0

10
.9

(2
2.

322
.4

22
.3

)
10

.8
10

.8
10

.8
(2

1.
321

.4
21

.2
)

ni
rc

am
6-

78
37

0.
14

0.
18

0.
12

(0
.2

40.
30

0.
20

)
0.

23
0.

30
0.

20
(0

.3
50.

44
0.

29
)

0.
13

0.
16

0.
11

(0
.1

70.
21

0.
15

)
0.

21
0.

26
0.

18
(0

.2
40.

30
0.

20
)

23
.2

25
.7

20
.0

(1
6.

218
.3

13
.9

)1
6.

518
.4

14
.0

(1
2.

314
.2

10
.4

)
25

.1
27

.7
21

.5
(2

0.
322

.1
17

.6
)

18
.0

19
.8

15
.4

(1
6.

318
.3

13
.8

)
ni

rc
am

6-
79

28
2.

03
2.

14
1.

88
(1

.2
61.

59
1.

03
)

2.
34

2.
42

2.
24

(1
.8

62.
12

1.
50

)
1.

64
1.

80
1.

36
(1

.0
01.

29
0.

80
)

1.
94

2.
07

1.
78

(1
.3

71.
72

1.
08

)
3.

13.
4

3.
0

(4
.7

5.
5

3.
9)

2.
82.

9
2.

7
(3

.4
4.

1
3.

0)
3.

84.
4

3.
5

(5
.6

6.
7

4.
6)

3.
33.

5
3.

1
(4

.4
5.

3
3.

6)
ni

rc
am

6-
80

12
0.

64
0.

80
0.

57
(0

.2
20.

24
0.

21
)

0.
89

1.
00

0.
76

(0
.3

00.
33

0.
28

)
0.

50
0.

56
0.

47
(0

.1
70.

17
0.

16
)

0.
61

0.
72

0.
54

(0
.2

00.
22

0.
19

)
8.

08.
6

6.
7

(1
7.

018
.0

16
.1

)
6.

27.
0

5.
6

(1
3.

814
.6

12
.9

)
9.

510
.0

8.
8

(2
1.

021
.7

20
.4

)
8.

39.
0

7.
3

(1
8.

219
.1

17
.3

)
ni

rc
am

6-
80

94
1.

10
1.

18
1.

01
(0

.4
60.

52
0.

41
)

1.
31

1.
36

1.
24

(0
.6

50.
71

0.
58

)
1.

00
1.

08
0.

88
(0

.4
00.

46
0.

36
)

1.
20

1.
27

1.
12

(0
.5

60.
63

0.
50

)
5.

25.
6

5.
0

(1
0.

211
.0

9.
3

)
4.

64.
8

4.
4

(7
.9

8.
5

7.
3)

5.
76.

2
5.

3
(1

1.
212

.2
10

.2
)

4.
95.

2
4.

7
(8

.8
9.

6
8.

1)
ni

rc
am

6-
81

03
0.

90
0.

97
0.

83
(0

.9
31.

06
0.

81
)

1.
31

1.
37

1.
25

(1
.5

61.
72

1.
43

)
0.

67
0.

75
0.

57
(0

.5
20.

61
0.

46
)

0.
96

1.
03

0.
89

(0
.7

70.
89

0.
66

)
6.

16.
5

5.
8

(6
.0

6.
7

5.
4)

4.
64.

7
4.

4
(3

.9
4.

2
3.

6)
7.

78.
7

7.
1

(9
.2

10
.1

8.
3

)
5.

86.
2

5.
5

(6
.9

7.
8

6.
2)

ni
rc

am
6-

81
59

0.
42

0.
47

0.
33

(0
.3

30.
37

0.
29

)
0.

56
0.

64
0.

48
(0

.4
60.

52
0.

40
)

0.
47

0.
54

0.
38

(0
.4

50.
53

0.
39

)
0.

66
0.

75
0.

54
(0

.7
51.

11
0.

62
)

10
.9

12
.8

9.
9

(1
2.

914
.2

11
.9

)
8.

89.
8

8.
0

(1
0.

211
.2

9.
2

)
10

.1
11

.6
9.

0
(1

0.
311

.5
9.

1
)

7.
89.

0
7.

1
(7

.0
8.

2
5.

2)
ni

rc
am

6-
82

95
0.

80
0.

92
0.

68
(1

.1
81.

34
0.

95
)

1.
11

1.
20

0.
99

(1
.5

91.
69

1.
45

)
0.

71
0.

81
0.

56
(1

.0
61.

25
0.

85
)

0.
97

1.
09

0.
83

(1
.4

71.
59

1.
28

)
6.

77.
6

6.
1

(5
.0

5.
9

4.
5)

5.
25.

7
4.

9
(3

.9
4.

2
3.

7)
7.

48.
7

6.
7

(5
.4

6.
4

4.
7)

5.
86.

5
5.

3
(4

.1
4.

6
3.

9)
ni

rc
am

6-
83

55
0.

52
0.

55
0.

48
(0

.4
30.

50
0.

36
)

0.
72

0.
78

0.
67

(0
.8

31.
03

0.
64

)
0.

27
0.

27
0.

27
(0

.0
80.

09
0.

07
)

0.
29

0.
30

0.
28

(0
.1

30.
15

0.
11

)
9.

39.
8

8.
9

(1
0.

712
.1

9.
6

)
7.

27.
7

6.
8

(6
.6

8.
0

5.
5)

14
.9

15
.0

14
.8

(3
4.

337
.2

30
.9

)
14

.2
14

.4
14

.0
(2

5.
328

.2
22

.3
)

ni
rc

am
6-

84
73

0.
75

0.
83

0.
68

(0
.2

70.
28

0.
25

)
1.

01
1.

08
0.

94
(0

.4
10.

43
0.

39
)

0.
41

0.
43

0.
40

(0
.1

10.
11

0.
11

)
0.

47
0.

50
0.

44
(0

.1
40.

14
0.

13
)

7.
17.

6
6.

5
(1

5.
015

.5
14

.5
)

5.
65.

9
5.

3
(1

1.
011

.5
10

.6
)

11
.0

11
.3

10
.7

(2
8.

128
.5

27
.7

)
10

.0
10

.4
9.

5
(2

4.
124

.7
23

.6
)

ni
rc

am
6-

85
72

1.
11

1.
30

1.
06

(0
.7

20.
77

0.
66

)
1.

37
1.

52
1.

26
(0

.9
30.

99
0.

87
)

0.
72

0.
75

0.
70

(0
.4

20.
46

0.
38

)
0.

90
0.

93
0.

87
(0

.5
20.

55
0.

46
)

5.
25.

4
4.

6
(7

.3
7.

8
6.

9)
4.

44.
7

4.
0

(6
.0

6.
3

5.
7)

7.
37.

5
7.

1
(1

0.
811

.7
10

.2
)

6.
16.

3
6.

0
(9

.3
10

.1
8.

9
)

ni
rc

am
6-

86
91

1.
56

1.
67

1.
44

(0
.6

80.
79

0.
59

)
1.

87
1.

95
1.

79
(1

.0
31.

20
0.

87
)

0.
95

1.
05

0.
81

(0
.3

70.
44

0.
32

)
1.

15
1.

29
1.

03
(0

.4
80.

56
0.

41
)

3.
94.

2
3.

7
(7

.6
8.

5
6.

8)
3.

43.
5

3.
3

(5
.5

6.
3

4.
9)

5.
96.

6
5.

4
(1

2.
013

.2
10

.5
)

5.
15.

5
4.

6
(9

.9
11

.0
8.

8
)

ni
rc

am
6-

87
78

0.
62

0.
66

0.
60

(0
.3

50.
36

0.
34

)
0.

73
0.

81
0.

69
(0

.4
30.

45
0.

41
)

0.
57

0.
59

0.
55

(0
.2

90.
30

0.
29

)
0.

64
0.

68
0.

61
(0

.3
40.

35
0.

33
)

8.
28.

4
7.

8
(1

2.
512

.7
12

.1
)

7.
27.

5
6.

7
(1

0.
711

.0
10

.3
)

8.
78.

9
8.

4
(1

4.
114

.3
13

.9
)

8.
08.

3
7.

6
(1

2.
713

.0
12

.4
)

ni
rc

am
6-

87
96

0.
58

0.
65

0.
52

(0
.7

90.
92

0.
68

)
0.

81
0.

88
0.

72
(1

.3
31.

53
1.

21
)

0.
43

0.
47

0.
39

(0
.5

20.
61

0.
46

)
0.

56
0.

62
0.

50
(0

.8
60.

99
0.

75
)

8.
69.

3
7.

8
(6

.8
7.

6
6.

0)
6.

77.
3

6.
2

(4
.5

4.
9

4.
0)

10
.7

11
.4

10
.0

(9
.2

10
.2

8.
3

)
8.

89.
5

8.
1

(6
.3

7.
1

5.
7)

ni
rc

am
6-

88
78

0.
95

1.
02

0.
89

(0
.1

70.
19

0.
16

)
1.

18
1.

24
1.

12
(0

.2
60.

28
0.

24
)

0.
73

0.
76

0.
70

(0
.0

90.
10

0.
09

)
0.

83
0.

88
0.

78
(0

.1
30.

14
0.

12
)

5.
96.

2
5.

5
(2

0.
321

.2
19

.4
)

4.
95.

2
4.

8
(1

5.
316

.2
14

.5
)

7.
27.

5
7.

0
(3

1.
332

.3
30

.1
)

6.
56.

8
6.

2
(2

4.
625

.8
23

.6
)

(C
on

tin
ue

d
on

ne
xt

pa
ge

)



291
T

ab
le

E
.1

:
(C

on
tin

ue
d)

G
al

ax
y

na
m

e
𝑡SB

99
(B

C
03

)
5

𝑡SB
99

(B
C

03
)

10
𝑡SB

99
(B

C
03

)
5×

10
8

M
⊙

𝑡SB
99

(B
C

03
)

10
9

M
⊙

𝑧SB
99

(B
C

03
)

5
𝑧SB

99
(B

C
03

)
10

𝑧SB
99

(B
C

03
)

5×
10

8
M

⊙
𝑧SB

99
(B

C
03

)
10

9
M

⊙

[G
yr

]
[G

yr
]

[G
yr

]
[G

yr
]

ni
rc

am
6-

93
75

1.
51

1.
66

1.
37

(1
.4

21.
49

1.
32

)
1.

89
1.

98
1.

75
(1

.6
91.

76
1.

62
)

1.
25

1.
37

1.
09

(1
.0

51.
18

0.
91

)
1.

47
1.

60
1.

29
(1

.3
71.

45
1.

24
)

4.
04.

4
3.

7
(4

.3
4.

5
4.

1)
3.

33.
6

3.
2

(3
.7

3.
8

3.
6)

4.
75.

3
4.

4
(5

.4
6.

1
4.

9)
4.

14.
6

3.
9

(4
.4

4.
8

4.
2)

ni
rc

am
6-

95
59

0.
66

0.
78

0.
48

(1
.4

81.
61

1.
27

)
0.

90
1.

06
0.

72
(1

.7
51.

86
1.

61
)

0.
54

0.
70

0.
40

(1
.3

91.
54

1.
16

)
0.

77
0.

92
0.

61
(1

.6
51.

77
1.

49
)

7.
89.

8
6.

9
(4

.1
4.

7
3.

8)
6.

17.
2

5.
4

(3
.6

3.
8

3.
4)

9.
011

.3
7.

5
(4

.3
5.

0
4.

0)
6.

98.
2

6.
0

(3
.8

4.
1

3.
5)

ni
rc

am
6-

10
55

6
0.

28
0.

29
0.

28
(0

.3
50.

36
0.

33
)

0.
35

0.
37

0.
34

(0
.4

60.
49

0.
44

)
0.

18
0.

18
0.

18
(0

.1
80.

18
0.

18
)

0.
19

0.
19

0.
19

(0
.1

90.
20

0.
19

)
14

.4
14

.7
14

.1
(1

2.
412

.9
12

.1
)1

2.
312

.5
11

.9
(1

0.
110

.5
9.

8
)

19
.8

19
.9

19
.8

(1
9.

820
.0

19
.7

)
19

.3
19

.4
19

.2
(1

8.
719

.0
18

.5
)

ni
rc

am
6-

10
98

8
0.

57
0.

64
0.

48
(0

.8
20.

90
0.

73
)

0.
77

0.
84

0.
69

(1
.1

81.
25

1.
06

)
0.

34
0.

46
0.

28
(0

.6
00.

67
0.

51
)

0.
53

0.
61

0.
44

(0
.8

30.
91

0.
73

)
8.

79.
8

7.
9

(6
.6

7.
2

6.
1)

6.
97.

5
6.

4
(5

.0
5.

4
4.

7)
12

.6
14

.7
10

.2
(8

.4
9.

4
7.

7)
9.

110
.6

8.
2

(6
.5

7.
2

6.
1)

ni
rc

am
6-

11
09

8
1.

24
1.

33
1.

11
(0

.1
60.

17
0.

15
)

1.
48

1.
54

1.
44

(0
.2

30.
24

0.
22

)
0.

81
0.

93
0.

55
(0

.0
90.

09
0.

08
)

0.
96

1.
06

0.
79

(0
.1

10.
11

0.
10

)
4.

85.
2

4.
5

(2
1.

522
.0

20
.9

)
4.

14.
2

4.
0

(1
6.

617
.0

16
.2

)
6.

78.
9

6.
0

(3
2.

833
.6

32
.0

)
5.

86.
8

5.
4

(2
8.

428
.8

28
.0

)
ni

rc
am

6-
11

12
5

1.
33

1.
41

1.
23

(0
.5

60.
65

0.
47

)
1.

82
1.

93
1.

67
(0

.7
90.

91
0.

68
)

1.
71

1.
82

1.
56

(0
.5

60.
66

0.
47

)
2.

33
2.

43
2.

22
(0

.8
00.

94
0.

67
)

4.
54.

8
4.

3
(8

.8
10

.1
7.

9
)

3.
53.

7
3.

3
(6

.8
7.

6
6.

1)
3.

63.
9

3.
5

(8
.8

10
.1

7.
8

)
2.

82.
9

2.
7

(6
.7

7.
6

5.
9)

ni
rc

am
6-

11
37

1
1.

38
1.

58
0.

96
(0

.4
60.

55
0.

40
)

2.
10

2.
26

1.
87

(0
.7

00.
85

0.
60

)
0.

44
0.

52
0.

38
(0

.2
70.

32
0.

23
)

0.
71

0.
94

0.
55

(0
.3

50.
43

0.
30

)
4.

45.
9

3.
9

(1
0.

111
.3

8.
9

)
3.

03.
4

2.
9

(7
.4

8.
3

6.
4)

10
.5

11
.6

9.
3

(1
5.

016
.6

13
.3

)
7.

48.
9

5.
9

(1
2.

313
.8

10
.7

)
ni

rc
am

6-
11

44
3

0.
19

0.
20

0.
19

(0
.8

51.
00

0.
73

)
0.

26
0.

27
0.

25
(1

.2
01.

34
1.

08
)

0.
16

0.
17

0.
16

(0
.7

20.
86

0.
60

)
0.

22
0.

22
0.

21
(1

.0
11.

14
0.

87
)

18
.7

19
.1

18
.3

(6
.4

7.
2

5.
7)

15
.2

15
.5

14
.9

(4
.9

5.
3

4.
5)

21
.4

21
.9

20
.9

(7
.3

8.
4

6.
4)

17
.5

18
.0

17
.1

(5
.6

6.
3

5.
1)

ni
rc

am
6-

11
48

0
1.

54
1.

81
1.

22
(0

.5
60.

70
0.

46
)

2.
03

2.
16

1.
80

(0
.7

80.
95

0.
66

)
1.

14
1.

45
0.

77
(0

.3
90.

51
0.

33
)

1.
55

1.
81

1.
21

(0
.5

00.
64

0.
42

)
4.

04.
8

3.
5

(8
.8

10
.1

7.
4

)
3.

13.
5

3.
0

(6
.8

7.
8

5.
9)

5.
16.

9
4.

2
(1

1.
412

.9
9.

4
)

4.
04.

9
3.

5
(9

.5
10

.9
7.

9
)

ni
rc

am
6-

11
79

7
0.

18
0.

20
0.

16
(0

.1
20.

12
0.

11
)

0.
28

0.
32

0.
25

(0
.1

70.
17

0.
16

)
0.

09
0.

10
0.

08
(0

.0
60.

06
0.

06
)

0.
13

0.
15

0.
12

(0
.0

90.
09

0.
08

)
19

.7
21

.2
18

.1
(2

6.
627

.3
25

.8
)1

4.
415

.8
13

.1
(2

0.
921

.3
20

.3
)

31
.8

34
.1

29
.2

(4
0.

741
.4

39
.9

)
24

.4
25

.8
22

.7
(3

3.
033

.9
32

.1
)

ni
rc

am
6-

11
81

2
0.

45
0.

49
0.

40
(0

.3
60.

39
0.

32
)

0.
68

0.
75

0.
60

(0
.5

20.
57

0.
46

)
0.

41
0.

46
0.

37
(0

.4
20.

46
0.

38
)

0.
60

0.
67

0.
53

(0
.6

60.
74

0.
58

)
10

.4
11

.2
9.

6
(1

2.
213

.1
11

.4
)

7.
68.

3
7.

1
(9

.3
10

.1
8.

7
)

11
.1

12
.0

10
.1

(1
0.

811
.6

10
.1

)
8.

39.
1

7.
7

(7
.8

8.
6

7.
2)

ni
rc

am
6-

11
84

3
0.

85
0.

96
0.

75
(0

.4
30.

49
0.

39
)

1.
07

1.
14

0.
98

(0
.5

80.
65

0.
53

)
0.

68
0.

77
0.

62
(0

.3
50.

41
0.

31
)

0.
85

0.
95

0.
75

(0
.4

70.
53

0.
42

)
6.

47.
1

5.
8

(1
0.

711
.5

9.
6

)
5.

45.
8

5.
1

(8
.5

9.
2

7.
8)

7.
68.

2
6.

9
(1

2.
313

.4
11

.0
)

6.
47.

1
5.

9
(1

0.
010

.9
9.

1
)

ni
rc

am
6-

11
93

6
1.

38
1.

62
1.

21
(0

.6
80.

89
0.

54
)

1.
70

1.
81

1.
53

(1
.0

51.
31

0.
82

)
1.

52
1.

71
1.

32
(0

.8
81.

10
0.

67
)

1.
83

1.
96

1.
70

(1
.3

41.
61

1.
09

)
4.

44.
9

3.
8

(7
.6

9.
0

6.
2)

3.
74.

0
3.

5
(5

.4
6.

6
4.

6)
4.

04.
5

3.
6

(6
.2

7.
7

5.
2)

3.
43.

7
3.

2
(4

.5
5.

3
3.

8)
ni

rc
am

6-
12

06
1

0.
35

0.
35

0.
34

(1
.0

11.
01

0.
95

)
0.

45
0.

47
0.

44
(1

.0
41.

05
1.

03
)

0.
28

0.
29

0.
28

(0
.6

40.
77

0.
49

)
0.

34
0.

35
0.

34
(1

.0
11.

01
0.

95
)

12
.5

12
.7

12
.3

(5
.6

5.
9

5.
6)

10
.2

10
.5

10
.0

(5
.5

5.
5

5.
5)

14
.4

14
.6

14
.2

(8
.0

9.
6

6.
9)

12
.5

12
.8

12
.4

(5
.6

5.
9

5.
6)





List of research publications

Core publications:

• García-Argumánez, Á., Pérez-González, P. G., Gil de Paz, A., et al. 2023,
Probing the Earliest Phases in the Formation of Massive Galaxies with Simulated HST+JWST
Imaging Data from Illustris, Astrophys. J., 944, 3, doi:10.3847/1538-4357/aca8ff

Related publications:

• Annunziatella, M., Pérez-González, P. G., García-Argumánez, Á., et al. 2023,
Lack of influence of the environment in the earliest stages of massive galaxy formation, Mon. Not. R.
Astron. Soc., 519, 1476, doi:10.1093/mnras/stac2731

• Mérida, R.M., Pérez-González, P.G., Sánchez-Blázquez, P., García-Argumánez, Á., et al. 2023.
Probing the Star Formation Main Sequence down to 10 8 M⊙ at 1 < z < 3 , Astrophys. J., 950, 125,
doi:10.3847/1538-4357/acc7a3

• Pérez-González, P.G., Barro, G., Annunziatella, M., Costantin, L., García-Argumánez, Á., et al. 2023,
CEERS Key Paper. IV. A Triality in the Nature of HST-dark Galaxies, Astrophys. J. Lett., 946,
L16, doi:10.3847/2041-8213/acb3a5

• Pérez-González, P.G., Costantin, L., Langeroodi, D., Rinaldi, P., Annunziatella, M., Ilbert, O., Colina, L.,
Nørgaard-Nielsen, H.U., Greve, T.R., Östlin, G., Wright, G.„ Alonso-Herrero, A., Álvarez-Márquez, J.,
Caputi, K., Eckart, A., Le Fèvre, O., Labiano, Á., García-Marín, M., Hjorth, J., Kendrew, S., Pye, J.P.,
Tikkanen, T., van der Werf, P., Walter, F., Ward, M., Bik, A., Boogaard, L., Bosman, S.E.I., Gómez, A.C.,
Gillman, S., Iani, E., Jermann, I., Melinder, J., Meyer, R.A., Moutard, T., van Dishoek, E., Henning, T.,
Lagage, P-O., Guedel, M., Peissker, F., Ray, T., Vandenbussche, B., García-Argumánez, Á., and
Mérida, R.M. 2023,
Life beyond 30: Probing the −20 < MUV < −17 Luminosity Function at 8 < z < 13 with the NIRCam
Parallel Field of the MIRI Deep Survey, Astrophys. J. Lett., 951, L1, doi:10.3847/2041-8213/acd9d0

293

https://doi.org/10.3847/1538-4357/aca8ff
https://doi.org/10.1093/mnras/stac2731
https://doi.org/10.3847/1538-4357/acc7a3
https://doi.org/10.3847/2041-8213/acb3a5
https://doi.org/10.3847/2041-8213/acd9d0 




Acronyms

2D Two dimensions

2D SEDs Spectral Energy Distributions in two dimensions

2D SPS Stellar Population Synthesis in two dimensions

2dFGRS two-degree-Field Galaxy Redshift Survey

ACS Advanced Camera for Surveys

AEGIS All-Wavelength Extended Groth Strip International Survey

AGB Asymptotic Giant Branch

AGHAST A Grism H-Alpha SpecTroscopic (survey)

AGN Active Galactic Nucleus

ALMA Atacama Large Millimeter/submillimeter Array

BC Blue Cloud

BC03 Bruzual & Charlot (2003)

CANDELS Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

CDM Cold Dark Matter

CEERS Cosmic Evolution Early Release Science

CFHT Canada–France–Hawaii Telescope

CFHTLS CFHT Legacy Survey

CMB Cosmic Microwave Background

COS Cosmic Origins Spectrograph

COSMOS Cosmic Evolution Survey

COSTAR Corrective Optics Space Telescope Axial Replacement

CSA Canadian Space Agency

CSP Composite Stellar Population

DB Database

DD-ERS Directors Discretionary Early Release Science

EAGLE Evolution and Assembly of GaLaxies and their Environments

EGS Extended Groth Strip

ERO Early Release Observations

ERS Early Release Science

ESA European Space Agency
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ESO European Southern Observatory

ETG Early-Type Galaxy

EW Equivalent Width

FGS Fine Guidance Sensor

FIR Far-Infrared

FOC Faint Object Camera

FUV Far-Ultraviolet

FWHM Full Width at Half Maximum

FoF Friends-of-Friends

GEMS Galaxy Evolution from Morphologies and SEDs

GLASS Grism Lens-Amplified Survey from Space

GLF Galaxy Luminosity Function

GO1 Cycle 1 Guest Observers

GOODS Great Observatories Origins Deep Surveys

GOODS-N GOODS-North

GOODS-S GOODS-South

GSMF Galaxy Stellar Mass Function

GTC Gran Telescopio de Canarias

GTO Guaranteed Time Observations

GV Green Valley

HAWK-I High Acuity Wide field K-band Imager

HDF Hubble Deep Field

HDFN Hubble Deep Field North

HDFS Hubble Deep Field South

HMF Halo Mass Function

HR Hertzsprung-Russell

HRC High Resolution Channel

HST Hubble Space Telescope

HUDF Hubble Ultra Deep Field

HUDF09 Hubble Ultra Deep Field 2009

HUGS HAWK-I UDS and GOODS Survey

IFU Integral Field Unit

IGM Intergalactic Medium

IMF Initial Mass Function

IR Infrared
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IRAC Infrared Array Camera

ISAAC Infrared Spectrometer and Array Camera

ISIM Integrated Science Instrument Module

ISM Interstellar Medium Model

IllustrisTNG Illustris The Next Generation

JADES JWST Advanced Deep Extragalactic Survey

JWST James Webb Space Telescope

L2 Second Sun-Earth Lagrange point

LAE Lyman Alpha Emitter

LBG Lyman Break Galaxy

LCM Large Magellanic Cloud

LW Long Wavelength

MAST Mikulski Archive for Space Telescopes

MC Monte Carlo

MILES Medium resolution Isaac Newton Telescope Library of Empirical Spectra

MIR Mid-Infrared

MIRI Mid-Infrared Instrument

MODS MOIRCS Deep Survey

MOIRCS Multi-Object InfraRed Camera and Spectrograph

MOS Multi-Object Spectroscopy

MOSDEF MOSFIRE Deep Evolution Field (survey)

MSA Microshutter Assembly (MSA)

MW Milky Way

NASA National Aeronautics and Space Administration

NEWFIRM NOAO Extremely Wide-Field Infrared Imager

NGST Next Generation Space Telescope

NIC3 NICMOS Camera 3

NICMOS Near Infrared Camera and Multi-Object Spectrometer

NIR Near-Infrared

NIRCam Near-Infrared Camera

NIRISS Near-Infrared Slitless Spectrograph

NIRSpec Near-Infrared Spectrograph

NMBS NEWFIRM Medium-Band Survey

NOAO National Optical Astronomy Observatory

OTE Optical Telescope Element
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PAHs Polycyclic Aromatic Hydrocarbons

PI Principal Investigator

PRIMER Public Release IMaging for Extragalactic Research

PSF Point Spread Function

RS Red Sequence

S-CANDELS Spitzer-Cosmic Assembly Deep Near-infrared Extragalactic Legacy Survey

SB99 STARBURST99

SBC Solar Blind Channel

SDSS Sloan Digital Sky Survey

SED Spectral Energy Distribution

SEDS Spitzer Extended Deep Survey

SF Star Formation

SFH Star Formation History

SFMS Star Forming Main Sequence

SFR Star Formation Rate

SFRD Star Formation Rate Density

SHARDS Survey for High-z Absorption Red and Dead Sources

SM Servicing Mission

SMBH Super-Massive Black Hole

SN Supernova

SNII Type II Supernova

SNIa Type Ia Supernova

SNR Signal-to-Noise Ratio

SPS Stellar Population Synthesis

SSP Single Stellar Population

STIS Space Telescope Imaging Spectrograph

STScI Space Telescope Science Institute

SVO Spanish Virtual Observatory

SW Short Wavelength

SpUDS Spitzer UKIDSS Ultra Deep Survey

TEMPLATES Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star
Formation

TMA Three-Mirror Anastigmat

TP-AGB Thermally Pulsing Asymptotic Giant Branch

UDS UKIDSS Ultra Deep Survey

UKIDSS UKIRT Infrared Deep Sky Survey
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UKIRT United Kingdom Infrared Telescope

UV Ultraviolet

UltraVISTA Ultra Deep Survey with the VISTA telescope

VIMOS Visible Multi-Object Spectrograph

VISTA Visible and Infrared Survey Telescope for Astronomy

VLT Very Large Telescope

WFC Wide Field Channel

WFC3 Wide Field Camera 3

WFI Wide-Field Instrument

WFPC1 Wide Field Planetary Camera 1

WFPC2 Wide Field Planetary Camera 2

WFSS Wide Field Slitless Spectroscopy

WIMP Weakly Interacting Massive Particle

WIRCam Wide-field InfraRed Camera

WIRDS WIRCam Deep Survey

WLM Wolf–Lundmark–Melotte

WMAP Wilkinson Microwave Anisotropy Probe

XDF Hubble eXtreme Deep Field

sSFR Specific Star Formation Rate
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