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Abstract—5G radio access network (RAN) slicing enables bet-
ter satisfaction of different quality of service (QoS) requirements
than without network slicing. A handful of slice types are
specified for various service verticals; however, the number and
size of those slices is unspecified. Subslicing refers to grouping
slice users into smaller groups, subpartitioning slice bandwidth,
and allocating smaller bandwidth parts to smaller user groups.
State of the art subslicing has been done to better satisfy the
QoS requirements inside the service vertical. Slice performance
improvement was not the purpose of subslicing, but the positive
effect was noticeable. In this paper, the subslicing decision is
done with the aim of improving slice performance. The decision
mechanism for management closed control loop is proposed.
The input dataset consists of 6 key performance indicators,
namely slice bandwidth utilization, slice goodput (application
level throughput) per one allocated resource block (RB), and
slice block error ratio (BLER), both in uplink and downlink.
This dataset is clustered, and the result is learned by a classifier
to decide whether the slice is too large and should be split or
too small and should be merged with another too small slice or
subslice. The results show that by knowing the slice utilization
and goodput per one allocated RB, the slice reconfiguration action
regarding subslicing can be determined using machine learning
tools.

Index Terms—subslicing, performance, clustering, neural net-
work

I. INTRODUCTION

Network slicing in a 5G radio access network (RAN) guar-
antees service-level agreement (SLA) using logical networks
on the physical infrastructure. These logical networks, called
slices, can be configured to satisfy specific quality of service
requirements and connectivity. There are no limitations on the
number or size of slices set by standardization.

The slice provisioning solutions allocate sufficient resources
to user equipments (UEs) admitted to the slice. In RAN,
the radio spectrum resource is available in bandwidth parts
(BWP) of a fixed size [1], but can be allocated to the slice
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with the granularity of one resource block (RB). The RB is
defined in timescale as a slot time and in frequency scale as 12
subcarriers. The length of a slot time and width of a subcarrier
depend on subcarrier spacing configuration [2].

Given complete slice performance data, that is, the slice
performance at any slice size, the dependence of slice perfor-
mance on slice size can be determined. Subsequently, slices
that are too large can be split into subslices, and slices or
subslices that are too small can be merged. This decision
mechanism can be used in ”Decide” step of management
closed control loop specified in 3GPP TS 28.535 [3].

How can we evaluate which subslice is too small and which
is too large? How can we determine which subslice can be
split and which one can be merged with another subslice
that is too small? In this paper, it is proposed the clustering
of subslice performance data into three clusters to determine
whether the subslice should be merged, split, or not changed.
Subsequently, the result of the performance data clustering
is learned as a classification to decide suitable actions to
reconfigure slices and subslices to improve the performance
of a slice and network. Subslicing enables to serve more UEs
if no additional bandwidth is available or if carrier aggregation
is not possible.

The remainder of this paper is organized as follows. In Sec-
tion II, the related work on slice and subslice size described.
The proposed slice performance data clustering algorithm is
described in Section III. Section IV contains the learning
of clustering result as a classification. Finally, Section VI
concludes the paper.

II. RELATED WORK

In RAN slicing, optimized resource allocation determines
the slice size. Optimized resource allocation to a slice is
expected to result in the best slice performance. In [4],
resources were allocated to subslices based on optimization,
and the channel bandwidth remained constant. Their results
showed that their proposed algorithm for resource allocation to
subslices outperformed the others multiple times if the number
of subslices was higher. However, the UE SLAs varied; thus,
the effect of the number of subslices on the cell performance
was not comparable. It is not known if the number of UEs



and average SLA for a slice were set equal among all number
of subslices the slice was divided into.

The subslicing presented in [5] includes UE features se-
lected using a support vector machine (SVM) and UEs clus-
tered by selected features using k-means. The number of
subslices was determined by evaluating the clustering quality,
and performance was not considered when creating subslices.
UEs with more similar requirements should work in one
subslice; however, if the number of UEs is low, then the
subslice is small and can exhibit poor performance.

Second, it is questionable to measure the effect of subslicing
on performance change if the planned use of capacity does not
match the allocated resources properly, that is, using requested
data rates that are not capable of consuming the given BWP,
or if the sum rate of UEs is too variable in time to evaluate
the slice performance at different slice sizes.

If there are many UEs in the slice, the slice BWP is large,
and if there are few UEs in the slice, the slice BWP is small.
However, BWPs that are too small cannot provide the same
SLA satisfaction for the UE as if the UE is admitted to the slice
that uses a large BWP. The performance of a small subslice
can be reduced, as discussed in [6]; if the BWP is smaller
than 20 physical RBs, then the different control blocks can
puncture each other and increase the coupling loss in 5G NR.

III. PERFORMANCE DATA CLUSTERING

The aim of clustering the subslice performance data is to
determine the action for subslice modification. The possible
subslice modification options are “merge”, “no change” and
“split”, thus three clusters are required. The execution of
subslice modification is beyond the scope of this paper.

A. Subslice performance data

The subslice performance data were collected from the
simulation results in the MATLAB 5G Toolbox system-level
simulation tool called NR Cell Performance Evaluation with
Physical Layer Integration [7]. The range of subslice size is
4-275 RBs (720 kHz—49.5 MHz, using subcarrier spacing of
15 kHz). Each RB in a subslice is expected to be consumed
by one UE, which requests rates of 500 kbps in the UL and
667 kbps in the DL. The requested rate is served using packet
sizes of 1500 bytes, 500, 150, 50, and 40 bytes. Each UE
is located up to a distance of 173 m from the gNB and is
expected to have good signal coverage. The key performance
indicators (KPI) are subslice bandwidth utilization in UL
(utilUL) and DL (utilDL), subslice goodput (application-level
throughput) per one RB in UL (gdp1UL) and DL (gdp1DL),
and the subslice average block error ratio (BLER) in UL
(blerUL) and DL (blerDL). Further information regarding the
dataset is provided in [8], section 2. Subslice performance
improvement means that subslice utilization decreases, while
subslice goodput increases. The subslice performance data is
shown in Fig. 1
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Fig. 1. Subslice performance data for all subslice sizes in range of 4-275
RBs, if packets of different sizes used. 6 KPIs: (a) bandwidth utilization in
UL and (b)in DL, (c) goodput per one RB (Mbps) in UL and (d) in DL, (e)
BLER in UL and (f) in DL.

B. Clusterability evaluation

Each data point in the dataset has values for six KPIs,
subslice size in RBs, and packet size. To evaluate the cluster-
ability [9] of subslice performance dataset, pairwise Euclidean
distances were calculated for all data points. The histogram
of all distances should be multimodal to expect the dataset
to contain clusters. The histograms of pair-wise distances
using combinations of KPIs are shown in Fig. 2. Histograms
that characterize six or four KPIs look visually promising to



be three-modal; thus, these should be explored further. The
subslice performance data could not be clustered into three
clusters by seven variables, consisting of the subslice size and
six KPIs. The subslice size variable is used for the recognition
of a data point, similar to the packet size variable in the dataset.
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Fig. 2. The histogram of pair-wise distances of all data points in subslice
performance dataset. Dimensions of each datapoint: (a) 6 KPIs and subslice
size in RBs, (b) 6 KPIs, (c) bandwidth utilization in UL and DL, (d) goodput
per one RB in UL and DL, (e) BLER in UL and DL, (f) utilization and
goodput, (g) utilization and BLER, (h) goodput and BLER.

C. Evaluation of clustering results
Four types of clustering algorithms exist: density-based,

distribution-based, centroid-based and hierarchical-based. One
algorithm of each type was compared for suitability in clus-
tering the subslice performance dataset into three clusters. K-
means [10] is a centroid-based, simple, and popular clustering
method. Gaussian Mixture Model (GMM) algorithm [11] is
a distribution-based clustering method. Agglomerative hierar-
chy clustering algorithm [12] is a hierarchy-based clustering

method. DBSCAN [13] is a density based method. The settings
for DBSCAN are recommended in [14]: the minimum number
of points, a parameter called minPts, and a small radius ϵ,
that should contain the minimum number of points. Euclidean
distance was used as the distance function. DBSCAN can
identify outliers; however, a decision must be made for each
data point.

To evaluate clustering results, three types of statistics were
calculated. Davies-Bouldin index (DBI) [15] was calculated
using

DBI =
1

k

k∑︂
i=1

max
j ̸=i

{Di,j}, (1)

where Di,j is the within-to-between cluster distance ratio for
the ith and jth clusters. The smaller values indicate better
clustering.

The Silhouette coefficient (SIL) [16] for each data point was
calculated using

si =
bi − ai

max(ai, bi)
, (2)

where ai average distance of point i to the points in the same
cluster, bi is the minimum average distance of point i to the
points of all other clusters. High positive value means highly
separable clusters.

The third statistic calculated was sum of entropies (SEN)
of clusters by using

E = −
k∑︂

i=1

pi · log(pi), (3)

where k is a number of clusters, and pi is the proportion of
the points in the region i. Large values of entropy indicate
poor clustering behaviour [17].

TABLE I
EVALUATION OF CLUSTERS. *DBI WAS CALCULATED AFTER OUTLIERS

EXCLUDED.

Variables DBI SIL SEN
k-means

6 KPIs 0.779 0.715 0.833
utilUL, utilDL, gdp1UL, gdp1DL 0.694 0.742 0.833
utilUL, utilDL, blerUL, blerDL 0.608 0.753 0.768
gdp1UL, gdp1DL, blerUL, blerDL 0.483 0.848 0.504

GMM
6 KPIs 0.944 0.608 0.649
utilUL, utilDL, gdp1UL, gdp1DL 1.20 0.696 0.571
utilUL, utilDL, blerUL, blerDL 0.536 0.723 0.398
gdp1UL, gdp1DL, blerUL, blerDL 0.461 0.861 0.457

Agglomerative
6 KPIs 0.409 0.566 0.0850
utilUL, utilDL, gdp1UL, gdp1DL 1.60 0.490 0.471
utilUL, utilDL, blerUL, blerDL 0.771 -0.348 0.0850
gdp1UL, gdp1DL, blerUL, blerDL 0.248 0.783 0.0850

DBSCAN
6 KPIs 0.675* 0.569 0.427
utilUL, utilDL, gdp1UL, gdp1DL 0.602* 0.753 0.586
utilUL, utilDL, blerUL, blerDL 0.415* 0.775 0.0662
gdp1UL, gdp1DL, blerUL, blerDL NaN* NaN 0.0767



Better clustering is indicated if DBI is small, SIL is high
positive value and SEN is small. The results are presented
in Table I for all 6 KPIs and different combinations of 4 of
those KPIs. The DBI was the smallest when Agglomerative
clustering was used. Reducing the number of KPIs improves
DBI. The SIL was the highest when k-means was used.
Reducing the number of KPIs increased the SIL, except in
the case of Agglomerative. The SEN was the lowest when
Agglomerative clustering was used. If the performance data
were clustered by utilization and goodput KPIs or utilization
and BLER KPIs, then DBSCAN had the best statistical values.
If the performance data were clustered by goodput and BLER
KPIs, then GMM and Agglomerative had the best statistics,
but DBSCAN could not be evaluated.

Considering the statistics, the best clustering is possible
with Agglomerative hierarchical clustering, followed by k-
means clustering, DBSCAN, and GMM. If the number of KPIs
is reduced, then the statistics are improved for k-means and
GMM, especially when BLER is included in the KPIs.

D. Visualization of clustering results
The aim of the visualization is to confirm that too small,

too large, and suitably sized subslices are in three separate
clusters, and that some boundaries of subslice sizes between
the clusters are visible. The clustering results are presented in
Fig. 3. The clusters are numbered automatically, but matching
of the cluster to the decision is performed manually. The
cluster which contains the smallest subslice sizes is matched to
“merge” cluster. The cluster which contains the largest subslice
sizes is matched to “split” cluster. A cluster which contains
other subslice sizes is “no change” cluster.

Both algorithms, k-means and GMM, have similar results
(see Fig. 3a and 3b); however, k-means has subslices that
are too small to be smaller than 37 RBs, whereas GMM has
subslices that are too small with sizes of 7-9 RBs. The removal
of BLER KPI did not significantly change the clustering result
(see Fig. 3c and 3d); however, if goodput was removed, too
small and too large subslices were in the same cluster (Fig. 3e
and 3f. Agglomerative (Fig. 3i) and DBSCAN (Fig. 3j) had
most of the data points in one cluster.

K-means had the second-best statistics, as shown in Table
I, and it can identify subslices that are too small and suitable
size better, as shown in the visualization of clusters in Fig. 3a
and 3c.

IV. LEARNING THE CLUSTERING RESULTS FOR A
CLASSIFICATION

The k-means clustering results were selected for learning
by a classifier. The classification results of the two input
datasets are compared: all six KPIs and four KPIs (utilUL,
utilDL, gdp1UL, gdp1DL). This set of four KPIs had values of
statistics not worse than the set of 6 KPIs, and had meaningful
results in visualization.

A. Classifier
The machine learning tools suitable for multi-class clas-

sification are k nearest neighbour (KNN), supporting vector
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Fig. 3. Visualization of clustering results using different clustering algorithms
and dimensions of a data point: (a) k-means (6 KPIs), (b) GMM (6 KPIs), (c)
k-means (utilization and goodput), (d) GMM (utilization and goodput), (e) k-
means (utilization and BLER), (f) GMM (utilization and BLER), (g) k-means
(goodput and BLER), (h) GMM (goodput and BLER), (i)Agglomerative (6
KPIs), (j) DBSCAN (6 KPIs). The vertical axis shows used packet sizes in
bytes, the horizontal axis shows subslice size in RBs.



machine (SVM) and neural network (NN). A neural network
(NN) was selected as the tool for classification. NN has the
flexibility and can work with large datasets.

The fully connected feedforward classifier NN consists of
input layer, hidden layers, and output classification layer. The
input layer contains 6 nodes, if 6 KPIs are used as inputs,
and 4 nodes, if 4 KPIs are used as inputs. The output layer
contains 3 neurons, one for each class (“merge”, “no change”,
“split”).

The rectified linear unit (ReLU) activation function is suit-
able for the neurons in the hidden layers of the classifier
NN. The number of hidden layers and number of neurons
in the hidden layer need to be found by trials. The number
of neurons in the hidden layer, Nh can be determined using
some hints from [18] and options are shown in Table II. One
and two hidden layers were used in the trials, and the number
of neurons in each layer was set in the ranges of 1-22. The
training, validation, and testing set ratios were 0.8, 0.1, and
0.1, respectively.

TABLE II
OPTIONS FOR NUMBER OF NEURONS IN HIDDEN LAYER, Nh , IF KNOWN

NUMBER OF INPUTS Ni AND NUMBER OF OUTPUTS No = 3

Number of neurons in hidden layer
Condition [18] 6 KPIs 4 KPIs
No ≤ Nh ≤ Ni 3, 4, 5, 6 3, 4
Nh = 2

3
·Ni +No 5 5

Nh < 2 ·Ni 12 8

To evaluate the quality of classification, cross entropy
losses were calculated for training, validation, and testing.
Cross entropy loss shows the probability distribution difference
between the predicted and true classes for the multi-class
classifier. The cross entropy loss is calculated using

L =

n∑︂
j=1

wj̄
logmj

K · n , (4)

where wj̄ are normalized weights, mj is a classification score
predicted for a true class, K is the number of classes, n is the
number of data points.

The minimum number of neurons and layers with small
losses of training, validation, and testing were selected.

B. Results of NNs

Two input datasets were considered. The k-means clustering
results if 6 KPIs were used, and if utilization and goodput
without BLER were used.

Each number of neurons in hidden layers are tested 100
times. Mean and confidence interval of 95% are calculated.
The results of NN are shown in Fig. 4. The NN performance
is evaluated by calculation of a cross entropy loss for training,
validation and testing, respectively.

For input dataset which contained 6 KPIs, if the number
of neurons is 7 or more, then the losses are not decreasing
further. Both the training and validation losses are lower if
one hidden layer is used than with 2 hidden layers. This means
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Fig. 4. Performance of a NN with one or two hidden layers (HL) and different
number of neurons (Nh) in HL. (a) all losses for NN with one HL and input
layer consisting of 6 nodes and (b) 4 nodes; (c) all losses for NN with two
HLs and input layer consisting of 6 nodes and (d) 4 nodes, (e) training losses
for NN with input layer consisting of 6 nodes and (f) 4 nodes; (g) validation
losses for NN with input layer consisting of 6 nodes and (h) 4 nodes.



that one hidden layer with 7 neurons is sufficient configuration
of classifier NN for subslice performance data with subslice
sizes in the range of 4-275 RBs. The NN settings for a dataset
of six KPIs are NN-6-7-3. The notation used, is the number
of neurons in the input layer (6), the number of neurons in
each hidden layer (1 hidden layer with 7 neurons), and the
last number is the number of neurons in the output layer (3).

For input dataset which contained 4 KPIs, if the number
of neurons is 10 or more, then the losses are not decreasing
further. Similarly, all losses are lower when one hidden layer is
used. The NN settings for a dataset of 4 KPIs are NN-4-10-3.

V. EXPERIMENTS

The constructed classifier, NN, was evaluated using a dataset
of smaller subslices. Given the data of the six and four KPIs,
the constructed NN with one hidden layer consisting of 7
and 10 neurons, respectively, determined the action for the
subslice. The results are shown in Fig. 5. Generally, smaller
subslices are classified as ”merge” and a few larger subslices
are ”split”. If fewer KPIs are given as inputs, then some
subslices smaller than 37 RBs are classified as ”no change”.
When using 1500-byte packet size then the subslice size range
of ”no change” is larger than if shorter packets are used.

It should be noted that these subslices were created by
clustering UEs using k-means by UE BLER, and RBs were
allocated proportionally to the number of UEs in the cluster.
Second, the classifier NN does not know the subslice size
in the RBs. Thus, the results are acceptable, and better
classification was achieved if the input dataset contained six
KPIs.
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Fig. 5. Classification experiments for smaller subslices using: (a) NN-6-7-
3, (b) NN-4-10-3. The vertical axis shows used packet sizes in bytes, the
horizontal axis shows subslice size in RBs.

VI. CONCLUSION

We have investigated the decision to modify slices using
ML tools. The slice performance data is clustered into three
clusters to match the slice or subslice configuration decisions.
The clustering results were used as training data for the
neural network, which determines the slice modification action
based on the slice performance. The KPIs used as inputs
were bandwidth utilization, goodput per allocated RB, and
slice BLER, all for UL and DL. None of these KPIs can
be omitted. This mechanism can help automatically decide

subslices configuration. Further work is required to investigate
the subslice performance dependence on the subslice size if
the UEs are not in a good signal coverage.
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