
DIN: A Decentralized Inexact Newton Algorithm
for Consensus Optimization

Abdulmomen Ghalkha, Chaouki Ben Issaid, Anis Elgabli and Mehdi Bennis

Centre for Wireless Communications (CWC)
University of Oulu, Finland

Email: {abdulmomen.ghalkha, chaouki.benissaid, anis.elgabli, mehdi.bennis}@oulu.fi

Abstract—In this paper, we consider a decentralized consensus
optimization problem defined over a network of inter-connected
devices that collaboratively solve the problem using only local
data and information exchange with their neighbours. Despite
their fast convergence, Newton-type methods require sending
Hessian information between devices, making them communica-
tion inefficient while violating the devices’ privacy. By formulat-
ing the Newton direction learning problem as a sum of separable
functions subjected to a consensus constraint, our proposed
approach learns an inexact Newton direction alongside the global
model using the proximal primal-dual (Prox-PDA) algorithm.
Our algorithm, coined DIN, avoids sharing Hessian information
between devices since each device shares a model-sized vector,
concealing the first- and second-order information, reducing the
network’s burden and improving communication and energy
efficiencies. Numerical simulations corroborate that DIN exhibits
higher communication efficiency in terms of communication
rounds while consuming less communication and computation
energy compared to existing second-order decentralized base-
lines.

Index Terms—Distributed optimization, decentralized learning,
communication-efficient federated learning, second-order meth-
ods.

I. INTRODUCTION

Minimizing the sum of functions in a distributed manner is
motivated by wide applications in various networked systems,
such as smart grids [1], federated learning (FL) [2], and
wireless sensor networks [3]. A traditional approach is to use
a central parameter server (PS), which has high computational
and storage capabilities. Each device sends its raw data to the
PS, which applies centralized optimization to minimize the
global objective function. Although this traditional approach is
simple, it suffers from high communication costs and violates
privacy. To enable collaborative learning while protecting
privacy, privacy-preserving collaborative learning techniques
are necessary. Recently, thanks to the fast growth of the
computation power of edge clients, using FL transmission of
raw and private data to the PS can be avoided. In the canonical
FL approach, local models/gradients are updated locally, and
the PS aggregates the local models/gradients to update the
global model/gradient, which is then shared with edge clients.
Iterating this way, eventually, all clients converge to a global
model.

This work is supported by the European Union’s Horizon Europe program
through the project ADROIT6G, CENTRIC, and DESIRE6G.

Existing FL algorithms can be categorized into three groups
based on which information from the objective function is used
in the optimization process. Zeroth-order algorithms are the
first category in which clients are limited to using samples
of their own objective functions [4]. The second category
is first-order algorithms where edge clients use the gradi-
ents of their objective functions, which decide the direction
of the update. Primal methods such as federated averaging
[5], and primal-dual methods such as distributed alternating
direction method of multipliers (ADMM) [6] are examples
of first-order algorithms. Second-order algorithms, which are
the last category, employ the objective function’s second-
order information, i.e., the Hessian matrix, at each iteration.
Despite the fast convergence of Newton’s method, which
is the standard second-order algorithm, it suffers from high
communication costs. Moreover, it introduces privacy issues,
since the Hessian matrix contains important information about
the characteristics of the local objective function and data.
For instance, the authors in [7] demonstrated how information
from input images can be extracted using the eigenvalues of
the Hessian matrix. The aforementioned frameworks require
a PS to aggregate the first- and second-order data received
from edge clients. Relying on a single PS may introduce a
lot of communication overhead and in a large system may
not even be possible. Moreover, as an aggregation hub, the
network may experience a single point of failure. Therefore
fully decentralized approaches, where there is no central PS,
have been gaining popularity. In fully decentralized FL, edge
clients share their local information with their neighboring
clients to establish model consensus, which avoids creating
a single point of failure while reducing the communication
bottleneck that occurs at the PS [8]–[10].

A. Related Works

Communication-efficient solutions for distributed optimiza-
tion have been a study subject of several articles. The follow-
ing discussion highlights various techniques.

1) First-Order Methods: The standard approach to solving
the distributed optimization problem in the PS-based topology
is to use first-order methods such as distributed gradient de-
scent (DGD). At every iteration of DGD, each client computes
its local gradient with respect to the current model parameters
and sends that information to the PS. After receiving all

gradients, the PS computes the global gradient and executes
one GD step. In decentralized settings, the local gradients are
shared among neighboring clients where each client averages
the received gradients and then performs a local GD step to
update its local model. Although first-order methods enjoy low
computation complexity, they suffer from a slow convergence
rate, which depends on the condition number. This calls for
a large number of communication rounds; in addition to con-
siderable energy and bandwidth resources per communication
round. This bottleneck can be tackled by either reducing the
number of communication rounds to ensure fast convergence
or minimizing the communication overhead per communica-
tion round using compression schemes. Several techniques
were proposed to reduce the number of communication rounds
by accelerating the convergence using momentum [11], and
adaptive learning rate [12]. On the other hand, imposing
quantization [13] and censoring [14] can help reduce the
communication cost per iteration.

2) Second-Order Methods: Recently, second-order algo-
rithms have attracted a lot of attention because they achieve
faster convergence compared to first-order techniques taking
advantage of the second derivative’s curvature information,
which gives adaptive update directions. Although this reduces
the number of communication rounds, second-order informa-
tion necessitates significant computation and communication
costs. In every communication round, the Hessian matrix is
computed and transmitted, which creates a communication
cost of O(n2) per iteration compared to O(n) in first-order
methods, where n is the dimension of the model. Furthermore,
Newton’s approach is sensitive to inversion attacks since it
involves sharing both the gradient and the Hessian at each
iteration, which is a major concern in distributed systems [15].

The problem of sending the exact Hessian matrix has been
addressed in various studies with communication-efficient
solutions that avoid sending the exact Hessian. The authors
in [16] suggested a Newton-based framework, in which edge
clients communicate a compressed version of the local Hes-
sian. However, gradients and compressed Hessians are still
communicated; hence the privacy issue is not completely
addressed. In a recent work [17], the privacy issue was solved
by learning the inverse Hessian-gradient product. The idea is
to formulate an inner problem with the objective of learning
the inverse Hessian-gradient. One ADMM step is performed
at the clients in every iteration to approximate the solution of
the inner problem, then the output is shared with the PS. This
algorithm still requires the existence of the PS to aggregate
the received directions and form the global Newton direction.
In this work, we extend this idea to the fully decentralized
setting to solve the aforementioned drawbacks of PS-based
solutions. Few works have utilized second-order information
in decentralized settings to accelerate convergence. In [18],
authors approximate the exact Newton step by truncating K
terms of the Taylor series expansion. However, this algorithm
requires multiple exchanges of the local directions to approx-
imate the exact Hessian, which calls for more communication
rounds. Authors in [19] incorporate the local Hessian in the

update direction while tracking the gradient. However, the
local Newton direction may not be a good estimate for the
global one. Throughout this paper, we will refer to both
algorithms as Network Newton (NN) and Newton Tracking
(NT), respectively, and refer to them as baselines.

B. Contributions and Outline

In this paper, we propose DIN, a second-order based,
decentralized, and communication-efficient FL scheme that
reduces the communication overhead per iteration and pre-
serves privacy by concealing the gradient and the Hessian.
DIN learns the inverse Hessian-gradient product alongside
the model. The problem of learning the inverse Hessian-
gradient product is formulated as a constrained optimization
problem and a framework based on Prox-PDA is used to learn
∇2f(x)

−1∇f(x). In contrast to O(n2) in standard Newton,
each client in this step shares a model-sized vector, yielding
O(n) communication complexity per iteration. Each client
updates its model utilizing the inexact Newton step using the
average estimates of the newton direction received from the
neighboring clients. Our contribution can be summarized as
follows

• We propose DIN algorithm, a decentralized framework
that uses second-order information to solve the consensus
optimization problem. More specifically, we use Prox-
PDA [10] algorithm to tackle the problem of learning
the inverse-Hessian-gradient product by decomposing the
global inverse-Hessian-gradient product learning function
into a sum of separable local functions.

• Our proposed algorithm is communication and energy-
efficient and privacy-preserving at each iteration. DIN
does not require clients to share their explicit gradient
and Hessian matrix at any iteration, resulting in a com-
munication cost of O(n) and privacy preservation.

• We conducted a number of experiments to solve the de-
centralized logistic regression problem with real datasets
while monitoring energy consumption. Numerical results
show that DIN outperforms Network Newton and Newton
Tracking methods under different network topologies and
graph densities. We show that DIN consumes less energy
to achieve the same optimality gap.

The paper is structured as follows. In Section II, we describe
the system model and problem formulation. In Section III, we
describe our proposed algorithm. Then, we conduct several
numerical experiments to compare the performance of DIN
with key baselines in Section IV. Finally, we give a conclusion
of our work in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a connected network consisting of N devices,
each having a local loss function fi : Rd → R, assumed to be a
convex and second-order differentiable, known only to device
i. The devices are connected through a graph G = {V, E},
where V and E are the node and edge sets, respectively.
Devices collaborate to minimize the empirical loss/risk, i.e.,
the average of their local objective functions, to find a common

model, x ∈ Rd. Every device i can only communicate with
its immediate neighbors, defined as Ni = {j|(i, j) ∈ E},
with |Ni| = δi denote the cardinality of its neighbor set.
Specifically, the devices’ goal is to find the model that solves
the following learning problem in a decentralized manner

(P1) min
x∈Rd

f(x) =
1

N

N∑
i=1

fi(x). (1)

The starting point of our work is the Newton-like method
introduced in [20], which solves (P1) in the presence of a
PS. At iteration (k + 1), the Newton step update is given by

xk+1=xk−
(1

N

N∑
i=1

∇2fi(x
k)
)−1(1

N

N∑
i=1

∇fi(x
k)
)
, (2)

where ∇2fi(·) ∈ Rd×d and ∇fi(·) are the Hessian and
the gradient of fi(·), respectively. For ease of notations, we
define Hk

i = ∇2fi(x
k) and gk

i = ∇fn(x
k) as the Hessian

matrix and the gradient vector of device i evaluated at xk,
respectively. We also define the network Hessian and gradient
as

H̄k =
1

N

N∑
i=1

Hk
i and ḡk =

1

N

N∑
i=1

gk
i . (3)

Hence, we can write the step in (2) as follows

xk+1 = xk − (H̄k)−1ḡk. (4)

Note that (4) can be implemented if every device has access to
the average of all gradients and all Hessians evaluated at xk.
However, this update cannot be implemented in a decentralized
way since every device can only exchange information with
a limited number of neighbors; thus it cannot obtain ḡk and
H̄k. Before we present our algorithm, we start by introducing
matrices related to the network topology

• The degree matrix D̃ = diag[δ1, δ2, . . . , δN], a diagonal
matrix containing the number of neighbors of each de-
vice, i.e., the degree of the device i.

• The incidence matrix Ã with entries Ã(k, i) = 1 and
Ã(k, j) = −1 if k = (i, j) ∈ E with j > i.

• The signed and signless Laplacian matrices defined as
L̃− = ÃT Ã and L̃+ = 2D̃ − L̃−, respectively.

We also define the extended versions of these matrices where
the extended definition is given by taking the Kronecker
product with the identity matrix, i.e., A = Ã⊗ Id.

III. PROPOSED ALGORITHM

Inspired by [17], we propose to replace the inverse Hessian-
gradient product, i.e., the term (H̄k)−1ḡk in (4), with an
approximate solution of the following optimization problem

dk = argmin
d∈Rd

1

2
dT H̄kd− dT ḡk. (5)

Specifically, when solving the problem in (5) at iteration k, we
find the direction dk = (H̄k)−1ḡk. Nevertheless, the solution
to this problem in a decentralized manner is still not possible.

To this end, we reformulate the problem in (5) and cast it as
a decentralized optimization problem

(P2) (d⋆)k = argmin
{di}N

i=1∈Rd

{
ϕk(d) =

N∑
i=1

ϕk
i (di)

}
s.t. di = dj , ∀ (i, j) ∈ E , (6)

where ϕk
i (di) = 1

2d
T
i (H

k
i + αId)di − dT

i g
k
i , α is a hy-

perparameter that we introduce to make sure that the matrix
(Hk

i + αId) invertible, and d = [d1,d2, . . . ,dN]T ∈ RNd

the concatenation of the local directions. Note that the in-
exact Newton direction, i.e., −(Hk

i + αId)
−1gk

i , is also a
valid descent direction [19]. For a given xk

i , solving (P2)
exactly, i.e., until converging to (d⋆)k, comes at a very
high communication cost since devices need to iterate and
communicate their updates at each iteration until convergence.
In this work, we propose to perform a single update at each
outer iteration k to approximate the solution of (P2) and reduce
the communication cost. In what follows, we elaborate on how
the single pass update of the direction d is done. Using these
introduced notations, (P2) can be re-written as

min
d∈RNd

ϕk(d)

s.t. Ad = 0 (7)

The augmented Lagrangian of (7) is given as

Lk
ρ(d,µ) = ϕk(d) + ⟨µ,Ad⟩+ ρ

2
∥Ad∥2, (8)

where ρ > 0 is a constant penalty parameter, and µ =
[µ1,µ2, . . . ,µN]T ∈ RNd is the concatenation of the dual
variables. Minimizing the augmented Lagrangian directly
leads to a solution that cannot be implemented in a decen-
tralized way. Instead, we leverage the Prox-PDA algorithm
[10], which adds the proximal term ρ

2∥d − dk−1∥2L+
. In this

case, the update of the primal variables, at iteration k, is given

Algorithm 1 Decentralized Inexact Newton (DIN)

1: Input: N, {fi(·)}Ni=1, ρ,K,
2: Output: x, ∀i
3: Initialization: x0

i ,d
(−1)
i ,λ

(−1)
i , ∀i.

4: for k = 0, . . . ,K do
5: Every node in parallel
6: Computes its Newton direction using

dk
i = (Hk

i,α)
−1

gk
i − λk−1

i + ρ

δid
k−1
i +

∑
j∈Ni

dk−1
j

.

7: Updates its dual variable via

λk
i = λk−1

i + ρ

δid
k
i −

∑
j∈Ni

dk
j

 .

8: Updates its local model using xk+1
i = xk

i − dk
i .

9: end for

by solving the following optimization problem [10]

min
d∈RNd

ϕk(d)+⟨µk−1,Ad⟩+ ρ

2
∥Ad∥2+ ρ

2
∥d−dk−1∥2L+

. (9)

Using L− = ATA and 2D = L− +L+, we can write

min
d∈RNd

ϕk(d) + ⟨µk−1,Ad⟩+ ρdTDd− ρdTL+d
k−1. (10)

Setting the derivative with respect to d to zero, we get

∇ϕk(dk) +ATµk−1 + 2ρDdk − ρL+d
k−1 = 0. (11)

On the other hand, the update of µ, at iteration k, is given by

µk = µk−1 + ρAdk. (12)

Next, we define λ = ATµ and multiply both sides in (12) by
AT . Using the fact that L− = ATA, we get

λk = λk−1 + ρL−d
k. (13)

Hence, the dual variable of the ith device is updated as

λk
i = λk−1

i + ρ

δid
k
i −

∑
j∈Ni

dk
j

 . (14)

Writing the update of the primal variable of the ith device
from (7), we get

∇ϕk
i (d

k
i)+λk−1

i +2ρδid
k
i −ρ

δid
k−1
i +

∑
j∈Ni

dk−1
j

=0.

(15)

Replacing the expression of ∇ϕk(dk) and re-arranging the
terms, we can write

dk
i =(Hk

i,α)
−1

gk
i −λk−1

i +ρ

δid
k−1
i +

∑
j∈Ni

dk−1
j

 ,

(16)

where Hk
i,α = Hk

i + (2ρδi + α)Id. Finally, the local model
is updated using the local Newton direction as

xk+1
i = xk

i − dk
i . (17)

The details of our algorithm are summarized in Algorithm 1.

IV. NUMERICAL EVALUATION

In this section, we conduct numerical experiments to eval-
uate the performance of our proposed algorithm DIN, against
first- and second-order algorithms, DGD, Network Newton
(NN) [18], and Newton Tracking (NT) [19], under different
network topologies. We consider a binary classification prob-
lem using regularized logistic regression.

A. Experimental Setup

We consider the regularized logistic regression problem

min
x∈Rd

{f(x) := 1

N

N∑
i=1

fi(x) +
η

2
∥x∥2}, (18)

where the local loss function fi(x) is defined as

fi(x) =
1

m

m∑
j=1

log (1 + exp (−bija
T
ijx)), (19)

{aij , bij}j=1,...,m denote the data points at the ith device
(i ∈ {1, . . . , N}), where m represents the number of data
samples of each device. A regularization parameter η > 0 is
added to avoid overfitting and chosen to be equal to 10−3. We
consider three real datasets: a9a, w8a, and phishing, that were
taken from LibSVM [21]. The data is evenly split between
N workers, which are connected with undirected edges of
a given generated graph. The number of features of each
dataset and the number of workers is depicted in Table I.
Four network topologies are implemented in the experiments:
a binomial graph with edge creation probability p = 0.4, a
geometric graph with distance d = 0.4, as well as the grid
and ring topologies. The energy footprint of the ith device
consumed during training consists of two parts, computation
and communication components. The computation component
Ec consists of the energy required to power the hardware (e.g.,
CPUs, GPUs, Memories, etc.), while the latter Et represents
the energy needed to transmit and receive bits between neigh-
boring devices [22]. The total energy consumed by device i
after t iterations can be written as

ET (t) = Ec(t) + Et(t), (20)

with

Ec(t) =

t∑
k=1

edevice,i and Et(t) =

t∑
k=1

∑
j∈Ni

b(dk
i)ei,j , (21)

where edevice,i is the computation energy consumed by device
i to perform one iteration, b(dk

i) is the size of the inverse
Hessian-gradient product vector in bits, and ei,j is the en-
ergy needed to transmit one bit from device i to neighbour
j. We conduct the experiment on an NVIDIA Jetson Dev
Board and we monitor the energy efficiency and the carbon
emission using eco2AI python library [23]. The devices are
randomly distributed over a 100 × 100 m2 area, and we
assume a digital communication link with a free-space path
loss channel model. Hence, the maximum achievable rate
R = B log2(1 +

Pt

d2
i,jBN0

), where B is the bandwidth, Pt is
the transmission power, di,j is the distance between transmitter
i and receiver j, and N0 is the noise spectral density. To
find the maximum data rate between neighbouring devices
and the energy consumed for transmission, we assume each
device transmits at full power Pt = 100mW, B = 2MHz,
N0 = 10−9W/Hz, and a 32-bit representation of transmitted
elements.

TABLE I: Details of the datasets

Dataset n m d N
a9a 32560 407 109 80
w8a 49700 350 267 142

phishing 11000 110 68 100

(a) Dataset: a9a (b) Dataset: w8a (c) Dataset: phishing

Fig. 1: Optimality gap of DIN compared to baselines in terms of the number of communication rounds for different datasets.

(a) Geometric Graph (b) Grid Graph (c) Ring Graph

Fig. 2: Optimality gap versus the number of communication rounds for (a) geometric, (b) grid, and (c) ring network topologies
using the phishing dataset.

To evaluate the performance of the aforementioned al-
gorithms, we plot the optimality gap f(x̄k) − f(x⋆) as a
function of the number of communication rounds, where x⋆

and f(x⋆) are pre-computed using standard Newton’s method
until convergence and x̄k is the average model at iteration k.
For hyperparameters tuning, we pick the parameters that lead
to the best performance for each algorithm in all experiments.

B. Performance Comparison

Fig. 1 illustrates the optimality gap as a function of the
number of communication rounds in a decentralized network
topology with a connection probability p = 0.4. We observe
from Fig. 1 that DIN is the fastest, followed by Newton
Tracking, Network Newton, and DGD for the three datasets.
We clearly see from Fig. 1-(a-c) that DIN reaches the opti-
mality gap of 10−5 within at least 50 communication rounds
earlier than the fastest baseline (Newton Tracking). Since each
algorithm has the same communication overhead per round,
DIN is the most communication/energy efficient one; thanks
to the fast convergence in terms of communication rounds. In
Fig. 2, we investigate the performance of DIN with different
network topologies. Each sub-figure plots the optimality gap
with respect to the number of communication rounds for a
different topology. In Fig. 2-(a), the graph is geometric where
every two devices are connected if they’re located within a
normalized distance d = 0.4. For the grid topology (Fig.
2-(b)), each device has a communication link with at most
four neighbors. In Fig. 2-(c), the graph topology forms a ring,
and each device communicates with only two neighbors. The
dataset used for this comparison is the phishing dataset. We
observe from Fig. 2(a-c) that DIN converges faster than the

considered baselines, although there is a degradation in the
convergence speed in the case of ring topology due to the
high sparsity of the network.

C. Energy-Efficiency and Carbon footprint

In table II, we report the energy consumption and the carbon
footprint required by the four algorithms to achieve a 10−5

optimality gap using the phishing dataset. We observe that
DGD’s total energy consumption is the highest, and so is
its carbon footprint. Although DGD is computationally less
expensive, it requires a very large number of communication
rounds to achieve the target optimality gap inducing high
communication energy cost. On the other hand, Network New-
ton consumes the highest computation energy since Network
Newton performs two matrix inversion operations in each com-
munication round. Finally, DIN requires lower energy for both
computation and communication due to its fast convergence
while performing a single matrix inversion operation in each
communication round.

D. Impact of the Graph Density

Now, we investigate the effect of the graph density on
the convergence speed of DIN. We use four topologies: the
line graph, random graphs with p ∈ {0.3, 0.5}, and the
complete graph. The hyperparameters α and ρ are tuned to
give the fastest convergence. Fig. 3 shows the optimality gap
versus the number of communication rounds. We observe that
the complete graph gives the fastest speed, whereas the line
graph yields the slowest convergence among all topologies.
Furthermore, when p = 0.5, DIN still achieves a comparable
performance to the complete graph case indicating that DIN
is still applicable in networks with limited connectivity.

TABLE II: Computation/Communication energy costs and corresponding carbon footprints for the phishing dataset for a
target optimality gap 10−5.

Algorithm Comp. Energy [J] Comm. Energy [J] Total Footprint [g-CO2-eq]

DGD 5.97E − 2 25.54 4.55E − 4
DIN 1.32E − 2 4.60 0.82E − 4
Newton Tracking 2.69E − 2 7.88 1.41E − 4
Network Newton 7.96E − 2 10.21 1.83E − 4

0 0.1 0.2 0 10 20 30

Fig. 3: Effect of the network density on the DIN performance
for the a9a dataset.

V. CONCLUSION

This paper presents a decentralized FL algorithm based on
Newton’s method. Each client updates its model utilizing an
approximate of the global inverse Hessian gradient product,
which is calculated using its local function/data and shared
approximate directions of its neighbors. By performing one
Prox-PDA step, the proposed approach avoids sharing the
Hessian of the device and thus ensures privacy. Furthermore,
by only sharing a model-sized vector, DIN has the same
per iteration communication efficiency as first-order methods,
yet it is shown to be much faster and more energy-efficient.
Numerical results show the supremacy of DIN over existing
decentralized algorithms such as DGD, Network Newton, and
Newton Tracking. The convergence analysis and the utilization
of quantization for DIN are left as future work.

REFERENCES

[1] S. Nabavi, J. Zhang, and A. Chakrabortty, “Distributed optimization
algorithms for wide-area oscillation monitoring in power systems using
interregional PMU-PDC architectures,” IEEE Transactions on Smart
Grid, vol. 6, no. 5, pp. 2529–2538, 2015.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] A. Chavez, A. Moukas, and P. Maes, “Challenger: A multi-agent
system for distributed resource allocation,” in Proceedings of the first
international conference on Autonomous agents, 1997, pp. 323–331.

[4] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K.
Varshney, “A primer on zeroth-order optimization in signal processing
and machine learning: Principals, recent advances, and applications,”
IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 43–54, 2020.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[6] R. Zhang and J. Kwok, “Asynchronous distributed ADMM for consensus
optimization,” in International conference on machine learning. PMLR,
2014, pp. 1701–1709.

[7] X. Yin, B. W. Ng, J. He, Y. Zhang, and D. Abbott, “Accurate image
analysis of the retina using hessian matrix and binarisation of thresh-
olded entropy with application of texture mapping,” PloS one, vol. 9,
no. 4, p. e95943, 2014.

[8] S. Pu and A. Nedić, “Distributed stochastic gradient tracking methods,”
Mathematical Programming, vol. 187, no. 1, pp. 409–457, 2021.

[9] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.

[10] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal
primal-dual algorithm for fast distributed nonconvex optimization and
learning over networks,” in International Conference on Machine Learn-
ing. PMLR, 2017, pp. 1529–1538.

[11] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Improving
communication-efficient distributed SGD with slow momentum,” arXiv
preprint arXiv:1910.00643, 2019.

[12] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[13] A. Elgabli, J. Park, A. S. Bedi, C. B. Issaid, M. Bennis, and V. Aggarwal,
“Q-GADMM: Quantized group ADMM for communication efficient de-
centralized machine learning,” IEEE Transactions on Communications,
vol. 69, no. 1, pp. 164–181, 2020.

[14] C. Ben Issaid, A. Elgabli, J. Park, M. Bennis, and M. Debbah, “Com-
munication efficient decentralized learning over bipartite graphs,” IEEE
Transactions on Wireless Communications, vol. 21, no. 6, pp. 4150–
4167, 2022.

[15] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[16] M. Safaryan, R. Islamov, X. Qian, and P. Richtárik, “FedNL: Making
Newton-type methods applicable to federated learning,” arXiv preprint
arXiv:2106.02969, 2021.

[17] A. Elgabli, C. B. Issaid, A. S. Bedi, K. Rajawat, M. Bennis, and V. Ag-
garwal, “FedNew: A communication-efficient and privacy-preserving
Newton-type method for federated learning,” in International Confer-
ence on Machine Learning. PMLR, 2022, pp. 5861–5877.

[18] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton distributed
optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146–161, 2016.

[19] J. Zhang, Q. Ling, and A. M.-C. So, “A Newton tracking algorithm
with exact linear convergence for decentralized consensus optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 7, pp. 346–358, 2021.

[20] R. Islamov, X. Qian, and P. Richtárik, “Distributed second order meth-
ods with fast rates and compressed communication,” in International
Conference on Machine Learning. PMLR, 2021, pp. 4617–4628.

[21] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, may 2011.
[Online]. Available: https://doi.org/10.1145/1961189.1961199

[22] S. Savazzi, V. Rampa, S. Kianoush, and M. Bennis, “An energy and
carbon footprint analysis of distributed and federated learning,” IEEE
Transactions on Green Communications and Networking, 2022.

[23] S. Budennyy, V. Lazarev, N. Zakharenko, A. Korovin, O. Plosskaya,
D. Dimitrov, V. Arkhipkin, I. Oseledets, I. Barsola, I. Egorov et al.,
“Eco2ai: carbon emissions tracking of machine learning models as the
first step towards sustainable ai,” arXiv preprint arXiv:2208.00406, 2022.

