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Radomı́r Mielec
Published by the Czech Astronomical Society, Fričova 298, 251 65 Ondřejov, Czechia
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Introduction
Czech Astronomy Olympiad is divided into four age categories AB, CD, EF
and GH (from the oldest to the youngest). Each category is organized in
three rounds. The first round takes place at school with its main objective to
attract pupils to astronomy and motivate them for further work. In the second
(regional) round, participants are asked to solve more complex problems, as
well as to perform simple observations. The best participants proceed to the
national rounds held in Opava and Prague in March and May.
Each problem presented in this booklet comes with its name and ID code
containing information about the place of its original use in the Olympiad.
For instance, “CD/R/2” denotes the second problem in the regional round of
the CD category. Most problems have their answers shown in small print.
Majority of the competition problems are original work of the Czech AO or-
ganizers. Problem CD/N/7 was adapted from The ESA/ESO Exercise Series
booklets, problem AB/N/7 was adapted from IAO 2003. Credits for the rest
of the problems presented in this volume:
Jindřich Jeĺınek: CD/R/2, AB/N/5, CD/N/8; David Kománek: CD/N/5,
AB/N/2, CD/N/7, AB/R/3; Radka Kř́ı̌zová: EF/R/1, EF/N/1, EF/R/3;
Pavel K̊us: CD/N/1, CD/N/6, AB/R/2, CD/N/3, CD/N/4, AB/N/4; Jiř́ı
Kohl: CD/R/1, AB/N/7; Radomı́r Mielec: EF/N/2, AB/N/8; Marco Souza
de Joode: CD/N/2, AB/N/1, AB/R/3; Lukáš Supik: AB/R/1, AB/N/3;
Jakub Vošmera: AB/N/6, EF/R/2
The reader certainly would not be able to enjoy the problems in their present
form were it not for the careful reviews of Petr Kulhánek, David Břeň, Ota
Kéhar and Michal Švanda.
Finally, we want to express our gratitude to the director of the Prague Ob-
servatory and Planetarium, Jakub Rozehnal, and the vice-dean of Faculty
of Philosophy and Science of Silesian University in Opava, Tomáš Gráf, for
kindly providing the venue for the national rounds. We also thank Tomáš
Prosecký and Lenka Soumarová for helping to make the Czech Astronomy
Olympiad happen by providing administrative support.



Theoretical problems

Geometry, time and instrumentation

Watching the game CD/R/2
Consider an observatory which is equipped with a telescope with diameter
D ≃ 30 cm and focal length f ≃ 2.5 m. On a cloudy night, local astronomers
decided to point the telescope at a nearby residential area located at distance
s ≃ 1 km and watch a game of football on a TV through a window. They
were using an eyepiece with focal length f ′ ≃ 10 mm.
a) Find the angular magnification of the telescope. Assuming that the TV

screen has diagonal length u ≃ 80 cm, find the angular size of the screen
when it is viewed through the telescope. At what distance from the tele-
vision would a person have to stand to see it with the same angular size
with a naked eye?

b) As the telescope is set up for night-sky observations, it is focused at infinity.
Determine by how many millimetres do the astronomers have to move the
eyepiece in order to refocus on the television.

c) Since the astronomers think that the magnification is too small, they de-
cide to put a Barlow lens between the objective and the eyepiece. A Barlow
lens is a concave (diverging) lens, or a set of lenses that behave like a con-
cave lens. This particular Barlow lens has focal length fB ≃ 20 mm and it
was placed before the eyepiece at a distance a ≃ 30 mm from it. The lens
is firmly attached to the eyepiece, so that the two are moving together.
Find the distance by which the astronomers have to move the eyepiece
and Barlow lens in order to get the image back into focus.

d) By what factor did the magnification increase compared to the original
state without the Barlow lens?

[a) 250, 11◦, 4 m; b) 6.3 mm; c) 10 mm; d) 2]
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Stellar interferometry CD/N/1
Stellar interferometry is a technique used to produce high-resolution images
of stars by combining signals from two or more telescopes. Angular resolution
of the image is then determined based on the distance between the telescopes
and the wavelength of the observed light.
A star has an estimated diameter of 1.5 million kilometres and is located at a
distance of 10 parsecs from Earth. The star is observed by two telescopes at
a wavelength of 500 nm. The distance between the telescopes is 100 metres.
a) Find the angular diameter θstar of the star as seen from Earth.
b) Find the angular resolution θres of the interferometer at this wavelength.
c) Will the interferometer be able to resolve the disk of the star (YES/NO)?
d) Assume that an upgrade took place which enabled the interferometer to

work at a shorter wavelength of 250 nm. Determine the new angular reso-
lution θ′

res and decide whether the disk of the star can be resolved at this
wavelength (YES/NO).

[a) 4.86 × 10−9 rad; b) 6.1 × 10−9 rad; c) NO; d) 3 × 10−9 rad, YES]

π = 3 CD/N/2
A polar bear living at the North Pole has learned that the ratio between the
circumference of a circle and its diameter is always π = 3.1415926535 . . . . So
he decided he had to check this fact for himself.
The bear set off from the North Pole along a meridian towards the south, and
walked a distance ϱ, as measured along the surface of the Earth, to a point
A with latitude ϕ = π/2 − θ. At this point he made a right-angle turn and
walked along a parallel until he came back to the point A. In doing so, he
circumnavigated a circle of circumference ω. He expected to get

ω = 2πϱ ,

but instead he got
ω = 2Πθϱ ,

where Πθ plays the role of π. However, unlike π, it is not a constant but a
function depending on the angle θ. Note that the north pole corresponds to
θ = 0 and the south pole corresponds to θ = π radians.
a) Find the function Πθ and evaluate it for θ = { π

6 , π
2 , 5π

6 }. For what θ do
we have Πθ = 3?

b) Evaluate Πθ when θ = π and when θ → 0 but θ ̸= 0. Explain your results.
[a) Πθ = π sin θ

θ
, for θ = { π

6 , π
2 , 5π

6 } we have Πθ = {3, 2, 3
5 }, Πθ = 3 for θ = π/6; b) 0, π]
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Topocentric CD/N/5
It is midnight on the day of the vernal equinox. Observer 1 is positioned on
the equator and is privileged to see a perfect conjunction of Mars and Jupiter
exactly on the eastern horizon (the centers of their disks coincide).
a) Calculate the distance dM,1 of Mars and dJ,1 of Jupiter from Observer 1.

Assume that the orbits of all planets around the Sun are circles and that
they are confined to the plane of the ecliptic.

b) What are the corresponding distances which would have been measured
by Observer 2 who saw the conjunction at the exact same moment as
Observer 1 but was located at a place where Jupiter was at zenith? In
particular, find the differences dM,1 − dM,2 and dJ,1 − dJ,2. Watch out for
rounding errors.

c) Find the angular distance ∆ between the centers of the disks of the two
planets as seen by Observer 2. Will the disks overlap? Answer YES/NO
and justify your answer.

d) Find the azimuth A1 (measured from the south) at which can Observer 1
see the conjunction. Find the latitude φ2 of Observer 2.

Hint: for the sides a, b, c and the corresponding angles α, β, γ of a spherical
triangle, the laws of sines and cosines hold in the form

sin a

sin α
= sin b

sin β
= sin c

sin γ
,

cos c = cos a cos b + sin a sin b cos γ (and cyclic reorderings) .

Observer 2 decided to take a photo of the event using a telescope on an
altazimuthal mount. However, unlike an equatorial mount, this mount does
not guarantee that the field will not be rotated during a long exposure while
pointed towards an object.
e) Calculate the angle ω by which the field in the telescope rotates if the

observer starts taking pictures an hour after Jupiter was at zenith. Assume
that the exposure time was τ ≃ 5 min.

Hint: field rotation is associated with a change of the parallactic angle q,
which can be found at one of the vertices of the nautical triangle which is
displayed Figure 1.
[dM,1 ≃ 1.7 × 1011 m, dJ,1 ≃ 7.6 × 1011 m; b) dM,1 − dM,2 ≃ 6 377 900 m,
dJ,1 − dJ,2 ≃ 6 378 000 m; c) 6.0′′, YES; d) 19h 34m, −23.5◦; e) −15′]
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Figure 1: Nautical triangle: t denotes the hour angle, A azimuth, φ latitude,
δ declination, h altitude above the horizon and q parallactic angle. P marks
the north celestial pole, Z the zenith and S an object in the sky.

Nightmare of Gregory XIII. AB/N/1
The precession period of the Earth’s rotational axis is P ≃ 25 725 years and
is referred to as the Platonic year. It causes the first point of Aries to travel
along the ecliptic so that in ancient Greece, it could be found in Aries while
nowadays it is located in Pisces. In addition, the Earth’s orbit around the Sun
precesses with a period of approximately Π ≃ 112 000 years. This precession
is said to be positive, which means that it takes place in the direction of the
Earth’s orbit around the Sun. In the present epoch, the Earth passes through
its perihelion on January 3 and vernal equinox occurs on March 20 or 21.
The tropical year lasts YT ≃ 365.242 19 days. The Gregorian calendar uses
the following rules:

1. A non-leap year has 365 days.
2. If a year is divisible by four, then it is a leap year (it has 366 days).
3. If the year is divisible by 100, then it is not a leap year.
4. But if it is divisible by 400, then it is a leap year.

a) Determine the mean length of the Gregorian year YG (numerically in days).
Determine the time it takes for the Gregorian calendar to drift relative to
the seasons by one day.

b) Decide whether the point on the ecliptic where the Sun can be found at the
moment of Earth’s perihelion moves along the ecliptic in the same or in
the opposite direction as the first point of Aries. Justify your statement.
Determine how often these two points coincide (numerically in years).
Determine as precisely as possible the date and the year of the closest
such coincidence in the future.

[a) 365.242 5 d, 3225 years; b) opposite direction, 20 919 years, March 18-20, 6376 AD]
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OPAVA-1 AB/N/2
Due to continued bad weather, the regional round contestants decided to
launch a space telescope into Earth’s orbit. The OPAVA-1 mission has pri-
mary mirror with a diameter of D ≃ 20 cm and a sensitive CCD camera that
needs only N ≃ 100 photons to register a signal. Calculate the upper limit
mlim (in mag) on the magnitude of the stars that one can distinguish on im-
ages with exposure time τ ≃ 30 s. For simplicity, you should assume that
a star can, in principle, be imaged using only one pixel of the sensor, and
that stars radiate all of their power on the wavelength λ ≃ 500 nm. Neglect
atmospheric extinction and all noise sources.
[22.0 mag]

Solar system

Positional astronomy EF/R/1
Astronomers like to define a number of prominent positions of objects (plan-
ets) relative to the Sun and the Earth.
a) Assign the following prominent positions to the numbers 1 to 5 in Fig-

ure 2: opposition, superior conjunction, inferior conjunction, elongation,
quadrature. The letters S and E in the figure indicate the Sun and the
Earth.

b) Can an outer planet, such as Jupiter, ever be in conjunction (either supe-
rior or inferior) with the Sun when observed from the Earth?

c) Can an inner planet, such as Venus, be in opposition with the Sun when
observed from the Earth?

To characterize an orbit of a planet around the Sun, we will use a quantity
called angular speed (denoted by ω). It expresses the angular distance which
an object travels in its orbit per a fixed amount of time. In particular, over the
course of one orbital period T , the object completes one full orbit, that is, it
travels angular distance 360◦. The angular speed can therefore be calculated
as ω = 360◦

T . Throughout this problem, we will assume that both the Earth
and Mars orbit the Sun in circular orbits with constant angular speed.
When observing Mars from the Earth, a period of Tsyn ≃ 780 d passes between
two consecutive oppositions. This is referred to as the synodic orbital period.
The corresponding synodic angular speed is simply the relative angular speed
of the two planets as they orbit the Sun, namely
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2 23
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Figure 2: Prominent positions relative to the Sun and the Earth.

d) Given the value of the synodic orbital period of Mars, find its sidereal
orbital period TM,sid (in days, rounded to the nearest integer).

e) Based on the result you found in part d), use the 3rd Kepler’s law to
determine the semi-major axis aM (which, for a circular orbit, is the same
as the radius) of the orbit of Mars around the Sun (in astronomical units).

[b) YES; c) NO; d) 687 d; e) 1.52 au]

Transit of Venus EF/N/1

Two astronomers, a penguin and a capybara, want to measure the distance
between the Earth and the Sun. As they are both very smart, they thought
of an ingenious way of measuring this distance using an observation of Venus
as it transits across the solar disk. At the core of their method stands the
principle of parallax: this is an angular displacement in object’s apparent
position relative to the background which occurs when the object is viewed
from two different locations. In the case at hand, the role of the object will
be played by the planet Venus, which will be observed from two different
locations on Earth against the background of the solar disk. The penguin
will be stationed at the Tropic of Cancer while the capybara will set up her
observation post near the Tropic of Capricorn.
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Before they set on their endeavour to observe the transit, they have to collect
some important pieces of information. First, based on long-term observations,
they find the synodic orbital period of Venus to be Tsyn ≃ 583.92 d. As you
may remember from the regional round, this is the time which it takes for
Venus to return back to the same position relative to the Earth and the
Sun, such as the interval between two consecutive inferior conjunctions. In
addition, they of course know the sidereal orbital period of the Earth around
the Sun, namely TE,sid ≃ 365.25 d.
a) Draw a picture of the penguin or the capybara while observing the transit

of Venus.
b) Given the above data, calculate the sidereal orbital period of Venus around

the Sun TV,sid.
The two animals would like to use this result to determine the ratio of the
semi-major axes for the orbits of Venus and Earth. Fortunately, they can
recall the 3rd Kepler’s law.
c) Find the ratio p of the semi-major axes of Venus and Earth, that is

p = aV/aE.
The rest of the input which is required for determining the Sun-Earth distance
was obtained based on the Venus transit observations which were carried out
by the two animals. Let us denote the angular radius of the solar disk by ρ.
As the penguin and the capybara were observing the transit from two distinct
locations on the Earth’s surface, they experienced it somewhat differently. In
particular, to compare their observations, they plotted their recorded paths of
Venus across the solar disk in a single diagram that looked rather like the one
which is shown in Figure 3 (beware, it is not to scale!). The red line marks
the path of Venus as seen by the penguin, while the blue line corresponds
to the path observed by the capybara. Unfortunately, after they plotted the
observed trajectories, they found that the two lines are so close to one another
that measuring their angular distance ∆x based on the plot would be very
difficult and would yield inaccurate results. In other words, the parallax ∆x
of Venus against the background the solar disk turned out to be very small.
To their relief, they have eventually managed to come up with a more accurate
way of determining ∆x. Quite fortunately, they both remembered to note
down the exact times of the moments (the so-called contacts) when the disk
of Venus entered and left the solar disk. In general, during a transit event,
four contacts of the transiting object with the disk of the background object
can be distinguished. In the case of the Venus transit, these are the following
(see also Figure 4):

1st contact: while the disk of Venus is still completely outside of the solar
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∆x

ρ

Figure 3: The path of Venus projected onto the solar disk as seen by two
different observers on the Earth’s surface (the red line belongs to the penguin,
the blue to the capybara).

disk, the limbs have just touched and Venus is moving inside.
2nd contact: the disk of Venus is now completely inside the solar disk, but
the limbs are still touching.
3rd contact: Venus is still completely inside but having completed most of
the transit, the limbs got into touch again on the other side.
4th contact: the disk of Venus has just completely cleared the solar disk.

In Table 1, you can find the times of these contacts as recorded by each
astronomer.

Table 1: Times of individual contacts of the disk of Venus with the solar disk
as observed by the penguin and the capybara (in the HH:MM:SS format). t1
denotes the first contact, t2 denotes the second contact etc.

Observer t1 t2 t3 t4

penguin 10:31:48 10:54:13 15:53:55 16:16:20
capybara 10:27:21 10:49:46 15:58:22 16:20:47

d) Calculate the duration Tp and Tc (in seconds) of the transit of Venus
across the solar disk as measured by the penguin and by the capybara,
respectively. Consider the duration of the transit to be defined as the
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1.

2. 3.

4.

Figure 4: Contacts of the disk of Venus (grey) with the solar disk.

time which has elapsed between the two contacts of the center of the disk
of Venus with the limbs of the Sun.

e) Both animals also measured the angular speed of Venus relative to the
Sun. They both came up with a value of approximately ω ≃ 1.59◦ d−1.
Calculate the angular lengths lp and lc of the path of Venus across the solar
disk as seen by the penguin and the capybara (in arcmin), respectively.

To determine distances between the objects involved in this celestial align-
ment, it is instrumental to find the angular separation ∆x of the two recorded
paths of Venus on the solar disk, i.e. the parallax of Venus against the back-
ground of the solar disk. Before embarking on this calculation, you may find
it helpful to refer to Figure 5, where x denotes the perpendicular (angular)
distance of the path of Venus from the center of the solar disk. Assume that
the angular radius ρ of the Sun is equal to 16′.
f) Determine the value of ∆x in arcmin.
At this point, we must turn the parallax ∆x into a concrete result for the
linear distance of Venus from Earth. Here we have to be cautious as the
parallax ∆x was read off relative to a background which was not infinitely far
from the observer. In particular, we should use the general relation

L

D
= dobs

dobj
α ,

where α is the parallax in radians, L is the separation of the two observation
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l
2

ρ
x

Figure 5: Geometry of the transit of Venus across the solar disk.

posts measured along a line perpendicular to the Earth–object axis (a.k.a. the
base of the parallax), D is the distance of the object from the two observers
and finally, dobj and dobs = D + dobj are the distances of the object and the
observers from the background on which the parallax is projected. See also
Figure 6. We assume that the angle α is very small. We can see that in
the limit of infinite distance of the background from the observers and the
object, we can approximately write dobs/dobj ≈ 1 so that we recover the usual
relation for the parallax.

object  background

obs  

Figure 6: Parallax of an object on a finitely distant background.

g) Using the result of part c), determine the distance D = aE − aV, as well
as the distance aE between the Sun and the Earth. You may assume
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that the perpendicular separation L of the penguin and the capybara can
be calculated as L = RE sin 2ε ≃ 4 665 km, where ε ≃ 23.5◦ denotes the
inclination of the Earth’s axis of rotation with respect to the plane of the
ecliptic.1

[b) 225 d; c) 0.72; d) Tp ≃ 19 327 s, Tc ≃ 19 861 s; e) lp ≃ 21.34′, lc ≃ 21.93′; f) 0.27′;
g) D ≃ 42.8 × 109 m, aE ≃ 153 × 109 m]

Escape from the Solar System CD/R/1
If a spacecraft is to be sent to the outer planets of our Solar System or beyond,
it needs to be accelerated to a relatively high speed. As it is very expensive to
accelerate the spacecraft to such a speed using only fuel, gravitational effects
of other planets are commonly used to provide additional boost. To this end,
before the spacecraft reaches its intended destination, it can be guided to pass
close to other planets to perform a gravitational slingshot maneuver. This has
the effect of providing the spacecraft with a greater heliocentric speed than it
had before the flyby.
Consider a spacecraft which leaves the Earth’s sphere of gravitational influence
at a speed v0 (relative to the Sun) in the direction of the Earth’s orbital
motion. The spacecraft then approaches Mars with heliocentric speed v1 and
its orbit intersects the orbit of Mars at an angle α, see Figure 7.
In the following questions, you should assume that both the Earth and Mars
orbit the Sun along circular trajectories with radii aE and aM, respectively.
While, at a generic location within the Solar System, it is the gravitational
field of the Sun that has the dominant effect on the motion of the spacecraft,
you can assume that when the spacecraft passes close to Mars, the gravita-
tional field of the planet dominates.
In order to make your expressions more transparent, you will find it convenient
to introduce the dimensionless parameters

χ = aE

aM
, η =

(uE

v0

)2
,

where uE =
√

2GM⊙/aE. Numerically, χ is equal to the radius of the Earth’s
orbit in multiples of the radius of the orbit of Mars, while η is equal to the
ratio of squares of the escape velocity from the distance aE from the Sun and
the speed v0 of the probe when it leaves the Earth.
a) Find v1, as well as cos α, in terms of v0 and the parameters χ and η.

1Here we take advantage of the fact that the shortest line connecting the planes of the
tropic of Cancer and Capricorn is parallel to the Earth’s axis of rotation and therefore
always makes an angle of 90◦ − ε with the plane of the ecliptic.
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Sun
Earth

Mars

v0

v1

α

Figure 7: Schematic representation of the motion of the spacecraft between
the planets.

The spacecraft enters the sphere of gravitational influence of Mars at a velocity
v′

1 relative to the rest frame of Mars. Let us denote by β the angle which
this velocity makes with the direction of Mars’s motion. After the flyby, the
direction of this velocity changes by an angle θ as indicated in Figure 8. Let
us denote the orbital speed of Mars around the Sun as vM.
b) Determine the heliocentric speed v2 of the spacecraft after it escapes the

gravity of Mars. Express your result in terms of the angles θ, β and the
speeds v′

1 and vM.
It can be shown that the angle θ can be computed as

tan θ

2 = GM

bv′2
1

,

where M is the mass of Mars and b is the impact parameter of the space-
craft trajectory (perpendicular distance from Mars of the line along which
the spacecraft approaches Mars in its rest frame, see Figure 8). The magni-
tude of b can be varied independently of the other parameters.
c) Formulate a criterion on the value of the impact parameter b (and hence

the deflection angle θ) which maximizes the speed v2 for a given value of
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Mars

vM

v′
1

v′
1

θ

b

Figure 8: Geometry of the Mars flyby.

v′
1. For the sake of simplicity, you should neglect any effects due to non-

zero dimensions of Mars. Find this maximum speed v2,max as a function
of the initial speed v0 and the parameters η, χ.

d) Find the minimum value of the initial heliocentric speed v0 which would
enable the spacecraft to leave Solar System using the gravitational sling-
shot maneuver involving Mars. Express your result as a multiple of uE.
Consider the radii of the circular orbits of the Earth and Mars around the
Sun to be aE ≃ 1 au and aM ≃ 1.524 au.

[a) v1 = v0
√

1 − η (1 − χ), cos α = v0aE/(v1aM) = χ/
√

1 − η (1 − χ);

b) v2 =
√

v′2
1 + v2

M + 2v′
1vM cos (β − θ);

c) v2,max/v0 =
√

ηχ/2 +
√

1 − η + (3/2)ηχ − χ
√

2ηχ; d) 0.838uE ≃ 35 km s−1]

Gravitational deflection CD/N/6
In this problem, we will imagine a near catastrophic scenario when an asteroid
arrives in Earth’s close vicinity. Fortunately for mankind, it does not collide
with the Earth, but instead just flies by and changes its direction. The angle
between the incoming geocentric velocity vin and the outgoing geocentric
velocity vout of the asteroid will be referred to as the deflection angle and
denoted by ∆. See also Figure 9. Your sole job in this problem will be to
derive an expression for ∆.
Before attempting this calculation, let us remind ourselves of a number of
basic facts about the motion of particles in a central gravitational force field.
Denoting by M the mass of the central gravitating body and by m the mass
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Figure 9: Illustration of gravitational deflection. The figure is not entirely
accurate, as the vectors vin and vout are supposed to represent the velocity of
the incoming and outgoing particle at infinity (that is, outside of the sphere
of influence of the gravitational field). The two dashed straight lines will be
referred to as the incoming and outgoing asymptotes.

of a test particle moving in the gravitational field generated by M , the total
mechanical energy E of the particle along its trajectory can be expressed as

E = 1
2mv2 − GMm

r
,

where r is the separation of the test particle from the central body and v
is its instantaneous speed. The strength of the gravitational interaction is
measured by the Newton’s constant G ≃ 6.67 × 10−11 N m2 kg−2. The energy
E is a constant of the particle’s motion in the field generated by M .
The types of trajectories along which the particle can move fall into the fol-
lowing three classes based on the value of E:

1. E < 0: The trajectory is an ellipse or a circle. The test particle is
gravitationally bound to the central body M (i.e. it can never escape to
infinity).

2. E = 0: The trajectory is a parabola. The test particle is not bound to
the gravitating body but its speed at infinity will be exactly zero.

3. E > 0: The trajectory is a hyperbola. Again, the test particle is not
gravitationally bound to the central body and can escape to infinity
where its speed will be non-zero.

The focus of this problem will be on the case where the test particle (an
asteroid) moves in the Earth’s gravitational field along a hyperbola. A couple
of comments special to this type of trajectory are therefore in order (see also
Figure 10 for illustrations):
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• Similar to the case of an ellipse, we define the major and minor semi-
axes a and b, linear eccentricity e =

√
a2 + b2 and numerical eccentricity

ϵ = e/a =
√

1 + b2/a2.
• A hyperbola has two foci, which we denote by M and F. While the focus M

is the location of the gravitating body M , the focus F is generally empty.
• A hyperbola is a curve which consists of two disconnected pieces which

are called branches. The test particle moves along the branch which is
adjacent to the focus M.

• A hyperbola has two asymptotes. These are straight lines that are ap-
proached by the branches as one moves further away from the foci. The
test particle arrives along the incoming asymptote (Asymptotein in the
figure) and departs along the outgoing asymptote (Asymptoteout in the
figure).

Figure 10: Geometry of a hperbola.

At this point, let us introduce one more quantity, namely the impact parameter
b∞. This measures the distance between an asymptote and its parallel that
passes through a focus, as shown in Figure 11.
We will find it useful to know the relationship between the energy E > 0 of
the test particle and the semi-major axis a > 0 of the hyperbola along which
it moves. This reads

E = GMm

2a
.

Energy is not the only quantity which is conserved as the test particle moves
in the gravitational field of the central body M : another constant of motion
is provided by the angular momentum of the particle, whose magnitude can
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Figure 11: Impact parameter.

be expressed as
L = mvr⊥ ,

where r⊥ is the distance between the straight line generated by the velocity
vector of the particle (i.e. the straight line along which the particle would start
moving if the gravitational interaction were to be instantaneously turned off)
and its parallel, which passes through the focus M. For example, if the particle
is at infinity, we simply have r⊥ = b∞. The angular momentum of such a
particle then has magnitude

L = mv∞b∞ ,

where v∞ denotes the speed of the particle at infinity.
This much for an introduction, it is now time for you to tackle to following
questions.
a) The asteroid arrives to the Earth along the an incoming asymptote with

geocentric velocity vin whose magnitude we will denote by v∞. Find the
semi-major axis a in terms of G, the mass of the Earth M and v∞.

b) Find the distance bc of the asteroid’s closest approach to the center of the
Earth. Express your answer in terms of a and the impact parameter b∞
of the asteroid’s trajectory.

c) Assuming that the asteroid approaches the Earth as close as the orbit of
the Moon (whose radius we will denote by R), find the impact parameter
b∞ in terms of a a R.

d) Find an expression for the numerical eccentricity of the asteroid’s trajec-
tory in terms of the semi-major axis a and the impact parameter b∞.
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Hint: particle with energy E and angular momentum L moves along a tra-
jectory with eccentricity

ϵ =
√

1 + 2L2E

G2M2m3 .

e) Find the minor semi-axis b of the asteroid’s trajectory as a multiple of b∞.
f) Having passed by the Earth, the asteroid departs towards infinity along the

outgoing asymptote which makes an angle ∆ with the incoming asymptote.
Find tan ∆

2 in terms of a and b∞.
g) Recast the expression for ∆ you found in part f) in terms of the quantities

G, M , R and v∞. Find an approximation to this result in the regime
GM/Rv2

∞ ≪ 1.
Hint: the function tan x can be expanded into a power series whose leading
terms are

tan x = x + x3

3 + 2x5

15 + . . . ,

h) Compute ∆ numerically for M ≃ 5.974 × 1024 kg, v∞ ≃ 10 km s−1, R ≃
3.84 × 105 km and G ≃ 6.67 × 10−11 N m2 kg−2.

[a) a = GM/v2
∞; b) bc = −a +

√
a2 + b2

∞; c) b∞ = R
√

1 + 2a/R; d) ϵ =
√

1 + b2
∞/a2;

e) b = b∞; f) tan(∆/2) = a/b∞;
g) ∆ = 2 arctan

[
(GM/Rv2

∞)(1/
√

1 + GM/Rv2
∞)

]
≈ 2GM/Rv2

∞; h) ∆ ≃ 1.2◦]

Disintegrating moon AB/R/1
The gas giants in our Solar System generate strong enough gravitational fields
to allow them to retain tens of moons and moonlets. Closer to these planets,
their gravity can become so strongly varied that it would cause an entire
moon to break up, thus forming a ring. In this problem, you will find the
limiting distance between a moon and a planet at which the moon begins to
disintegrate.
Consider a planet with radius R and density ρp together with its moon with
radius r and density ρm. We will examine two modes in which the moon
can rotate about its axis: a non-rotating moon and a tidally locked moon.
Owing to the complexity of this problem, we will adopt several simplifying
assumptions. In particular, we will assume that 1. the mass of the moon is
much less than the mass of the planet, 2. the planet remains at rest while the
moon revolves around it along a circular trajectory of radius d, 3. the moon
is a rigid and homogeneous sphere which does not yield to any deformations
caused by inhomogeneities of the planet’s gravitational field, and finally, 4. the
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radius of the moon is much smaller than the radius of its trajectory around
the planet, that is r ≪ d.
a) Produce a sketch of the planet with the moon and mark (with the letter

A) the point on the moon’s surface which is closest to the planet. The
point A moves along a circular path around the planet. Determine the
radius of this orbit for both modes of the moon’s rotation.

b) In both cases, find the square of the angular speed ω of the point A.
c) Imagine that an observer is located at the point A on the surface of the

moon. For both modes of rotation, find the total acceleration which she
experiences. Consider both modes of rotation. In the case of a non-
rotating moon, compute the acceleration at the instant when the point A
is closest to the planet.

d) Consider now that the radius of the moon’s orbit slowly decreases. What is
the distance at which the moon starts to disintegrate? Again, you should
work out the answer separately for both modes of rotation.

Hint: set the total acceleration to zero and use the binomial approximation
(1 + x)n ≈ 1 + nx for x ≪ 1.
[a) d − r, d; b) ω2 = 4πR3ρpG/3d3, same for both cases of rotation;
c) 4πG

3

[
R3ρp/d2 + rρm − R3ρp/(d − r)2

]
, 4πG

3

[
R3ρp(d − r)/d3 + rρm − R3ρp/(d − r)2

]
;

d) 3
√

3R3ρp/ρm, 3
√

2R3ρp/ρm]

Tisserand’s invariant AB/N/6
Close approaches between the planets and minor bodies (asteroids or comets)
of Solar System are very common. As a consequence, the orbits of minor
bodies can change drastically over a very short time interval. The aim of this
problem will be to construct a certain function (the Tisserand’s parameter) of
orbital elements, such that its value remains unchanged when the asteroid’s
orbit is perturbed as a result of a close encounter with a planet. It should
follow that this quantity is very useful for studying apparent discontinuities
in orbital evolution of minor bodies in Solar System.
Consider a setup in which an object (a planet) of mass m orbits in a circular
trajectory with radius R around a large central body (a star) of mass M ≫ m.
a) Write down an expression for the orbital speed V of the planet around the

central star in terms of G, M and R.
In addition, let us consider a small object (an asteroid) with mass µ ≪ m ≪
M , which orbits the central star in an elliptical trajectory with semi-major
axis a and eccentricity e. Let us denote by i the inclination of the asteroid’s
orbit with respect to the plane of the planet’s orbit. For the sake of simplicity,
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let us first assume that i = 0.
b) Write down an expression for the speed v of the asteroid as it passes at

the distance R from the central body. Express your result in terms of V, R
and a.

c) Find the projection v∥ of the asteroid’s velocity in the direction tangent
to the planet’s orbit. Express your result in terms of V, R, a and e.

Now suppose that a close approach between the asteroid and the planet takes
place.
d) Calculate the speed u (relative to the planet) at which the asteroid enters

the planet’s sphere of gravitational influence. Express your result in terms
of the quantities V, R, a and e.

e) Discuss what adjustments would need to be made to the result of part c)
for the projection v∥ in the case of a non-zero inclination i.

f) Similarly, explain how your answer in part d) would change in the case
of non-zero inclination i. In particular, express u in terms of V and the
Tisserand’s parameter

T = R

a
+ 2

√
a

R
(1 − e2) cos i .

This we can understand as a function T (a, e, i) of the orbital elements a, e
and i of the asteroid.

The elements of the asteroid’s orbit are expected to change as a consequence
of the close encounter with the planet. Let us denote their new values as a′, e′

and i′.
g) Justify why the value of the Tisserand’s parameter of the asteroid’s orbit

does not change after the asteroid makes a close encounter with the planet.
In other words, show that

T (a, e, i) = T (a′, e′, i′) .

In October 2018, the asteroid 2018 UA was observed to exhibit a sudden
change in its orbital elements: the original values a ≃ 2.873 × 1011 m, e ≃
0.5470, i ≃ 6.368◦ changed within a few days to new values a′ ≃ 2.080×1011 m,
e′ ≃ 0.4474, i′ ≃ 2.644◦. It is therefore natural to suspect that the asteroid
underwent a close flyby either at the Earth or at Mars.
h) Calculate the orbital radius R of the perturbing body. Use this result to

decide whether the planet passed by the Earth or Mars. For the sake sim-
plicity, assume that the orbital inclination of the perturbing body relative
to the plane of the ecliptic was zero.
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[a) V =
√

GM/R; b)
√

2 − R/a V ; c)
√

(a/R)(1 − e2) V ;

d)
[
3 − R/a − 2

√
(a/R)(1 − e2)

]1/2
V ; e)

√
(a/R)(1 − e2) V cos i; f) u =

√
3 − T V ;

h) R =
{

[(2aa′)/(a′ − a)][
√

a′(1 − e′2) cos i′ −
√

a(1 − e2) cos i]
}2/3

, 1.499 × 1011 m,

Earth]

Stellar astronomy and radiation

How hot is it inside a star? AB/R/2
Stars can be thought of as dense spherical clouds of hot, ionised gas that
continue to emit radiation for billions of years due to thermonuclear fusion
of hydrogen into helium taking place in their core. In this problem, you will
take a closer look at certain aspects of this process.
Let us model a star as a sphere made of pure ionized hydrogen (protons and
electrons equally distributed in the star) which, to a good degree of approxi-
mation, behaves as an ideal gas. From the point of view of classical physics,
the fusion of two hydrogen nuclei (as point objects) can occur whenever they
come within each other closer than d ≃ 10−15 m. This is the scale at which the
strong interaction starts to dominate, and the repulsive Coulomb interaction
can no longer prevent the nuclei from fusing.
a) Assuming that the protons inside the star move with the root-mean-

square velocity vsq,p, estimate the minimum temperature T of the ideal
gas inside the star which would enable the nuclei to come within the dis-
tance d ≃ 10−15 m from one another. Ignore the loss of energy due to
bremsstrahlung.

To decide whether this calculation does or does not give a reasonable estimate
of the temperature inside a star, we need find another independent way of
computing it.
To this end, it proved convenient to invoke the condition that, as a whole,
the star needs to be in hydrostatic equilibrium. This is an intricate balance
between the star’s tendency to collapse under its own gravity on one side, and
a pressure gradient which is fed a decreasing temperature profile on the other.
Mathematically, this can be expressed as

−∆P

∆r
= Gm(r)ρ(r)

r2 ,

where R is the radius of the star, 0 ⩽ r ⩽ R denotes the distance from the
center of the star, ρ is the density and m(r) denotes the total mass of the star
deposited at radii less then r. On the other hand, on the left hand side, ∆P
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denotes the difference in the pressure above and below a thin spherical shell
of thickness ∆r. Finally, G is the gravitational constant.
b) Use the equation of hydrostatic equilibrium to estimate the temperature

T of the ideal gas in the core of a star. Your result should only depend
on the mass and the radius of the star, as well as on some fundamental
constants. You should ignore all complexities involved in dealing with
structure of real stars.

c) Using the result of part b), find the ratio M/R as a function of temperature
and fundamental constants only.

d) In part a), you have determined a lower bound on the temperature T which
followed from classical considerations involving the microscopic details of
the processes leading to thermonuclear fusion. Upon substituting this
temperature into the relation for M/R derived in part c), this would, in
principle, give a lower bound (M/R)min on this ratio. Find this lower
bound numerically and compare with the value of M⊙/R⊙. What does
this result mean? Comment briefly.

Your results in part d) should prompt you to revisit the calculation we did in
part a). In particular, let us now take into account the quantum (wave) nature
of the two colliding protons. This should yield an improved estimate for the
minimum core temperature of a star in order for a thermonuclear reaction to
take place.
Let us denote the de Broglie wavelength of a particle with velocity vsq,p as λp.
With this concept in mind, one can note that due to the onset of quantum
tunneling, the distance at which the two protons need to come to each other
in order for fusion to occur is in fact d = λp/

√
2.

e) Find an improved estimate for the minimum temperature T which is re-
quired in order for thermonuclear fusion to take place (taking quantum
behaviour into account).

f) Use this estimate to reasses the lower bound on the ratio M/R computed
in part d). Comment briefly.

In part f), you should have found that the lower bound on the ratio M/R
can be expressed only in terms of fundamental constants. It would therefore
appear that the mass of a star which burns hydrogen in its core can, in
principle, be arbitrarily small. We will now see that this is not entirely true,
because as M decreases, one of our key assumption breaks down.
In order for the gas which forms a star to be considered ideal, the mean dis-
tance between the gas particles must be greater than their de Broglie wave-
length.
g) Show that electrons have a larger de Broglie wavelength than protons at
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the same temperature.
The mean distance de between electrons must be greater than their de Broglie
wavelength λe, otherwise the electron gas would become degenerate and would
have different properties than if it were ideal.
h) Use this information to determine the minimum mass and minimum radius

of a star so that electrons can still be considered an ideal gas. Express
your results in multiples of the radius and the mass of the Sun.

[a) 5.6×109 K; b) GMmp/(2kR); c) M/R = 2kT /(Gmp); d) (M/R)min ≃ 1.4×1024 kg m−1,
(M/R)Sun ≃ 2.9 × 1021 kg m−1; e) q4mp/(24π2ϵ2

0kh2) ≃ 9.8 × 106 K;
f) q4/(12π2Gϵ2

0h2) ≃ 2.4 × 1021 kg m−1; g) λ = h/
√

3kT m;
h) (1/

√
2)[ϵ1/2

0 h2/(qm
3/4
e m

5/4
p G1/2)] ≃ 0.10RSun, 0.09MSun]

Solar power plant maintenance AB/N/3
An advanced civilization decides to cover part of its electricity demand by
building a photovoltaic power plant in space. By positioning the solar panels
perpendicular to the incoming radiation from the star around which their
planet orbits, they are able to ensure that the panels receive the maximum
possible flux k = 1 400 W m−2. One of the problems which the power plant
maintenance team has to deal with is the declining efficiency of the panels
which, initially, was as much as 50 %. When the efficiency drops down to 30 %,
the engineers are required to replace the panel with a new one. However, to
make the matter more complicated, the rate of degradation of the panels is
highly inhomogeneous. Therefore, it certainly would not pay off to replace all
panels after a certain period of time has elapsed since installation. To detect
which panels should be scheduled for replacement, engineers came up with the
idea to monitor the efficiency of the loaded panels with a thermal camera (a
panel is said to be loaded when it is connected to the power grid from which
electricity is drawn).
a) Assume that a critical panel temperature Tc corresponds to the panel

having an efficiency of 30 %. Decide whether one should replace all panels
with a lower or a higher temperature than Tc.

b) Determine the critical temperature Tc of a loaded solar panel with an
efficiency of 30 % which is in thermodynamic equilibrium with its sur-
roundings. Assume that the panel takes the shape of a planar plate that
absorbs all incident radiation and radiates as a black body from both its
surfaces. Find also the temperature of a new panel Tn with an efficiency
of 50 %. Express both temperatures in K.

[a) higher; b) Tc ≃ 305 K, Tn ≃ 280 K]
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Binary systems, clusters and exoplanets

The binary β Aur EF/R/2
In this problem, we will be dealing with multiple star systems which are
called spectroscopic binaries. These are binaries whose components were only
resolved based on the measurements of their combined spectrum.
Due to the so-called Doppler effect, the observed wavelength of radiation can
change depending on the relative speed of the observer and the object which
emits the radiation. As the individual stars in a binary system orbit around
their center of mass, it follows that this motion will be reflected in the positions
of spectral lines in the combined spectrum of the two components.
In Figure 12, a time series of spectra of the binary system β Aur is shown.
As we can see, particular emphasis is put on the region around the Hα line,
whose laboratory wavelength is equal to λlab ≃ 656.281 nm. The spectra
were obtained using the Lhires III instrument of the Club d’Astronomie de
Lyon-Ampère (CALA). At the same time, β Aur is an eclipsing variable star,
whose light curve (obtained by the satellite WIRE) is displayed in Figure 13.
In both figures, time dependence is indicated in terms of the so-called orbital
phase: a number which uniformly increases from 0 to 1 over one orbital period,
where the values 0 and 1 correspond to the primary minimum. Both types
of measurements (spectroscopic and photometric) yield the same value of the
binary’s orbital period, namely P ≃ 3.960 d.
In the following questions, we will assume that the stars orbit uniformly in
circular orbits around the common center of mass of the system and that our
line of sight passes through the orbital plane.
a) Determine the mean value λ0 of the wavelength about which the two

components of the spectral line Hα oscillate in time. Give the result in
nm to two decimal places.

b) Decide whether the barycenter of the system is moving towards or away
from the observer.

c) Find the radial speed vr with which the system approaches or recedes from
the observer. Express your result in km s−1 to two significant figures.

d) Determine the maximum displacement ∆λ of the two components of the
Hα line from the mean wavelength λ0. Give the result in nm to two
decimal places.

e) Make schematic drawings showing the binary system at the times corre-
sponding to the phases 0, 0.25, 0.5 and 0.75 when viewed from above the
orbital plane. In each drawing, mark 1. the direction to the observer, 2.
the positions of the two stars, 3. the position of the barycenter of the sys-
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(a) (b)

Figure 12: A time series of spectroscopic measurements of β Aur. An
interval of wavelengths around the position of the Hα line is shown. In Figure
(a), the spectra are represented by plotting the measured intensity against
the wavelength. The orbital phase corresponding to the moment at which a
spectrum was measured can be read off the vertical axis. In Figure (b), the
actual images of the spectra are shown. Credits: CALA.
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Figure 13: Light-curve of the binary β Aur. Credits: Southworth et al.
(2007).

tem, as well as 4. the line joining the two components and the barycenter.
What can you say about the ratio of the masses of the two components?

f) Calculate the maximum radial speed vm of each star relative to the ob-
server. Give the result in km s−1 to three significant figures.

g) Determine the orbital speed vo of the two components.
h) Find the orbital radii r of the stars around the barycenter. Express your

result in au to two decimal places.
i) Find the magnitude ad of the centripetal acceleration which the two stars

experience in their orbits. Express your result in terms of vo and r.
Recalling the 2nd Newton’s law, we can realize that the magnitude of the
centripetal acceleration of the first star must be equal to the magnitude of
the gravitational force per unit mass (of the first star) exerted on the first
star by the second star. And vice versa.
j) Determine the mass M of each star. Express your result as a multiple of

solar masses.
[a) 656.24 nm; b) approaching; c) 19 km s−1; d) 0.24 nm; e) the two components have iden-
tical mass; f) 110 km s−1; g) vo = vm; h) 0.04 au; i) v2

o/r; j) 2.2M⊙]
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The Sun and Jupiter EF/N/2
The Sun makes up for almost 99.87 % of the total mass of the Solar System.
Jupiter accounts for another 0.10 % of the mass, while the remaining objects
represent only 0.03 % of the total mass. We are therefore well justified (at least
for the purposes of the following problem) to reduce the entire Solar System
down to just the Sun and Jupiter. You should assume that the distance of
Jupiter from the Sun is r ≃ 5.2 au and that the masses of these two objects
are M⊙ ≃ 1.99 × 1030 kg and MJ ≃ 1.90 × 1027 kg.
Any two massive bodies influence each other by the gravitational force, whose
magnitude we denote by Fg. If the two bodies are to orbit along circular
trajectories in an inertial reference frame where no other forces act, the grav-
itational force acting on any of the two bodies must be put equal to the cor-
responding centripetal force, whose magnitude we denote by Fc. Moreover,
the following relations hold

Fg = Gm1m2

R2 , Fc = mv2

r
,

where G is the Newton’s gravitational constant, m1 and m2 are the masses
of the two bodies and R is their separation. Furthermore, v and r are the
orbital velocity and the orbital radius of the body on which the centripetal
force Fc acts.
a) Let us first assume that, from the point of view of the inertial reference

frame, Jupiter orbits along a circle whose center coincides with the center
of the Sun. By identifying the gravitational force with the centripetal
force, determine the speed vJ of Jupiter in its orbit. Give the result in
meters per second rounded to the nearest integer.

However, in reality, both the Sun and Jupiter turn out to undergo orbital
motion relative to an inertial reference frame. In particular, the two bodies
turn out to move along circles which are centered at a common point. You
should also take it as given that this point always lies on the Sun-Jupiter axis.
In particular, it follows that the two bodies orbit uniformly in circles with the
same period.
b) Find the orbital periods of both the Sun and Jupiter (P⊙ and PJ) in terms

of their orbital speeds v⊙, vJ and their orbital radii r⊙ and rJ.
c) Compare the magnitude of the gravitational force exerted on Jupiter by

the Sun with the magnitude of the gravitational force acting on the Sun
due to Jupiter. Express your result in newtons to 3 significant figures.

d) As the Sun and Jupiter orbit in an inertial reference frame in circular
orbits around a common point, the gravitational forces acting on each of
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the two bodies must be equal to the centripetal forces which keep them
on their circular trajectories. Using the result you obtained in part c),
compare the centripetal forces acting on the two bodies. Moreover, using
your results from part b), express the ratio r⊙ : rJ of the orbital radii in
terms of the ratio of the masses of the two bodies. Is the common center
of the two orbits significant in any way?

e) Finally, noting that r = r⊙ +rJ, find the distance r⊙ of the common center
of the two orbits from the Sun. Is the common center inside or outside
the Sun?

[a) vJ =
√

GM⊙/r ≃ 13 062 m s−1; b) P⊙ = 2πr⊙/v⊙, PJ = 2πrJ/vJ; c) same magnitude
Fg ≃ 4.17 × 1023 N; d) M⊙/MJ = rJ/r⊙, center of mass; e) 4.96 × 10−3 au, outside]

Eclipsing binary CD/N/3
Astronomers observe a binary system which consists of two stars with different
temperatures and radii. When the disks of the two stars do not overlap, the
binary has a magnitude of m ≃ 15.00 mag. On the other hand, when the
smaller star passes in front of the larger star, the observed magnitude increases
to me ≃ 15.15 mag. You should assume that at the moment corresponding to
the middle of the transit, the centers of the two disks coincide. Spectroscopic
measurements show the peak wavelength of the larger star is λ1 ≃ 290 nm
while peak wavelength of the smaller star is λ2 ≃ 580 nm. Find the ratio
R1/R2 of the radii of the two stars (where R1 denotes the radius of the larger
star).
[2.77]

Binary system CD/N/4
The circular orbits of the components of a binary system with period P ≃ 80 d
appear on the sky as two identical and concentric ellipses with eccentricities
ϵ1 = ϵ2 =

√
3/2 whose semi-major axes have angular sizes α1 = α2 ≃ 0.2′′. It

is also determined that in the combined spectrum of the binary, the line Hα

(laboratory wavelength λ0 ≃ 656.28 nm) periodically splits into two compo-
nents with maximum separation ∆λmax ≃ 0.4 nm. Determine the masses M1,
M2 of the components of the binary (in solar masses) and the distance d to
the system (in parsecs).
[M1 = M2 ≃ 39M⊙, d ≃ 3.9 pc]
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Cosmology and relativity

Gravitational refraction AB/N/4
In one of his (unpublished) adventures, the Little Prince landed on the surface
of the neutron star HESS J1731-347, which has the smallest mass among all
known neutron stars. On a whim, he looked up at the sky and started counting
the stars which he can see. After a moment, he realized that he was able see
a considerably large portion of the sky than from his nearby-located home
planet. Determine the fraction p of the sky that the Little Prince can see if
the neutron star in question has mass M ≃ 0.8M⊙, radius R ≃ 10 km and a
very large rotation period. You should assume that the Little Prince is really
little, so that you can ignore his height.
Hint: general relativity predicts that light-rays passing through the gravi-
tational field of a non-rotating, uncharged spherically-symmetric body are
deflected by an angle

∆ = 2η +
(15

16π − 1
)

η2 −
(15

16π − 61
12

)
η3 + . . . ,

where η = 2GM/(rminc2) and rmin is the smallest radial distance at which
the light-ray approaches the center of the gravitating body.
[65 %]

Beetle Baggins the astronomer AB/N/5
Not many people know this, but Beetle Baggins2 was a decent amateur as-
tronomer. He therefore hardly caught off his guard when one day, he found
himself on a reconnaissance spacecraft with mass m ≃ 1.0 t at an unknown
place in our Galaxy. First, he used the directions to distant stars to define
a Cartesian coordinate system (x, y, z) with its origin corresponding to the
position of his spacecraft.
After a short while, Beetle Baggins noticed that at a distance ε ≃ 3.0 km in
the positive direction of the x axis, there is a spacecraft which is precisely
identical to his. However, he does not notice the nearby Schwarzschild black
hole with mass M ≃ 1.0 M⊙ at a distance r ≃ 7.0 × 105 km in the negative x
direction because he is unable to see it. The just-described configuration of
the three objects at the time t = 0 is shown in Figure 14. You should assume
that both spacecraft orbit the black hole in circular orbits in the (x, y) plane.

2https://cs.wikipedia.org/wiki/Brouk_Pytl%C3%ADk (in Czech)

https://cs.wikipedia.org/wiki/Brouk_Pytl%C3%ADk


Theoretical Problems 33

black hole
Baggins’s spacecraft the other spacecraft

x

y

remote star

remote star

r ε

Figure 14: Positions of the two spacecraft and the black hole at the time
t = 0 in the “top” view (from the positive direction of the z axis). Beetle
Baggins sits in the spacecraft closer to the black hole. The two spacecraft
orbit the black hole in the (x, y) plane. The coordinate system is defined
relative to the distant stars.

Beetle Baggins is well equipped with instruments with which he can measure
1. time, 2. positions and brightness of nearby stars, 3. the distance to the
other spacecraft and 4. its position relative to the stars. Unfortunately, he is
unable to control the motion of his own spacecraft.
First, let us be clear about what approximations we can afford to use.
a) Justify that the effects of general relativity can be neglected, and, although

both spacecraft orbit a black hole, use of classical physics will suffice.
b) Find the force Fs (in N) that the two spacecraft exert on each other. Find

the change ∆l (in m) in the distance of the two spacecraft over a period
of 1 year if it were not for the presence of the black hole and if the two
spacecraft started at zero relative speed. Based on these results, decide
whether it is necessary to consider the mutual gravitational interaction of
the two spacecraft (at short enough time scales).

Hint: in parts c) and d) you may find the following approximate relations
(which hold for |x| ≪ 1) useful

(1 + x)n ≈ 1 + nx , n ∈ R , |x| ≪ 1/|n|
sin(x) ≈ x ,

cos(x) ≈ 1 .

You may also need to make use of the following relations for trigonometric
functions

sin(α ± β) = sin α cos β ± cos α sin β ,

cos(α ± β) = cos α cos β ∓ sin α sin β .
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c) Find the period T and the angular speed ω with which the spacecraft of
Beetle Baggins orbits the black hole. Find the difference ∆ω of the angular
speed of the two spacecraft.

d) Beetle Baggins observes that the other spacecraft is moving relative his
rest frame. Find its position vector (x(t), y(t)) as a function of time. You
should work on a time scale such that |∆ω t| ≪ 1. You may neglect any
terms containing ε∆ω, ε2, ∆ω2 or higher powers thereof, as these are
negligibly small quantities.

Beetle Baggins kept observing the other spacecraft for many orbits around
the black hole. (Remember that Baggins is unaware of the black hole!) He
found that the other spacecraft was spiraling away from him. We are now
talking about a time scale t which satisfies

ε

r
≪ 1

ωt
≪ 1,

You can use these assumptions in all remaining parts of the problem.
Beetle Baggins is no chump and has studied astronomy from books, so he
interpreted the increasing separation of the two spacecraft as a consequence
of the expansion of the universe. The distance between the two spacecraft can
be determined e.g by measuring the delay in radio communication (he has a
very accurate clock).
e) What Hubble constant H ′ did Baggins arrive at based on his observations?

First, write down an expression for H ′ as a function of time and then
evaluate it (in km s−1 Mpc−1) after the spacecraft completed N = 100
orbits around the black hole since t = 0.

f) Are there ways of determining whether Baggins was interpreting his mea-
surements correctly? Name at least one method which Beetle Baggins
could have used to debunk the wild theory which he used to interpret his
measurements.

Eventually, Beetle Baggins managed to arrive at the same conclusion as you
did in part f) and realized that the weird motion of the other spacecraft could
only be explained by the presence of an invisible massive body.
g) Describe a method of determining the mass of the black hole. Assume

that Baggins knows the value of the gravitational constant G.
Note: you should clearly explain which quantities he needs to measure and
how he should combine them to obtain the mass of the black hole.
[a) GM

rc2 ≃ 2.1 × 10−6; b) 7.42 × 10−12 N; c) 2.8 h, 6.2 × 10−4 rad s−1, −4.0 × 10−9 rad s−1;
d) [ε cos(ωt)+ 3

2 ε sin(ωt)ωt, ε sin(ωt)− 3
2 ε cos(ωt)ωt]; e) H′(t) = 1

t
, 3.05×1013 km s−1 Mpc−1]



Practical problems

Camera obscura EF/R/3
The aim of this problem will be to build a device called camera obscura and
use it to measure the angular diameter of the Sun.
Basically, a camera obscura (or pinhole camera) is a box with a small hole
drilled out in one of its walls. Light-rays from an object outside the box then
pass through this hole and create an upside-down image of the object on the
opposite wall inside the box (which plays the role of a screen). This principle
was used in the past, for example, by painters who could then simply trace the
contours of the projected image. Camera obscura can therefore be regarded
as an ancestor of modern cameras. A scheme of a camera obscura is shown
in Figure 15.

Figure 15: Camera obscura.

a) Build your own camera obscura.
You will need a long straight tube, which should be at least 80 cm long and
at least 4 cm in diameter. Material which the tube is made of should be such
that a hole can cut out in its cylindrical wall near one of its endcaps. This
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hole should be large enough to allow you to see the inner surface of the cap
when you look through the hole. You should cover the inner surface of the cap
with a piece of graph paper so that the grid is visible when you look through
the hole. You should also ensure that the cap is perpendicular to the axis of
the tube.
Next, cut out a large enough piece of aluminium foil and cover the other
(open) end of the tube with it so that the foil is perpendicular to the axis of
the tube. It is important to stretch the foil out so that it is flat and smooth.
Then, punch as small a hole as possible exactly at the center of the foil (e.g.
using a thin needle). The hole should be circular with as smooth edges as
possible.
Your camera obscura should now be ready for observation.
b) Observe the Sun using your camera obscura. You should NEVER look

directly into the Sun. Instead, just observe its image projected onto the
graph paper (through the hole cut out in the tube).

It is best to stand with your back turned towards the Sun. You should place
the camera obscura over your shoulder holding the end with the graph paper
in front of you. To help you aim the tube at the Sun, it is convenient to keep
track of the shadow of the tube on the ground in front of you. The shadow
should be as small as possible to keep the hole pointed directly towards the
Sun. Once you get the tube correctly pointed, you should see a small patch of
light on the graph paper (screen). Move the tube carefully until the image is
positioned at the center of the cap. Then, try to measure its size by counting
the number of lines on the graph paper that the image of the Sun overlaps.
We are interested in the diameter of the image, that is, the number of lines
starting from one edge of the disk to the other. To increase accuracy, repeat
the measurements at least three times and calculate the diameter of the image
of the Sun as the average of the individual measurements.
c) Determine the angular diameter of the disk of the Sun on the sky.
In order to find the angular diameter of the Sun, you will need to measure (in
addition to the already measured size of the image) the length of the tube,
or more precisely, the distance from the pinhole to the center of the screen.
Denoting this distance by d and the measured diameter of the image of the
Sun on the screen by D, we can calculate the angular diameter of the Sun in
radians as

δ = D

d
.

d) Determine the physical diameter of the Sun (in multiples of the diameter
of the Earth).
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From the measured angular diameter δ of the Sun and the known value of the
Earth–Sun distance a, the physical diameter D⊙ of the Sun can be calculated
as

D⊙ = δa ,

where δ should be substituted in radians.

Measuring the distance of supernova 1987A CD/N/7
On February 23, 1987, a supernova could be observed in the sky with unaided
eye in the direction of the Large Magellanic Cloud. As we shall see in this
problem, this unique event provides us with a method of calculating the dis-
tance to the LMC. The supernova was surrounded by 3 rings which are shown
in Figure 16. We will mainly be interested in the smaller inner ring, which
formed some time before the explosion. After the explosion took place, this
ring began to glow thanks to the ultraviolet radiation from the supernova.
a) In Figure 16, you can also see a number of stars which are projected in

the vicinity of the supernova. Stars 1 and 2 are separated by an angular
distance of 3.0 ′′, 1 and 3 by 1.4 ′′, and, finally, the stars 2 and 3 are
separated by 4.3 ′′. Determine the angular size δ of the smaller bright
ring around star 1 as measured along the semi-major axis. Remember to
indicate your conversion from cm to ′′ (scale).

b) In reality, the ring takes the shape of an exact circle: the fact that it is
observed as an ellipse is due to its plane being rotated by an angle i relative
to the plane perpendicular to the line of sight. Find the angular size β
of the ring around star 1 along the semi-minor axis. Hence determine the
inclination i.

The light curve of SN 1987A is shown in Figure 17. Although radiation from
the supernova reached all parts of the inner ring at the same time, to an
Earth-based observer it would appear that different parts of the ring were lit
up at different times. First, the radiation coming from the part of the ring
closest to the Earth was observed and the light-curve reached its maximum
when light from the most distant part of the ring reached the Earth.
c) Determine the linear diameter D of the ring.
d) Determine the distance d to the supernova.
[a) δ ≃ 7.76 × 10−6 rad; b) β ≃ 5.76 × 10−6 rad, i ≃ 0.733 rad; c) D ≃ 0.408 pc;
d) d ≃ 52.5 kpc]

Color excess CD/N/8
In Table 2, information about 24 stars from a small region of the sky is shown.
The stars are identified by their Hipparcos number which is displayed in the
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Figure 16: Stars around supernova 1987A. Credits: ESO

Figure 17: The light curve of the ring around the supernova 1987A. Credits:
ESO
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second column. The third and the fourth columns show the magnitudes in
the B and V filters as observed from the Earth, the fifth column shows the
parallax π in milliarcseconds (mas) and, finally, the sixth column shows the
spectral type of the star. Table 3 then contains the coordinates of the seven
brightest stars from Table 2.
At shorter wavelengths, interstellar dust scatters light more efficiently than
at longer wavelengths. Thus, as the photons travel from a star to the Earth,
the relative decrease in intensity is greater in the blue part of the spectrum
than in the red part. This gives rise to interstellar reddening which can be
quantified by the color excess E(B − V ).

Table 2: Stars up to visual magnitude 7.50 mag populating a small re-
gion of the sky. Source: SIMBAD http://simbad.cds.unistra.fr/simbad/
sim-fbasic.

1 2 3 4 5 6
# HIP number B (mag) V (mag) π (mas) spectral type
1 76267 2.22 2.24 43.46 A1
2 75695 3.97 3.68 29.17 F2
3 76952 A 4.01 4.05 22.33 A0
4 78159 5.36 4.13 13.49 K2
5 76127 A 4.14 4.30 8.69 B6
6 77512 5.43 4.63 19.50 G5
7 78493 4.92 4.97 8.77 A0
8 77048 6.65 5.58 12.60 G9
9 75312 A 6.12 5.58 55.98 G2
10 75674 7.64 6.02 3.53 M1
11 77397 7.90 6.39 3.94 K5
12 75919 6.64 6.45 5.37 A4
13 76456 6.86 6.46 28.30 F5
14 78429 7.69 6.60 7.45 K0
15 76944 8.09 6.71 4.99 K2
16 78431 8.26 7.06 4.02 K0
17 78709 7.87 7.10 46.23 G8
18 78288 8.25 7.11 6.10 K2
19 76610 7.45 7.21 9.72 A3
20 76993 7.71 7.26 14.42 F8
21 78260 8.90 7.34 3.11 K5
22 77721 8.85 7.36 3.00 K5
23 77373 7.89 7.43 11.01 F6
24 75583 8.83 7.47 2.60 K3

http://simbad.cds.unistra.fr/simbad/sim-fbasic
http://simbad.cds.unistra.fr/simbad/sim-fbasic
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Table 3: Coordinates of the seven brightest stars from Table 2.

# Bayer d. HIP number right ascension declination V (mag)
1 α 76267 15 h 35 m 41 s 26◦ 38′ 2.24
2 β 75695 15 h 28 m 48 s 29◦ 01′ 3.68
3 γ 76952 A 15 h 43 m 44 s 26◦ 13′ 4.05
4 ϵ 78159 15 h 58 m 33 s 26◦ 48′ 4.13
5 θ 76127 A 15 h 33 m 53 s 31◦ 17′ 4.30
6 δ 77512 15 h 50 m 34 s 26◦ 00′ 4.63
7 ι 78493 16 h 02 m 23 s 29◦ 47′ 4.97

a) Plot the stars from Table 3 in the coordinate grid provided in Figure 18.
Positions of the stars should be marked with disks whose diameter scales
with the magnitude of the star in the V filter. Make sure that you indicate
the formula which you used to convert between magnitudes and diameters
of the disks. Which constellation do the stars come from? Give the English
name of the constellation, as well as its IAU abbreviation.

b) For each star in Table 2, calculate the distance to Earth in parsecs.
c) For each star in Table 2, calculate its color index B − V as observed from

the Earth.
d) Calculate the absolute magnitude MV in the visual filter V for the stars

in Table 2. Based on the data from Table 4, decide which luminosity class
each star belongs to. If any of the stars are borderline between classes I
and III or III and V and therefore cannot be unambiguously assigned to
either one of the classes, make note of this fact in your answer. You can
exclude these stars from further analysis.

e) Calculate the color excess E(B − V ) = (B − V )observed − (B − V )0 for
all stars in Table 2. Whenever the intrinsic color index (B − V )0 for a
particular spectral type is missing in Table 4, you should interpolate using
the values from the neighbouring rows.

f) Let the interstellar extinction coefficient (units mag kpc−1) be denoted as
AB in the B filter and as AV in the V filter. Write down a relation for the
color excess E(B − V ) as a function of the distance between the observer
and the star.

g) Plot E(B − V ) against the distance from Earth and fit the data with a
straight line. Determine its slope.

[f) E(B − V ) = (AB − AV )d; g) 0.1–1 mag kpc−1]
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Table 4: Absolute magnitudes and color indices of stars of different luminos-
ity classes. Source: B. W. Carroll, D. A. Ostlie: An Introduction to Modern
Astrophysics, Cambridge University Press (2017), Appendix G.

luminosity class V luminosity class III luminosity class I
spectral type MV (B − V )0 MV (B − V )0 MV (B − V )0

O5 -5.1 -0.33 -5.9 -0.32 -6.5 -0.31
O6 -5.1 -0.33 -5.7 -0.32 -6.5 -0.31
O7 -4.9 -0.32 -5.6 -0.32 -6.6 -0.31
O8 -4.6 -0.32 -5.5 -0.31 -6.6 -0.29
B0 -3.4 -0.30 -4.7 -0.29 -6.9 -0.23
B1 -2.6 -0.26 -4.1 -0.26 -6.9 -0.19
B2 -1.6 -0.24 -3.4 -0.24 -6.7 -0.17
B3 -1.3 -0.20 -3.2 -0.20 -6.7 -0.13
B5 -0.5 -0.17 -2.3 -0.17 -6.6 -0.10
B6 -0.1 -0.15 -1.8 -0.15 -6.4 -0.08
B7 0.3 -0.13 -1.4 -0.13 -6.3 -0.05
B8 0.6 -0.11 -1.0 -0.11 -6.3 -0.03
B9 0.8 -0.07 -0.6 -0.07 -6.3 -0.02
A0 1.1 -0.02 -0.4 -0.03 -6.3 -0.01
A1 1.3 0.01 -0.2 0.01 -6.3 0.02
A2 1.5 0.05 -0.1 0.05 -6.3 0.03
A5 2.2 0.15 0.6 0.15 -6.3 0.09
A8 2.7 0.25 1.0 0.25 -6.4 0.14
F0 3.0 0.30 1.3 0.30 -6.4 0.17
F2 3.4 0.35 1.4 0.35 -6.4 0.23
F5 3.9 0.44 1.5 0.43 -6.4 0.32
F8 4.3 0.52 - - -6.4 0.56
G0 4.7 0.58 1.3 0.65 -6.3 0.76
G2 4.9 0.63 1.3 0.77 -6.3 0.87
G8 5.6 0.74 1.0 0.94 -6.1 1.15
K0 5.7 0.81 1.0 1.00 -6.1 1.24
K1 6.0 0.86 0.9 1.07 -6.0 1.30
K3 6.5 0.96 0.8 1.27 -5.9 1.46
K4 6.7 1.05 0.8 1.38 -5.8 1.53
K5 7.1 1.15 0.7 1.50 -5.7 1.60
K7 7.8 1.33 0.4 1.53 -5.6 1.63
M0 8.9 1.40 0.0 1.56 -5.8 1.67
M1 9.6 1.46 -0.2 1.58 -5.8 1.69
M2 10.4 1.49 -0.4 1.60 -5.8 1.71
M3 11.1 1.51 -0.4 1.61 -5.5 1.69
M4 11.9 1.54 -0.4 1.62 -5.2 1.76
M5 12.8 1.64 -0.4 1.63 -4.8 1.80
M6 13.8 1.73 -0.4 1.52 - -
M7 14.7 1.80 - - - -
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Figure 18: Map for plotting stars.



Practical Problems 43

Dawn and twilight: spheres and cockcrow AB/R/3
In this problem you will try to determine your latitude by observing sunrises
and sunsets. You will first calculate your latitude based on the duration of
daylight and subsequently try determining it from the duration of sunset.
a) Measure the times t1 and t2 of the sunrise and sunset on the same day.

Be sure to make note of the locations where the measurements were taken
and the date of your observation. Determine the duration ∆t of daytime
in hours. Remember to use adequate eye protection!

b) Find ∆t (the time the Sun spends above the horizon) in terms of the
declination δ of the Sun and the latitude ϕ of the observer. Non-zero
angular size of the Sun should be ignored at this point. Invert this relation
to express latitude as a function ∆t and δ.

c) Based on the duration of daylight which you measured in part a) and using
your results from part b), determine the latitude of the observation site.
Do not forget to give an estimate of its uncertainty. You should find the
declination of the Sun for the day of your measurement on the internet.

d) Measure the duration τ of one sunset, that is, the time which elapses
between the moments the upper and lower limbs make contact with the
horizon. Specify the location where the observation was performed.

e) Derive a formula for calculating τ in terms of the latitude and the angular
diameter of the Sun on the sky.

f) Determine the latitude of your observation site by substituting the mea-
sured duration τ of sunset into the formula you have derived in part e).
Do not forget to estimate its uncertainty.

g) Compare the two results for the latitude which you obtained using the
above-described two methods. Discuss possible influence of atmospheric
refraction and deviations of the real horizon from the ideal one. Identify
significant sources of errors affecting your measurements and try suggest-
ing improvements in the way you have carried out your observations.

[b) ∆t = 2 arccos(− tan ϕ tan δ); e) τ = (arccos − sin ρ−sin φ sin δ
cos φ cos δ

−arccos sin ρ−sin φ sin δ
cos φ cos δ

) 12 h
π

]

Estimating the mass of Saturn AB/N/7
The spectrum of the planet Saturn including its rings was observed on Febru-
ary 25, 2002 with the 2.5-meter telescope NOT (Nordic Optical Telescope) of
the La Palma Observatory. The slit of the spectrograph was placed over the
planet as shown in Figure 19. The base for the observed spectrum (Figure 20)
is provided by the solar spectrum as it is reflected off Saturn and its rings. The
straight vertical absorption lines arise as the incoming light passes through
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the Earth’s atmosphere. The inclined absorption lines, on the other hand, are
features the reflected solar spectrum. The two strongest lines which can be
noticed in Figure 20 are the D1 and D2 neutral sodium lines with laboratory
wavelengths 589.0 nm and 589.6 nm, respectively.
In the following questions, you should assume that the rings of Saturn are
planar, circular formations which lie in the plane of Saturn’s equator and
which orbit around Saturn in the same direction as the planet rotates about
its axis.

Figure 19: Location of the spectroscopic slit relative to Saturn. West and
east are marked as W and E.

Figure 20: Solar spectrum reflected off Saturn. W and E indicate the ori-
entation of the slit and the wavelength increases from left to right.

a) Using the spectrum in Figure 20, argue that Saturn’s ring is not a solid
body, but instead consists of a large number of small particles orbiting the
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planet in Keplerian orbits. Produce a sketch of what the spectrum would
look like if its ring were a rigid body.

b) Sidereal period of Saturn’s rotation is equal to P ≃ 10.66 h. Using the
observed spectrum, determine the equatorial diameter d of the planet (in
km).

c) Determine the mass M of Saturn (in kg).
[b) 120 000 km; c) 5.1 × 1026 kg]

CCD image processing AB/N/8
In Figure 21, you can see a cropped image of a star field located in the con-
stellation Cepheus (equatorial coordinates of the center R.A. 21 h 47 m 36.1 s
and Dec. 57◦ 11′ 39.8′′), which was taken on August 2, 2022 from the Observa-
tory in Valašské Mezǐŕıč́ı (geographic coordinates 49◦ 27′ 50′′ N, 17◦ 58′ 25′′ E)
with the CCD camera Moravian Instruments G2-1600 mounted on a 150/750
Newtonian telescope.

4

3

2
1

ref

Figure 21: Cropped CCD image.

Along with the image, you are given a table (see Figure 22) of ADU values
of the CCD camera pixels for the corresponding field. These values are pro-
portional to the radiative energy incident on each pixel. In order to simplify
our analysis, a 4 × 4 binning is chosen in Figure 22. This means that one cell
of the table indicates the total ADU value collected from the area of 4 × 4
pixels of the CCD chip. You can assume that the dark-frame and flat-field
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corrections were already applied to the image and that the exposure time was
t ≃ 180 s.
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Figure 22: ADU values from the CCD chip (4 × 4 binning).

a) Determine the average ADU value ν0 corresponding to background (to-
gether with its uncertainty).

b) Calculate the instrumental (uncalibrated) magnitude of the reference star
(marked as ‘ref’ in Figure 21), as well as that of the stars 1 to 3 and the
binary star 4 (in mag).

Hint: the instrumental magnitude is defined as

mI = −2.5 log Φ ,

where Φ is the radiative flux from the star in ADU s−1. This, in turn, can be
expressed as

Φ = n∗ − n0

t
,
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where n∗ denotes the total ADU value which corresponds to the star which
can be found as the sum of the ADU values collected from a suitably chosen
region covering N∗ pixels around the star. It is important to realize that from
the ADU value n∗, the background ADU value n0 = ν0N∗ must be subtracted.
Finally, recall that t denotes the exposure time.
The relation between the instrumental magnitude mI and the visual magni-
tude mv can be expressed as

mI = mv + aτ + ∆m ,

where a is the total atmospheric extinction at zenith, τ is the (normalized)
optical depth of the atmosphere and ∆m is some additive constant.
c) At the time of the observation, the field of interest was at the altitude

h ≃ 70◦ above the horizon. Assume that the extinction coefficient was
equal to a ≃ 0.35 mag. Using the knowledge of the catalog visual magni-
tude mref ≃ 12.24,mag of the reference star, determine the value of ∆m
(in mag).

d) Determine the visual magnitudes mv (in mag) of the stars 1 to 3, as well
as that of the binary 4.

e) One pixel of the CCD camera which was used to obtain the image has
physical size 9 µm × 9 µm. Find the angular size θ (in arcsec) that corre-
sponds to one cell of the table in Figure 22.

f) Determine the surface brightness S (in mag arcsec−1) of the sky around the
field shown in Figure 21, as it was seen from the Observatory in Valašské
Mezǐŕıč́ı. Compare with the surface brightness of the sky on a moonless
night in the center of Prague (SPrague ≃ 18.5 mag arcsec−1), on the peak
of Lysá hora (SLH ≃ 21.5 mag arcsec−1) and at the Astronomical Institute
in Ondřejov (SOndřejov ≃ 21.0 mag arcsec−1).

[a) (210 ± 1) ADU; b) −3.35 mag, −4.16 mag, −2.17 mag, −5.42 mag, −5.11 mag;
c) −15.96 mag; d) 11.43 mag, 13.42 mag, 10.17 mag, 10.49 mag; e) 9.9”;
f) 20.77 mag arcsec−1 ]



100 years of the projection planetarium
The humankind has always been fascinated by the starry sky and the myster-

ies of the universe. But it is only since 21 October 1923, when ZEISS presented 
the very first planetarium projector and „brought the heavens down to earth“.

Today, 100 years after its invention, planetarium activities are still linked to 
science, technology and education. Modern digital planetariums have evolved 
into spherical immersive projection devices that simulate space travel, popularise 
science and spread culture. There are more than 4,000 „bricks and mortar“ 
planetariums and tens of thousands of mobile planetariums worldwide. Many of 
them are also used to prepare students for various astronomy competitions.

In the Czech Republic, two such facilities host the national finals of the As-
tronomy Olympiad in various categories: the Unisphere at the Institute of Phys-
ics of the Silesian University in Opava, and Planetarium Prague (Planetum).

The Unisphere is a digital planetarium and the first spherical projection at
a Czech university, built as a teaching tool and a studio for students creating 
advanced audiovisual and fulldome programmes designed for science outreach. 
It is located in the building of the Institute of Physics of the Silesian University 
in Opava and was completed in 2019. It consists of a suspended seamless pro-
jection dome with a diameter of 8 m and a tiered auditorium with a capacity of 
50 seats. It uses the Digistar 7 system, which enables creating original shows, 
spherical projection of downloaded shows, even stereoscopic (3D) ones. 

Planetarium Prague is located next to the Exhibition Grounds in Prague 
and is partially funded by the city. Its building was designed by the architect 
Jaroslav Fragner and opened to the public on 20 November 1960. The dome 
diameter is 23.5 m and it used to be equipped with both the classical opto-
mechanical planetarium by Zeiss and a modern digital projection. It is now un-
dergoing a major upgrade, and in 2024, it will be one of the first planetariums
in the world to use the LED panel technology on a spherical surface.

It is somewhat paradoxical that, after 100 years of projection planetariums, 
there should be a technological breakthrough 
where the concept of projection is abandoned 
and the spherical surface is a giant screen with 
tens of millions of LED pixels. Until now, the 
cost of these installations has been astronomi-
cal, but their benefits are undeniable. The next
round of competitions at 
the IOAA may be solving 
problems under the sky 
with LEDs!
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