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Abstract.  This paper1 introduces a Quantum Reservoir 
Computing approach to learning time-based sequences of 
events. It focuses on music as a domain application 
example. Both the learning process of music and the theory 
of reservoir computing aligning with each other are 
explored, validating the suitability and potential of 
quantum reservoirs in excelling at such tasks. Initial 
experiments were conducted with a musical piece hinting 
at the exponential increase in efficiency relative to 
conventional AI models. The paper is organised as 
follows: It begins with an introduction to the tasks of high-
dimensional analysis and temporal learning, which are 
required for music. Then, it introduces the basics of 
Reservoir Computing more generally and discusses how it 
can address those analysis and learning problems. Next, it 
shows how concepts from Quantum Computing can be 
leveraged to harness Reservoir Computing, leading to the 
concept of Quantum Reservoir Computing. Then, it shows 
the use of a conventional AI model to learn music in 
comparison with a classical Reservoir Computing 
approach. Finally, it presents our approach to using 
Quantum Reservoir Computing to learn and generate 
music with an example. The paper concludes with final 
remarks on the results and challenges for future work.    

1. Introduction 
Music engages temporal processing intelligence in the 

brain, resulting in an elegant experience for the listener. 
Temporal information processing, an important aspect of 
how the brain learns, also paves the way for its striking 
generative capabilities.  

 
Current Artificial Intelligence (AI) systems for music 

- most of which draw inspiration from the human brain, - 
are able to learn and generate music deemed to be good 
imitations of music composed by professional human 
musicians [1, 2, 3]. However,  those systems are 
significantly different from a physical system like the 
human brain in terms of their efficiency and underlying 
dynamics. 

 
1 Prepared for presentation at ISQCMC 2023 (2nd International 
Symposium on Quantum Computing and Musical Creativity), 
05-06 October 2023, Berlin. 

 
We are interested in harnessing the natural dynamics 

of actual physical systems - as opposed to models inspired 
thereof) to learn and generate music with mechanisms that 
are closer to the way in which the human brain works, than 
the mechanisms found in conventional AI systems. To this 
end, we are exploring alternative paradigms for 
computation [4, 5] to develop musical AI systems. 

 
Digital computers are ubiquitous nowadays. They are 

built around the conventional digital theory that is 
characterised by symbolic, bi-stable dynamics; i.e., logic 
states 0 and 1, which has enabled the seamless integration 
between hardware and software. However, alternative 
accounts of the very notion of ‘computation’ can widen its 
common association with the symbolic nature of anything 
that happens inside a system that transforms input signals 
into output signals [6]. These do not need to be restricted 
to the electrical domain of classic digital computers. 
Rather, they should include physical systems that exhibit 
complex spatiotemporal dynamics with signals 
undergoing some sort of transformations all the time 
across domains such as biological, chemical, mechanical 
and indeed atomic and subatomic particles. For instance, 
the mechanical force from wind exerted onto water, which 
is a fluid mechanical system, transforms that into water 
waves.   

 
Planet Earth can be considered a physical system in 

the way it transforms the incoming electromagnetic waves 
from the sun and emits back filtered electromagnetic 
waves some of which contain the visible blue and green 
light radiations.  Similarly, one of the most complex 
physical systems - the human brain - takes in sensory 
inputs and transforms them into thoughts, actions and 
behaviours. This is done very efficiently, as the brain only 
uses an average of 20W of power. This is enough to power 
a light bulb [7]. For context, training large language 
models can easily exceed the average annual consumption 
of multiple households!   The computational efficiency of 
our brains comes from their complex spatial-thermal 
dynamics and in-memory computing capability, where 



 
processing and memory happen concurrently. This is 
rather different from the well-established von Neumann 
architecture [8] that is currently adopted to build classic 
digital computers. Classic computers have a sharp 
distinction between processing and memory units, which 
are constrained by the speed of serial communication [8]. 

 
This paper proposes the use of a relatively new 

approach for machine-learning, which harnesses quantum 
mechanics for unconventional computation, referred to as 
Quantum Reservoir Computing (QRC) [9].  

2. High-Dimensional Analysis 
A sequence of musical notes represented by a single 

feature (e.g., pitch) even though is just a one-dimensional 
stream of data to a computer, as a musical composition to 
the listener is multi-dimensional information that 
contributes to its overall complexity. Deep Learning (DL) 
is a machine-learning method that uses algorithms called 
‘neural networks’ to learn such high-level patterns given 
enough data for analysis [11]. The relationships between 
inputs and targets in the data of interest are often nonlinear 
and complex. Hence, it is not straightforward to program 
these with conventional programming, like a 2-
dimensional grid of pixel data labelling whether the image 
is of a cat or a dog. The layers in a neural network project 
a given input data to the high-dimensional feature - or 
kernel space - where they become more distinguishable or 
linearly separable, which helps towards finding the 
relationships.  In this regard, neural networks can be 
classified as universal approximators [12]; as they can 
approximate almost any function (e.g., classification, 
regression) given sufficient data. 
 

The commonly used learning mechanism in AI is 
known as ‘supervised learning’. Vast amounts of labelled 
data are given to a neural network which then adjusts its 
internal parameters iteratively depending on how much it 
is close to the labels and creates an approximation that 
generalises the overall data. This gives it the ability to 
predict or generate new outputs when unseen data is 
presented to the system. The fundamental units of neural 
networks are called ‘neurons’, which are biologically 
inspired synapses that can activate or deactivate to produce 
an output signal based on the inputs.  
 

Feedforward Neural Networks (FNNs), which are 
basic architectures in DL, consist of layers to process input 
and output data through ‘hidden layers’ in the middle. Each 
layer has several nodes (or ‘neurons’) and each connection 
between those nodes is associated with a weight that is 
adjusted during a learning process referred to as 
‘backpropagation’. In a nutshell, backpropagation is the 
application of gradients in the opposite direction. 
 

For a simple learning task given input 𝑥t and target 
output yt , a neural network can be used to find an 
approximation function 𝑓 that generalizes the relationship 
as shown in Equation 1:  

                          ŷt	 = 	𝑓(𝑥t)                                   (1) 

Here, ŷt is the predicted output. With every iteration of the 
learning process, loss function 𝐿(y, ŷt) is calculated which 
is a measure of the difference between predicted output ŷt  
and true or target output 𝑦t . The rate of change of this loss 
function with respect to the model’s parameters determines 
the gradients that update the parameters in each iteration. 
Through this training process, the goal is to minimise this 
loss function such that  ŷt ≈ yt. 

FNNs are not well-suited for learning time-based 
sequences such as music, because they are primarily 
designed to map static input-output relationships without 
considering any temporal dependencies.  

3. Temporal Learning 
Temporal learning of sequential data requires memory 

of the past to process the temporal relations within the 
sequence. Memory can be realised with recurrence. 
Recurrence is a key concept in both artificial neural 
network models and biological neural tissue [10]. A 
Feedback loop in an arbitrary system is a simple example 
of recurrence as some information about the past is fed 
back to the input, influencing the next output. An echo, for 
example, is essentially a short-term memory of a sound 
wave that is preserved and reproduced after a certain delay 
due to reflections with the amplitude of the sound wave 
starts fading over time. This is very similar to the 
phenomenon of fading memory that is observed in a type 
of neural network called Recurrent Neural Networks 
(RNNs) where information is gradually lost over time [13]. 
Unlike FNNs, the hidden layers in a recurrent neural 
network architecture contain feedback loops. Any input 
fed into the network reverberates for a longer period 
realising short-term memory. The output at a given time, 
not only depends on current input but also the fading 
memory of past inputs interacting with it. Hence, the 
network will now have a sense of order as feeding the same 
inputs at different orders will result in a different output. 
This helps RNNs to distinguish and capture the temporal 
relationships within a sequence as they are not only spread 
out in the high-dimensional space but also in time.  

Most physical systems possess inherent recurrence 
which makes RC suitable for temporal tasks [10]. 
Recurrent networks are prominent in biological neural 
networks like the human nervous system, enabling the 
brain to perform in-memory computing by storing and 
processing information simultaneously.   

In DL, RNNs are a popular class of architectures used 
for temporal learning. The recurrence in the hidden layers 
holds an internal memory state 𝑎t that is updated at each 
time step. The output of a single unit of RNNs, referred to 
as a ‘recurrent cell’, can be described as shown in Equation 
2:  
                                  ŷt	 = 	𝑓(𝑥t, 𝑎t-1)                            (2) 

The predicted output ŷt at a time t is a function of 
current input	𝑥t and previous memory state 𝑎t-1. 

One of the general design criteria for RNNs is to 
handle variable-length sequences [14]. This can make the 
model be configured for different applications based on the 



 
input x and target output y vector lengths. A many-to-one 
RNN model can be used for natural language processing 
(NLP) tasks. For instance, to identify the emotion of a 
sentence, the model would take in a sequence of words of 
variable length and output a single emotion. A one-to-
many model could be used, for instance, to caption a single 
static image by generating a sequence of words describing 
it.  

Music sequences are commonly trained with many-to-
many model using a continuation of the sequence as the 
target output [15]. This helps the model keep track of the 
dependencies of a note to its previous notes as it learns. To 
generate novel music from a trained model, it can then be 
re-configured as a one-to-many model. For example, the 
model could follow a randomly initialised or user-given 
note and continue generating notes one after another 
autonomously.  

Considering a simple example where music is 
represented by a one-dimensional stream of pitches, it can 
be encoded suitably and split into multiple input and target 
output pairs: 𝑥n  and 𝑦n  of fixed length with each pair 
representing a specific sequence in the stream. Figure 1 
shows an example sequence consisting of 5 musical notes, 
which can be split into input 𝑦n and target output 𝑦n of 
length 4 where the output is delayed by one note. 
 

 
Figure 1: Splitting a sequence into input (left) and output 

(right) pair. 

 
 

 
Figure 2: A recurrent cell unrolled in time. 

 

Figure 3 shows a trained model reconfigured as one-

to-many model for music generation. Here, given a first 
note, the first predicted note can be fed back as the input 
at the second time step and so on to continue the 
generation.  

Multiple such pairs representing different sequences 
in a music score, can iteratively help the model learn the 
overall music. Figure 2 shows a recurrent cell operating 
with input and output pair 𝑥n and 𝑦n, which when unrolled 
in time shows how it takes input sequentially one element 
at a time and updates the memory state after each time step.  

The fixed sequence length determines its ability to 
keep track of past dependencies. For instance, at the 
timestep t = 3, the model learns the probability of 
producing a note D given the memory of past notes A, B 
and C that appeared before. The longer the sequence 
length, the more dependencies can be captured with a 
trade-off in computational power.  

 

 
Figure 3: Music generation from a trained model. 

 
Due to their short fading memory, RNNs are not 

efficient in tracking long-term dependencies that may be 
required for realistic time-based sequences, such as 
musical compositions and written texts. The process of 
backpropagation requires unrolling in time, also called a 
back propagation through time (BPTT), which causes the 
gradients to diminish exponentially as they propagate in 
the opposite direction meaning the parameters in the initial 
time steps are not effectively updated causing the model to 
lose context of initial information [13]. BPTT also makes 
RNNs computationally expensive. 

This vanishing gradient problem has been addressed 
by newer architectures such as gate based RNNs and 
Transformers. Gate based RNNs allow mechanisms to 
have control over the flow of information from the past, 
allowing the model to decide what information to forget 
and what to retain [16]. A type of such RNN called LSTM 
(Long Short-Term Memory) networks has been regularly 
used in the fields for NLP tasks, speech recognition and 
generative music. 

Transformers are alternatives to RNNs, which use a 
‘self-attention’ mechanism [17] to attend to different parts 
of the input sequence simultaneously allowing it to 



 
effectively capture long-term global dependencies, 
resulting in faster performance compared to sequential 
processing of RNNs. Transformers have emerged as a 
leading architecture for certain NLP tasks and have gained 
wide popularity after the release of language models such 
as GPTs (Generative Pre-Trained Transformers). 

While those new architectures have surpassed the 
capabilities of traditional RNNs, they still lack in terms of 
efficiency which have raised significant concerns 
regarding their carbon footprint [18]. 

Reservoir Computing provides a different perspective 
for temporal tasks, which not only addresses the problems 
of RNNs but also has the potential for highly efficient 
learning with good performance.  

4. What is Reservoir Computing? 
Reservoir Computing (RC) harnesses physical 

systems to carry out computational tasks. In the general 
framework of RC, the term ‘reservoir’ can represent a wide 
range of systems - either software simulators or physical 
systems - that satisfy a specific set of constraints, which 
are detailed in this paper.  Some of the physical reservoirs 
that have been used to experiment for intelligent tasks 
include a bucket of water, a soft-robotic arm, slime 
moulds, mechanical wings, and electrochemical systems 
[10]. As we shall see below, this paper proposes to use 
atomic and subatomic particles - that is quantum 
processors - as reservoirs. 

 
RC harnesses the computation capabilities of physical 

systems for AI application [19]. One of the early 
implementations of RC is called Echo State Networks 
(ESN) where the reservoir is implemented with a neural 
network model [20].  

 
ESNs can be derived from RNNs by introducing an 

alternate training mechanism where the computationally 
expensive process of backpropagation through time is 
essentially bypassed. Instead, in RC the recurrent 
connections of the network are randomly initialised and 
fixed such that it simulates a dynamic ‘reservoir’. Only the 
output or readout layer is trained. This is often done by 
simple linear regression. The same holds for any physical 
reservoir if it possesses the required dynamics to perform 
high dimensional, non-linear temporal mapping of inputs. 
It is important to note that the non-linear dynamics driven 
by input should be dominant over the internal dynamics of 
the reservoir, to make the influence of inputs separable in 
high dimensions and learn them effectively [10]. The high-
dimensional reservoir states are the observables that can be 
directly measured or ‘read-out’ from the reservoir to train 
the output layer. 
 

For an input 𝑥t and target output 𝑦t, the reservoir’s 
high dimensional state variables can be defined as a vector 
𝑠t = [𝑠1, 𝑠2, 𝑠3, … 𝑠N] consisting of N observables denoting 
N dimensions. The state 𝑠t  indicates the response of a 
reservoir at any timestep and can be defined similarly to 
equation (2) as: 
                                 𝑠t	 = 	𝑓(𝑥t, 𝑠t-1)                              (3) 

where 𝑓 can represent any non-linear function that maps 
an input 𝑥t  to N-dimensional state 𝑠t  with respect to 
previous state 𝑠t-1. A readout function F can then be used 
to map the states to the output like equation (1) as: 
                                    ŷt	 = 	𝐹(𝑠t)                                 (4) 
where ŷt and F can be typically obtained by simple linear 
regression, that minimises the loss function to approximate       
ŷt ≈ yt	.  

RC is also capable of multitasking where multiple 
readout layers can be used with a single reservoir each 
learning a different target output. This makes it an 
interesting approach for music modelling as there are 
multiple features associated with music that need learning 
simultaneously.  
5.1 High-dimensional temporal mapping 

In the context of physical reservoirs, the fluid 
dynamics of waters in a controlled environment can be 
considered to validate the basic requirements for a 
reservoir [21]. Consider the input is encoded and fed into 
the water in the form of mechanical disturbance like 
dropping stones of variable size at a fixed height. The 
projections of the water surface at arbitrarily chosen points 
(or states) are monitored for features such as amplitude, 
frequency, and phase. Like the feature space of a neural 
network, the state space of the surface of the water has 
projected the input encoded with a single feature to 
multiple features, making it more separable. If multiple 
encoded inputs are sequentially fed to a bucket of water 
(i.e., a closed system) at a fixed frequency, the waves that 
are reflected influence the next input’s state, creating a 
complex state over time with fading memory like RNNs.   

In the context of ESN, the input reverberates or 
spreads through the neural network, influencing the next 
input similarly. The advantage of ESN over recurrent 
neural networks is in the reduced design complexity and 
faster training speeds, as only the output layer is optimised.  
5.2 Echo state property and parameters 

Along with the discussed properties that are common 
to both artificial neural networks and reservoirs, another 
important property to be satisfied by reservoirs, in general, 
is the echo state property, which states an output at any 
given time should depend on the current fading memory 
and not the initial conditions [10]. Essentially the effect of 
initial conditions should be vanished or ‘washed out’ 
gradually, to ensure that the random initialisation does not 
affect the response of initial time steps. Hence, the RC 
framework uses a parameter called washout period Twashout 
during which the collected states from the reservoir are not 
trained. Only the input and output pairs after t > Twashout, 
are considered for training.   

A stable reservoir is expected to satisfy the echo state 
property. This can be validated by measuring the responses 
of the reservoir with different initial conditions and 
ensuring convergence. The time it takes for the responses 
to converge can be a good estimate to define the washout 
period. The echo state property can be realised by a 
parameter called spectral radius (ρ) which is a measure of 
the non-linear transformation of the reservoir [10]. It is 



 
denoted as the largest eigenvalue ρ(W) of the reservoir’s 
internal weight matrix (W). A common condition for 
stability is to satisfy ρ(W) < 1. 

Other considerations used to model an ESN, is the 
sparse connectivity between reservoir units and leaking 
rate ε which controls how much of past information to 
retain or leak through each time step. 

5. Quantum Reservoir Computing 
Quantum Computing gives access to the exponentially 

expandable state space called Hilbert Space. The large 
degrees of freedom make it an attractive space for high-
dimensional computing tasks like machine learning where 
high expressive power is desired [22]. 

 
Commonly, quantum machine-learning techniques are 

developed with parameterised circuits, which are 
comparable to the hidden layers of neural networks that 
undergo optimization [23]. In these cases, the inputs are 
generally prepared as initial state and the parameterised 
circuit is configured with a sequence of gates where the 
parameters can control the rotation of qubits. As with any 
supervised learning task, the measurement outcomes for a 
given input state are compared with the actual output data, 
to compute a gradient and adjust the parameters of the 
circuit with each iteration.  

 
In contrast, Quantum Reservoir Computing (QRC) is 

based on an approach that leaves the quantum system 
undisturbed through all the iterations and aims to harness 
the internal evolving effects as a computational resource. 
Here, a quantum substrate is used as a reservoir whose 
states in response to a given input are measured and 
optimized at the output layer. In this context, any naturally 
occurring noise that near-term devices are prone to can be 
added to the overall dynamics as an advantage for QRC. 
In recent years, QRC has been implemented with a few 
different architectures demonstrating their potential in 
temporal learning tasks [9, 26, 27, 24]. These architectures 
are discussed below. 
5.1 Quantum states and measurements 

The evolution of a pure quantum state ψ from time       
(t-1) to (t) is given by unitary time evolution operator U 
which can be derived from Schrodinger’s equation for a 
closed quantum system as: 
                                    	|ψt⟩	=	U	|ψt	-	1⟩																														(5) 
where U is generally given as e−iHτ. In Equation 5, H is the 
Hamiltonian operator (describing the energy of the 
quantum system) and τ is evolution time.  
 
A more generalized version of Equation (5) with quantum 
states represented as density matrices ρ rather than wave 
functions ψ can be derived from the von Neumann 
equation, shown in Equation 6. 

ρt	=	Uρt-1U†			 	 	 	 		(6)	
The density matrix representation ρ applies to realistic 

environments when a quantum state ψ loses its purity and 
becomes statistically mixed due to noise or upon 

measurement. The overall quantum reservoir dynamics 
subject to time evolution can be generalized with a 
completely positive trace-preserving (CPTP) map, where 
T accounts for unitary operations as well as any naturally 
occurring noise as shown in Equation 7. 

		ρt	=	Tρt-1		 	 	 	 	 			(7)	
The measurement of quantum states after evolution 

can be performed using Pauli operators [22], which are 
matrices used to describe both quantum operations and the 
measurement of states. Thus, for a n-qubit system, 2n states 
can be measured on a given computational basis [22].  

5.2 Temporal learning review with different QRC 
architectures 

QRC was first introduced in 2017 [9], where 
researchers simulated the non-linear quantum dynamics of 
a quantum system for temporal learning tasks and showed 
that a few qubits exhibit powerful performance 
comparable to hundreds of nodes in neural network 
approaches such as ESN and RNN. This is an Analog 
realisation of the framework where the dynamics arise 
from interacting spins in a network (or ensemble) of 
quantum subsystems modelled using a Hamiltonian 
operator. An example of such Hamiltonian is the widely 
studied fully connected traverse field Ising model 
described in Equation 8, as H which essentially encodes 
the rules for how the quantum subsystems (or qubits), 
should be intertwined. 

𝐻	 = 	∑ 𝐽i,j𝑋i𝑋j	 + hi𝑍i                        (8) 
where the tunable coefficients are Ji,j representing the 
inter-qubit interaction strength between qubit pairs i and j, 
and h denotes the magnetic coupling. X and Z are Pauli 
operators acting on qubits i and j.  

In this class of framework, the Hamiltonian 
parameters are randomly set to model the quantum 
reservoir, which is then subject to time evolution when 
injected with an input through one auxiliary qubit. This is 
analogous to exciting the entire state space of a fluid 
surface by injecting a single mechanical disturbance onto 
it. The information from the single auxiliary qubit 
traverses or spreads through the ensemble of subsystems 
in the reservoir, evolving it in time.  

This class of framework have been recently 
demonstrated using gate-based IBM Quantum systems as 
an application for temporal trajectory prediction of mobile 
wireless networks in comparison with RNN and ESN 
networks [27]. Here, the input xt at a time step t is encoded 
as angles of RY rotation gates acting on the auxiliary qubit 
which initializes its state to @1 − 	xt|0⟩ + @xt|1⟩ . And the 
simulation of analogue time-evolution described in 
Equations (5-7) is performed on digital gate-based systems 
by employing the Suzuki Trotterization method, which 
effectively discretizes or slices the evolution time into 
smaller steps by decomposing the unitary operator U into 
smaller components for approximation [30]. 

The above-discussed architecture of QRC for 
temporal learning of a sequence consisting of k timesteps 
can be performed by encoding and feeding the input 



 
through the auxiliary qubit to let the system evolve at every 
ith timestep iτ with a total simulation time of kτ. The results 
extracted from the simulation as reservoir states St can then 
be trained using a readout layer to learn a specific task such 
as non-linear mapping, prediction, or classification.  

A general workflow of such temporal learning 
architecture equivalent to RNNs is shown in Figure 4. 

 

 
 

Figure 4: General time evolution architecture. 

 
Due to the increased number of gates required to 

realise the quantum dynamics in the above class, another 
class of QRC architecture was developed for digital gate-
based implementation on NISQ devices for temporal 
learning [24]. Here, the reservoir dynamics is modelled 
digitally using arbitrary parameterized circuits and the 
input is encoded as probabilities controlling the overall 
evolution of the quantum system i.e., an input xt at a time 
step t is encoded onto a control qubit’s state as            
(xt)|0⟩⟨0| + (1-xt)|1⟩⟨1|. This input-dependent quantum 
reservoir dynamics can be realised from Equation 7, as 
follows: 

			ρt	=	T(xt)ρt-1	 	 	 	 					(9)	
Figure 5 shows the quantum circuit implementation of 

QRC proposed in [24] where ρ(u) and ρ(ε) are single qubit 
states, such that the input u controls the unitary evolutions, 
and leaking rate ε controls the probability of swapping (or 
resetting) the evolved state with an arbitrary state σ 
modelling the reservoir’s rate of forgetting its initial state. 
 

 
 

Figure 5: The architecture proposed by Chen et al. in [24]. 

Following the gate-based QRC architecture, [26] has 
demonstrated an implementation different from the previ-
ously discussed ones. Here, the unitary evolutions are not 
arbitrary but directly parameterized by the input (encoded 

as angles) to evolve a default initial state of |0⟩.	This im-
plementation is specifically designed to study the influ-
ence of naturally occurring noise in real quantum hard-
ware. The unitary input-dependent circuit schematics are 
intentionally made simpler to let the noise (such as deco-
herence and depolarizing noise) contribute to the reservoir 
dynamics. Hence, the CPTP map is not modelled like 
Equation 9 but corresponds to the real quantum device in 
operation. Figure 6 shows the demonstration of temporal 
learning tasks performed in [26].  

 

 
 

Figure 6: Temporal learning with QRC introduced by 
Suzuki et al. in [26]. 

5.3 Analysing requirements for sequence modelling 

The different implementations of QRC reviewed in 
Section 5.2 have used 1-D time series to demonstrate 
proof-of-principle temporal learning tasks such as non-
linear mapping and prediction of time series in comparison 
to classical neural networks [9, 24, 26, 27] and a simple 
classification task in comparison with linear regression 
model [26]. There are a few challenges that must be 
considered when scaling QRC for feasible and efficient 
learning of complex tasks which are high-dimensional and 
often data-intensive. The challenges and limitations of 
implementing music learning are considered in this section 
which motivates the choice of architecture in Section 5.4 
used for the demonstration of music learning in this paper.   

5.3.1 Measurement efficiency 

With all the implementations of QRC frameworks in 
NISQ devices discussed above, increasing sequence length 
extends the circuit horizontally with each time step as 
clearly indicated in Figure 6. This is because the act of 
measurement collapses the quantum state (also referred to 
as ‘back action’) and the circuit for the next time step must 
be re-run from the initial time step x0. This not only 
increases the circuit complexity but also the time taken to 
execute and measure many circuits one after another. A 
typical sequence modelling task requires the following 
parameters:  

• number of iterations for training (N) 
• the batch size of each iteration (B) 
• sequence length of each batch (L) 

With back action in effect, the total circuit 
measurements required to collect data on reservoir states 
will be N x B x L, which will equal several thousands of 
circuits growing in length. 



 
The restarting measurement protocol can be 

reinterpreted if the echo state property of a reservoir is 
considered. By introducing a washout period (W), the 
measurement restarting time step can now made to be     
xW-xL instead of x0. This saves the projective measurement 
of N x B x W circuits. Exploiting this property even further, 
[32] suggests a ‘rewinding’ protocol where the total 
execution length can be fixed to W, sliding the restarting 
time step to x(t -W) – xt for measurement of a state a time t. 
Hence, experimentation with different measurement 
protocols may provide insight into the efficiency of scaling 
reservoirs in NISQ devices.     

5.3.2 Input encoding 

The representation of input plays a major role in the 
performance of many neural network architectures. All the 
QRC architectures employed for temporal learning          
(reviewed in Section 5.2) deal with learning of 1-D time 
series, where the input is encoded through a single auxil-
iary qubit, control qubit or gate parameter. This will help 
the network understand the relationship between each in-
put event better (or categorize them better using binary 
vectors with ‘one-hot encoding’). However, this can be 
considered as a limitation for sequence modelling tasks, as 
each event at a timestep in the sequence is often encoded 
as a high-dimensional vector suitable for a neural network 
can work with.  
 

A powerful technique in NLP called ‘word embed-
ding’ is an efficient encoding scheme that encodes each 
event in a vocabulary (i.e., all unique events in the data) 
into a fixed-length vector of real numbers [33]. This rep-
resentation can capture the semantic relationship between 
events. This is very useful for music. A neural network, for 
instance, can understand the similarity between, say, the 
words ‘cat’ and ‘dog’, by numerical analysis of how close 
their vector representations are. The same thing can be 
done with musical notes, for example, with respect to har-
monic progressions in a piece of music. Hence, an ideal 
QRC architecture for advanced tasks such as these should 
accept a vector representation for each timestep at the in-
put layer for better performance.  
 

The use of vector representation such as word embed-
ding can also pave the way for a technique called ‘transfer 
learning’ where the embedding layer can be pre-trained 
with a different model and re-used, resulting in better effi-
ciency [34]. In NLP, as well as in musical tasks, transfer 
learning gives a head start. For instance, the words are pre-
trained with a larger model consisting of a large vocabu-
lary and can be applied for task-specific models which can 
be made simpler. Introducing transfer learning to RC can 
add to the speed and performance of its already efficient 
learning strategy; this will be shown in Section 6.2. 

 
 
 

6. Experiments 

6.1 An improved architecture 

Based on the requirements and review of existing 
QRC architecture, we developed a simpler and more effi-
cient one for our experiments. It resembles the architecture 
of an RNN.  

Firstly, we proposed a more general approach to QRC, 
as shown in Figure 7. This is a more generalized scheme 
than the ones discussed above. The processing at a single 
time step has three main elements irrespective of the class 
of architecture (a) the memory until the previous time step 
(ht-1), (b) current input (xt) and (c) current output (yt).  

 

 
Figure 7: General QRC process at a time step. 

 

Accordingly, we developed an architecture inspired 
by a recent work on QRC for the study of fluid and ther-
modynamics [31]. This study was not directly applied to 
temporal learning, but we found that it is suitable and effi-
cient to implement relative to the architectures in Section 
5.2. Here the circuit length is fixed for each timestep but 
uses a feedback strategy like RNNs, where the memory of 
previous time steps is fed back to the input externally (Fig-
ure 8). The workflow of the architecture has three blocks 
of unitary evolution. The circuit is initialized with |0⟩ and 
applied with unitary evolution dependent on previously 
measured probability amplitudes ht-1, followed by unitary 
evolution based on current input xt, followed by arbitrary 
unitary evolution with a random set of parameters β.  
 

  

 
 

Figure 8: Hybrid classical-quantum RC architecture. 

The advantage of our architecture is that each param-
eter h, x, β can be vectors of different lengths and can be 
encoded compactly in a fixed number of qubits. Here the 
length of h is fixed to 2n states and β can be fixed to n 
qubits. The input vector at a time step x can be of any 
length. The circuit schematic proposed in [31] is the same 
for all these unitary blocks where the encoding is done by 



 
entangling the values together using a circuit    schematic 
of an RY gate followed by a CNOT gate as shown in Figure 
9. Once the final qubit is reached, the encoding is contin-
ued towards top-qubit in zig-zag manner, thus accommo-
dating vectors of any length. 

 

 
 

Figure 9: Unitary circuit schematics. 

The main advantage with this architecture is that the 
feedback of measurements bypasses the back action issue 
and avoids the growing number of gates and circuit com-
plexity of other architectures. Hence, it is efficient to run 
them for longer sequence lengths, more batch sizes and     
iterations required for typical sequence modelling tasks. 
6.1 Preparation 

A monophonic sequence of note from the theme of the 
soundtrack of the film Mission Impossible is used to 
demonstrate the sequence modelling experiments, firstly 
with classical neural networks and then with QRC. Figure 
10 shows a section of the tune used for training. 

 
Figure 10: Excerpt from the tune used for training. 

 

The training parameters are set arbitrarily and fixed 
for all the following models for comparison. No hyper-
parameter tuning is performed. A sequence length of 120 
is chosen for training the model with a batch size of 16 at 
each iteration and a total of 150 such batches. A cross-
categorical loss function is used that measures the 
probability distribution of the next note, and learning is 
done with an Adam optimizer [35] at a rate of 0.005.  
6.2 Classical neural network experiment 

We demonstrate the music learning capability and 
the significance of input encoding using classical reservoir 
computing made of ESN in comparison with an LSTM 
model using the TensorFlow library [28].   

The number of recurrent units in LSTM and ESN are 
set to 256. The recurrent connections in ESNs are            
non-trainable and sparse (connectivity set to 0.1) with 
default spectral radius ρ of 0.9 and leaking rate ε of 1. 

First, we demonstrate the learning of ESN to compare 
the performance with different input embedding 
dimensions that are randomly initialized. We then fix the 

embedding dimension to a smaller value of 8 and use      
pre-trained LSTM input weights to demonstrate the 
addition of transfer learning. Figure 11 shows the 
significance of input encoding for a RC model’s 
performance as discussed in Section 5.3.2.   

 

 
Figure 11: Input encoding with ESN. 

It can be observed that increasing the vector size 
(embedding dimension) accelerates the model’s learning to 
capture the underlying semantics within the input data. 
Using a pre-learnt embedding, the input sequences 
represented as vector length of just 8 give the best 
performance here – which has learnt the music piece well 
and can generalise new music based on it.  

Finally, we compare the performance of ESN and 
LSTM both with trained input embedding dimension of 
64, which makes a total of 3,32,877 trainable parameters 
for LSTM and 4,173 trainable parameters for ESN 
corresponding to the output layer.  In this setup, Figure 12 
shows a stable learning of ESN and a deeper convergence 
of LSTM. The final loss value of around 0.5 is a good 
indication of generalization compared to LSTM which is 
close to 0 and is prone to the problem of over-fitting that 
may cause the model to memorize the trained music too 
much making its generalisation capability poor. This can 
vary according to the dataset. 

 
Figure 12: LSTM vs ESN. 

Hence, the performance of ESN is on par with LSTM 
while using only about 1.25% of the trainable parameters 
of LSTM which makes a big difference in efficiency, 
especially with the increasing number of recurrent units. 



 
 

6.3  QRC experiment 
We demonstrate a proof-of-principle experiment of 

learning music with QRC with using Qiskit Aer Simulator 
with Statevector method as the backend [29]. We choose 
the simple architecture discussed in Section 5.4 built with 
3 qubits and input encoded as the angle of RY rotation in 
the first qubit followed by entanglement. The rest of the 
specifications are made the same as the previous 
experiments. In each batch, with a total sequence length of 
200, the washout period is set to 80, so the remaining 120 
time steps are used for training to match the previous 
experiments. Training of the collected states was 
performed with a single linear layer to map the collected 
states with corresponding target sequences. For a better 
insight on the nature of the learning curve, the number of 
training epochs (i.e., a full cycle of training on all batches) 
is increased as shown in Figure 13. 

 
Figure 13: QRC training. 

The magnitude of error decrease at the initial stage of 
training in Figure 13 is a positive sign indicating that the 
model has learnt some meaningful aspects of the data. It is 
followed by a slow convergence which reaches a 
bottleneck indicating room for further improvement to 
learn the complexities in the data. 

Compared to the performance of neural networks in 
Section 6.2, this is indeed an ‘under-fitting’ model that 
generalizes the music with more abstraction than the well-
converged classical models. However, the performance 
can be deemed reasonable for a simulated 3-qubit system 
with only 117 trainable parameters which is around 2.8% 
of that of ESN and a mere 0.03% of that of LSTM. 

For qualitative analysis, we used the trained readout 
layer to generate music from the quantum reservoir by 
feeding in a portion of the original tune long enough to 
take account of the washout period and getting the ‘free-
running’ or generative response of the reservoir where 
each predicted note is fed back to the model to predict the 
next one. 

At a glance, it can be noted that the pattern of 
recurrence of the note G4 twice or thrice (marked with 
dotted boxes in Figure 14) is being followed in the 
generative part, indicating the model’s capability to learn 
simple repetitions from training data. Given that the 
maximum appeared note in the original training score is 

G4, we repeated the above generative experiment 1000 
times (with random initial sequences and generation length 
same as the original score length) and found that 95% of 
the times, the note with highest frequency appeared to be 
G4. This indicates that the model has recognized the 
significance of a note, which further adds to the evidence 
of progress in learning. Experimentation with diverse 
datasets may improve the generalising capability of the 
model. 

 
 

Figure 14: Generated music from QRC. The first 4 bars 
represent the final portion of the initial sequence. 

For a total of 150 batches of size 16, each with a 
sequence length of 120, a total of 2,88,000 measurements 
was required, which took under 2 hours on a computer 
with 8-core CPU and GPU. Due to the efficient 
architecture and the use of a simulator, the measurement 
process was feasible in terms of time taken. Thus, paving 
the way for hyperparameter tuning to find the best 
configuration of the model. However, it is worth noting 
that this architecture is not fully quantum as we feed back 
the measured states externally which is a classical process, 
making this a hybrid quantum-classical reservoir model 
[31]. The other fully quantum architectures in Section 5.2 
can be experimented efficiently by employing better 
measurement protocols discussed in Section 5.3.1.  

In the experiment conducted above, no input encoding 
scheme was introduced. As shown in Section 5.3.2, 
performing similar encoding strategies has the potential to 
vastly improve the performance of the model.   

7. Concluding discussion 
We have shown the potential of QRC for learning 

music more efficiently than conventional AI models. 
Reducing the scale of trainable parameters while 
maintaining or improving performance offers several 
benefits in a resource-intensive generative AI landscape. 
The initial experiments conducted here suggest the 
exponential decrease in trainable parameters, going from 
the LSTM (in a scale of 1,00,000) to ESNs (in the scale of 
1,000). This result can be further reduced with the 
implementation of a physical quantum reservoir, that for a 
typical music learning task, hints at trainable parameters in 
the scale of 100 at the output layer. The potential to process 
high-dimensional musical patterns in the rich Hilbert space 



 
of quantum mechanics opens doors for compelling 
research and exploration. In future work, we aim to 
optimize the quantum reservoir model with hyper-
parameter tuning and better measurement protocols, to run 
in real quantum hardware and eventually scale the model 
to handle complex music tasks and large datasets.  
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