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ABSTRACT 

Protein lipidations are vital co/post-translational modifications that tether lipid tails to specific 

protein amino acids, allowing them to anchor to biological membranes, switch their subcellular 

localization, and modulate association with other proteins. Such lipidations are thus crucial for 

multiple biological processes including signal transduction, protein trafficking and membrane 

localization, and are implicated in various diseases as well. Examples of lipid-anchored proteins 

include the Ras family of proteins that undergo farnesylation; actin and gelsolin that are 

myristoylated; phospholipase D, which is palmitoylated; glycosylphosphatidylinositol-

anchored proteins and others.   

Here, we develop parameters for cysteine-targeting farnesylation, geranylgeranylation and 

palmitoylation, as well as glycine-targeting myristoylation for the latest version of the Martini 

3 coarse-grained force field. The parameters are developed using the CHARMM36m all-atom 

force field parameters as reference. The behavior of the coarse-grained models is consistent 

with that of the all-atom force field for all lipidations and reproduces key dynamical and 

structural features of lipid-anchored peptides such as solvent-accessible surface area, bilayer 

penetration depth, and representative conformations of the anchors. The parameters are also 

validated in simulations of the lipid-anchored peripheral membrane proteins Rheb and Arf1, 

after comparison with independent all-atom simulations. The parameters, along with mapping 

schemes for the popular martinize2 tool, are available for download at 

https://doi.org/10.5281/zenodo.7849262 and also as supporting information.  

https://doi.org/10.5281/zenodo.7849262
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INTRODUCTION 

Proteins that interact with cellular membranes are classified in two categories depending on the 

mechanism of interaction: integral and peripheral membrane proteins1. Integral membrane 

proteins embed partially or entirely in the lipid bilayer and can span its entire width once or 

multiple times, thus becoming an integral part of the bilayer itself.2 Peripheral membrane 

proteins on the other hand, are proteins that transiently associate with the membrane through 

multiple mechanisms. One of the most common mechanisms is through favorable electrostatic 

interactions between a positively charged protein patch and the negatively charged lipid heads 

of the cytosolic part of the plasma membrane.3–5 In some cases, instead of a positively charged 

protein patch (often called a polybasic domain), a cation interacts with the anionic lipid heads 

and tethers the protein to the membrane.6 In addition to electrostatically mediated interactions, 

proteins also interact with the bilayer through hydrophobic segments such as loops or helices 

that partially or entirely embed themselves in the lipid core of the bilayer, thus anchoring the 

protein to the bilayer.7–10 Yet another mechanism is through Post-Translational Modifications 

(PTMs), which covalently link a lipid tail to one or more protein residues, which are then 

embedded in the membrane as a result of their increased hydrophobicity.1,11,12 These PTMs are 

more specifically labelled lipidations. Some of most prominent ones are the processes of 

prenylation, palmitoylation and myristoylation, which are the focus of the present work. 

Prenylation is a process during which isoprenoid lipids are covalently attached to the side chain 

of a cysteine residue through a thioether bond. Depending on the length of the lipid tail being 

added to the cysteine residue, the prenylation process can be further subdivided into 

farnesylation (addition of a farnesyl group consisting of 15 carbons, three repeating units of 2-

methyl-2-butene) or geranylgeranylation (addition of a geranylgeranyl group consisting of 20 

carbons, 4 repeating units of 2-methyl-2-butene)13. The prenylation motif is well characterized 
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and consists of the sequence CAAX located at the C terminus of a protein, with the C 

corresponding to the cysteine, which is the prenylation target, the A to any aliphatic residue and 

residue X (mostly) determining whether the cysteine is farnesylated or geranylgeranylated with 

distinct residues shifting the probability toward one or the other PTM14. Palmitoylation is an S-

acylation process during which palmitic acid is linked to a cysteine side chain through a 

thioester bond15. Unlike the prenylation process, there is no consensus target sequence for the 

process of palmitoylation. Myristoylation is also an acylation process although one that targets 

the nitrogen atom of N-terminal glycine residues (N-acylation) to which it adds a myristoyl 

group irreversibly.16 

Expanding into details regarding lipidations is beyond the scope of this manuscript, as it has 

been the subject of multiple recent reviews,17–19 but it is important to establish their relevance. 

These lipidation PTMs are all part of (or implicated in) many cellular processes of high 

significance. Prenylation is associated with multiple biological processes such as protein 

trafficking, activity, and stability14,15. For example, KRas-4B, the prevalent splice variant of the 

KRAS gene, and the kinetochore proteins CENP-E and CENP-F are farnesylated at their C-

terminal cysteine.20,21 Unlike KRas-4B, other members of the Ras family such as NRas and 

HRas are palmitoylated near the C-terminus.22 The Ras family of proteins is a prime drug 

development target, due to the role that dysregulation of Ras proteins plays in cancer. A recent 

analysis of genomic data from samples originating in the United States concluded that almost 

one in five human cancers (15 %) can be traced back to a Ras-family mutation23. Palmitoylation 

and myristoylation are also associated with many of the same biological processes as 

prenylation such as membrane targeting or stability15, but also additional ones such as signal 

transduction (for myristoylation)16.  

However, the study of membrane proteins, where these lipidations are encountered, remains 

fraught with difficulties for experimental approaches, especially with regard to the native cell 
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context.24–26 Computational approaches, and in particular all-atom Molecular Dynamics (MD) 

simulations, present an alternative that enables the study of the structure and dynamics of large 

biomolecular assemblies in their native context, at a fraction of the cost required by 

experimental approaches. Often enough, however, even with access to High-Performance 

Computing (HPC) facilities the size and complexity of membrane-associated systems is such 

that the study of such systems remains well out of reach for most practitioners, at least for 

simulation timescales that would render robust and well-converged findings. In this context, a 

number of studies have used coarse-grained (CG) MD approaches. CG force fields speed up 

MD simulations by reducing the degrees of freedom of the system by grouping together atoms 

into beads, which then behave as one particle thus reducing the number of interactions and 

therefore the processing capabilities required to perform simulations. One of the most popular 

force fields for CG MD simulations of membrane-associated systems is the Martini force 

field.27–34   

Atsmon-Raz and Tieleman35 developed parameters for the CG Martini force field (v2.2) for 

protein lipidation post-translational modifications in 201727. However, these parameters are not 

available in the latest version of the Martini force field (v3.0).36 In Martini 3, significant 

improvements include a substantially expanded chemical universe with new bead types and a 

more balanced parameterization that is capable of reproducing a wide range of experimental 

data. Coarse-grained simulations have been used previously for the study of peripheral 

membrane proteins H- and N-Ras37, for the dimerization of palmitoylated protein CD44 on lipid 

bilayers38, the translocation and insertion of lipidated LC3 protein into lipid bilayers, the effect39 

of palmitoylation on the dimerization behavior of the human dopamine transporter40 and the 

palmitoylated transmembrane peptide tLAT41. 

Here, we report new parameters for the four protein lipidation post-translational modifications 

of interest (farnesylation, geranylgeranylation, palmitoylation and myristoylation) for the 
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Martini 3 force field. The parameters have been developed based on a comparison with 

CHARMM36m42 all-atom results, i.e., physicochemical, structural and dynamical properties 

that are crucial for the biophysics of lipid-anchored proteins. We have computed the solvent 

accessible surface area (SASA), isolated and analyzed cluster representative structures, and 

calculated the bilayer penetration depth for the PTM atoms/beads for both all-atom and CG 

simulations. Our results are in excellent agreement between the CG and atomistic simulations, 

with molecular volumes (based on SASA calculations) differing by less than 5%, representative 

structures of the PTMs by less than 2.5 Å (in terms of root mean square deviation) and bilayer 

penetration depth by less than 2.5 Å. We also validated our Martini 3 model using two lipid-

anchored membrane proteins, Rheb and Arf1, which have been previously simulated in Ref.69 

using atomistic force fields. We analyzed the orientational profile of the two proteins relative 

to the membrane bilayer, in which their lipidated side-chains are embedded, by computing the 

Euler angles of the protein with respect to the bilayer normal, and also compared the contact 

network between protein residues and bilayer lipids. The protein simulation results reveal that 

the lipidation parameters proposed herein are transferable to more complicated systems than 

the small peptides used for parameterization.  
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METHODS 

Reference all-atom simulations 

We carried out all-atom simulations for the four lipidations of interest using the protocol 

reported in Ref.35 for Martini 2.2, but with GROMACS v2021.443,44 and the July 2021 release 

of CHARMM36m42 for GROMACS. Briefly, we generated a 10 x 10 nm 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) bilayer with 147 lipids per leaflet, using the CHARMM-

GUI “Bilayer Builder” module45–47. We generated the starting penta-/hexa-peptide 

conformations (MFCfarn/ger/palmIH / GmyriMFCIH) with PyMOL48 (in extended conformation) 

and then added the different PTMs using the “PDB Reader and Manipulator” module of 

CHARMM-GUI49. We then replaced one POPC lipid from one bilayer leaflet with the side 

chain of the modified amino acid residue. 

The systems were solvated using the CHARMM36m implementation of TIP3P42,50 and 

minimized using the steepest descent algorithm for max 50000 steps. Position restraints were 

placed on the backbone and side chain atoms of the peptides, as well as lipid atoms, with force 

constants equal to 4000, 2000 and 1000 kJ/mol/nm2, for the three atom groups, respectively. 

Systems were equilibrated for 1 ns in three stages: (1) 500 ps in the NVT ensemble using the 

same restraints as for the minimization, followed by (2) 250 ps in the NPT ensemble using the 

same restraints as in the previous step, but with a force constant equal to 1/10th of the previous 

value, and finally (3) 250 ps in the NPT ensemble without any restraints. The systems were 

then simulated in the NPT ensemble for production runs of 500 ns. The settings for each 

equilibration stage and production run are provided below. 

For the NVT stage, we used a 1 fs time step, the Berendsen thermostat51 with a coupling 

constant τT = 1 ps and temperature set to 310 K (single temperature group), which was also the 

temperature used for assigning velocities after minimization. For the NPT equilibration steps, 
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we additionally coupled the system to a semi-isotropic Berendsen barostat51 with τP = 5 ps, 

reference pressure value set to 1 bar, and compressibility values equal to 4.5 x 10-5 bar-1. The 

time step was also increased to 2 fs. For the production simulations we switched the temperature 

coupling scheme to the Nose-Hoover thermostat52–54 with τT equal to 1 ps and temperature set 

to 310 K, and the pressure coupling scheme to the Parrinello-Rahman barostat55 with τP equal 

to 5 ps, reference pressure value set to 1 bar and compressibility values equal to 4.5 x 10-5 bar-

1. 

The GROMACS implementation of the Verlet56 scheme was used for neighbor searching 

(updated every 20 steps) with short range electrostatic and van der Waals interactions switched 

off between 1 and 1.2 nm. Long range electrostatics were handled with the Particle Mesh 

Ewald57,58 summation scheme with a force switch applied to the van der Waals interactions. All 

input files were retrieved directly from the CHARMM-GUI server. All input files are available 

at https://doi.org/10.5281/zenodo.7849262. 

All-atom trajectories were processed with built-in GROMACS tools (`gmx trjconv`) for the 

removal of periodicity, centering, etc. and mapped to coarse grained coordinates and analyzed 

with the MDAnalysis toolkit. 59,60 All scripts can be found in the Zenodo dataset indicated 

above. 

All-atom to coarse-grained mapping schemes 

We chose to fully re-parameterize the lipidations as opposed to simply updating the parameter 

set previously released for Martini 2.235 to use the new bead types made available with the 

recent release of the third major version of the Martini force field36. The mapping schemes were 

designed with modularity and extensibility in mind, as seen in Figure 1. To better evaluate 

possible options for the branched lipid tails of the prenylation PMTs (farnesyl and 

geranylgeranyl), we also considered an alternative scheme for the farnesyl PTM (see Figure 

https://doi.org/10.5281/zenodo.7849262
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S1). The main differentiating feature between the two schemes is the sharing of atoms across 

different beads in Figure S1. Specifically, carbon 1 of the lipid chain is shared between the 

sulfur-containing “C6” bead and the first lipid chain “SC4” bead. Also, carbons attached to the 

branching methyl groups and the subsequent ones are shared between the lipid chain “SC4” 

beads and the branching “TC2” beads. After evaluating this alternative mapping scheme (see 

“SASA” section in “Results”), we settled on the scheme of Figure 1, panel A, due to the similar 

performance of both schemes (see “SASA” section in “Results” and SI) and the conceptual 

simplicity of the mapping scheme in Figure 1 over the alternative in Figure S1. 

 

Figure 1. Mapping schemes for the four PTMs. Unsaturated/branched prenylation PTMs are shown at 

the top: A. farnesylation, B. geranylgeranylation. The saturated PTMs are shown at the bottom: C. 

palmitoylation D. myristoylation). The colored segments indicate the beads to which the respective 

atoms were mapped; the type of the bead also indicated in a label of the same color. 

 

The bead types were chosen based on ideal (according to Martini 3 parameterization guidelines) 

bead assignments expected for atoms/chemical moieties grouped in each bead, although for 

non-obvious choices such as the thioester group of the palmitoyl PTM several tests were 

performed to select the optimal bead (see below). The bead sizes were also selected according 

the default mapping ratios for Martini 3, with four atoms mapping to a single “regular” bead 

(no prefix in the atom type), three atoms to a single “small” bead (any bead whose type is 

prefaced by “S”), and two atoms to a single “tiny” bead (any bead whose type starts with “T”), 
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with the intention of finding the best middle ground between resolution, accuracy (in terms of 

overall molecular volume and packing of aliphatic chains) and performance. For consistency 

with the protein model, we used the default Martini 3 bead types for backbone atoms (“P2” and 

“SP1”, for the cysteine and glycine PTMs, respectively). We used “C1” beads for the fully 

saturated lipid tails of the palmitoyl and myristoyl PTMs to maintain consistency with the 

Martini 3 bead types for lipids. 

The thioether bridges of the prenylations were modelled as “TC6” beads containing only the 

sulfur atom, the adjacent cysteine carbon atom (Cβ) and its associated hydrogens. Doing so 

allowed us to isolate the repeating chemical moiety of 2-methyl-2-butene in distinct beads. The 

benefit of choosing this scheme becomes apparent when one examines the prenylation of the 

lipid tails (Figure 1). The lipid tails consist of repeating 2-methyl-2-butene groups, indicating 

that once parameters for one of these PTMs have been generated they can be easily transferred 

to other prenylation-based PTMs (or unsaturated and branched lipid tails in general), which 

only differ in the number of 2-methyl-2-butene units they carry in the lipid tail. We followed 

this strategy for the geranylgeranyl parameters, for which we transfer the parameters that we 

obtained for the farnesyl lipidation. Small and tiny beads were used to model the “main-” and 

“side-chain” carbons of the lipid tails, respectively. The presence of the branched segments and 

double carbon-carbon bonds led us to use higher polarity C-type beads to better reflect their 

chemical nature, with “SC4” and “TC2” beads used for the “main-chain” and “side-chain” 

atoms, respectively. “C2” type is usually the best bead assignment for branched aliphatic 

moieties.  

The thioester group of the palmitoylation lipid tail was modelled as a “N2a” bead to better 

reflect the polar nature of the carbonyl and sulfur and to represent the ability of the carbonyl 

oxygen to act as a hydrogen bond acceptor. Because, to our knowledge, this grouping of atoms 

has never been mapped in the Martini 3 force field before, we investigated multiple bead types 
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before finalizing the bead choice. We were only able to identify computational predictions for 

the relevant physicochemical properties of this group61, which guided the bead types we 

investigated. Specifically, we tested the “N1a/r”, “N2a/r” and “N3a/r” bead types and 

concluded that N2a is the optimal bead choice (see “Comparison of bead types for 

palmitoylation PTM” section in “Results”). The carbonyl-containing bead of the myristoyl lipid 

tail was modelled as a SN6a to capture the polar nature of this group and to act as a hydrogen 

bond acceptor, similar to the palmitoylation carbonyl-containing bead. The myristoyl lipid tail 

was modelled as three “C1” beads because it only contains fully saturated, unbranched carbon 

atoms and their bonded hydrogens. For the longer palmitoyl lipid tail, we modelled carbons 

1,2,3 with an “SC1” bead, to avoid creating a non-regular-sized terminal bead for the lipid tail, 

which could possibly lead to excessive interdigitation between the leaflets of a bilayer. This 

choice is also in line with the recent mapping schemes tested by Empereur-mot and co-

workers.62 

Coarse-grained simulations 

Peptide simulations 

We used version 3 of the Martini coarse-grained (CG) force field36 and GROMACS v2021.443,44 

for the CG simulations. We transformed the initial CHARMM-GUI-derived coordinates of the 

peptides with the modified cysteine/glycine residues to Martini 3 beads using the mappings 

described in the previous section (see “All-atom to coarse-grained mapping schemes” section 

above) using the martinize2 tool.63 The initial peptide structures were generated in extended 

conformation; we did not specify secondary structure assignments for the peptides during the 

coarse-graining nor did we make use of side-chain corrections, to avoid imposing restraints on 

the peptide motions. We generated a CG POPC bilayer with the same dimensions as the all-
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atom system using the INSANE tool.64 We then removed a single POPC lipid and replaced it 

with the lipid tail of the modified residue. The entire system was then solvated with INSANE. 

Each system was energy-minimized for up to 1000 steps using the steepest descent algorithm, 

followed by a 100 ns-long NPT equilibration and a production run of 2 μs in the NPT ensemble. 

For the minimization and equilibration, 3D position restraints were placed on the backbone 

beads of the peptide, with a force constant of 1000 kJ/mol (for all dimensions). Velocities were 

generated and maintained at 310 K through the use of the v-rescale65 thermostat for both 

equilibration and production runs. The reference pressure was set at 1 bar through the use of a 

semi-isotropic barostat (Berendsen with τP equal to 4 ps and compressibility values equal to 4.5 

x 10-5 bar-1, and Parrinello-Rahman with τP equal to 12 ps and compressibility values equal to 

3 x 10-4 bar-1, for the equilibration and production runs, respectively). We used the 

recommended settings for the Martini 3 force field non-bonded interactions, i.e., a 1.1 nm cut-

off for short-range electrostatics and van der Waals interactions, a reaction field for the 

electrostatics with a screening constant of 15 (set to 0 beyond the short-range cut-off) and 

shifting the van der Waals potential to 0 at the cut-off (with the Verlet cut-off scheme).66 A 20 

fs time step was used for all CG simulations. 

Protein simulations 

To further validate the parameters proposed herein, we tested their performance on two 

peripheral membrane proteins that bear PTMs: Rheb and Arf1. Both are members of the RAS 

superfamily and are small GTPases that anchor to the membrane with lipidated residue side 

chains. Specifically, Rheb contains a C-terminal hyper variable region (HVR), which 

terminates at the CAAX prenylation motif with the protein being farnesylated at its terminal 

cysteine,67 while Arf1 is the target of N-myristoylation at its N-terminal glycine68. Prakash and 

Gorfe recently studied69 the membrane interactions of three proteins, namely Rheb, Arf1, and 

RhoA, belonging to the RAS superfamily using long-scale all-atom MD simulations. We 
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performed simulations for Rheb and Arf1 in the coarse-grained Martini 3 force field using our 

newly derived parameter set and compared the results to those of Ref.69 to determine whether 

findings from all-atom simulations can be reproduced using coarse-grained parameters.  

We first generated an atomistic structural model for Rheb by modifying PDB entry 1XTS70 

with the HVR modelled in extended conformation with PyMOL48. The C-terminal cysteine was 

farnesylated in CHARMM-GUI, as described in Methods. No long-distance elastic network 

restraints were active on the Rheb HVR residues (residue indices 171-182), because they would 

impede the free movement of this flexible region by locking it into the starting conformation. 

To create an atomistic model for Arf1, we combined PDB entries 4HMY71 for the G domain 

and 2KSQ72 for the N-terminal helix. We then embedded the lipidated side chains of the 

respective residues for both proteins in the center of a pre-equilibrated (15 μs) POPC:POPS 

(80:20 % mol.) lipid bilayer, with initial dimensions equal to 12 * 12 * 12 nm. The systems 

were then solvated with INSANE and the system was neutralized by adding Na+ ions. 

Additionally, Na+ and Cl- ions were added as a salt at physiological concentration (150mM) 

similar to Ref.69. The systems were then energy-minimized, equilibrated (1 μs) and simulated 

for 10 μs production runs using the same settings as for the coarse-grained runs of the peptides. 

 

Structural analyses 

Extraction of bonded parameters from all-atom simulations 

To generate the initial parameters for the CG runs, we mapped the all-atom trajectories to CG 

by computing the Center of Geometry (CoG) for all atoms (including hydrogen atoms) 

belonging to each bead (see “All-atom to coarse-grained mapping schemes” section above), 

and then computed the distances, angles and torsions between the bonded CoGs. We used in-

house code built on the MDAnalysis59,60 toolkit for the all-atom to CG mapping, as well as the 
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calculation of the inter-bead bonded parameters. The mean values from the distance and angle 

distributions became the reference values for the respective bonded terms of the CG simulations 

and the width/standard deviation of each distribution determined the force constant, with 

narrower distributions corresponding to a higher force constant. 

Historically, Martini parameters for lipid tails have only included bond length and angle terms. 

Since the addition of dihedral parameters for lipids is a potential addition in future versions of 

the Martini force field, to ensure transferability of the derived parameters, we also include 

dihedral terms in the CG models and perform the analyses both without and with dihedral terms 

(see “CG bonded parameter extraction and comparison to all-atom” section in “Results”) to 

gauge their impact on the quality of the model as well as the stability of the simulations. It 

should be noted that for simplicity only one dihedral term (type 1) was included in the present 

parameter set, which could be revisited by including additional/alternative dihedral terms in the 

future, should the dihedral terms prove to be beneficial in reproducing experimental or atomistic 

simulation properties. 

 

Clustering 

For the clustering analysis of the all-atom trajectories, we used the GROMACS implementation 

of the GROMOS method73 with a cut-off value of 0.25 nm, including only the main-chain 

carbon atoms and excluding methyl groups and backbone carbonyl, and amide atoms. For the 

clustering of CG trajectories, same method and cut-off values were used but this time only the 

“SC4” beads of the prenylations (Figure 1), were included. We isolated representative structures 

from all identified clusters as those closest to the centroid of the cluster. We carried out the 

clustering analysis every ten frames for an effective sampling frequency of 200 ps (except for 

the CG palmitoyl simulations). The sampling frequency for the CG palmitoyl simulations was 
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100 ps, because the initial analysis (with a sampling frequency of 200 ps) did not identify the 

minor population. 

Backmapping CG trajectories to all-atom resolution 

We benchmarked the performance of two recently-published protocols for backmapping CG 

structures/trajectories to all-atom resolution to facilitate comparisons with the representative 

all-atom structures: CG2AT274 and GLIMPS75. 

Briefly, the GLIMPS tool uses a machine-learning-based approach, which is trained on a dataset 

in which the reference all-atom structures are already known. The training of the machine-

learning model is achieved by mapping a set of all-atom structures (we used 500 equally spaced 

frames of each PTM simulation from the all-atom production runs) to CG and then 

backmapping them to all-atom resolution. The resulting backmapping map can be used to 

transform any CG PTM structure to an all-atom one. To further improve the quality of the 

generated backmapped structures, we performed a brief energy minimization (up to 500 steps) 

with GROMACS using the steepest descent algorithm. 

CG2AT2 is a geometric fragment-based approach which requires no training. It supports 

multiple protocols for the backmapping. We tested multiple variations of the default protocol: 

1) we tested the default protocol, which consists of fitting the all-atom fragments to the CG 

beads and performs a brief energy minimization, followed by a brief NVT run, the last frame 

of which is morphed by steered MD to the initial mapped structure; 2) we stopped the process 

after the initial energy minimization; 3) we stopped the simulation after the energy 

minimization, followed by the same brief NVT run as for protocol (1); and finally 4) the energy 

minimization was followed by the steered MD simulation, to a provided reference structure. 

Both methods (GLIMPS and CG2AT2) were tested on a set of 100 equally-spaced structures 

from the all-atom simulations, which were not part of the training set for GLIMPS. The 
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structures were then mapped to CG, before being backmapped to all-atom resolution. The Root 

Mean Square Deviation (RMSD) between each all-atom structure and the respective 

backmapped structure (using all heavy atoms) was then computed. 

Solvent Accessible Surface Area 

We calculated the SASA with GROMACS (`gmx sasa`) for both all-atom and CG systems, 

using a probe with radius of 0.191 nm for both systems. For the all-atom calculations, we 

substituted the default van der Waals radii values, which are part of the GROMACS 

distribution, with those listed in Table S176,77. For the CG calculations, we used the values 

recommended by the Martini 3 developers, i.e., radii of 0.264, 0.23 and 0.191 nm for the 

“Regular”, “Small” and “Tiny” beads, respectively.36 

Bilayer penetration depth of PTMs 

We calculated the coordinates of the CoG for the two leaflet lipid head groups, defined as the 

CoG for all phosphorus atoms and “PO4” beads for the all-atom and CG runs, respectively, 

over the production trajectories to compute the depth of penetration of each PTM into the 

bilayer. We also computed the coordinates of the CoG of the entire bilayer, defined as the CoG 

of upper and lower lipid head groups using the same atom/bead selections as before. We finally 

computed the coordinates of the CoG of all PTM atoms/beads. We then examined the Z-axis 

(parallel to the membrane normal) component of the coordinates and determined the penetration 

depth of the PTM atoms/beads relative to the proximal and opposite leaflet lipid head layers, as 

well as the bilayer center. Figure S2 contains a representation of these components, with the 

proximal (to the peptide) and distal lipid head bilayer shown as black- and grey-colored spheres, 

respectively, the CoG of the bilayer as an orange sphere, the peptide backbone and side chains 

shown as mauve-colored spheres and sticks, respectively, with the exception of the modified 
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residue, which is shown as a light blue-colored sphere and stick model. The simulation box 

dimensions are highlighted with green lines. 

 

Analysis of the protein simulations and comparison with atomistic data 

For the analysis, we examined the orientation of the proteins with respect to the bilayer using 

Euler angles (Figure 2) describing i) the rotation (Euler angle α), ii) the tilt (Euler angle β) and 

iii) the spin (Euler angle γ) of the G-domain of each protein with respect to the membrane 

normal. To estimate the uncertainty of the Euler angle distribution populations, we subsampled 

the original sample 1000 times, while randomly sampling a tenth of the original sample each 

time. We also determined the distance of the two lobes of the G domain of each protein from 

the lipid bilayer by splitting each protein in two lobes (residues 1-86 and 17-94 for the first 

lobe, and 87-170 and 95-180 for the second lobe, for the Rheb and Arf1 proteins, respectively). 

Then, we computed the CoG of all residues within each lobe using all backbone beads for the 

entire production trajectories. We then calculated the Z-axis distance between the CoGs of the 

two lobes and that of the bilayer (computed using all lipid beads). We projected the distribution 

of each lobe in a 2D grid to determine the high-density areas. We then carried out a clustering 

analysis of the 2D grid points using the scikit-learn78 (v 1.3.0) implementation of the 

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) 

algorithm79,80. We set the minimum number of members for each cluster to 2500 species and 

left all other settings to their default values. Representative structures were then isolated from 

each cluster by extracting the frame of each cluster closest to the cluster centroid.  
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Figure 2: Schematic representation of the three Euler angles used to describe the orientation of the 

simulated proteins with respect to the bilayer normal. The protein structure is colored according to 

secondary structure with helices, sheets and loops/coil colored orange, light blue and light grey, 

respectively. Bilayer is shown as white surface. 

 

We determined the contact network of all residues with respect to the bilayer lipids by 

calculating the minimum distance between each protein residue and any lipid as a function of 

simulation time. A contact was recorded if any protein-lipid inter-bead distance was smaller 

than or equal to 0.7 nm. The respective all-atom analysis used a cut-off value of 0.5 nm, 

however, for the coarse-grained analysis we used two distance cut-off values equal to 0.7 and 

1 nm to accommodate the larger vdW radii of the coarse-grained force field. We have only used 

the contacts within 0.7 nm in the discussion of the results, but also highlight the ones within 1.0 

nm. We used the minimum distance module of GROMACS for this analysis (`gmx mindist`). 
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RESULTS AND DISCUSSION 

CG bonded parameter extraction and comparison to all-atom 

First, we calculated the distributions of bond length, angle and torsion values during the CG 

simulations between the bonded CoGs of the mapped atoms (Figures S3-S6). The distributions 

of bond length values for the prenylation PTMs (Figures S3A and S4A) reveal two distribution 

types, depending on the size of the beads each bond connects. The bonds between the peripheral 

(“TC2”) beads (in which the branched methyl groups and the “main-chain” carbon they are 

bonded to are grouped) and their bonded “main-chain” (“SC4”) beads have a narrow range of 

observed values around a single peak below 3 Å. The bonds between the backbone bead and 

successive “main-chain” beads feature a broad range of values with a single peak above 3.5 Å. 

The bond length distributions for the saturated PTMs (Figures S5A and S6A) show bimodal 

distributions for the bonded beads. The angle plots (Figures S3B through S6B) show a plethora 

of distribution types from broad, almost uniform-like, to narrow single-peak and even 

multimodal distributions with as many as three peaks. The angles between the backbone, first 

and second “main-chain” beads of the prenylation PTMs (Figures S3B and S4B, dark gray 

color) peak close to 180° indicating an almost linear arrangement between the peptide backbone 

and first part of the lipidated side chain. The angles between the “main-chain” and branched 

beads feature multiple populations, with the first two and three angles for the farnesyl and 

geranylgeranyl PTMs, respectively, represented by bimodal distributions. The angle involving 

the terminal bead for both prenylation PTMs features a single dominant population with two 

minor populations on either side of it, forming a three-peak multimodal distribution. The 

remaining angles between the “main-chain” beads feature broad range of observed values. The 

angle values for the saturated PTMs (Figures S5B and S6B) show single-peak distributions 

(with some minor, secondary populations) with the majority of values over 140°, indicating a 
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mostly linear arrangement for the lipidated side chains. The torsion distributions (Figures S3C 

through S6C) feature examples of unimodal (both myristoyl torsions), bimodal (all torsions 

involving non-terminal backbone or lipidated side-chain beads for all PTMs except the 

myristoyl) as well as multimodal distributions with four distinct populations (torsions involving 

the terminal lipidated side chain beads of the prenylations). Figure S7 shows CG PTM 

structures superimposed on the atomistic representation from which they were mapped. As 

mentioned previously (see “Extraction of bonded parameters from all-atom simulations” 

section in “Methods”), the mean values of the all-atom distributions served as reference values 

for the CG simulations with the width of the distributions determining the force constant 

associated with each term. Tables S2 through S5 summarize atom to CG bead mappings for all 

PTMs. 

Figure 3 shows a comparison of the all-atom and CG parameters for all PTMs, apart from the 

bonds of the farnesyl and geranylgeranyl PTMs that were modelled as constraints (bond IDs 3, 

5, 7 and 3, 5, 7, 9, respectively) and which are shown separately in Figure S8. As is typical for 

CG force fields, the multimodal populations shown in the bond length and angle plots of the 

all-atom distributions cannot be reproduced in a CG force field.27–29 This limitation exists 

because the groups of atoms, which are grouped into single beads in the CG force field, might 

fall into more than one population (multimodal distributions). However, the bonded terms, and 

specifically the bond lengths and angles, are represented with plain harmonic potentials in 

GROMACS, meaning they can only fluctuate around a single value. The end result is a CG 

bond length or angle potential that accurately captures the average behavior of the all-atom 

force field. The SI lists the functional forms we employed for all bonded terms presented in this 

work, along with a list of all the derived parameters (Tables S6 through S17). 

It should be noted that a discrepancy can be observed between the mean values of the bond 

lengths between the “SC4” and “TC2” beads (see Figure S8) in the mapped all-atom trajectories 
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(0.28, 0.28 and 0.214 nm for each bond, respectively, starting from the one closest to the 

backbone and ending with the one furthest away from the backbone), and the CG parameters 

(0.33, 0.33 and 0.289 nm for the same bonds). We chose to increase the bond length between 

these beads by 0.05, 0.05 and 0.075 nm, for each bond, respectively, because our analysis 

revealed the initial parameters resulted in a CG model whose 3D molecular volume (as 

measured by SASA) was significantly smaller (difference of 12.6 %) than the equivalent all-

atom structure. Figure S9 shows the Connolly surface area81,82 (as calculated with the initial 

parameters) for the farnesyl PTM for both the all-atom and CG models, with the “missing” 

volume clearly visible for the CG surface area (orange mesh) when compared with the all-atom 

surface area (grey mesh). This procedure is in line with the current rules of Martini 3 

parametrization, with bond length rescaling recently used for monosaccharides and  

phosphatidylinositide lipids.83,84 Bonds between the “SC4” and “TC2” beads were modelled as 

GROMACS constraints (GROMACS constraint type 1) due to the narrow distributions 

observed in the all-atom simulations, which explains the extremely small range of values seen 

in the CG simulations. All other bonds were modelled as simple harmonic oscillations 

(GROMACS bond type 1). The angles were modeled with cosine-based terms (GROMACS 

angle type 2). 
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Figure 3. Comparison of all-atom and CG distributions of the bonded parameters for (A) the 

farnesylation, (B) geranylgeranylation, (C) palmitoylation, and (D) myristoylation PTMs. The 

bond/angle/torsional angle IDs are broken down in Tables S6 through S17. The dark grey, light orange, 

and light blue distributions correspond to the values obtained from the all-atom, the CG without dihedral 

terms, and the CG with dihedral terms simulations. Note that for most plots (except the torsional angle 

ones) the two CG distributions (with and without dihedrals) overlap with minor deviations. Bonds 3, 5 

and 7 (panel A), and 3, 5, 7 and 9 (panel B) are omitted from this plot because they are modelled as 

constraints (see description in the text) due to the narrow range of observed values in the atomistic 

simulations. Figure S8 shows only these constraints with separate Y axes to further highlight the narrow 

and shifted (with respect to all-atom simulations) distributions. 

 

It is almost impossible to discern the impact of the dihedral terms on the CG simulations if we 

examine only the bond and angle distributions as they fully overlap. However, the impact of 

the dihedral terms on the overall structures is significant and shifts the behavior of the CG 

simulation to more closely match that of the all-atom simulation. We opted to model these 
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dihedrals as simply as possible using only a single proper dihedral term (GROMACS dihedral 

type 185). The all-atom dihedral distributions, which showed a single peak, were the simplest 

ones to model and we used a dihedral potential with an appropriate phase angle and a 

multiplicity of 1, with force constants determined from the width of the respective distributions 

(see tables S8, S11, S14 and S17 for the torsion parameters for all PTMs). The torsional angles 

that were modelled this way were the prenylation torsional angles with identifier (ID) 1, the 

palmitoyl torsional angles with IDs 1 and 3, and both myristoyl torsional angles (see 

aforementioned SI tables for the ID values). Farnesyl torsional angle ID 2, geranylgeranyl 

angles ID 2 and ID 3, and palmitoyl angle ID 2 were modelled with a multiplicity of 2 and an 

appropriate phase angle. The terminal torsional angles of the prenylations were modelled with 

a multiplicity of 4. Given the clear impact the dihedral terms had on shifting the torsional angle 

values of the CG force fields closer to the all-atom (see Figure 3), we decided to implement the 

torsional angle potentials using the simplest terms (GROMACS dihedral type 1) instead of 

investigating more complex implementations. 

One of the aims of the design principles when developing these mapping schemes was their 

modularity and extensibility (see “All-atom to coarse-grained mapping schemes” section in 

“Methods”). We thus chose to use the farnesyl-derived parameters on the geranylgeranyl PTM 

instead of using the parameters derived from its all-atom simulation. Since the geranylgeranyl 

lipid tail is longer than the farnesyl one, with one additional 2-methyl-2-butene unit 

(corresponding to one additional “SC4” and “TC2” beads for the CG model), we replicated 

beads “C2” and “C5” and their associated parameters once (see Tables S9 through S11). 
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Validation of the CG parameters 

In addition to comparing the CG bonded term distributions (both with and without dihedrals) 

to the all-atom ones, we carried out a series of additional analyses to further validate our 

parameters. 

SASA 

Figure 4 shows the SASA comparisons between the all-atom simulations, the all-atom 

simulations mapped to CG, and the CG simulations (without and with dihedral terms). Overall, 

there is excellent agreement between the all-atom and CG distributions with the largest 

discrepancy belonging to the myristoyl PTM, for which the CG models show a difference of 

4.71 and 4.86 %, for the parameters without, and with dihedral terms, respectively. 
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Figure 4. SASA distributions for all PTMs with the (A) farnesylation, (B) geranylgeranylation, (C) 

palmitoylation, and (D) myristoylation. Each panel shows the distribution of values to the left and bar 

plots of the mean SASA values (with error bars corresponding to standard deviations) to the right. The 

dark grey, light grey, orange and light blue distributions and bars correspond to the all-atom, mapped 

all-atom, CG without dihedral terms, and CG with dihedral terms simulations, respectively. 

 

Tables 1 and 2 show the absolute and percent differences of the mean SASA values for all 

PTMs for the CG simulation without and with dihedral terms, respectively. As was evident 

from the respective plot, the SASA values are in excellent agreement between the all-atom and 

CG simulations for all PTMs, with mean value differences of less than 5%.  

 

Table 1. Absolute and percent differences of mean SASA values between all-atom and CG (without 

dihedral terms) simulation. The absolute difference is the absolute value of the difference of the two 

mean values, the average difference is the sum of the two mean values divided by 2, and percent 

difference is the absolute difference over the average difference multiplied by 100. 

PTM 

Absolute difference 

[nm2] 

Average difference 

[nm2] 

Percent difference 

[%] 

Farnesylation 0.19 7.26 2.61 

Geranylgeranylation 0.3 8.53 3.52 

Palmitoylation 0.15 8.47 1.77 

Myristoylation 0.33 7.01 4.71 
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Table 2. Absolute and percent difference of mean SASA values between all-atom and CG (with dihedral 

terms) simulation. For an explanation of each column see the caption of Table 1. 

PTM 

Absolute difference 

[nm2] 

Average difference 

[nm2] 

Percent difference 

[%] 

Farnesylation 0.2 7.28 2.75 

Geranylgeranylation 0.31 8.54 3.63 

Palmitoylation 0.15 8.47 1.77 

Myristoylation 0.34 7.0 4.86 

 

Figure S10 shows the comparison of SASA for the two mapping schemes proposed for the 

farnesyl PTM. The distribution and bar plots (left and right panel, respectively) show that the 

differences between the two mapping schemes and the all-atom values are not statistically 

significant. Specifically, the all-atom, CG (proposed mapping scheme) and CG (alternative 

mapping scheme) simulations have average SASA values of 7.18 ± 0.34, 7.37 ± 0.28 and 7.18 

± 0.24 nm2, respectively. Given the insignificant differences between the two schemes, we 

favored the proposed mapping scheme (see Figure 1, panel A) over the alternative mapping 

scheme (Figure S1) due to the conceptual simplicity of its non-overlapping atom-to-bead 

mappings. 

Clustering and comparison of representative structures 

We then performed RMSD-based clustering on the production trajectories and extract 

representative structures from each cluster to compare how similar the CG-derived ones were 

to the ones extracted from the all-atom simulation. 
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Before carrying out the comparison, however, the structures derived from the CG simulations 

had to be backmapped to all-atom representation. As mentioned previously (see “Backmapping 

CG trajectories to all-atom resolution” section in “Methods”), we tested the performance of two 

tools on our dataset: GLIMPS75 and CG2AT274. Figure S11 shows the results of this 

performance comparison. Out of the protocols we tested for CG2AT2 the default one (energy 

minimization, followed by brief NVT simulation, followed by steered MD) yielded the best 

results over all PTMs. For GLIMPS, the additional energy minimization step did not 

significantly change the distribution of RMSD values, but it did improve the bonded 

interactions within the molecules (bond lengths, angles, etc.); therefore, we retained it over the 

default protocol. Comparisons of the default CG2AT2 protocol and GLIMPS default protocol 

followed by energy minimization highlighted a clear advantage of GLIMPS over CG2AT2, 

with the average (over all PTMs) RMSD equal to 0.8 ± 0.2 and 1.4 ± 0.2 Å for the two codes, 

respectively. The chirality of the alpha carbon for all modified residues (except for the glycine 

which does not have a chiral center) was correctly determined by the GLIMPS software, as can 

be seen in the representative structures shown in Figure 5. We did not examine the chiral status 

of the structures backmapped with CG2AT2. Therefore, all subsequent CG to all-atom 

transformations were carried out with GLIMPS. 

Figure 5 shows comparisons between the representative structures extracted from the all-atom 

and CG simulations with and without dihedral terms. For the farnesyl PTM (see Figure 5A), a 

single cluster was identified (100% population) for the all-atom and both CG simulations. Both 

backmapped representative structures from the simulations with and without dihedral terms 

have the same RMSD from the all-atom representative structure (1.8 Å). The representative 

structure for the all-atom and CG simulations is characterized by a kink along the main chain, 

immediately following the first branched segment, resulting in a 90° angle between the part of 

the molecule extending from the backbone to the first branching segment and the part 
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immediately after the first branched segment through the lipid tail terminus. The same findings 

can be seen for the myristoyl PTM (see Figure 5D) as well, with a single cluster (100% 

population) for all simulations and even smaller structural differences with the representative 

structures from the CG simulations with and without dihedral terms deviating just 0.7 and 0.9 

Å from the representative all-atom structures. The farnesyl lipid tail though extends in a 

relatively straight fashion, unlike the palmitoyl tail, perhaps due to the absence of branched 

segments and double carbon-carbon bonds and the planarity restrictions they impose. 

  

Figure 5. Comparison of the representative structures extracted from the clustering analysis for all 

simulations. Panels A through D show the results for farnesyl, geranylgeranyl, palmitoyl and myristoyl, 

respectively. The structures extracted from the CG simulations with and without dihedrals terms are 

colored blue and orange, respectively. The all-atom representative structures are colored grey. The 

RMSD (computed over all heavy atoms) for each comparison is reported below every structure. The 

percentage of the trajectory grouped in each cluster is shown immediately below, with each population 

percentile value colored according to its corresponding simulation. For the geranylgeranyl analysis, the 

minor cluster populations have been included in the respective major cluster. All structures are shown 

as sticks with the oxygen sulfur and nitrogen atoms colored red, yellow and dark blue, respectively. 

 

More clusters were identified for the geranylgeranyl and palmitoyl PTMs compared to farnesyl 

and myristoyl PTMs, perhaps owing to the longer lipid tails of these PTMs. 
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For the geranylgeranyl (see Figure 5B), the all-atom simulation analysis reveals four clusters 

with all frames considered for the analysis ending up in one of the four clusters. The first two 

clusters are the major ones with 92.2 and 7% population, for the first and second cluster, 

respectively. The third and fourth clusters (0.8 and 0.08% population, respectively) were not 

considered for this analysis because their representative structures are very similar to those of 

the two major clusters, with the RMSD between the representative structures of the first and 

third clusters, and between those of the second and fourth equal to 2.5 and 3.5 Å, respectively. 

The CG simulations behave in a similar fashion, with the simulation without dihedrals terms 

also totaling four clusters, albeit with distinctly different population ratios (99.6, 0.3, 0.07 and 

0.03% for the four clusters, respectively), and the simulation with dihedral terms totaling three 

clusters with population ratios similar to those seen for the simulation without the dihedral terms 

(99.7, 0.03, and 0.01% for the three clusters, respectively). As for the all-atom analysis, we 

have not considered clusters three and four of the CG simulation without dihedral terms because 

their representative structures are very similar to those of the two major clusters from the same 

simulation (RMSD between representative structures of the first and fourth clusters and 

between those of the second and third were equal to 3.1 and 2.3 Å, respectively). The third 

cluster of the CG simulation with dihedral terms only contains a single structure which is similar 

to the representative structure of the major cluster from the same simulation (2.8 Å RMSD), 

and has therefore also been excluded from the analysis. 

The representative structures from the major cluster for all simulations exhibit the same kink 

observed for the farnesyl but in this instance the kink manifests immediately past the second (if 

we start traversing the molecule from the backbone end) branching segment. The minor 

population exhibits one additional kink to create this structure in which the terminal parts of the 

lipid tails have almost folded onto the preceding segments.  
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The structural comparisons between the top clusters indicate a good agreement between the 

representative structures of the CG simulations and the all-atom ones, with the representative 

structures of the major cluster of the CG simulations differing by 2.4 and 2.2 Å from the 

representative structures of the major cluster of the all-atom simulation, for the CG simulation 

without and with dihedral terms, respectively. The same findings apply to the minor cluster as 

well, with the structural differences between the representative structures of the CG simulations 

and the all-atom one amounting to 1.6 and 2.3 Å for the CG simulations without and with 

dihedral terms, respectively. However, we do note differences between the all-atom and CG 

simulations in the percentage of the trajectory that the major and minor clusters occupy. In the 

all-atom simulation (and after folding clusters three and four into the major/minor cluster they 

are most similar to) the major cluster occupies 93% of the trajectory and the minor one the 

remaining 7%. The differences may be related to the lower sampling of the atomistic 

trajectories, which may affect the convergence of the populations. In both CG simulations the 

major cluster occupies 99.6-99.7% of the trajectory and the minor one the remaining 0.3-0.4%. 

Importantly though, the relevant part of the landscape is sampled, as is indicated from the low 

RMSD values between the representative structures of the minor cluster of the CG simulations 

and the representative structure of the minor cluster of the all-atom simulation. 

The palmitoyl all-atom simulations (see Figure 5C) also yield two clusters (99.8 and 0.2% 

population). The CG simulations behave in a similar fashion, with the simulation without 

dihedral terms yielding two clusters with population equal to 99.9 and 0.01%, respectively, and 

the simulation with dihedral terms yielding two clusters with population equal to 99.9 and 

0.01%, respectively. Although the size of the minor clusters is small when compared with the 

minor clusters of the geranylgeranyl CG simulations, the difference in terms of population 

between the all-atom and CG simulations is smaller, since the minor all-atom cluster only 

occupies 0.2 % of the trajectory (compared to 7% for the geranylgeranyl). 



 31 

The major cluster adopts a mostly extended conformation that penetrates into the bilayer in a 

straightforward fashion, the minor cluster adopts a horseshoe-shaped orientation (see Figure 

5C). The differences between the all-atom and CG simulations are minimal with the two CG 

simulation representative structures of the major cluster only 1 and 1.1 Å (for the simulation 

without and with dihedral terms, respectively) apart from the respective all-atom representative 

structure. The small structural differences can also be seen for the minor cluster with RMSD 

values as low as 1.6 and 1.3 Å (for the CG simulation without and with dihedral terms, 

respectively). It is also worth noting that even though the populations of the minor clusters are 

very small, they reproduce the behavior of the all-atom system. 

Overall, the clustering analysis reveals excellent agreement between the all-atom and CG 

models, with RMSD values between representative structures as low as 0.7 Å for the myristoyl 

PTM (see Figure 5 D). The impact of the dihedral terms is not as clear-cut. For most cases they 

marginally benefit the structural comparisons (geranylgeranyl major cluster, both palmitoyl 

clusters and single myristoyl cluster), in one case they have no impact (farnesyl) and in one 

case they do significantly worse (geranylgeranyl minor cluster). Overall, the representative 

structure for the single/major cluster for all systems highlights an orientation in which the 

lipidated side chain is embedded in the hydrophobic core almost linearly, with the two saturated 

systems showcasing more linear arrangements due to the absence of kinks introduced by the 

presence of double bonds in the prenylated side chains. No snorkeling was observed, even 

among the representative structures of the minor clusters for the geranylgeranyl and palmitoyl 

simulations, which feature models that tend to fold on themselves, but still remain firmly 

embedded in the hydrophobic core of the bilayer. 

Bilayer penetration depth of the PTMs 

We investigated how deeply the PTMs penetrate into the bilayer by computing the Z-axis 

(parallel to the membrane normal) coordinates of the CoG of the PTM atoms or beads 
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(including the backbone) relative to the CoG of the lipid head groups (represented by 

phosphorus atoms or “PO4” beads) of the leaflet into which the PTM was inserted as well as 

the lipid head layer of the opposite leaflet, and the CoG of the entire bilayer (represented by the 

CoG of phosphorus atoms or “PO4” beads from both leaflets). Figure S2 shows an illustration 

of the elements involved in these calculations. Figure 6 shows a comparison of the Z-axis 

distances between CoGs of the PTM and the lipid bilayer, the lipid head layer proximal to the 

peptide and the opposite one for all PTMs. Exhibiting the same trend as the prior two analyses, 

the behavior of the palmitoyl PTM shows almost no differences between the all-atom and either 

of the CG simulations. The bilayer penetration depth for the farnesyl, geranylgeranyl and 

myristoyl PTMs remains consistent between the all-atom and CG with all the differences seen 

in Figure 6 being well under the margin of statistical significance, as illustrated by the 

overlapping error bars. Figures S12 to S15 show the fluctuation of the PTM CoG coordinates 

relative to the leaflets and bilayer CoG for all PTMs. The first three columns show values from 

simulations using all-atom, CG without dihedral terms and CG with dihedral terms, 

respectively. The coordinate plots (top row, first three columns from the left) show the position 

of the CoG for the PTM (light blue), proximal (to peptide) and distal lipid heads (black and 

light grey, respectively) and that of the bilayer (orange). The plots immediately below them 

(bottom row, first three columns from the left) show the absolute value of the distance between 

the position of the PTM CoG and the bilayer, proximal lipid heads and distal lipid heads, 

colored orange, black and light grey, respectively. The distribution plots (fourth column) show 

the range of all absolute value for the CoG distances as black, light grey and orange lines for 

the all-atom, CG without dihedral terms, CG with dihedral terms, respectively. The top, middle 

and bottom panels show the distribution of distance values between PTM CoGs and the bilayer, 

proximal and distal lipid head CoGs, respectively.  
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Figure 6. Comparison of the Z-axis distances between CoGs of the PTM and the lipid bilayer, the lipid 

head layer proximal to the peptide and the opposite one, for all PTMs. Each panel contains three sets of 

bar plots (separated by vertical dotted lines) showing the mean (and standard deviation) values of the Z-

axis (parallel to the membrane normal) distance between the CoG of the PTM atoms or beads and the 

CoG of the bilayer (first set from the left), the CoG of the proximal leaflet lipid head layer (middle set) 

and the CoG of the opposite leaflet lipid head layer (first set from the right). The color of the bar indicates 

the simulation from which the values originate with the all-atom, CG without dihedral terms and CG 

with dihedral terms values shown as grey, orange and light blue colored bars, respectively. 

 

 

 

Protein use cases and comparison with all-atom simulations 

Figure 7 shows the distribution of values for the three Euler angles (see Figure 2 for a schematic 

representation of these angles). Comparing the obtained values for the Rheb simulation with 
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the equivalent all-atom ones (top plot of right panel of Figure 2 of Ref.69) reveals that the CG 

simulation distributions closely match the atomistic ones, with the rotation around the 

membrane normal and the spin around the tilted position (α and γ Euler angles, respectively) 

spanning the entire range between [-π, π].  

 

Figure 7: Distribution of Euler angles for the tested proteins. Each panel shows the distribution of the 

three angles with the rotation around the membrane normal (alpha) shown as an orange line, the tilt off 

of the membrane normal (beta) as a grey line and the spin around the tilted position (gamma) as a light 

blue line. The shaded areas (more clearly visible around the peak of the beta distribution), represent the 

uncertainty of each population. 

 

 

The distribution of the γ angle in the simulation with active dihedral terms active is flattened 

compared to the one without dihedral terms, however the respective population in the latter is 

minor and poses no significant divergence from the atomistic equivalent. The population of the 
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tilt of the membrane normal angle (angle β) spans angles that range between 0 and 90°, with no 

significant differences between the simulations with or without dihedral terms or the equivalent 

atomistic values. 

The Arf1 Euler angle distributions reveal the only significant difference between the atomistic 

and CG simulations. The atomistic simulations (bottom plot of right panel of Figure 2 of Ref.69) 

show a very narrow range of rotation angles (angle α) as opposed to the flat distributions 

observed in the CG simulations; also, there are no significant differences in the distributions of 

the α angle between CG simulations that use dihedral terms or not. The remaining two angles 

(tilt and spin, β and γ, respectively) demonstrate the same broad behavior as their atomistic 

counterparts. We believe the discrepancy observed for the rotation angle might be the result of 

the protein being unable to move away from its original conformation due to the presence of 

the elastic network constraints, which are placed on the starting coordinates, a limitation which 

is not present for atomistic force fields. In Ref.69 it is noted that the Arf1 protein undergoes 

significant conformational rearrangements during the simulation that might enable it to make 

additional stabilizing contacts with the bilayer lipids, which could prevent it from accessing the 

full 360° rotational space that the α angle occupies in the CG simulations. 

Figure 8 shows the distance between the bilayer and the G domain of the proteins and the 

contacts made between the protein residues and the bilayer lipids. Specifically, Figure 8A and 

D show the Z-axis distance between the CoGs of the first lobe of the G domain of each protein 

and that of the bilayer, Figure 8B and E the contact network between protein residues and 

bilayer, and Figure 8C and F the normalized 2D distribution of the Z-axis distance of the CoGs 

of both lobes with respect to the bilayer. These plots are directly comparable with the bottom 

panels of Figure 3A-C and Figure 6D-E of Ref.69. 
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Figure 8: Distance and contact network between the proteins and bilayer for the simulations without 

dihedral terms. Panels A and D show the evolution of the Z-axis distance between the first lobe of 

proteins Rheb and Arf1, respectively, and the bilayer. The red line indicates a sliding window of 100 ns. 

Panels B and E show the contact network between Rheb and Arf1 residues, respectively, and any bilayer 

lipids as a function of time. Any cells shaded black and grey indicate a contact within 7 and 10 Å, 

respectively, while white areas indicate no contact. Panels C and F show the normalized 2D distribution 

of Z-axis distances between the CoGs of the two lobes of proteins Rheb and Arf1, respectively, and that 

of the bilayer. Areas shaded red indicate higher density, while areas shaded blue indicate lower density. 

The bottom panels show representative structures from the high-density areas of panels C and F. Panels 

G and H show structures from the major (“I”) and minor (“II”) density areas of the 2D distributions for 

Rheb, respectively, and panel I shows the single representative structure from the Arf1 simulation. Lobes 

1 and 2 of the proteins are colored red and blue, respectively, while GTP and Mg2+ are colored yellow 

and cyan, respectively. The HVR of Rheb and first 16 N-terminal residues of Arf1 are colored orange 

with the bilayer is colored white. The distance and contact network between the proteins and the bilayer 

for the simulations with dihedral terms can be found in Figure S17. 

 



 37 

 

Arf1 is in excellent agreement with the atomistic values with respect to the distance of the 

bilayer center because there are no significant differences between the CG and atomistic 

simulations, both in terms of contact-making residues (Figure 8E) or the Z-axis distance of the 

two lobes of Arf1 from the bilayer center (Figure 8D and F). Figure 8A and C show that the G 

domain of Rheb is more distant to the bilayer center in the CG simulation than it is in the 

atomistic simulation: the highest density (Figure 8C) area corresponds to the lobe 1 Z-axis 

height being ~35 Å, with the respective value in the atomistic simulation centering at 25 Å 

(difference of 10 Å). The lobe 2 Z-axis value is ~45 Å, with the respective atomistic region 

centering at 30 Å (difference of 15 Å). The normalized 2D distribution of Z-axis distance values 

for the two lobes (Figure 8C) shows that the shape of the distribution is the same as for the 

atomistic simulation. The results of the clustering analysis for the 2D density plots (see Figure 

8C) can be seen in Figure S16, which clearly shows that the algorithm has successfully 

identified the major and minor high-density areas. The representative structures of the major 

and minor high-density areas (Figure 8G and H) reinforce the findings from the previous 

analyses, with lobe 1 (red) interacting with the bilayer in the major cluster and lobe 2 (blue) in 

the minor. We hypothesize that one likely reason for the greater observed (10-15 Å) distance 

between the G domain and the bilayer CoG for Rheb (see Figure 8C) in the CG simulation 

compared to the atomistic one, could be that HVR may be more prone to dissociate from the 

lipid bilayer to freely mix with the solvent instead. Indeed, an examination of the contact 

network for the flexible Rheb HVR residues (see Figure 8 B, residue indices 171-182) shows 

residues 171-175 hardly ever contact any lipids. In contrast, the myristoylated glycine at the N-

terminus of the Arf1 protein, is not part of such a flexible region but it is a stable alpha helix 

instead, which is partially embedded in the bilayer for the majority of the simulation (see Figure 

8 E), thus anchoring the protein to the bilayer at a constant distance.  
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Figure S17 shows the same plots as Figure 8, but for the simulations with active dihedral terms. 

Overall, the results are highly similar, the sole exception being the 2D distribution of Z-axis 

distances for the two lobes of Rheb (panel C), which features a flipped orientational profile with 

respect to the equivalent panel of Figure 8 and the equivalent atomistic one. Although we would 

need to perform more extensive simulations to be certain this flipping is not the result of 

insufficient sampling, we believe the reason for this inconsistency lies with the dihedral terms 

that might impose certain restrictions on the behavior of the molecules, thus limiting the 

transferability of the model. 

 

Comparison of bead types for palmitoyl PTM 

As noted in the Methods section, we tested multiple bead types for the thioester group of the 

palmitoyl PTM. Figure 9 shows a comparison of the metrics that were used for parameter 

validation (SASA, clustering analysis and bilayer penetration depth). 
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Figure 9: Comparison of bead types for the thio-ester group of the palmitoyl PTM. (A) distributions of 

the SASA values for the all-atom (grey) and CG (deep violet to yellow spectrum) for the palmitoyl PTM. 

(B) mean absolute distance between the bilayer and palmitoyl PTM CoGs with greater numbers 

indicating shallower insertion into the bilayer (same coloring as for panel A). (C) average RMSD values 

between the cluster representative structures of the all-atom and CG simulations. RMSD values have 

been averaged over the comparisons with and without dihedral terms. 

 

The SASA analysis (Figure 9A) reveals no differences between the various comparisons with 

all CG simulations reporting an average value of 8.39 ± 0.15 nm2, which represents less than 2 
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% (1.78 %) difference from the mean all-atom value of 8.54 ± 0.15 nm2, indicating all bead 

types have excellent agreement with the all-atom data. The comparison of the bilayer 

penetration depth (Figure 9B) for the various bead selections also shows no statistically 

significant differences between the all-atom and CG simulations, as can be seen by the 

overlapping error bars. The clustering analysis (Figure 9C) shows the most significant 

differences between the various beads. While all beads resulted in the major cluster being 

identified successfully, with RMSD values between the respective all-atom structure and the 

ones backmapped from the CG simulations averaging a value close to 1 Å, the same is not true 

for the minor cluster. The simulations with the most polar beads (“N3”), and specifically “N3a”, 

failed to identify the minor population (even when sampling every 100 ps) when making use of 

dihedral terms, resulting in the high average RMSD value shown in the graph. The simulation 

of the “N3r” bead did identify the minor population, however in the simulation without dihedral 

terms, it identified two minor populations, only one of which was a match for the equivalent 

all-atom one. Given the minor differences in the performance of the “N1a/r” and “N2a/r” beads, 

as well as the better-suited physicochemical characteristics of the “N2a” bead, led us to select 

the N2a bead for the thioester group.  
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CONCLUSIONS 

We have developed Martini 3 parameters for the most common co-/post-translational 

lipidations, specifically farnesylation, geranylgeranylation, palmitoylation and myristoylation. 

The all-atom to CG mapping schemes we developed use the improved capabilities of Martini 3 

to reproduce chemical properties, resolution, and modularity. Coarse-grained simulations with 

Martini 3 have recently demonstrated several realistic use cases34,36,83,84,86–89; adding parameters 

for protein lipidation PTMs expands the modeling capabilities of this model to important 

systems such as the K-Ras signalosome90. Moving to a coarse-grained force field also results 

in significant performance gains over an atomistic one with the Martini 3 simulations achieving 

an 800-fold speedup over the equivalent simulations in CHARMM36m (~ 0.5 vs 434 

ns/day/core for the all-atom vs the coarse-grained simulations presented herein, respectively). 

The comparison of the bonded interaction distributions of each PTM, in combination with the 

independent validation that we performed through the SASA, clustering and structural 

comparisons as well as bilayer penetration analyses for the peptide PTMs, show that the derived 

CG parameters accurately reproduce the behavior of the all-atom force field. The mean SASA 

value differences between the atomistic and CG simulation are 2.61, 3.52, 1.77 and 4.71 %, for 

the farnesyl, geranylgeranyl, palmitoyl and myristoyl PTMs, respectively, for the runs without 

dihedral parameters. The representative structures, that were extracted following the clustering 

analysis of all simulations, reveal the all-atom and CG simulations converge to the same 

structures/cluster representatives. Specifically, the RMSD values between respective clusters 

of the all-atom and CG (without dihedral terms) simulations are 1.8 Å for the farnesyl 

simulations, 2.4 and 1.6 Å for the major and minor cluster of the geranylgeranyl simulations, 

respectively, 1 and 1.6 Å for the major and minor cluster of the palmitoyl simulations, 

respectively, and 0.9 Å, for the myristoyl simulations. The bilayer depth penetration analysis 
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revealed no statistically significant differences between the atomistic and CG simulations, as 

can be seen by the overlapping error bars between the respective bar plots of Figure 6. The 

differences with the simulations that use dihedral parameters are minimal and all conclusions 

apply to those results as well. Importantly, and regardless of the minor differences in the SASA 

and cluster analysis comparisons, all CG simulations clearly show that the parameters that we 

are proposing for these lipidations, allow the lipid tails of the modified residues to stably tether 

peptides/proteins to a lipid bilayer, therefore achieving their primary purpose.  

This stability was also validated in simulations of proteins bearing lipid PTMs with the 

parameters proposed here. Specifically, we simulated Rheb and Arf1, two small peripheral 

membrane GTPases, that were modified with a C-terminal farnesylated cysteine and an N-

terminal glycine, respectively. These proteins were then anchored in a pre-equilibrated 

POPC:POPS (80:20 % mol.) lipid bilayer by embedding the lipid tail of the lipidated residues 

in the hydrophobic part of the bilayer. The orientation and distance (with respect to the bilayer) 

of the G-domain of both proteins were then analyzed and the results are compared with the 

equivalent all-atom simulation recently published by Prakash and Gorfe.69 The proteins have a 

highly similar orientational profile compared to the atomistic simulations, with the exception 

of Arf1, which in our simulations was found to rotate freely around the membrane normal in a 

uniform manner, whereas in the atomistic simulation the rotation angle distribution spanned a 

very narrow range. The Z-axis distance of the G-domain lobes of Rheb is greater than the 

equivalent metric in the atomistic simulation by approximately 10-15 Å, with the all-atom lobes 

hovering 25 and 30 Å above the bilayer and their CG counterparts 35 and 45 Å, respectively. 

We believe this discrepancy is the result of the HVR residues of Rheb more frequently 

dissociating from the bilayer lipids, compared with the atomistic simulation, even though the 

farnesylated lipid tail remains embedded in the hydrophobic part of the bilayer, thus stably 

anchoring the protein to it. This is also supported by the reduced contact frequency between 
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HVR residues and bilayer lipids. In contrast, Arf1, the lipidation of which is part of a stable 

part of its structure – an amphipathic alpha helix, hovers above the bilayer at the same distance, 

45 Å, as in the atomistic simulation. We repeated these simulations and analyses using dihedral 

terms, and observed that including the dihedral terms either has a neutral impact on the 

simulation or flipped the orientation of the G-domain of Rheb with respect to the bilayer, 

compared to the atomistic simulation. 

In the derived parameter set we also included optional dihedral terms is to provide compatibility 

with future versions of the Martini 3 force field, in case lipid parameters use such terms in 

subsequent versions. However, adding dihedrals for fully flexible molecules/fragments may 

add a conformational bias towards the system used for the dihedral calibration. In addition, 

many of the energy differences in dihedrals involve barriers lower than kT (at 300 K), which 

also make their presence nonessential in many of the typical biological applications of Martini. 

Our calculations with and without the dihedral terms show that there are no significantly 

improved metrics arising from the use of dihedral terms on any of the analyses presented in this 

work, including the simulated protein systems. Therefore, at present we recommend the use of 

this parameter set without dihedral terms, as it is a simpler model that also matches the currently 

available Martini 3 lipid parameters. We will revisit this in the future if the dihedral terms are 

found to confer an important advantage or as part of the ongoing effort for the re-

parameterization of the lipid parameters for the Martini 3 force field. 

The extensibility of these parameters was showcased in this work when we successfully applied 

the parameters generated for the farnesyl lipid tail (the smaller of the two prenylation PTMs) to 

the geranylgeranyl (the larger of the two). We expect that future additions to this set should 

transfer with the same ease, provided they are made of (and can be modularized into) the same 

chemical building blocks. These parameters could even serve as the basis for any branched 

lipids that are parametrized for the Martini 3 force field. The building block approached used 
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in this parametrization will also allow future updates in the saturated tails, which are currently 

in development and may have minor changes in the future. In summary, these parameters enable 

the robust and efficient simulation of lipidation-modified proteins and protein complexes with 

the latest version of the popular Martini force field.  
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