
1. Introduction
Tropical Cyclones (TCs), also known as hurricanes or typhoons, are counted among the most fascinating and 
destructive phenomena that can be found in nature (Emanuel, 2003). Several conditions are at the basis of TC 
formation. As described in (W. M. Gray, 1975; Weaver & Garner, 2023), “TC genesis requires warm sea surface 
temperatures, low wind shear, ample humidity, adequate influence from the Coriolis force, and a pre-existing 
low-pressure disturbance in the atmosphere.” Besides the aforementioned conditions, the cyclone center (i.e., the 
eye) is typically located in a low-pressure region surrounded by strong winds and deep cumulonimbus. As the 
TC travels, it becomes a self-sufficient system that continuously gathers energy from the ocean. If the TC moves 
toward land (i.e., the so-called landfall), the TC loses its energy, which causes rapid dissipation (Kepert, 2010; 
MetOffice, 2023; Rüttgers et al., 2019).
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relevant and interesting area of research in weather and climate science. Traditionally, TCs have been identified 
in large climate data sets through the use of deterministic tracking schemes that rely on subjective thresholds. 
This study presents a Machine Learning (ML) ensemble approach for locating TCs center coordinates. The 
ensemble combines TCs center estimates of different ML models that agree about the presence of a TC in 
input data. ERA5 reanalysis data was used for model training and testing jointly with the International Best 
Track Archive for Climate Stewardship (IBTrACS) records. Compared to single models estimates, the ML 
ensemble approach was able to improve TCs localization in terms of Euclidean Distance with respect to the 
observed TCs locations from IBTrACS. Moreover, a hybrid tracking scheme was defined: starting from the 
individual TC center locations detected by the ML ensemble approach, a deterministic tracking algorithm was 
used for reconstructing TC trajectories. The hybrid tracking scheme was then compared with four deterministic 
trackers reported in literature, achieving a Probability of Detection and a False Alarm Rate of 71.49% and 23%, 
respectively, over 40 years of reanalysis data.

Plain Language Summary Every year an average of 90 Tropical Cyclones (TCs) occur globally, 
and this number is expected to rise due to global warming, which is also increasing the frequency and the 
intensity of such extremes. The localization and tracking of TCs have traditionally been addressed by means of 
deterministic tracking schemes. The present study introduces an ensemble approach based on Machine Learning 
(ML) that locates the TC center coordinates. Basically, the idea is to rely on several ML models accomplishing 
the same task—each with different training configurations—to integrate their results. The climate variables, 
used as predictor for training and testing of the models, were gathered from ERA5 reanalysis, while the 
historical TCs center positions, used as target, were retrieved from the International Best Track Archive for 
Climate Stewardship data set. The results showed the effectiveness of the proposed approach against the use of 
a single ML model. Moreover, starting from the individual TC center locations detected by the ML ensemble 
approach, a deterministic tracking scheme was used from literature to reconstruct TC trajectories. The proposed 
hybrid tracking algorithm was then compared with four deterministic trackers reported in literature, showing 
comparable skills.
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The geographical areas that lead to the formation of TCs are called cyclone formation basins. There are seven 
basins around the world, each with specific water depth and sea surface temperature, which translates to a differ-
ent number of TCs per year and varied seasons in which they develop (Roy & Kovordányi, 2012). Every year, 
globally an average of 90 TCs occur over tropical waters (Emanuel & Nolan, 2004) and global warming is making 
them stronger, larger and more destructive, as found out by Elsner et al. (2008), Mendelsohn et al. (2012), and 
Sun et al. (2017). As reported by the World Meteorological Organization, 1,942 disasters have been attributed to 
TCs, which caused US $ 1,407.6 billion in economic losses and almost 8 million casualties over the past 50 years 
(World Meteorological Organization, 2023), thus making TCs impact quite significant on different sectors, such 
as infrastructures, economy, human health, but also in terms of social unrest.

The accurate detection and tracking of these phenomena have become a relevant and interesting area of research 
in weather and climate science (Dabhade et al., 2021; Scoccimarro et al., 2014). Traditionally, TCs have been 
identified in large climate data sets through the use of deterministic tracking schemes, also known as TCs trackers 
(Horn et al., 2014). These algorithms are capable of identifying—by means of thresholds applied on variables 
significant to the cyclogenesis—patterns related to a warm core in gridded data sets and connecting them along 
the TC trajectory (Bourdin et al., 2022). Depending on the particular variables involved in the tracking process, 
two main categories of schemes exist: physics-based (see Camargo and Zebiak, 2002; Chauvin et al., 2006; Horn 
et al., 2014; Murakami, 2014; Zarzycki and Ullrich, 2017; Zhao et al., 2009) and dynamics-based that include 
the TRACK method (Hodges et  al.,  2017; Strachan et  al.,  2013) and the Okubo-Weiss-Zet.  algorithm (Tory 
et al., 2013b). In particular, physics-based trackers rely on thermo-dynamical variables, “they are based on the 
detection of a local minimum sea-level pressure (SLP) combined with a warm-core criterion—usually expressed 
as a temperature anomaly or a geopotential thickness—on top of which discriminating intensity criteria are 
applied based on surface winds or vorticity.” (Bourdin et al., 2022), whereas dynamics-based trackers rely on 
“dynamical variables such as vorticity or other derivatives of the velocity” (Bourdin et al., 2022), and are referred 
to be resolution-independent (Tory et al., 2013a).

The aforementioned thresholds are set by the author of the scheme, therefore they are subjective and mainly rely 
on the human expertise about the phenomena under investigation (Dabhade et al., 2021; Enz et al., 2022). More-
over, thresholds may depend on the particular geographical region of study and the related formation basin, as 
well as on the TC categories (Befort et al., 2020; Bloemendaal et al., 2021). However, manual threshold tuning 
may lead to subjective bias, including the potential inability of tracking schemes to generalize to other domains 
or data from sources other than those used to calibrate the thresholds.

The state of different climate variables, which the tracking schemes are applied on, is simulated by physics-based 
Earth System Models (ESMs) that provide large amounts of data at different spatio-temporal resolutions. In 
addition to ESM data, ground-based in situ observations and satellite retrievals contribute to further increase the 
data volume. Such large-scale data introduces issues in terms of how scientific data can be effectively managed 
and processed to make the best out of it (J. Gray et al., 2005). Indeed, climate scientists, meteorological agen-
cies and policy decision makers need to process and extract meaningful information from these huge data sets 
in a cost-effective manner and in a reasonable amount of time (Sebestyén et al., 2021). In this context, High 
Performance Data analytics systems can address some of the issues and provide support for descriptive/statistical 
analysis of this large-scale data (Elia et al., 2021). Nevertheless, in the last few years Machine Learning (ML) and 
Deep Learning (DL) algorithms became popular as data-driven paradigms for supporting feature extraction from 
the vast amounts of scientific data currently available (Hey et al., 2020). ML and DL algorithms can actually go 
beyond what can be extracted with traditional descriptive and deterministic methodologies.

To this extent, several research efforts can be found in scientific literature toward the development of cutting-
edge TC detection approaches beyond the existing deterministic tracking schemes. For example, many studies 
have been focusing on the use of satellite data and DL approaches for accurately locating the TC center (Carmo 
et al., 2021).

Several works, such as Haque et  al.  (2022), Lam et  al.  (2023), Pang et  al.  (2021), and Shakya et  al.  (2020), 
framed the identification of the TC center as an object detection task for which the You Only Look Once v3 DL 
object detection model was adopted. Similarly, a DL-based object detection approach was proposed in Wang 
et al. (2020) with the aim of retrieving the TC center through segmentation, edge detection, circle fitting, and 
comprehensive decision of satellite infrared images. Segmentation of the shape and size of the detected TC in 
high-resolution satellite images was also provided by Nair et  al.  (2022). To this extent, a pipeline consisting 
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of a Mask Region-Convolutional Neural Network (R-CNN) detector, a wind speed filter and a CNN classi-
fier was adopted to accurately detect TCs. In Xie et al.  (2022), a Feature Pyramid Network was proposed as 
a feature extractor and region proposal network that searches for the potential areas of cyclones along with a 
Faster Region-based CNN to calibrate the locations of TC regions. A faster Region-based CNN was also used 
by Xie et al. (2020) to classify the presence of TCs in Mean Wind Field-Advanced Scatterometer satellite data. 
The authors of S. Kim et al. (2019) exploited a Convolutional Long Short-Term Memory to detect, track and 
predict hurricane trajectories on Community Atmospheric Model v5 simulation data. With the aim of capturing 
both temporal dynamics and spatial distribution, trajectories were modeled as time-sequential density maps. The 
detection of tropical and extratropical cyclones was addressed as an image segmentation task by Kumler-Bonfanti 
et al. (2020). They used the Global Forecasting System and Geostationary Operational Environmental Satellite 
to compare four state-of-the-art U-Net-based models designed for the detection task. In Carmo et al. (2021), data 
from the Sentinel-1 C-band satellite was used to provide a DL-based detector of the TC center, also providing 
estimates of the related category according to sea surface wind and rain-related topological patterns. Authors 
further provided explainability through the analysis of key patterns highlighted by the Gradient-based Class Acti-
vation Map method. M. Kim et al. (2019) used eight predictors gathered from the WindSat satellite to frame a TC 
detection task. Then, they compared the detection skills of three ML algorithms, namely Decision Trees, Random 
Forest, Support Vector Machines and a model based on Linear Discriminant Analysis.

This work proposes a TC center localization approach based on ML and applied on the joint North Pacific and 
Atlantic TC formation basins. Although this task is similar to other studies from the state of the art, there are some 
important differences in the algorithmic approach used.

From a methodological perspective, a ML ensemble approach is proposed to accurately locate the TC center 
coordinates. Exploiting a single ML model for locating the TC center would have resulted in unreliable results 
because of the inherent complexity of the TC center localization task. The ensemble, instead, allows combining 
TC center estimates of different ML models that are in agreement about the presence of a TC in input data. In this 
way, each model can learn different spatial characteristics of the TC structure and the ensemble allows more accu-
rate TC center estimates. With respect to other approaches available in literature for uncertainty quantification in 
Artificial Neural Networks (ANNs) predictions, our approach proposes an extension of the multi-model ensemble 
method, as reported in Haynes et al. (2023). The multi-model approach consists of several ANNs trained on the 
same data and hyperparameters, but with different initial conditions, whereas our approach considers several 
ANNs architectures trained on the same data but with different hyperparameters and initial conditions. Moreo-
ver, a deterministic tracking algorithm was used to reconstruct trajectories from the detected TCs centers. As a 
consequence, these models can easily complement deterministic tracking schemes for the TC detection task. This 
results in a hybrid tracking scheme combining data-driven detection for selecting the TC center candidates with 
a deterministic tracking algorithm.

In contrast to other studies, a total of six ERA5 reanalysis TCs predictors (i.e., Mean Sea Level Pressure (MSLP), 
10 m wind gust since previous post-processing, instantaneous 10 m wind gust, relative vorticity at 850 mb, and 
temperature at 300 and 500 mb) were used in place of satellite data. Reanalysis data combines model simulations 
and observations to provide the best representation of climate variables in the past (ECMWF, 2020a). The TC 
center geographical coordinates were retrieved from the International Best Track Archive for Climate Steward-
ship (IBTrACS) data set, the most complete global collection of historical TC occurrences (National Oceanic and 
Atmospheric Administration, 2023).

The rest of the paper is organized as follows: Section 2 describes data sources and the processing steps required 
to build a suitable data set for ML training. Moreover, the experimental setup is described, along with Deep 
Neural Network (NN) models architectures, the ensemble procedure and the hybrid tracking scheme adopted. 
Section 3 presents the results of (a) the ML ensemble approach for localizing TC centers, (b) the comparison 
of the hybrid tracking scheme with four deterministic TC trackers from literature, and (c) the outcomes of the 
hybrid tracker on two test cases. Section 4 discusses the obtained results, highlighting strengths and limitations 
of the proposed approach, and draws the main conclusions from this work while also pointing out some relevant 
future activities.
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2. Materials and Methods
2.1. Data Sources

This subsection provides the description of the two data sources used to build the data set for ML setup.

2.1.1. The International Best Tracks Archive for Climate Stewardship

The IBTrACS presented by Knapp et  al.  (2010) is an institutional, open access and centralized archive that 
provides the most complete set of historical TC best track data on a global level. It integrates historical records 
with observations retrieved from 12 different meteorological agencies. The main aim of IBTrACS is fostering 
research in the context of such events by keeping track of their geographical position, frequency and intensity 
worldwide. IBTrACS reports global TCs occurrences at 0.1° (∼10 km) of spatial resolution from 1841 to pres-
ent with a 3-hourly temporal frequency. However, in this study, only TC records between 1980 and 2019 were 
selected from IBTrACS v4 (Knapp et al., 2018) at a temporal frequency of 6 hr. Although IBTrACS provides TC 
records from 1841 to date, 1980 is considered the beginning of the Modern Era, characterized by the extensive 
use of geostationary satellite imagery on a global scale. On the other hand, more recent TC information is subject 
to frequent reanalysis by the different meteorological agencies contributing to IBTrACS, and, for these reasons, 
TC selection was limited to 1980–2019. Furthermore, 6-hourly data provides additional information about the 
TC characteristic, such as the Maximum Sustained Wind (MSW), contrary to 3-hourly data (Knapp et al., 2010).

Concerning the geographical domain, this study mainly targets the North Pacific formation basin, which is widely 
recognized as a particularly active region where most TCs occur every year (Roy & Kovordányi, 2012). Since 
a substantial number of TC events cross both the North Pacific and North Atlantic regions, thus reaching up 
to 320°E of longitude, the final domain of interest is 100–320°E, 0–70°N (i.e., joint North Atlantic and North 
Pacific).

2.1.2. ERA5 Reanalysis

Climate variables are the main drivers that contribute to the formation and strengthening of TCs during their 
lifetime, and they were retrieved from the Copernicus Climate Change Service ERA5 reanalysis data sets. ERA5 
reanalysis combines global numerical weather predictions with newly available observations in an optimal way 
to produce consistent estimates of the state of the atmosphere (ECMWF, 2020b). In this study, MSLP [Pa] (msl), 
10 m wind gust since previous post-processing [ms −1] (fg10) and the instantaneous 10 m wind gust [ms −1] (i10fg) 
were gathered from the ERA5 reanalysis on single levels (Hersbach et al., 2023b), whereas the relative vorticity 
at 850 mb [s −1] (vo850) and the temperature at 300 and 500 mb [K] (t300 and t500, respectively) were collected 
from the ERA5 reanalysis on the pressure levels data set (Hersbach et al., 2023a). The six variables considered in 
this study to characterize the storm structure and its intensity have been selected according to other related studies 
(Scoccimarro et al., 2017; Zhao et al., 2009). Each of the aforementioned climatic variables was provided on a 
regular grid of 0.25° × 0.25° (∼27 × 27 km) of spatial resolution, targeting the geographical domain previously 
described, and it was managed as a 2-dimensional map of 280 × 880 pixels size. Moreover, data was collected 
with a 6-hourly temporal resolution (i.e., 00.00, 06.00, 12.00 and 18.00 time steps) for the period 1980–2019, 
thus matching TCs records selected from IBTrACS, except for fg10 that was originally collected with an hourly 
temporal resolution. In particular, the ERA5 fg10 variable reports the maximum wind gust in the preceding hour. 
Therefore, to match the 6-hourly temporal resolution of this study, the maximum over the previous 6 hr was 
computed for each time step.

2.2. Data Processing

2.2.1. IBTrACS Filtering and Selection

Starting from trajectories belonging to the joint North Atlantic and North Pacific geographical domain 
(100–320°E, 0–70°N), only IBTrACS records were considered with track_type field flagged as main. There-
fore, provisional, spur and provisional-spur tracks were implicitly discarded as they are characterized by a 
higher level of uncertainty (IBTrACS Science Team, 2019). It is noteworthy that data from recent years is 
typically provided as provisional or spur, meaning that the corresponding values have not been reanalyzed yet 
and therefore are of lower quality compared to main tracks. This can happen because some variables—such 
as the intensity, position and storm categories—are subject to change based on posterior reanalysis by the 
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meteorological agencies. Moreover, uncertainties in the observing system may result in contradictory opin-
ions by different agencies about the storm location, leading to spur tracks. This is mainly due to difficulties in 
localizing the center of circulation or in the case of storms merging (i.e., Fujiwhara effect) (IBTrACS Science 
Team, 2019). As an additional selection step, tracks were filtered out based on the nature field, specifically 
discarding those trajectories marked as: (a) Not Reported (NR) whose nature is unknown, (b) Disturbance 
Storms (DS) that correspond to not-well-formed storms characterized by a MSW less than 34 knots, and (c) 
Mixture (MX) that correspond to tracks that received contradicting reports about the nature of the observ-
ing system from different agencies. At the end of this filtering and selection process, only Tropical Storms 
(TS), Extra Tropical (ET) and Subtropical Storms (SS) main tracks were considered at a 6-hourly temporal 
resolution.

Figure 1 shows the observed 6-hourly TC center locations occurring in the domain of study in the 1980–2019 
period. The TC center locations were further divided into non-overlapping groups according to the basins 
involved during their lifecycle. The figure also reports the number of occurrences in each group. The locations of 
TC center in the North Atlantic (light blue), West North Pacific (yellow) and East North Pacific (orange) remain 
confined to such basins (i.e., they originate and dissipate in the same basin), whereas East and West North Pacific 
locations (blue) as well as East North Pacific and North Atlantic ones (purple) involve different basins during 
their lifecycle.

2.2.2. Patches Generation and Labeling

For each of the six climatic drivers, ERA5 maps (280 × 880 pixels) were evenly tiled into 7 × 22 non-overlapping 
patches of 40 × 40 pixels size each (see Figure 2). The TC center can occur in every pixel of the patch, not 
necessarily at the center, thus non cyclone-centric patches were generated. Then, drivers were stacked together, 
resulting in data of 40 × 40 × 6 dimension, hereafter defined as an input patch. In order to associate patches 
containing a TC (from now on referred to as positive patches) with its center position (i.e., the TC eye), the lati-
tude and longitude geographical coordinates extracted from IBTrACS were rounded to match the resolution of the 
ERA5 grid (0.25° × 0.25°). Subsequently, rounded coordinates were further converted into local-patch positions 
in terms of (x,y) index pairs (considering the 40 × 40 patch as a matrix).

Different TC phenomena may simultaneously occur in the domain of interest at a particular time, thus multiple 
positive patches can be retrieved from a single ERA5 map. The patches that do not contain a TC (from now on 

Figure 1. Visualization of 6-hourly Tropical Cyclone (TC) center locations within the 1980–2019 period in the joint East and West North Pacific and North Atlantic 
basin (100–320°E, 0–70°N). TC locations in each sub-basin are highlighted by a different color, along with the relative number of occurrences. Only International Best 
Track Archive for Climate Stewardship (IBTrACS) records whose nature is Tropical, Subtropical and Extra Tropical Storm are shown in the picture.
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referred to as negative patches) were labeled with a negative (x,y) coordinate (i.e., (−1, −1)), indicating the TC 
absence. In this way, retrieved local patch (x,y) pairs were used as the target of the detection task.

2.3. Experimental Setup

2.3.1. Data Set Creation

Selected patches in the considered period (1980–2019) were split into training and test sets as follows: patches 
belonging to two consecutive years for each decade were selected for testing (1983, 1984, 1993, 1994, 2003, 2004, 
2013, 2014, respectively), whereas patches in the remaining years were used for training. In this way, the training 
set comprises patches that span the whole time period, enabling ML models to capture and learn potential climate 
change patterns that may affect the input atmospheric drivers (World Meteorological Organization, 2022).

In order to build the training set, negative patches were carefully selected to enhance the variance of the data set, 
as well as to improve the predictive skills of ML models. Among the edge patches surrounding a positive one, the 
three corner patches closest to the storm center were considered as negative (referred to as nearest patches, see 
purple patches in Figure 2). Despite nearest patches are labeled as negative, they may contain residual structures 
(e.g., spiral wind gust tails, minimum regions of MSLP, etc.) of the TC located in the central patch. Therefore, 
including such patches can actually benefit model training.

Additionally, for each positive patch a further negative sample was randomly selected among the 7 × 22 patches 
of the map excluding the edge ones previously mentioned, thus ensuring that no major TC phenomena occur in 
the randomly selected patch. By construction, the training set is imbalanced toward negative samples (i.e., 55,639 
positive patches and 212,679 negative ones, yielding 20% of samples containing a TC). To address the imbalance 
ratio, and also to increase the variance of the training set, a selective data augmentation procedure was used to 

Figure 2. Overview of the data set building pipeline. ERA5 maps are tiled into non-overlapping patches of 40 × 40 grid 
points in size. To create the training and validation subsets, for each tiled ERA5 map, the patch containing the Tropical 
Cyclone center is considered along with nearest and random patches, discarding the remaining ones. Concerning the test 
subset, all the patches within ERA5 maps are considered.
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reach a 50/50 ratio. For each positive sample, three transformations were applied: left-right flip, up-down flip and 
180° rotation (Shorten & Khoshgoftaar, 2019).

Conversely, all 7 × 22 patches belonging to each map of the test set years were selected to assess the actual 
performance of ML models on out-of-sample data. The resulting test set consists of 967,513 negative patches and 
14,149 positive ones, ending up in a strongly imbalanced test set (i.e., only 1.46% of positive samples).

2.3.2. Neural Network Architectures

For each input patch that comprises the six climatic drivers, the proposed TC center localization task predicts the 
local (x,y) coordinates of the TC center location within the input patch, if present. If both the (x,y) coordinates 
fall within the admissible range of the patch (0–39, 0–39), the patch is classified as positive (i.e., the TC center 
is identified), otherwise the patch is classified as negative (i.e., no TC center is identified). In case of positive 
patches, the local coordinates are converted to the global (lat,lon) coordinates.

To this extent, several Visual Geometry Group (VGG)-like NN architectures (Simonyan & Zisserman, 2014) 
were developed and trained, each differing in terms of number of layers, filters and kernel sizes.

Figure 3 depicts a basic representation of a VGG-like architecture. Input patches are processed by a series of 
convolutional and max-pooling layers that encode the input volume, thus progressively decreasing height and 
width dimensions, while increasing the depth of the activation volume at the same time. The convolutions squeeze 
the processed information resulting in a lower dimensional representation of the patch content (Barrera, 2022). 
After the convolutional blocks, the resulting output is flattened and processed through a series of dense layers that 
gradually reconstructs the information and links it with the target (x,y) coordinates of the TC center within the 
patch. In this sense, the VGG-like network is trained to learn the mapping between input climatic drivers content 
and the two output coordinates.

A total of four different architectures have been assessed for the TC center localization task, called VGG V1, 
VGG V2, VGG V3, and VGG V4, which differ in the convolutional block complexity (i.e., composition and 
number of parameters).

Starting from the aforementioned four VGG architectures, a total of 13 different ML models were trained for the 
TC center localization task. Each model differs in terms of the hyperparameters configuration (e.g., loss function, 
kernel size) used in the training stage.

Two different loss functions were implemented and used. The first one is the Mean Absolute Error (MAE) 
between real and predicted coordinates. The second one is a custom loss defined by the authors for this study, 
called Cyclone Classification Localization (CCL) loss, which is a linear combination of the MAE, the Binary 
Cross Entropy (BCE) loss, and the Euclidean Distance (ED) between real and predicted coordinates (L2). CCL 

Figure 3. Basic representation of a Visual Geometry Group-like architecture for the Tropical Cyclone (TC) detection task. Patches related to the six input drivers are 
stacked together and the local (x,y) coordinates of the TC center are used as the target. The proposed architectures differ in their complexity.
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tries to achieve two goals at once: (a) minimizing the classification error (through BCE) and (b) minimizing the 
localization error (through MAE and L2 terms).

For each of the 13 models, 25% of the training patches were used for validation purposes, whereas the remaining 
ones served the actual training. The six input drivers were normalized in the [0,1] range using min-max normali-
zation, and augmented according to the data augmentation procedure presented in Section 2.3.1.

More details on the VGG architectures proposed in this work and the ML training are reported in Appendix A.

2.3.3. Metrics for Evaluating the ML TC Center Localization

The test set was used to evaluate the generalization capabilities of the trained ML models on out-of-sample data. 
Hereafter we define as True Positives (TPs) the TC center occurrences in IBTrACS correctly identified by the 
ML models; False Negatives (FNs) are the TC center occurrences in IBTrACS that the ML models are unable 
to identify, and False Positives (FPs) as the TC centers incorrectly identified by the ML models. For TC centers 
correctly classified as positive by the ML models, the ED is evaluated. Moreover, to understand the skill of 
the ML models in identifying TC centers, the following two metrics are computed: Hit Rate (see Equation 1), 
representing the rate of the actually identified TC centers with respect to the observed TC center occurrences in 
IBTrACS. Additionally, the F2-score (see Equation 2) was computed in order to weight more missed TC center 
identifications (i.e., FNs), rather than those incorrectly identified (i.e., FPs).

��� ���� = ��
�� + �� (1)

𝐹𝐹2 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
5𝑇𝑇𝑇𝑇

5𝑇𝑇𝑇𝑇 + 4𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑇𝑇
 (2)

2.3.4. Consensus and Models Ensemble

Since the 13 models are trained with a different set of hyperparameters and/or layers configuration, each of 
them learns different characteristics and high-level features in the training set patches. Therefore, an ensemble 
approach (Ganaie et  al.,  2022) has been assessed in this study to combine the predictions made by different 
models with the aim of improving the overall accuracy skills (see Figure 4).

As depicted in Figure  4, for each patch of the test set, the approach consists in evaluating first how many 
models agree on classifying it as positive (i.e., the TC center is identified). An additional hyperparameter—m 
in Figure 4—was introduced to define the minimum number of models that need to be in agreement about the 
presence of a TC center in the input patch. Therefore, m represents the required level of consensus among the 13 
models.

Figure 4. Diagram representing the models ensemble approach. All the n pre-trained models are fed with the same patches, yielding n (x,y) couples. If less than m 
(given) models localize the Tropical Cyclone (TC) center in the patch, the TC is considered as absent and the patch is labeled with negative coordinates. Otherwise, 
the Interquartile Range (IQR) algorithm is applied on the output of the models localizing the TC center; the final estimated location of the TC center is computed by 
averaging the values of the predictions not filtered by IQR.
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After a trial and error procedure on the validation set, this parameter was set to 7 in order to maximize the Hit 
Rate, given that a lower number of FNs is preferable for the task of predicting the occurrence of such extreme 
events. Each of the 13 models can potentially provide very different estimates about the location of the TC center 
for the same input patch. Therefore, the Interquartile Range (IQR) method was adopted as a further filtering step 
to keep only the estimates closer to their median value. In particular, the method consists in considering as outli-
ers those TC center estimates (x) that satisfy the following inequality:

𝑥𝑥 𝑥 𝑥𝑥1 − 1.5 ∗ 𝐼𝐼𝑥𝑥𝐼𝐼 ∨ 𝑥𝑥 𝑥 𝑥𝑥3 + 1.5 ∗ 𝐼𝐼𝑥𝑥𝐼𝐼 (3)

Indeed, the IQR is computed as the difference between the third (Q3) and the first (Q1) quartile, providing informa-
tion about the spread of the data around the median value. Finally, the localization of the TC center is performed 
as the ensemble average of the (x,y) estimates of inliers.

According to the proposed ML ensemble approach based on the consensus procedure, the probability of observ-
ing a TC center given an input patch depends on the number of ML models that reached the minimum level of 
consensus (i.e., m = 7). This means, for example, that if 10 models out of 13 participating in the ML ensemble are 
in agreement in a patch (10 > m = 7), the probability of observing a TC center is 10/13 = 77%, which is greater 
than 7/13 = 54%. Clearly, the probabilities of observing a TC center could be better assessed when the number of 
involved models in the ensemble increases.

2.3.5. Hybrid Tracking Scheme

Starting from the individual TC center locations identified by the ML ensemble approach, a deterministic track-
ing algorithm based on the work by Scoccimarro et al. (2017) and Zhao et al. (2009) was used for reconstructing 
TC trajectories. The combination of the proposed data-driven TC center localization approach (see Section 2.3.4) 
with the aforementioned deterministic tracking algorithm resulted in a hybrid tracking scheme.

The deterministic tracking algorithm from Scoccimarro et  al.  (2017) and Zhao et  al.  (2009) implements the 
following steps:

•  For each TC center location identified by the ML ensemble, the algorithm checks the presence of other iden-
tified TC centers after 6 hr at a distance of less than 400 km. The trajectory is considered complete if no TC 
center is found. Otherwise, if multiple TC centers are found in the next 6 hr, the closest one is considered as 
belonging to the same trajectory. This procedure is iteratively repeated until the track is complete.

•  To mark the reconstructed trajectory as potentially valid, two conditions need to be verified: the trajectory (a) 
should last 3 days or more and (b) have a maximum surface wind speed larger than 17 ms −1 during at least 
3 days (not necessarily consecutive) over an 8° × 8° region centered on the middle of the TC.

2.3.6. Validation of the Hybrid Tracking Scheme

Reconstructed TC tracks are then associated with observations provided by IBTrACS, according to the proce-
dure described in Bourdin et al. (2022). In particular, a detected track D is composed of n points (d1, d2, …, dn) 
defined at times (t1, t2, …, tn). Similarly, an observed track O from IBTrACS consists of a collection of points at 
given times. The tracks matching algorithm associates each point di(ti) of track D to those points of O at time ti 
that are closer than 300 km from point di. It is worth noting that such points might not have a match in the set O 
of observed tracks. According to the formalism in Bourdin et al. (2022), the subset of points of O that have been 
associated with any point in D is denoted as OD−paired, and its cardinality is indicated to |OD−paired|. Three cases 
can be distinguished:

1.  |OD−paired| = 0: if no points in the reconstructed track D has a correspondence with a point in O, D is considered 
to be a False Alarm (FA);

2.  |OD−paired| > 0 and all the points in OD−paired belong to the same observed track in O, then this observed track 
is the best match of D;

3.  |OD−paired| > 0 and the points in OD−paired belong to multiple observed tracks in O, then the longest observed 
track is considered the best match of D.

Moreover, a further refinement is performed when an observed track is paired with two or more detected tracks. 
In this case, the detected tracks are merged into a single track. This allows taking into account situations in which 
the TC temporarily weakened before strengthening again (Bourdin et al., 2022).
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The Probability of Detection (POD) and False Alarm Rate (FAR) are used for 
assessing the track detection skills. These metrics are computed considering 
the TC tracks reconstructed by the proposed hybrid tracking scheme. The 
POD and FAR metrics are defined as follows:

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐻𝐻

𝐻𝐻 +𝑀𝑀
 (4)

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐻𝐻 + 𝐹𝐹𝐹𝐹
 (5)

where H (Hits) refers to tracks detected from ERA5 data and actually present 
in IBTrACS; M (Misses) are tracks not detected from ERA5 data but present 
in IBTrACS, whereas FAs are incorrectly detected tracks that do not have a 
counterpart in IBTrACS.

Section 3.2 reports the POD and FAR metrics provided by the hybrid tracking 
scheme for comparison with four deterministic trackers (UZ, OWZ, TRACK 
and CNRM) reported in Bourdin et al. (2022).

3. Results
The following subsections present (a) the results achieved by the ML ensem-
ble approach for localizing TC centers, (b) the comparison of the hybrid 
tracking scheme with four deterministic TC trackers from literature, and (c) 
the outcomes of the hybrid tracker on two test cases.

3.1. TC Center Localization Through the ML Ensemble Approach

Table 1 summarizes the averaged results produced by the 13 models on the test set, according to the evalua-
tion metrics presented in Section 2.3.3. These 13 models are involved in the ensemble approach described in 
Section 2.3.4.

From the results reported in Table 1, it can be inferred that increasing the complexity of VGG architectures 
(models #1 to #3) resulted in an increased ED between the observed and estimated TC center locations. However, 
the increase in such localization error corresponds to an increase in the Hit Rate which is beneficial (i.e., higher 
is better). On the contrary, model #4, which corresponds to a VGG V4 architecture, has the lowest ED compared 
to models #1 to #3 but at the cost of a lower Hit Rate. Moreover, model #4 shows the highest value of F2-score. 
Nevertheless, this value is not very high due to the test set being strongly imbalanced toward negative patches (as 
described in Section 2.3.1).

The lowest ED resulting from the VGG V4 architecture can be attributed to its different convolutional blocks 
composition, such as Batch Normalization and Dropout layers, that were not adopted in the design of the other 
VGG architectures. When the CCL loss is used in place of the MAE (i.e., Models #5 to #8) these results still hold. 
All the models from #1 to #8 were trained with a kernel size of 3.

Focusing on the VGG V4 architecture, different kernel sizes were also assessed to understand if the Hit Rate 
could be improved while keeping the ED low. As it can be noticed from Table 1, as the kernel size increases, the 
Hit Rate also increases at the cost of a higher ED. Therefore, it is clear that the localization accuracy and the Hit 
Rate are in trade-off and reaching the right compromise is difficult when a single ML model is used. To this end, 
the ML ensemble approach provided the best compromise in terms of Hit Rate (88.91%) and ED (117.06 km), 
while also achieving one of the highest F2-score (0.53).

Figure 5 shows the ML ensemble approach applied on three different patches during the evolution of John 
TC (11 August to 13 September 1994), overlaid on the msl variable. Each row in Figure 5 refers to a specific 
time step of John's lifetime, whereas each column describes a particular step of the ML ensemble approach for 
locating TC centers. Starting from the top row in the Figure, Panel (a) reports the TC center estimates provided 
by all 13 models (red squares). In this case, the minimum consensus of 7 is reached (see Section 2.3.4). In 

# Model type Loss
Kernel 

size
Euclidean 

distance (km) F2-score
Hit rate 

(%)

1 VGG V1 mae 3 128.94 0.50 89.69

2 VGG V2 mae 3 145.13 0.37 91.70

3 VGG V3 mae 3 151.84 0.34 91.31

4 VGG V4 mae 3 115.70 0.55 80.27

5 VGG V1 ccl 3 125.81 0.52 87.95

6 VGG V2 ccl 3 152.03 0.40 90.93

7 VGG V3 ccl 3 163.62 0.37 91.48

8 VGG V4 ccl 3 122.44 0.47 83.94

9 VGG V4 mae 5 116.41 0.38 82.96

10 VGG V4 mae 7 120.05 0.52 80.91

11 VGG V4 mae 9 123.47 0.43 86.98

12 VGG V4 mae 11 131.28 0.41 90.17

13 VGG V4 mae 13 149.19 0.40 90.95

– ML ensemble – – 117.06 0.53 88.91

Note. The ML ensemble skills for the TC center localization task are also 
reported for comparison.

Table 1 
Average Metrics Over the Test Set for Each of the 13 Models
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terms of localization error, the mean TC center estimate of the 13 models (green diamond) is 61.75 km far 
from the observed TC center (dark blue cross). In Panel (b), the IQR method (see Section  2.3.4) allows 
detecting 2 outliers  out of 13. The outliers are depicted as the red squares outside the red box, which repre-
sents the Q1 and Q3 bounds of the IQR method. Therefore, Panel (c) reports only 11 remaining inliers (red 
squares inside the red box) along with the TC center estimate provided by the remaining 11 models in the 
ML ensemble (purple triangle). Then, by filtering out the outliers, the IQR method allowed reducing the 
distance between the ML ensemble TC center estimate and the observed TC center to 39.06 km, resulting in a 
37% improvement with respect to the initial mean estimate. The same procedure also holds for the examples 
reported in Panels (g)–(i), where 9 models out of 13 were detected inliers by the IQR method, yielding a 
localization improvement of 36%. A different situation is represented in Panels (d)–(f), where the IQR method 
did not detect any outlier (i.e., all the red squares are inside the red box). Therefore, all the 13 models are 
involved in the ML ensemble to estimate the TC center location. The overlay of the results with the MSLP 
(msl) variable allows explaining why TC center estimates are spread, as in Panels (d)–(f). When the spatial 

Figure 5. Machine Learning (ML) ensemble approach applied on three different time steps of John Tropical Cyclone (TC) lifetime (rows), overlaid on the mean sea 
level pressure (msl) variable. In each row, panels represent a particular stage of the proposed procedure. The number of models involved is reported in each panel and 
their TC center estimates are depicted as red squares, while the actual TC center is represented as a dark blue cross. Their average is reported as a green diamond. In the 
center panels (b), (e), and (h), the Interquartile Range is applied to detect outliers among models' TC center estimates. In the right panels, the model ensemble average 
(purple triangle) is computed only considering inlier values. The Euclidean Distance (ED) between the mean TC center and the true TC center is reported for panels (a), 
(b), (d), (e), (g), and (h), while the ED between the model ensemble and the true TC center is reported for panels (c), (f), and (i).
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patterns of the msl variable are clearly defined (e.g., Panels (a)–(c) and Panels (g)–(i)), the ML models were 
able to accurately locate the TC center. In the other cases (e.g., Panels (d)–(f)), where instead spatial patterns 
of the msl are not clearly defined, although all the ML models are still able to detect the presence of a TC, 
their accuracy is lower, which results in a wider spread in the TC location estimates. The same behavior also 
applies to the other variables used for the model training (i.e., relative vorticity at 850 mb, 10 m wind gust 
since previous post-processing, instantaneous 10 m wind gust, MSLP, temperature at 300 and 500 mb), as 
reported in Appendix B.

To further investigate such behavior, a qualitative analysis of the ML ensemble approach was conducted during 
various phases of a different TC lifecycle. In particular, the Chantal TC (September, 10–15 September 1983) was 
analyzed during three different stages of its evolution characterized by varying intensities of MSW (as registered 
in IBTrACS). As explained for the John TC, also in this case, when the spatial circular patterns of the vo850 
become more evident around the TC center, the localization error between predicted and observed TC center 
locations is lower. Detailed results are reported in Appendix C.

3.2. Hybrid Tracking Scheme Skills

The results obtained by the proposed hybrid tracking scheme (Section 2.3.5) are here presented in terms of POD 
and FAR (Section 2.3.6), defined in Equations 4 and 5, respectively. A POD of 71.49% and a FAR of 23% were 
obtained by comparing the trajectories provided by the hybrid tracker with those reported in IBTrACS. The 
evaluation was performed on the joint Western North Pacific, East North Pacific and North Atlantic basin over 
40 years of data (1980–2019 period). Specifically, the joint basin has been selected because it includes the highest 
number of TC tracks with respect to all the other basins (as reported in Bourdin et al., 2022).

Figure 6 compares the POD and FAR metrics of the hybrid approach with those achieved by four deterministic 
trackers (UZ, OWZ, TRACK and CNRM) from Bourdin et al. (2022). The results of POD and FAR related to 
the four deterministic trackers have been recomputed over the joint basin considered in this work. To provide a 
fair comparison with the deterministic TC trackers, the same IBTrACS data set including ET cyclones was used. 
This required using the Subtropical Jet Cut-off post-treatment method described in Bourdin et al. (2022) to filter 
out ET cyclones.

Figure 6. Intercomparison of Probability of Detection (POD) and False Alarm Rate (FAR) metrics after post treatment 
among four deterministic trackers (adapted from Bourdin et al., 2022) and the hybrid tracker proposed in this work. The 
horizontal lines show the average values among all the trackers. POD (higher is better) and FAR (lower is better) were 
computed over the 1980–2019 period for the joint West North Pacific, East North Pacific and North Atlantic basin covered in 
this study.
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We found that the POD value is almost identical to most of the determinis-
tic trackers compared, while the FAR value is in-line (but slightly higher) 
with two of the trackers considered (OWZ and TRACK). It is important to 
remark that the focus of this work concerns the localization of TC centers, 
as shown by the high number of hits achieved by the ML ensemble approach 
(see Table  2). Moreover, the number of misses is aligned with the other 
trackers. Thus, the integration of the ML ensemble solution with the deter-
ministic tracking scheme shows already promising results. Nevertheless, 
the implementation of a full data-driven tracking scheme is foreseen as 
future work in order to improve the tracker skills, in particular to reduce the 
number of FAs.

3.3. Test Cases: Keoni and Julio Tropical Cyclones

The Keoni and Julio TCs were selected as test cases because (a) they occurred 
in the domain of interest, and (b) they were long-lasting cyclones. Moreover, 

the MSW was available for all the IBTrACS records of these two cyclones. In this section, we focus on analyzing 
the results of the hybrid tracker proposed in this work, whereas Appendix D provides more in-depth details on the 
TC center localization skills through the ML ensemble approach for the two selected cyclones.

The trajectories resulting from the hybrid tracking scheme and the observations from IBTrACS are reported in 
Figure 7 for the Keoni TC and in Figure 8 for the Julio TC. Both figures are organized as follows: the left side 
shows the two tracks overlaid, whereas the right side shows, in both panels, the values of the six variables consid-
ered in this work (msl, i10fg, fg10, t300, t500, vo850), when selecting two TC center locations at different stages 
of their development.

3.3.1. Keoni TC

The Keoni TC occurred from 9 August to 4 September 1993. During its lifecycle, the TC became a hurricane 
characterized by strong winds that reached 115 knots of speed on the 16 August before starting to lose intensity 
from the 19 August until early September (Tropical Cyclones 1993 NOOA report, 1993).

Tracker Hit Miss FA POD % FAR %

CNRM 1,622 607 153 72.77 8.62

OWZ 1,648 649 348 71.75 17.43

TRACK 1,831 631 380 74.37 17.19

UZ 1,604 638 56 71.54 3.37

Hybrid (this work) 1,630 650 487 71.49 23.00

Note. Value of Probability of Detection (POD) and False Alarm Rate (FAR) 
are also reported.

Table 2 
Number of Hits, Misses and False Alarms (FA) for Each of the Four 
Deterministic Trackers and Our Hybrid Solution (Bold Values)

Figure 7. Comparison between the trajectories resulting from the hybrid tracking scheme proposed in this work and the observations from International Best Track 
Archive for Climate Stewardship (IBTrACS) for the Keoni Tropical Cyclone (TC). The left side shows the two tracks overlaid, while the right side shows, in both 
panels, the values of the six variables considered in this work (msl, i10fg, fg10, t300, t500, vo850). In particular, the upper and lower panels display the variables 
patterns for cyclones classified in IBTrACS as Not Reported TC and Tropical Storm, respectively.
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Figure 7 shows that the hybrid tracker is able to closely follow the trajectory of the observed TC reported in 
IBTrACS. More in detail, looking at the single track points, when the TC is classified as NR in IBTrACS (point 
at lat 29.6° and lon 168.2°), the spatial patterns of the variables are not clearly defined and the accuracy of the 
TC center localization achieved by the ML ensemble is low: the estimate is located at lat 29.5° and lon 165.75°, 
67.72 km away from the observation. On the other hand, when the cyclone gains more strength, and it is classified 
as Tropical Storm in IBTrACS (point at lat 14.77° and lon 189.37°), the spatial patterns of the input variables 
around the TC center become more evident and the localization accuracy achieved by the ML ensemble is higher: 
the estimate is located at lat 15.25° and lon 189.25°, 13.56 km away from the observation. Moreover, as it can 
be seen in Figure 7, the approach estimates some TC centers which are out-of-trajectory. The out-of-trajectory 
TC centers estimates were localized, for a specific time-step, in the adjacent patches. The reason for the poor TC 
centers localization can be attributed to tiling the domain into non overlapping patches, which, even though repre-
senting a limitation, does not have a major impact on the overall trajectory reconstruction. For example, being 
each patch of size 40 × 40 pixels (i.e., about 1,000 × 1,000 km, see Section 2.2.2), the rightmost out-of-trajectory 
TC center estimate in Figure 7 should have been localized in the patch with bounding box at 210°–220° longi-
tude and 10°–20° latitude, but it was localized in the adjacent patch (with bounding box at 200°–210° longi-
tude, 10°–20° latitude). Nevertheless, this out-of-trajectory TC center has been identified by the hybrid tracking 
scheme (see Section 2.3.5), as it satisfies the first step of the deterministic tracking algorithm used in this work 
(from Scoccimarro et al., 2017; Zhao et al., 2009), which states that for each TC center, the next one is considered 
as belonging to the same trajectory if located within 400 km after 6 hr, as it can potentially occur in a neighboring 
patch. For this specific case, the number of out-of-trajectory TC centers in the whole reconstructed trajectory (in 
red) is very low (just 3 points out of 111).

3.3.2. Julio TC

As second test case, the Julio TC was considered. It occurred from 2–18 August 2014. During its lifecycle, the TC 
became a “hurricane” characterized by strong winds that reached 105 knots of speed on the 8 August before start-
ing to lose intensity. It was classified as “Disturbance Storm” from the 15 August (Stewart & Jacobson, 2016).

Similarly to the Keoni test case, Figure 8 shows that the hybrid tracker is able to closely follow the trajectory of 
the observed TC reported in IBTrACS. Also in this case the approach estimates a few out-of-trajectory TC centers 
(i.e., a single point out of 68) due to the patching procedure, as explained for Keoni TC. Looking at the single 

Figure 8. Comparison between the trajectories resulting from the hybrid tracking scheme proposed in this work and the observations from International Best Track 
Archive for Climate Stewardship (IBTrACS) for the Julio Tropical Cyclone. The left side shows the two tracks overlaid, while the right side shows, in both panels, 
the values of the six variables considered in this work (msl, i10fg, fg10, t300, t500, vo850). In particular, the upper and lower panels display the variables patterns for 
cyclones classified in IBTrACS as “Tropical Storm” and “Disturbance Storm,” respectively.
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track points, when the TC is classified as Disturbance Storm in IBTrACS (point at lat 12.5° and lon 248.8°), 
although the spatial patterns of the variables are not yet clearly defined, the accuracy of the TC center localization 
achieved by the ML ensemble is good: the estimate is located at lat 12.25° and lon 248.0°, 23.15 km away from 
the observation. This is an unexpected result since DS (as well as NR TCs—see Keoni test case) were filtered 
out from the training set (see Section 2.2). Such locations were not considered during training to avoid pushing 
ML models to learn these patterns as concepts. Their inclusion would have polarized the outcomes toward such 
samples accounting for about 15% of the entire data set. Anyway, we believe that the ability of the ML ensemble 
to also locate these phenomena can be considered as an added value of our approach.

When the cyclone gains more strength, and it is classified as Tropical Storm in IBTrACS (point at lat 13.5° and 
lon 243.4°), the spatial patterns of the input variables around the TC center become evident and the localization 
accuracy achieved by the ML ensemble is higher: the estimate is located at lat 13.5° and lon 242.75°, 17.95 km 
away from the observation. Appendix D provides additional details on the TC center localization skills.

4. Conclusion and Discussion
The present study proposed a ML ensemble approach aimed at localizing TC centers in terms of geographical 
coordinates. The ensemble combines TC center estimates of different ML models that agree about the presence of 
a TC in input data. Moreover, a hybrid tracking scheme was defined integrating the aforementioned ML ensemble 
approach with a deterministic tracking algorithm for reconstructing TC trajectories.

Given the inherent complexity of the TC centers localization, trusting the estimate of their position through a 
single ML model would have led to unreliable results. Therefore, an ensemble approach was proposed to inte-
grate the knowledge learned by different ML models that are trained for the same localization task. The ensemble 
relies on 13 VGG-like architectures that are trained with distinct hyperparameters configurations on the same 
input-output pairs. This allows extracting different intrinsic patterns and features related to the TC evolution 
during its lifetime, as well as reducing the uncertainty associated with the estimate of the TC center position. The 
present approach is extendable either by adding new ML models to the ensemble or by fine-tuning the current 
ones to get better skills (i.e., ED with respect to observations and Hit Rate).

ERA5 reanalysis data concerning six input climatic drivers was jointly exploited with IBTrACS historical records 
to train and test the designed models. Reanalysis data combines model simulations with observations to provide 
the best state representation of different climatic variables in the past.

However, as recognized by Hodges et al.  (2017), no assimilation of TCs is performed in ERA5, unlike other 
reanalyzes such as JRA-55 or NCEP-CFSR data sets. Nonetheless, the ensemble exhibits good accuracy in locat-
ing TC centers, specifically providing 88.91% of Hit Rate and an ED of 117.06 km with respect to IBTrACS 
observations (Section 3.1).

Roberts et al. (2020) and Zarzycki et al. (2021) evaluated a series of metrics on ERA5 with comparable perfor-
mance to JRA-55 and NCEP-CFSR: the main reason can be found in the enhanced resolution of ERA5 with 
respect to the previous ERA-Interim product. This motivated the use of ERA5 reanalysis for the six input climate 
drivers in this study. Moreover, the presented processing methodology of ERA5 maps led to non-cyclone-centric 
input patches, that is, 40 × 40 images in which the TC center can occur in any position, not necessarily in its 
center. In this way, ML models were able to learn the drivers spatial patterns and characteristics related to the 
presence of the TC inside the patch, regardless of its position. As a result, beyond Tropical, Subtropical and ET 
storms, the ensemble was also capable of localizing the centers of NR and DS cyclones with a low error, even 
though they were not included in the training set, thus demonstrating the good generalization capabilities of the 
proposed approach. Furthermore, tiling ERA5 maps into non-overlapping patches of fixed size allowed ML 
models to detect multiple TCs that can simultaneously occur in the joint North Atlantic and Pacific geograph-
ical domain covered in this study. The application of the proposed approach to other formation basins was not 
assessed in this study and will be subject to future investigation.

Additionally, the proposed hybrid tracking scheme was compared with four trackers from literature (UZ, OWZ, 
TRACK, and CNRM) over 40 years of ERA5 reanalysis data (1989–2019), and considering the joint Western 
North Pacific, East North Pacific and North Atlantic basin. We found a POD value of 71.49%, that is almost 
identical to most of the deterministic trackers compared, and a FAR value of 23%, in-line (but slightly higher) 
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with two of the trackers considered (OWZ and TRACK). Therefore, the integration of the ML ensemble solution 
with the deterministic tracking scheme shows already promising results.

Concerning the limitations of the present research, it is important to take into account uncertainties related to 
IBTrACS and ERA5 data that may lead to biased TC center positioning. In particular, IBTrACS provides TC 
center geographical coordinates aligned on a 0.1° × 0.1° grid and with an uncertainty that is inversely propor-
tional to the storm intensity (IBTrACS Science Team, 2019). ERA5 maps, on the other hand, are provided on a 
0.25° × 0.25° grid. Therefore, TC centers were aligned on the ERA5 grid, as a preprocessing step (Section 2.2.2). 
As a result, all the sources of uncertainty implicitly affected both ML training and inference. As higher resolution 
reanalysis data will become available, the inherent uncertainty will also be reduced.

It is important to remark that the proposed study focused mainly on the use of an ensemble of ML models for 
localizing TC centers. The proposed hybrid tracker represents a first effort toward addressing the overall tracking 
process with a data-driven solution.

As future work, we plan to compare the hybrid tracking scheme on the whole global domain, as well as 
to extend the comparison with additional deterministic trackers such as the TStorm from the National 
Oceanic and Atmospheric Administration (https://www.gfdl.noaa.gov/tstorms/) and the GFDL-vortex from 
the Geophysical Fluid Dynamics Laboratory https://dtcenter.org/community-code/gfdl-vortex-tracker. The 
implementation of a full data-driven tracking scheme is also envisaged as future work. Moreover, the topic of 
uncertainty and probabilistic forecasting will also be covered, as well as the use of data processing techniques 
(such as using sliding tiles) to overcome the current limitation related to out-of-trajectory TC centers (see 
Section 3.3) and to further enhance the training data set with the aim of reducing FNs and FPs at the borders 
of the patches.

Finally, it is worth noting that the workflow for supporting TC tracking presented here is very complex, as it 
consists of heterogeneous data and software components. It requires large-scale data handling solutions, jointly 
with ML algorithms and access to High Performance Computing infrastructure. As next step, the authors aim to 
develop an integrated pipeline that can apply the pre-processing and ML model pipeline directly to the output 
of an ESM simulation. This effort is currently ongoing in the framework of the eFlows4HPC European project 
(https://eflows4hpc.eu/) (Ejarque et al., 2022) and interTwin project (https://www.intertwin.eu/). In the context 
of these two projects, we have been dealing with the design and development of efficient workflows for (near) 
real-time TC detection. In particular, we aim to support parallel execution of independent tasks (e.g., the ensem-
ble model components) on large distributed data sets. Moreover, in the context of interTwin, Coupled Model 
Intercomparison Project experiments will be used with the aim of providing an indication of how climate change 
is going to affect TCs frequencies and locations in the future.

Appendix A: VGG-Like Architectures
This section provides additional details about the design of the VGG-like architectures considered in this study. 
Tables A1–A4 refer to VGG V1 up to V4 architectures, respectively, and report the characteristics of each convo-
lutional block along with additional details, such as the number of filters, activation functions, the output shape 
and number of parameters. Starting from the VGG baseline architectures, a total of 13 different ML models were 
trained for the TC center localization task. Each model differs in terms of the hyperparameters configuration (e.g., 
loss function, kernel size) used in the training stage, as reported in Table 1. All the aforementioned models were 
trained for 500 epochs with a batch size of 8,192 patches, using the Adam optimizer (Kingma & Ba, 2014) with 
a learning rate of 1e −4.

Experiments were carried out exploiting the Juno hybrid cluster based on Central Processing Units (CPUs) and 
Graphics Processing Units (GPUs). Juno is the latest High Performance Computing systems available at the 
CMCC Supercomputing center. Juno delivers nearly 1.15 PetaFlops of peak performance and it is composed of 
170 dual-processor nodes with a total of 12,240 cores and 87 TB of main memory. Each node is equipped with 
2 Intel Xeon Platinum 8360Y 2.4 Ghz processors (36 cores each) and 512 GB of main memory. In particular, 
the cluster contains 10 dual-GPU nodes equipped with NVIDIA A100 GPUs. The storage I/O bandwidth is of 
80 GB/s.
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Regarding the software adopted for our experiments, data processing was performed through Pandas v1.5.3 (The 
Pandas Development Team, 2023) and Xarray v2022.6.0 (Hoyer & Hamman, 2017). The architecture and the 
training/test control flows were both written in Python v3.11.2 based on the Keras Application Programming 
Interface v2.12.0 (Chollet, 2015) and relying on the TensorFlow v2.12.0 (Abadi et al., 2015) back-end. Models 
training was performed in a distributed fashion by means of the TensorFlow distributed training and Mirrored-
Strategy. The results of the present study were achieved by running the model on just one node of the Juno cluster 
exploiting the 2 GPUs available.

The training lasts about 2 hr and 40 min on average for all the models over 500 epochs with early stopping 
enabled. The inference time of the hybrid approach, consisting in the ML ensemble for TC center localization 
and the subsequent deterministic tracking scheme, is of few seconds up to a couple of minutes when tested over 
a single year of test data on a single CPU of the Juno supercomputer at CMCC. Clearly, since it is an embarrass-
ingly parallel task, the execution scales almost linearly on multiple CPU cores when multiple input years/ML 
models are concurrently processed.

The source code for the ML TCs Detection and Tracking approach presented in this work is available at https://
dx.doi.org/10.5281/zenodo.8321138 (Donno et al., 2023).

Block Layer # Filters Activation Output shape # of parameters

0 Input – – 40 × 40 × 6 –

Conv 3 × 3 64 ReLU 40 × 40 × 64 3,520

Conv 3 × 3 64 ReLU 40 × 40 × 64 36,928

Conv 3 × 3 64 ReLU 40 × 40 × 64 36,928

MaxPool 2 × 2 – – 20 × 20 × 64 –

1 Conv 3 × 3 128 ReLU 20 × 20 × 128 73,856

Conv 3 × 3 128 ReLU 20 × 20 × 128 147,584

MaxPool 2 × 2 – – 10 × 10 × 128 –

2 Conv 3 × 3 256 ReLU 10 × 10 × 256 131,328

Conv 3 × 3 256 ReLU 10 × 10 × 256 262,400

MaxPool 2 × 2 – – 5 × 5 × 256 –

3 Conv 2 × 2 512 ReLU 4 × 4 × 512 524,800

Conv 2 × 2 512 ReLU 3 × 3 × 512 1,049,088

Conv 2 × 2 512 ReLU 2 × 2 × 512 1,049,088

MaxPool 2 × 2 – – 1 × 1 × 512 –

4 Flatten – – 512 –

Dense 512 – ReLU 512 262,656

Dense 256 – ReLU 256 131,328

Dense 128 – ReLU 128 32,896

Dense 64 – ReLU 64 8,256

Output – Linear 2 130

– – – – – 3,750,786

Table A1 
Baseline VGG V1 Architecture
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Block Layer # Filters Activation Output shape # of parameters

0 Input – – 40 × 40 × 6 –

Conv 3 × 3 32 ReLU 40 × 40 × 32 1,760

Conv 3 × 3 32 ReLU 40 × 40 × 32 9,248

Conv 3 × 3 32 ReLU 40 × 40 × 32 9,248

MaxPool 2 × 2 – – 20 × 20 × 32 –

1 Conv 3 × 3 64 ReLU 20 × 20 × 64 18,496

Conv 3 × 3 64 ReLU 20 × 20 × 64 36,928

Conv 3 × 3 64 ReLU 20 × 20 × 64 36,928

MaxPool 2 × 2 – – 10 × 10 × 64 –

2 Conv 3 × 3 128 ReLU 10 × 10 × 128 73,856

Conv 3 × 3 128 ReLU 10 × 10 × 128 147,584

Conv 3 × 3 128 ReLU 10 × 10 × 128 147,584

MaxPool 2 × 2 – – 5 × 5 × 128 –

3 Conv 2 × 2 256 ReLU 5 × 5 × 256 131,328

Conv 2 × 2 256 ReLU 5 × 5 × 256 262,400

Conv 2 × 2 256 ReLU 5 × 5 × 256 262,400

Conv 2 × 2 512 ReLU 4 × 4 × 512 524,800

Conv 2 × 2 512 ReLU 3 × 3 × 512 1,049,088

Conv 2 × 2 512 ReLU 2 × 2 × 512 1,049,088

Conv 2 × 2 512 ReLU 1 × 1 × 512 1,049,088

4 Flatten – – 512 –

Dense 1,024 – ReLU 1,024 525,312

Dense 512 – ReLU 512 524,800

Dense 256 – ReLU 256 131,328

Dense 128 – ReLU 128 32,896

Output – Linear 2 258

– – – – – 6,024,418

Table A2 
Baseline VGG V2 Architecture

Block Layer # Filters Activation Output shape # of parameters

0 Input – – 40 × 40 × 6 –

Conv 3 × 3 32 ReLU 40 × 40 × 32 1,760

Conv 3 × 3 32 ReLU 40 × 40 × 32 9,248

Conv 3 × 3 32 ReLU 40 × 40 × 32 9,248

MaxPool 2 × 2 – – 20 × 20 × 32 –

1 Conv 3 × 3 64 ReLU 20 × 20 × 64 18,496

Conv 3 × 3 64 ReLU 20 × 20 × 64 36,928

Conv 3 × 3 64 ReLU 20 × 20 × 64 36,928

MaxPool 2 × 2 – – 10 × 10 × 64 –

Table A3 
Baseline VGG V3 Architecture
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Block Layer # Filters Activation Output shape # of parameters

2 Conv 3 × 3 128 ReLU 10 × 10 × 128 73,856

Conv 3 × 3 128 ReLU 10 × 10 × 128 147,584

Conv 3 × 3 128 ReLU 10 × 10 × 128 147,584

MaxPool 2 × 2 – – 5 × 5 × 128 –

3 Conv 3 × 3 256 ReLU 5 × 5 × 256 295,168

Conv 3 × 3 256 ReLU 5 × 5 × 256 590,080

Conv 3 × 3 256 ReLU 5 × 5 × 256 590,080

Conv 2 × 2 512 ReLU 4 × 4 × 512 524,800

Conv 2 × 2 512 ReLU 3 × 3 × 512 1,049,088

Conv 2 × 2 1,024 ReLU 2 × 2 × 1,024 2,098,176

Conv 2 × 2 1,024 ReLU 1 × 1 × 1,024 4,195,328

4 Flatten – – 1,024 –

Dense 1,024 – ReLU 1,024 1,049,600

Dense 512 – ReLU 512 524,800

Dense 512 – ReLU 512 262,656

Dense 256 – ReLU 256 131,328

Output – Linear 2 514

– – – – – 11,793,250

Table A3 
Continued

Block Layer # Filters Activation Output shape # of parameters

0 Input – – 40 × 40 × 6 –

Conv 3 × 3 32 – 20 × 20 × 32 1,728

Gaussian Noise – – 20 × 20 × 32 –

Batch Norm – LeakyReLU 20 × 20 × 32 128

1 Conv 3 × 3 64 LeakyReLU 10 × 10 × 64 18,432

2 Conv 3 × 3 128 – 5 × 5 × 128 73,728

Dropout 0.5 – LeakyReLU 5 × 5 × 128 –

3 Conv 3 × 3 256 – 3 × 3 × 256 294,912

Gaussian Noise – LeakyReLU 3 × 3 × 256 –

4 Conv 3 × 3 512 LeakyReLU 2 × 2 × 512 1,179,648

0 Conv 3 × 3 1,024 – 1 × 1 × 1,024 4,718,592

Batch Norm – – 1 × 1 × 1,024 4,096

Dropout 0.5 – LeakyReLU 1 × 1 × 1,024 –

4 Flatten – – 1,024 –

Dense 1,024 – ReLU 1,024 1,049,600

Dense 512 – ReLU 512 524,800

Dense 256 – ReLU 256 131,328

Dense 128 – ReLU 128 32,896

Output – Linear 2 258

– – – – – 8,030,146

Table A4 
Baseline VGG V4 Architecture
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Appendix B: Additional Results of the ML Ensemble Approach
This section reports further results of the ML ensemble approach on the John TC described in Section 3.1, when 
overlaid on the other five variables considered in this study: 10  m wind gust since previous post-processing 
(fg10) (Figure B1), instantaneous 10 m wind gust (i10fg) (Figure B2), temperature at 300 mb (t300) (Figure B3), 
temperature at 500 mb (t500) (Figure B4), relative vorticity at 850 mb (vo850) (Figure B5). Similarly to the msl 
variable (see Section 3.1), when the spatial patterns of the variables are clearly defined, the ML models are able to 
accurately locate the TC center. In the other cases, although all the ML models are still able to detect the presence 
of a TC, their accuracy is lower, thus resulting in a wider spread in the TC locations.

Figure B1. Machine Learning ensemble approach applied on three different time steps of John Tropical Cyclone (TC) lifetime (rows), overlaid on the fg10 variable.
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Figure B2. Machine Learning ensemble approach applied on three different time steps of John Tropical Cyclone (TC) lifetime (rows), overlaid on the i10fg variable.
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Figure B3. Machine Learning ensemble approach applied on three different time steps of Tropical Cyclone (TC) John lifetime (rows), overlaid on the t300 variable.
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Figure B4. Machine Learning ensemble approach applied on three different time steps of John Tropical Cyclone (TC) lifetime (rows), overlaid on the t500 variable.
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Appendix C: Qualitative Analysis of the Chantal TC Lifecycle
As an example, in Figure C1 models ensemble predictions are reported for the Chantal TC (10–15 September 
1983), overlaid on the vo850 input driver. In particular, three time steps over the Chantal lifecycle are shown, 
namely 11 September 1983 at 00.00, 12 September 1983 at 12.00 and 15 September 1983 at 06.00, respectively. 
In the early and final stages (i.e., (a) and (c) panels), the vo850 variable does not show the typical circular spatial 
patterns surrounding the TC center and indeed the models ensemble struggles to accurately estimate the actual 
TC center (blue cross). This results in spread predictions and thus a higher standard deviation of the ML ensemble 
(red circle). To explain this situation, the MSW was retrieved from the IBTrACS data set for the corresponding 
timesteps. The early and final stages of the Chantal TC are characterized by MSW speeds of 35 and 30 knots 
(i.e., weak TCs in IBTrACS), respectively. On the contrary, during the middle stage of its evolution (Panel (b)), 
when the cyclone gains more strength (i.e., the MSW increases to 65 knots), spatial circular patterns of the vo850 
become more evident around the TC center. This leads to a lower localization error between predicted and actual 
TC center locations. Indeed, the models involved in the ensemble predict approximately the same position, lead-
ing to a lower standard deviation (i.e., circle radius in Panel (b) is smaller) from the ensemble TC center estimate.

Figure B5. Machine Learning ensemble approach applied on three different time steps of John Tropical Cyclone (TC) lifetime (rows), overlaid on the vo850 variable.
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Appendix D: Additional Results Related to Keoni and Julio Tropical Cyclones
This section provides more in-depth details about the TC center localization skills through the ML ensemble 
approach for Keoni and Julio TCs introduced in Section 3.3.

Both figures are organized as follows: the upper panel represents the MSW of the TC (in purple), expressed in 
knots. In addition, the MSLP was also available for the Julio TC from IBTrACS, and it was reported in the Figure 
(green line). The middle panel shows the ED (in red) between the observed TC center coordinates from IBTrACS 
and the estimated ones produced by the ML ensemble, along with the standard deviation among models in agree-
ment, as resulting from the IQR method (light red area). Furthermore, the indication of the TC stages during its 
lifetime (i.e., Tropical Storm [TS], Not Reported [NR] and Disturbance Storms [DS]) is also reported for the upper 
and middle panels as vertical dashed lines. In the bottom panel, the observed TC center coordinates are depicted 
as blue points, whereas the ML ensemble estimates are reported as red circles.

D1. Keoni TC

Figure D1 shows that the early and final stages of the Keoni lifecycle are characterized by low MSW, and there-
fore the ML ensemble provided TC center estimates with a higher ED from the observed TC center coordinates. 
On the other hand, as the cyclone gains more strength, the spatial features of the input drivers around the TC 
center become more evident, thus making TC localization easier and the ED lower, as explained in Section 3.3.

The time steps in which the TC was not detected are hereafter referred to as discontinuities. This means that most 
of the models in the ML ensemble did not reach the minimum consensus (see Section 2.3.4) about the presence 
of a TC center in the corresponding time step.

Figure C1. Chantal Tropical Cyclone (TC) vo850 spatial patterns during early (left panel), middle (middle panel) and final (right panel) stages of its lifecycle. The 
ensemble TC center estimate (red cross) along with the true one (blue cross) is represented. The standard deviation of the ensemble TC center estimate is represented 
through the red circle.
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D2. Julio TC

Similarly to the Keoni test case, the early and final stages of the Julio TC (see Figure D2) are characterized by low 
MSW and high levels of MSLP, which correspond to higher localization errors for the ML ensemble. Neverthe-
less, even though in the aforementioned stages the cyclone is classified as a Disturbance Storm, the ML ensemble 
is still able to capture the phenomena at these stages of the TC lifecycle. This is a remarkable result since both 
Disturbance Storm and NR TCs were filtered out from the training set, and therefore their characteristics were 
not shown during training. Over the TC evolution, the ED remains stable on average and slightly increases as 
the TC dissipates its energy. A discontinuity in the ED corresponds to time steps in which the ML ensemble did 
not reach the minimum level of consensus about the presence of a TC center in input patch (see Section 2.3.4). 
Nevertheless, the tracking algorithm fixes this issues and is able to reconstruct the whole trajectory from the set 
of points located from the ML ensemble, as discussed in Section 3.3.

Figure D1. Comparison between the observed Tropical Cyclone (TC) center locations from International Best Track Archive for Climate Stewardship (IBTrACS) 
with those estimated by the Machine Learning (ML) ensemble. The upper panel represents the Maximum Sustained Wind (MSW) of the TC (in purple), expressed in 
knots. The middle panel shows the Euclidean Distance (ED) (in red) between the observed TC center coordinates from IBTrACS and the estimated ones produced by 
the ML ensemble, along with the standard deviation among models in agreement, as resulting from the IQR method (light red area). The discontinuities of the ED in 
the middle panel correspond to time steps in which the ensemble did not detect the TC center locations. Furthermore, the indication of the TC stages during its lifetime 
(i.e., Tropical Storm [TS] and Not Reported [NR]) is also reported for the upper and middle panels as vertical dashed lines. In the bottom panel, the observed TC center 
coordinates are depicted as blue points, whereas the ML ensemble estimates are reported as red circles.
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Data Availability Statement
The data sets used in this study are freely accessible from public repositories:

•  Copernicus ERA5 reanalysis data sets:
 -  Single levels [Dataset] (i.e., mean sea level pressure, 10 m wind gust since previous post-processing and 

instantaneous 10  m wind gust): https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-sin-
gle-levels?tab=overview (Hersbach et al., 2023b).

 -  Pressure levels [Dataset] (i.e., relative vorticity at 850  mb, temperature at 300  mb and temperature at 
500  mb): https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=over-
view (Hersbach et al., 2023a).

•  International Best Track Archive for Climate Stewardship (IBTrACS) from National Centers for Environmen-
tal Information (NCEI) [Dataset]: https://www.ncei.noaa.gov/data/international-best-track-archive-for-cli-
mate-stewardship-ibtracs/v04r00/access/csv/ (Knapp et al., 2010, 2018).

•  Source code for the Machine Learning Tropical Cyclones Detection and Tracking approach presented in this 
work [Software]: https://dx.doi.org/10.5281/zenodo.8321138 (Donno et al., 2023).

Figure D2. Comparison between the observed Tropical Cyclone (TC) center locations from International Best Track Archive for Climate Stewardship (IBTrACS) with 
those estimated by the Machine Learning (ML) ensemble. The upper panel represents the Maximum Sustained Wind (MSW) of the TC (in purple), expressed in knots. 
In addition, the Mean Sea Level Pressure (MSLP) is also reported (green line). The middle panel shows the Euclidean Distance (ED) (in red) between the observed TC 
center coordinates from IBTrACS and the estimated ones produced by the ML ensemble, along with the standard deviation among models in agreement, as resulting 
from the IQR method (light red area). The discontinuities of the ED in the middle panel correspond to time steps in which the ensemble did not detect the TC center 
locations. Furthermore, the indication of the TC stages during its lifetime (i.e., Tropical Storm [TS] and Disturbance Storms [DS]) is also reported for the upper and 
middle panels as vertical dashed lines. In the bottom panel, the observed TC center coordinates are depicted as blue points, whereas the ML ensemble estimates are 
reported as red circles.
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