

Tapis First Principles Vulnerability Assessment Trusted CI 0

Trusted CI: The NSF Cybersecurity Center of
Excellence

Tapis First Principles Vulnerability Assessment

December, 2023

Final Report

 Distribution: Public

Sai Chaparala1, Gia-Minh Nguyen2, Elisa Heymann3, Barton P. Miller4

1 Student Researcher, chaparala@wisc.edu
2 Student Researcher, gjnguyen2@wisc.edu
3 Software Assurance Lead, elisa@cs.wisc.edu
4 Co-PI, bart@cs.wisc.edu

mailto:chaparala@wisc.edu
mailto:gjnguyen2@wisc.edu
mailto:elisa@cs.wisc.edu
mailto:bart@cs.wisc.edu

Tapis First Principles Vulnerability Assessment Trusted CI 1

About Trusted CI

The mission of Trusted CI is to provide the NSF community with a coherent understanding of
cybersecurity, its importance to computational science, and what is needed to achieve and
maintain an appropriate cybersecurity program5.

Acknowledgments

Trusted CI’s engagements are inherently collaborative; the authors would like to thank the
Tapis team, specifically Richard Cardone and Joe Stubbs for the collaborative effort that made
this document possible.

This document is a product of the Center for Trustworthy Scientific Cyberinfrastructure (Trusted
CI). Trusted CI is supported by the National Science Foundation under grant 2241313. For more
information about the Center for Trustworthy Scientific Cyberinfrastructure please visit:
https://trustedci.org/. Any opinions, findings, and conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Using & Citing this Work

This work is made available under the terms of the Creative Commons Attribution 3.0 Unported
License.Please visit the following URL for details:
http://creativecommons.org/licenses/by/3.0/deed.en_US

Cite this work using the following information:

Sai Chaparala, Gia-Minh Nguyen, Elisa Heymann, Barton P. Miller. "Trusted CI: The NSF
Cybersecurity Center of Excellence Tapis First Principles Vulnerability Assessment". TrustedCI:
The NSF Cybersecurity Center of Excellence. December 2023.

This work is available on the web at the following URL:

doi.org/10.5281/zenodo.10214772

5 https://trustedci.org/mission

https://trustedci.org/
https://trustedci.org/
https://trustedci.org/
http://creativecommons.org/licenses/by/3.0/deed.en_US

Tapis First Principles Vulnerability Assessment Trusted CI 2

Table of Contents

About Trusted CI 1

Acknowledgments 1

Using & Citing this Work 1

Table of Contents 2

List of Figures 3

Executive Summary 4

1 Overview 5

1.1 Background 5

1.2 Methodology 5

2 Overview of First Principles Vulnerability Assessment 6

3 Architectural Analysis 7

3.1 Attack Surface 9

3.2 Architecture Diagram 10

4 Resource Identification 11

5 Trust and Privilege Analysis 13

6 Component Evaluation 13

6.1 Vulnerabilities Found 14

6.1.1 Command Injection through Jobs Service 14

6.1.2 Manipulation of Tapis JWTs 15

6.1.3 Command Injection through Applications Service 15

6.1.4 Outdated and Vulnerable Dependencies 16

6.2 Places searched with no apparent issues found 18

6.2.1 User Input Sanitization in Files Service 18

6.2.2 Exceeding character limits in a request body schema of a request 18

Tapis First Principles Vulnerability Assessment Trusted CI 3

6.2.3 SQL Injections 19

6.2.4 Cookies 20

6.2.5 Race Conditions 20

6.3 Additional Recommendations 21

6.3.1 Stress Testing 21

Appendices 22

Appendix A: Vulnerability Report: TAPIS-2023-0001 23

Appendix B: Vulnerability Report: TAPIS-2023-0002 26

Appendix C: Vulnerability Report: TAPIS-2023-0003 31

Appendix D: Vulnerability Report: TAPIS-2023-0004 35

Appendix E: Software Bugs Encountered 38

1. Flooding Log files in Jobs Service 38

List of Figures

Figure Page No.

Figure 1: Tapis Top Level Diagram 7

Figure 2. Submitting Jobs - Architectural Diagram 8

Figure 3. Generating User Token - Architectural Diagram 9

Figure 4. Submitting Jobs - Resource Diagram 12

Tapis First Principles Vulnerability Assessment Trusted CI 4

Executive Summary

Trusted CI collaborated with the Texas Advanced Computing Center (TACC) to assess the
security of the Tapis system. The Tapis Framework provides a hosted, unified web-based API for
securely managing computational workloads across institutions. Tapis capabilities include cloud
computing, identity management services, federated and local authentication, role-based
authorization, secret storage, and security logging6.

We conducted an in-depth vulnerability assessment of Tapis by applying the First Principle
Vulnerability Assessment (FPVA)7 methodology. Our FPVA analysis started by mapping out the
architecture and resources of the system, paying attention to trust and privilege used across
the system, and identifying the high value assets in the system. From there we performed a
detailed code inspection of the parts of the code that have access to the high value assets.

We assessed Tapis version 3, available from GitHub8, though for our assessment we used a
virtual machine provided by TACC prepared by the Tapis team. The in-depth assessment
focused on the security, authentication, and authorization parts of Tapis. Therefore, the virtual
machine included the Tapis core services to be able to experiment with the above-mentioned
parts of Tapis (apps, files, notifications, proxy, systems, jobs, authenticator, security, tokens,
and tenants-api). All those services ran in Docker containers. The provided virtual machine
contained 34 containers. Trusted CI had access to two instances of such an environment. The
assessment covered security related components of Tapis9. We collected the results from each
step of the FPVA methodology to form this report for the Tapis team at the end of the
engagement.

This report also includes a discussion of the parts of Tapis that we inspected where no apparent
issues were found. Though it is impossible to certify that code is free of vulnerabilities, we have
increased our confidence in the security of those sections of the code. We provide detailed
explanations in order to back this confidence.

6 https://www.tacc.utexas.edu/research/tacc-research/tapis/
7 James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, “First Principles Vulnerability Assessment”,
2010 ACM Cloud Computing Security Workshop (CCSW), Chicago, IL, October 2010.
8 https://github.com/tapis-project
9 https://tapis.readthedocs.io/en/latest/index.html

https://github.com/tapis-project
https://tapis.readthedocs.io/en/latest/index.html

Tapis First Principles Vulnerability Assessment Trusted CI 5

Overall, our team found four security serious vulnerabilities and one correctness bug in the
Tapis code, and we made several recommendations (Section 6.1) to further increase security
based on findings from our assessment.

1 Overview

This document describes the engagement between Trusted CI and the Tapis team from TACC
that occurred from July to December 2023. The goals of the engagement were to evaluate the
technology and architecture of part of the Tapis software, and perform a code-level security
review of the Tapis software.

1.1 Background

Tapis is a web-based API framework for securely managing computational workloads across
infrastructure and institutions created by the Texas Advanced Computing Center that provides
cloud computing, identity management services, federated and local authentication, role-based
authorization, secret storage, and security logging. Tapis supports OAuth210 and JSON Web
Tokens11 (JWT) that Tapis uses for token-based authentication and authorization. With a token,
a user can access Tapis APIs and perform basic management functions such as tenant
management, application management, job management, identity and access management,
and resource and secret management. Tapis uses HashiCorp Vault12 for secret storage. Tapis is
approximately 150,000 lines of code mostly consisting of Java and Python. Note that this
assessment was focused on 7 of the 12 Tapis services (Authenticator, Apps, Files, Jobs, Security,
Systems, and Tokens) which roughly comprised 120,000 and 5,000 lines of server-side Java and
Python, respectively. The remaining code is a mixture of JSON, SQL, Maven, XML, Bourne Shell,
Bash Shell, Dockerfile, YAML, HTML, and other utility languages or formats.

1.2 Methodology

The Trusted CI engagement for Tapis started on July 1, 2023. This engagement focused on
performing First Principles Vulnerability Assessment on Tapis. The engagement ended in
December 2023.

10 https://auth.net/2/
11 https://jwt.io
12 https://www.vaultproject.io/

https://auth.net/2/
https://jwt.io/

Tapis First Principles Vulnerability Assessment Trusted CI 6

The Tapis team provided the Trusted CI team with access to virtual machines running 34
containers providing functionality supporting cloud computing; identity management services;
federated and local authentication; role-based authorization; secret storage; and security
logging. The experimental testbed received from TACC differed from the traditional Tapis
deployment, where not all the Tapi containers are running on the same virtual machine, and
where the users do not have access to the Tapis host. This assessment is focused on the
deployment environment that was provided by the Tapis team in which all components of the
deployment were hosted on a single (virtual) machine.

The assessment was delayed because initially the differences of the experimental testbed and a
real Tapis deployment system were not clear. By mid August Trusted CI produced two
vulnerability reports that corresponded to issues that are unlikely to happen on real Tapis
deployments. To mitigate that situation Trusted CI took a step back and met with the Tapis
team to understand the actual attack surface of real Tapis deployments, and also to understand
the differences between the received Tapis system and a real Tapis deployment.

2 Overview of First Principles Vulnerability Assessment

First Principles Vulnerability Assessment (FPVA) is an analyst-centric (manual) methodology that
aims to focus the analyst’s attention on the part of the software system and its resources that
are most likely to contain vulnerabilities that would provide access to high-value assets. FPVA
finds new threats to a system and is not dependent on a list of known threats. The FPVA
methodology consists of five steps for evaluating a given piece of software.

1. Architectural Analysis: determine the major structural components of the system and
how they interact. At this point, we produce architectural diagrams that illustrate the
structure of the system. The primary deliverables of this step are Figures 1, 2, and 3.

2. Resource Identification: identify key resources accessed by each component. Examples
of these resources include files, databases, logs and devices. The Resource Diagrams we
produced illustrate these resources and their connection to system components. The
primary deliverables of this step is Figure 4.

3. Trust and Privilege Analysis: identify the trust assumptions about each component,
answering such questions as how are they protected and who can access them?
Associated with trust is describing the privilege level at which each executable
component runs. The primary deliverables of this step are incorporated as part of
Figures 1, 2, 3, and 4.

Tapis First Principles Vulnerability Assessment Trusted CI 7

4. Component Evaluation: examine relevant components in depth. A key aspect of the
FPVA methodology is that this evaluation is guided by information obtained in the first
three steps. This helps to prioritize the work so that high value targets are evaluated
first. Any vulnerabilities identified as well as all other work done during this step is
logged for inclusion in the final report.

5. Dissemination of Results: a final report is prepared that includes the deliverables
mentioned above as well as an outline of the work completed. We include
recommendations as well as areas that have been investigated but no bugs or
vulnerabilities were found. We then disseminate the final report to the requesting
parties (i.e., the lead of the development team).

We adhered to these steps in the Tapis engagement. We note that the assessment was carried
out in 6 months, and that regular assessments of the software will help maintain its security.
We also note here that ongoing attention to the security of the external software on which
Tapis depends is necessary to keep up the application’s safety.

3 Architectural Analysis

Based upon our study of the Tapis documentation, testing environment, and code, we
identified the attack surface, underlying components, and the communication among the
different components, and produced High Level Communication Flow and Architectural
diagrams as seen in Figures 1, 2, 3, and 4. In the next subsections we elaborate on these
diagrams.

Tapis First Principles Vulnerability Assessment Trusted CI 8

Figure 1: Tapis Top Level Diagram

Figure 2. Submitting Jobs - Architectural Diagram

Tapis First Principles Vulnerability Assessment Trusted CI 9

Figure 3. Generating User Token - Architectural Diagram

3.1 Attack Surface

From the Architectural Diagrams in Figures 1, 2, 3 and 4, we identified the following points on
the attack surface:

● Tapis REST API: facilitates command line interface to access Tapis services using cURL
requests.

● Tapis Python SDK: facilitates a tenant application’s access to Tapis services.

● Tapis log files: the Tapis core services server writes to their respective log files. The
locations of these log files can be seen in Figure 4.

● Configuration files: Tapis uses a large number of configuration files that specify
application parameters such as user host, database host, port and password. The
configuration files can be seen in Figure 4.

Tapis First Principles Vulnerability Assessment Trusted CI 10

3.2 Architecture Diagram

As previously mentioned, the Tapis engagement primarily included the vulnerability assessment
for 7 core Tapis services responsible for accessing HPC resources: Systems, Apps, Files, Jobs,
Security, and Authenticator. Figure 1 illustrates the 16 Docker containers, deployed over a
common Tapis host, governing these 7 core Tapis services. The proxy container in Figure 1 and
subsequent illustrations acts as a gateway between the user and the Tapis services. It serves as
the common entrypoint for all user requests to any Tapis service. It is responsible for managing
and routing user requests to their respective Docker containers. All Tapis operations must be
performed by making a HTTPS call to Tapis’ REST API.

Figure 2 outlines the internal architecture of Tapis and how components interact with one
another during a job submission. There are 13 main containers responsible during a Tapis job
submission : proxy, jobs-api, jobs–rabbitmq, jobs-postgres, jobs-workers, apps-api, apps-
postgres, files-api, systems-api, systems-postgres, security-api, sk-postgres, and vault.

The primary components that are responsible for Tapis job submission operations are four
containers called jobs-api, jobs-rabbitmq, jobs-workers, and jobs-postgres that use the Docker
framework for inter-container communication. In our experimental testbed all the containers
belonged to a single Docker network: tapis. Docker containers connected to the same user-
defined network can communicate with each other using their container names or IP
addresses.

These four containers are individually responsible for receiving job submission requests,
queuing job executions, executing jobs, and storing job execution metadata, respectively. The
Jobs service, consisting of the aforementioned four containers, then uses the appropriate core
services that are responsible for the main logic and persistence.

In addition to the 7 core Tapis services, the Tapis Notifications service was integrated into the
execution of every job. The Notifications service consisted of 4 containers: notifications-api,
notifications-dispatcher, notifications-rabbitmq, and notifications-postgres. As a job progressed
from one state to another, the Notifications service received a status change event from the
Jobs service. If subscribers to the job’s events exist, each subscriber receives a notification via
email or webhook call.

Figure 3 outlines the internal architecture of Tapis responsible during a token generation. There
are four main containers involved during this process: proxy, authenticator-api, authenticator-
postgres, and tokens-api. In our experimental testbed the identity provider was set up by Tapis

Tapis First Principles Vulnerability Assessment Trusted CI 11

- it is a file that contains usernames and passwords. For most deployments it would use an
external identity provider. Generating a user token consists of (1) a user sending their
credentials to the authenticator service, (2) having the authenticator call the tenant’s IDP to
validate the user’s credentials, and if successful, (3) having the authenticator call the Tokens
service to generate a token that gets returned to the user.

Tapis components interact with some external entities: the Identity Provider for identity
management, Vault for secret management, and PostgreSQL for all other data storage needs.
The Identity Provider and Vault run as their own individual services. The core services interact
with PostgreSQL using the Prepared Statements Java library. The Identity Provider, Vault, and
PostgreSQL are external entities, therefore their assessment is outside the scope of this
engagement.

Tapis also has a REST API that uses HTTPS as a medium of communication. When Nginx receives
an HTTPS request for a job submission, it forwards the request to jobs-api, which converts the
request to a remote procedure call that is then queued in jobs-rabbitmq. HTTPS responses
follow this same path in the opposite direction.

4 Resource Identification

Following the production of architectural diagrams, we identified the key resources accessed by
the components. We used this information to produce the resource diagram in Figure 4.

Figure 4 shows the resources used by Tapis. The containers running Apache Tomcat, jobs-api
and security-api, maintain two main resource directories: conf and logs. The conf directory
contains all the configuration files for the Tomcat servers within the jobs-api and security-api
containers.

The logs directory contains all the log files registering the network traffic through each of the
Tomcat servers. The log files are organized by date wherein each log file stores the log entries
for a specific date. Consequently, each log file is labeled as localhost_access_log.yyyy-
mm-dd.log to recognize and differentiate log files by date.

The PostgreSQL databases are key resources protected by Tapis that contain crucial information
regarding metadata for Tapis systems, apps, jobs, and JSON Web Tokens (JWTs). The databases
are queried from from the core Services using Prepared Statements, and the data is stored in
the /pgdata/data directory within each of the postgres containers: apps-postgres, systems-

Tapis First Principles Vulnerability Assessment Trusted CI 12

postgres, sk-postgres, and jobs-postgres. All files in this data directory have permissions that
allow reading and writing by only the postgres user.

Figure 4. Submitting Jobs - Resource Diagram

During job execution, local input, exec, and output directories are created to facilitate the job
execution process. The input directory contains input files that are mounted when building the
Docker image pertaining to the Tapis application that is being executed via the job submission.
All the output files are stored in the user specified output directory. The exec directory contains
scripts and environment variables that are necessary to run the Docker image. In particular, the
tapisjob.env file contains the environment variables necessary to set up the Docker

Tapis First Principles Vulnerability Assessment Trusted CI 13

container. On the other hand, the tapisjob.sh file contains the already constructed
command line Docker command responsible for launching the Docker image. The command
includes arguments responsible for mounting the user specified input and output directories
along with the environment variables necessary for the Docker container. All the resource files
and directories within the tenant host are readable and writable by the local user, i.e.,
testuser2 for our testing environment.

The Tapis Files service is responsible for the creation of the above mentioned input, exec, and
output directories. The Files service primarily consists of 4 containers, namely, files-api, files-
workers, files-rabbitmq, and files-postgres. However, to maintain abstraction pertaining to the
core security components, the diagrams in Figures 2 and 4 reference the files-api container
which oversees the inner mechanisms of the Files service.

5 Trust and Privilege Analysis

For each file, we inspected its permissions, as well as where and how it is used by Tapis. The
results of this step are incorporated into Figures 1, 2, 3, and 4 via color annotations.

There is implicit trust in any process running as root or resource owned by root. Any
communication from an unprivileged process to a privileged process needs to be screened, and
any data read from a root owned resource needs to be checked to make sure that private data
is not released.

In Tapis, the Nginx process runs as root and the core services run as the combination of root
and tapis users. The PostgreSQL databases pertaining to the core services are managed by the
postgres and tapis user.

The configuration files within the conf directory of the jobs-api and security-api containers are
readable and writable by the root user. Similarly, the log files in the logs directory are
readable and writable by the tapis user.

Tapis’s important resources are owned by root, tapis, postgres, lxd or rabbitmq as shown in
Figures 1, 2, 3, and 4. While the config files for each of the Docker containers pertaining to the
core services indicate tapis as the owner, however, upon deployment, the containers share a
mix of users from root and postgres.

6 Component Evaluation

Tapis First Principles Vulnerability Assessment Trusted CI 14

This section describes some of the areas of focus for the component analysis step of our
assessment. In this step, we performed code inspection looking for weaknesses that could be
exploited.

6.1 Vulnerabilities Found

Our assessment of Tapis resulted in four vulnerability reports, the details of which are reported
in Appendices A-D.

6.1.1 Command Injection through Jobs Service

Summary

As a result of a command injection vulnerability, in a Tapis system with a static effectiveUserId,
any user with the correct permissions can execute an arbitrary command on the targeted host.
The associated vulnerability report is in Appendix A.

Description

An attacker can execute an arbitrary command on the host where the submitted job is being
executed. The commands that can be executed are the ones allowed by the operating system
permissions. This attack is only feasible on a system with a static effectiveUserId shared by
multiple Tapis users. Even if each Tapis user is granted their own directories for which they
have MODIFY permission, they can still access files outside of their directories.

An attacker needs to have a Tapis user account with Tapis READ and EXECUTE permissions on
the targeted system and with MODIFY permission on a file/directory of that system. These
permissions are set by the Tapis admin user or the Tapis user owner of the system.

Proposed Mitigation

We note that Tapis performs input sanitizing in other areas such as the Files service. We also
note that input sanitizing is separately implemented in different places in the code. We
recommend developing common functions for performing this task, and using these functions
throughout the code, including in places that we have identified in this report.

It is worth noting that Tapis recommends using dynamic effectiveUserIds which improves
security by limiting Tapis to only taking actions as users in their own accounts.

Tapis First Principles Vulnerability Assessment Trusted CI 15

6.1.2 Manipulation of Tapis JWTs

Summary

Any local Tapis user can decode their respective user JSON Web Tokens (JWTs) and encode
them with malicious information to impersonate other users and services either within the
same tenant or other tenants. The associated vulnerability report is in Appendix B.

Description

JWTs can be signed with various algorithms (e.g., HMAC, RSA, ECDSA) to ensure their integrity
and authenticity. However, using the none algorithm effectively means that no such protection
is applied. The term none refers to the absence of a digital signature or encryption algorithm.
When the none algorithm is used, it means that the JWT is not signed or encrypted, making it
susceptible to tampering.

By modifying their existing user JWTs, any Tapis user can impersonate other users within the
same tenant, submit jobs as other users, and grant themselves ADMIN privileges over a Tapis
tenant. The attacker should belong to a particular tenant, be able to retrieve their respective
Tapis user JWTs, and be able to access tools that allow the modification of the aforementioned
JWTs. The exact steps to execute this exploit can be found in the report in Appendix B.

Proposed Mitigation

Implement a strong check over JWTs so as to remediate the use of none algorithm. Ensure that
each JWT requires the use of a strong encryption algorithm like HS256 and RS256. For example,
shared Java classes that validate JWTs, like JWTValidateRequestFilter.java, can be augmented
to also check for encryption algorithms.

Actual Mitigation

The fix was added in the JWTValidateRequestFilter.java file where a new method,
prohibitNoAlg(), was implemented to check for the encryption algorithm. If the alg field of
the JWT contained none, then an error message is returned to the user. This additional check is
called in the filter() method right before jumping into JWT verification. The fix is now
available with Tapis v3 release 1.5.2.

6.1.3 Command Injection through Applications Service

Summary

Tapis First Principles Vulnerability Assessment Trusted CI 16

An attacker with permissions to submit a job can store command injections within the Tapis
Applications database, and execute those persistent attacks over a targeted Tapis system. This
vulnerability inherently uses the same underlying mechanism to execute the command
injection as TAPIS-2023-0001, but highlights a pathway of storing command injections within
Tapis databases. Furthermore, if an attack occurred before fixing the vulnerability in TAPIS-
2023-0001, it could be the case that the injection could still persist in the system, even after the
fix, with this new type of attack. The associated vulnerability report is in Appendix C.

Description

An attacker can execute an arbitrary command on the host where the submitted job of the
application is being executed. The commands that can be executed are the ones allowed by the
operating system permissions.

An attacker needs to have a Tapis user account with Tapis READ and EXECUTE permissions on
the targeted system and with MODIFY permission on a file/directory of that system. These
permissions are set by the Tapis admin user or the Tapis user owner of the system. Application
creation does not need additional permissions from the default granted to the user.

An alternative approach is to create the application with the injection command and grant
READ and EXECUTE permissions to everyone or the target and wait for them to make a job
submission with that application.

Proposed Mitigation

We note that Tapis performs input sanitizing in other areas such as the Files service. We also
note that input sanitizing is separately implemented in different places in the code. We
recommend developing common functions for performing this task, and using these functions
throughout the code, including in places that we have identified in this report.

Given the potential persistence of the injections in the database prior to fixing TAPIS-2023-
0001, we would suggest regular database cleanups to discard malicious input. This may require
running some sort of maintenance scans of the Tapis Application database to search and
sanitize for metacharacters.

6.1.4 Outdated and Vulnerable Dependencies

Summary

Tapis First Principles Vulnerability Assessment Trusted CI 17

The Tapis components that we audited contain multiple dependencies with known
vulnerabilities. The associated vulnerability report is in Appendix D.

Description

Our team ran the Snyk tool (Snyk CLI v1.1259.0, Documentation: https://docs.snyk.io/snyk-cli)
on the repository comprised of source code of the services pertaining to the audit
(Authenticator, Apps, Files, Jobs, Security, Systems, Tokens) as well as other related services.
The table features the package name of the dependency, the highest severity rating of an issue
given by Snyk, the number of issues found in that dependency, and the most appropriate
remediation.Some dependencies still do not have a version that has all issues resolved, but the
tool provides the versions that minimize the amount of issues. Some issues in dependencies
already have published exploits or proof of concepts.

It is highly recommended to use multiple assessment tools instead of just one as shown here.
Tapis uses their own automated assessment tools, many of which are bundled in Eclipse, IntelliJ
and Visual Studio IDEs to give style and dependency warnings as well as error detection.
Maven's dependency tree plugin is used to analyze what gets included in shaded Java libraries.

Of the vulnerable dependencies shown on the table, Log4j 1 has not been supported since 2015
(https://logging.apache.org/log4j/2.x/security.html). Log4j 2 contains security fixes. Tapis does
not directly use the deprecated log4j version 1, but other third party libraries may be using it.

Proposed Mitigation

While we have not evaluated the vulnerabilities reported by Snyk, these vulnerabilities have
been reported by the software providers as serious issues. The best practices in this situation
are:

1. When feasible, replace the reported dependency by upgrading to a version that has no
reported vulnerabilities. This is often the easiest, most comprehensive, and lowest
effort approach.

2. When replacing the dependency is difficult, then evaluate each vulnerability for
applicability to your environment:

a. If the vulnerability is not applicable, then document the fact in the code and
leave the dependency intact.

b. If the vulnerability is applicable, then find a replacement for the
functions/methods used or code around the use of the function/methods.

Tapis First Principles Vulnerability Assessment Trusted CI 18

As Log4j 1 is no longer supported, we highly recommend looking through the currently used
third party libraries that contain Log4j 1 and ensure Tapis’s usage does not execute code from
Log4j 1. If Log4j 1 is being used, replace the libraries with newer versions or alternative libraries
that do not use it. To get an appropriate version of Log4j 2 follow one of the migration options
on their website: https://logging.apache.org/log4j/2.x/manual/migration.html

6.2 Places searched with no apparent issues found

We evaluated several services of the Tapis system and did not find any problems. Though it is
impossible to certify that a code is free of vulnerabilities, we have increased confidence in the
security of these parts of the code.

6.2.1 User Input Sanitization in Files Service

Summary

Tapis utilizes REST API requests to allow users to communicate with Tapis components.
Exploration of these injection attacks within the requests were done through cURL requests
through a command line interface. Our exploration found that Tapis is not vulnerable to a file
path injection attack on path parameters within the url on their requests.

Description

Many endpoints in Tapis, particularly the Files service, require users to specify a file path in a
path parameter of the request. We attempted to access files we do not have permission for
through the usage of “..” and absolute paths.

Result

Through multiple endpoints in different services, we could not do a file path injection attack
due to filtering or permission denial of the path. There is a simple level of sanitation performed
by Tapis on the file path parameters on the path parameters of the requests that prevent such
attacks.

6.2.2 Exceeding character limits in a request body schema of a request

Summary

Tapis components receive a lot of data fields through the REST API, in the form of query
parameters, request body schemas, and path parameters. Notably, a lot of the requests are

Tapis First Principles Vulnerability Assessment Trusted CI 19

done through the request body schemas in json format. We tested the limits of using various
characters and the amount of characters within the json input.

Description

We focused on testing the limitations of these inputs through an excessive number of
characters as well as non-alphanumeric characters. We tested with character counts of up to
10,000 characters. Non-alphanumeric characters included metacharacters. Our testing also
included other parameters from the ones required in the Tapis API as well as made up
parameters.

Result

Tapis always returns a valid Tapis response telling the user the request failed. All failures were
due to missing parameters or invalid provided parameters for specific requests. In other words,
Tapis was able to manage large strings being passed through the requests.

6.2.3 SQL Injections

Summary

Tapis utilizes Prepared Statements to construct SQL queries to retrieve, insert, and modify data
to and from their PostgreSQL database. We did an exploration of the construction process of
queries made to the database to ensure that they are not vulnerable to an injection attack. We
did not find any unsafe handling of user input that could lead to an injection attack.

Description

SQL queries are constructed dynamically throughout Tapis and are used in the handling of
requests from the core services API. All of the queries that are constructed in response to a
request use prepared statements for all user provided content, and in doing so eliminate the
ability for an injection attack to occur through those fields.

Result

In every case where the core services interacted with the PostgreSQL databases, prepared
statements were used to construct the SQL query. Thus, there were no opportunities for SQL
injection attacks from the parsed user input.

Tapis First Principles Vulnerability Assessment Trusted CI 20

6.2.4 Cookies

Summary

None of the seven core Tapis services set cookies to store information pertaining to previous
user sessions. No exploitable cookies were found either by making cURL requests over Postman
or by performing simple health checks for the core Tapis services over a common web browser.

Description

Almost every endpoint in Tapis does not necessitate the use of cookies. We attempted to
access cookies through the employment of developer tools over a web browser. We also used
the cookies feature of Postman to pick up on any cookies created while accessing many of the
core services’ endpoints.

Result

At the minimum, Tapis did not appear to store prior session information within cookies which
could then be visible to returning users. Our exploration of cookies found that Tapis is not
vulnerable via the information found in cookies.

6.2.5 Race Conditions

Summary

Tapis uses a queuing system in their Jobs service to handle multiple job submissions. Each job
submission runs their respective application on separate containers on the user-specified
system until execution is finished.

Description

We tried submitting multiple jobs simultaneously to see if they caused any interference
between one another. All jobs submitted were able to be handled in parallel without any
apparent issues. Furthermore, as each application is run on their own respective containers,
they are unable to interact with one another.

Result

After our testing, it appears that Tapis can well handle race conditions. As each application of
the job submission is executed on separate containers on a system that users cannot access,
the applications are safe. Our exploration of race conditions within the Jobs service proved that

Tapis First Principles Vulnerability Assessment Trusted CI 21

Tapis can handle multiple simultaneous tasks, repeated tasks, and attempted interference of
running jobs.

6.3 Additional Recommendations

6.3.1 Stress Testing

Multiple components of Tapis, including the core services, should undergo stress testing. We
were not able to conduct stress testing on Tapis given that the experimental testbed we were
given had limitations, and was not equivalent to a real deployed Tapis system. We strongly
recommend carrying out stress testing scenarios on Tapis, and explore the maximum number of
job requests and application containers that can be submitted and launched respectively at a
time.

The Jobs and Applications services are the most susceptible to this kind of test. The nature of
these two services allows for multiple users to submit multiple requests at once either to
execute jobs or create new applications. If Tapis is found susceptible to stress testing, then it
may incur some crucial issues such as denial of service.

Tapis First Principles Vulnerability Assessment Trusted CI 22

Appendices

Tapis First Principles Vulnerability Assessment Trusted CI 23

Appendix A: Vulnerability Report: TAPIS-2023-0001

Tapis First Principles Vulnerability Assessment Trusted CI 24

Tapis First Principles Vulnerability Assessment Trusted CI 25

Tapis First Principles Vulnerability Assessment Trusted CI 26

Appendix B: Vulnerability Report: TAPIS-2023-0002

Tapis First Principles Vulnerability Assessment Trusted CI 27

Tapis First Principles Vulnerability Assessment Trusted CI 28

Tapis First Principles Vulnerability Assessment Trusted CI 29

Tapis First Principles Vulnerability Assessment Trusted CI 30

Tapis First Principles Vulnerability Assessment Trusted CI 31

Appendix C: Vulnerability Report: TAPIS-2023-0003

Tapis First Principles Vulnerability Assessment Trusted CI 32

Tapis First Principles Vulnerability Assessment Trusted CI 33

Tapis First Principles Vulnerability Assessment Trusted CI 34

Tapis First Principles Vulnerability Assessment Trusted CI 35

Appendix D: Vulnerability Report: TAPIS-2023-0004

Tapis First Principles Vulnerability Assessment Trusted CI 36

Tapis First Principles Vulnerability Assessment Trusted CI 37

Tapis First Principles Vulnerability Assessment Trusted CI 38

Appendix E: Software Bugs Encountered

These bugs are not security issues directly within the scope of the investigation, but were
discovered during the course of it. These may be potential security issues in the associated
sample applications, annoyances to the user, or areas that we discovered best practices could
be applied in order to improve upon security and/or the user experience. These are listed for
convenience and reference but were not thoroughly investigated.

1. Flooding Log files in Jobs Service

Summary

An authorized user can submit an unlimited number of invalid job requests. An invalid job
request may include submitting a job for a non-existent application ID or version number. After
an invalid job request is made, the respective error codes are logged in the logs directory of the
jobs-api container. Furthermore, the natural growth of the log files can also pose a similar
problem if not handled properly.

Result

The ability to submit unlimited job requests creates the potential for a denial of service attack.
Logs are gradually generated through either valid or invalid job requests, however, their growth
can be accelerated by authorized users submitting invalid job requests. Each unsuccessful job
request attempt generates a log entry within the jobs-api container. If not handled
appropriately, the log entries can fill the disk partition.

	About Trusted CI
	Acknowledgments
	Using & Citing this Work
	Table of Contents
	List of Figures
	Executive Summary
	1 Overview
	1.1 Background
	1.2 Methodology

	2 Overview of First Principles Vulnerability Assessment
	3 Architectural Analysis
	3.1 Attack Surface
	3.2 Architecture Diagram

	4 Resource Identification
	5 Trust and Privilege Analysis
	6 Component Evaluation
	6.1 Vulnerabilities Found
	6.1.1 Command Injection through Jobs Service
	6.1.2 Manipulation of Tapis JWTs
	6.1.3 Command Injection through Applications Service
	6.1.4 Outdated and Vulnerable Dependencies

	6.2 Places searched with no apparent issues found
	6.2.1 User Input Sanitization in Files Service
	6.2.2 Exceeding character limits in a request body schema of a request
	6.2.3 SQL Injections
	6.2.4 Cookies
	6.2.5 Race Conditions

	6.3 Additional Recommendations
	6.3.1 Stress Testing

	Appendices
	Appendix A: Vulnerability Report: TAPIS-2023-0001
	Appendix B: Vulnerability Report: TAPIS-2023-0002
	Appendix C: Vulnerability Report: TAPIS-2023-0003
	Appendix D: Vulnerability Report: TAPIS-2023-0004
	Appendix E: Software Bugs Encountered
	1. Flooding Log files in Jobs Service

