

Developing Quantum Reservoir Computing as Machine
Learning of Music

Eduardo Reck Miranda and Hari Vignesh Shaji

Interdisciplinary Centre for Computer Music Research (ICCMR) – University of Plymouth
Drake Circus - Plymouth - PL4 8AA - United Kingdom

Quantinuum
Partnership House - London - SW1P 1BX - United Kingdom
eduardo.miranda@plymouth.ac.uk, hari.shaji@plymouth.ac.uk

Abstract. This paper1 introduces a Quantum Reservoir
Computing approach to learning time-based sequences of
events. It focuses on music as a domain application
example. Both the learning process of music and the theory
of reservoir computing aligning with each other are
explored, validating the suitability and potential of
quantum reservoirs in excelling at such tasks. Initial
experiments were conducted with a musical piece hinting
at the exponential increase in efficiency relative to
conventional AI models. The paper is organised as
follows: It begins with an introduction to the tasks of high-
dimensional analysis and temporal learning, which are
required for music. Then, it introduces the basics of
Reservoir Computing more generally and discusses how it
can address those analysis and learning problems. Next, it
shows how concepts from Quantum Computing can be
leveraged to harness Reservoir Computing, leading to the
concept of Quantum Reservoir Computing. Then, it shows
the use of a conventional AI model to learn music in
comparison with a classical Reservoir Computing
approach. Finally, it presents our approach to using
Quantum Reservoir Computing to learn and generate
music with an example. The paper concludes with final
remarks on the results and challenges for future work.

1. Introduction
Music engages temporal processing intelligence in the

brain, resulting in an elegant experience for the listener.
Temporal information processing, an important aspect of
how the brain learns, also paves the way for its striking
generative capabilities.

Current Artificial Intelligence (AI) systems for music

- most of which draw inspiration from the human brain, -
are able to learn and generate music deemed to be good
imitations of music composed by professional human
musicians [1, 2, 3]. However, those systems are
significantly different from a physical system like the
human brain in terms of their efficiency and underlying
dynamics.

1 Prepared for presentation at ISQCMC 2023 (2nd International
Symposium on Quantum Computing and Musical Creativity),
05-06 October 2023, Berlin.

We are interested in harnessing the natural dynamics

of actual physical systems - as opposed to models inspired
thereof) to learn and generate music with mechanisms that
are closer to the way in which the human brain works, than
the mechanisms found in conventional AI systems. To this
end, we are exploring alternative paradigms for
computation [4, 5] to develop musical AI systems.

Digital computers are ubiquitous nowadays. They are

built around the conventional digital theory that is
characterised by symbolic, bi-stable dynamics; i.e., logic
states 0 and 1, which has enabled the seamless integration
between hardware and software. However, alternative
accounts of the very notion of ‘computation’ can widen its
common association with the symbolic nature of anything
that happens inside a system that transforms input signals
into output signals [6]. These do not need to be restricted
to the electrical domain of classic digital computers.
Rather, they should include physical systems that exhibit
complex spatiotemporal dynamics with signals
undergoing some sort of transformations all the time
across domains such as biological, chemical, mechanical
and indeed atomic and subatomic particles. For instance,
the mechanical force from wind exerted onto water, which
is a fluid mechanical system, transforms that into water
waves.

Planet Earth can be considered a physical system in

the way it transforms the incoming electromagnetic waves
from the sun and emits back filtered electromagnetic
waves some of which contain the visible blue and green
light radiations. Similarly, one of the most complex
physical systems - the human brain - takes in sensory
inputs and transforms them into thoughts, actions and
behaviours. This is done very efficiently, as the brain only
uses an average of 20W of power. This is enough to power
a light bulb [7]. For context, training large language
models can easily exceed the average annual consumption
of multiple households! The computational efficiency of
our brains comes from their complex spatial-thermal
dynamics and in-memory computing capability, where

processing and memory happen concurrently. This is
rather different from the well-established von Neumann
architecture [8] that is currently adopted to build classic
digital computers. Classic computers have a sharp
distinction between processing and memory units, which
are constrained by the speed of serial communication [8].

This paper proposes the use of a relatively new

approach for machine-learning, which harnesses quantum
mechanics for unconventional computation, referred to as
Quantum Reservoir Computing (QRC) [9].

2. High-Dimensional Analysis
A sequence of musical notes represented by a single

feature (e.g., pitch) even though is just a one-dimensional
stream of data to a computer, as a musical composition to
the listener is multi-dimensional information that
contributes to its overall complexity. Deep Learning (DL)
is a machine-learning method that uses algorithms called
‘neural networks’ to learn such high-level patterns given
enough data for analysis [11]. The relationships between
inputs and targets in the data of interest are often nonlinear
and complex. Hence, it is not straightforward to program
these with conventional programming, like a 2-
dimensional grid of pixel data labelling whether the image
is of a cat or a dog. The layers in a neural network project
a given input data to the high-dimensional feature - or
kernel space - where they become more distinguishable or
linearly separable, which helps towards finding the
relationships. In this regard, neural networks can be
classified as universal approximators [12]; as they can
approximate almost any function (e.g., classification,
regression) given sufficient data.

The commonly used learning mechanism in AI is
known as ‘supervised learning’. Vast amounts of labelled
data are given to a neural network which then adjusts its
internal parameters iteratively depending on how much it
is close to the labels and creates an approximation that
generalises the overall data. This gives it the ability to
predict or generate new outputs when unseen data is
presented to the system. The fundamental units of neural
networks are called ‘neurons’, which are biologically
inspired synapses that can activate or deactivate to produce
an output signal based on the inputs.

Feedforward Neural Networks (FNNs), which are
basic architectures in DL, consist of layers to process input
and output data through ‘hidden layers’ in the middle. Each
layer has several nodes (or ‘neurons’) and each connection
between those nodes is associated with a weight that is
adjusted during a learning process referred to as
‘backpropagation’. In a nutshell, backpropagation is the
application of gradients in the opposite direction.

For a simple learning task given input 𝑥t and target
output yt , a neural network can be used to find an
approximation function 𝑓 that generalizes the relationship
as shown in Equation 1:

 ŷt	 = 	𝑓(𝑥t) (1)

Here, ŷt is the predicted output. With every iteration of the
learning process, loss function 𝐿(y, ŷt) is calculated which
is a measure of the difference between predicted output ŷt
and true or target output 𝑦t . The rate of change of this loss
function with respect to the model’s parameters determines
the gradients that update the parameters in each iteration.
Through this training process, the goal is to minimise this
loss function such that ŷt ≈ yt.

FNNs are not well-suited for learning time-based
sequences such as music, because they are primarily
designed to map static input-output relationships without
considering any temporal dependencies.

3. Temporal Learning
Temporal learning of sequential data requires memory

of the past to process the temporal relations within the
sequence. Memory can be realised with recurrence.
Recurrence is a key concept in both artificial neural
network models and biological neural tissue [10]. A
Feedback loop in an arbitrary system is a simple example
of recurrence as some information about the past is fed
back to the input, influencing the next output. An echo, for
example, is essentially a short-term memory of a sound
wave that is preserved and reproduced after a certain delay
due to reflections with the amplitude of the sound wave
starts fading over time. This is very similar to the
phenomenon of fading memory that is observed in a type
of neural network called Recurrent Neural Networks
(RNNs) where information is gradually lost over time [13].
Unlike FNNs, the hidden layers in a recurrent neural
network architecture contain feedback loops. Any input
fed into the network reverberates for a longer period
realising short-term memory. The output at a given time,
not only depends on current input but also the fading
memory of past inputs interacting with it. Hence, the
network will now have a sense of order as feeding the same
inputs at different orders will result in a different output.
This helps RNNs to distinguish and capture the temporal
relationships within a sequence as they are not only spread
out in the high-dimensional space but also in time.

Most physical systems possess inherent recurrence
which makes RC suitable for temporal tasks [10].
Recurrent networks are prominent in biological neural
networks like the human nervous system, enabling the
brain to perform in-memory computing by storing and
processing information simultaneously.

In DL, RNNs are a popular class of architectures used
for temporal learning. The recurrence in the hidden layers
holds an internal memory state 𝑎t that is updated at each
time step. The output of a single unit of RNNs, referred to
as a ‘recurrent cell’, can be described as shown in Equation
2:
 ŷt	 = 	𝑓(𝑥t, 𝑎t-1) (2)

The predicted output ŷt at a time t is a function of
current input	𝑥t and previous memory state 𝑎t-1.

One of the general design criteria for RNNs is to
handle variable-length sequences [14]. This can make the
model be configured for different applications based on the

input x and target output y vector lengths. A many-to-one
RNN model can be used for natural language processing
(NLP) tasks. For instance, to identify the emotion of a
sentence, the model would take in a sequence of words of
variable length and output a single emotion. A one-to-
many model could be used, for instance, to caption a single
static image by generating a sequence of words describing
it.

Music sequences are commonly trained with many-to-
many model using a continuation of the sequence as the
target output [15]. This helps the model keep track of the
dependencies of a note to its previous notes as it learns. To
generate novel music from a trained model, it can then be
re-configured as a one-to-many model. For example, the
model could follow a randomly initialised or user-given
note and continue generating notes one after another
autonomously.

Considering a simple example where music is
represented by a one-dimensional stream of pitches, it can
be encoded suitably and split into multiple input and target
output pairs: 𝑥n and 𝑦n of fixed length with each pair
representing a specific sequence in the stream. Figure 1
shows an example sequence consisting of 5 musical notes,
which can be split into input 𝑦n and target output 𝑦n of
length 4 where the output is delayed by one note.

Figure 1: Splitting a sequence into input (left) and output

(right) pair.

Figure 2: A recurrent cell unrolled in time.

Figure 3 shows a trained model reconfigured as one-

to-many model for music generation. Here, given a first
note, the first predicted note can be fed back as the input
at the second time step and so on to continue the
generation.

Multiple such pairs representing different sequences
in a music score, can iteratively help the model learn the
overall music. Figure 2 shows a recurrent cell operating
with input and output pair 𝑥n and 𝑦n, which when unrolled
in time shows how it takes input sequentially one element
at a time and updates the memory state after each time step.

The fixed sequence length determines its ability to
keep track of past dependencies. For instance, at the
timestep t = 3, the model learns the probability of
producing a note D given the memory of past notes A, B
and C that appeared before. The longer the sequence
length, the more dependencies can be captured with a
trade-off in computational power.

Figure 3: Music generation from a trained model.

Due to their short fading memory, RNNs are not

efficient in tracking long-term dependencies that may be
required for realistic time-based sequences, such as
musical compositions and written texts. The process of
backpropagation requires unrolling in time, also called a
back propagation through time (BPTT), which causes the
gradients to diminish exponentially as they propagate in
the opposite direction meaning the parameters in the initial
time steps are not effectively updated causing the model to
lose context of initial information [13]. BPTT also makes
RNNs computationally expensive.

This vanishing gradient problem has been addressed
by newer architectures such as gate based RNNs and
Transformers. Gate based RNNs allow mechanisms to
have control over the flow of information from the past,
allowing the model to decide what information to forget
and what to retain [16]. A type of such RNN called LSTM
(Long Short-Term Memory) networks has been regularly
used in the fields for NLP tasks, speech recognition and
generative music.

Transformers are alternatives to RNNs, which use a
‘self-attention’ mechanism [17] to attend to different parts
of the input sequence simultaneously allowing it to

effectively capture long-term global dependencies,
resulting in faster performance compared to sequential
processing of RNNs. Transformers have emerged as a
leading architecture for certain NLP tasks and have gained
wide popularity after the release of language models such
as GPTs (Generative Pre-Trained Transformers).

While those new architectures have surpassed the
capabilities of traditional RNNs, they still lack in terms of
efficiency which have raised significant concerns
regarding their carbon footprint [18].

Reservoir Computing provides a different perspective
for temporal tasks, which not only addresses the problems
of RNNs but also has the potential for highly efficient
learning with good performance.

4. What is Reservoir Computing?
Reservoir Computing (RC) harnesses physical

systems to carry out computational tasks. In the general
framework of RC, the term ‘reservoir’ can represent a wide
range of systems - either software simulators or physical
systems - that satisfy a specific set of constraints, which
are detailed in this paper. Some of the physical reservoirs
that have been used to experiment for intelligent tasks
include a bucket of water, a soft-robotic arm, slime
moulds, mechanical wings, and electrochemical systems
[10]. As we shall see below, this paper proposes to use
atomic and subatomic particles - that is quantum
processors - as reservoirs.

RC harnesses the computation capabilities of physical

systems for AI application [19]. One of the early
implementations of RC is called Echo State Networks
(ESN) where the reservoir is implemented with a neural
network model [20].

ESNs can be derived from RNNs by introducing an

alternate training mechanism where the computationally
expensive process of backpropagation through time is
essentially bypassed. Instead, in RC the recurrent
connections of the network are randomly initialised and
fixed such that it simulates a dynamic ‘reservoir’. Only the
output or readout layer is trained. This is often done by
simple linear regression. The same holds for any physical
reservoir if it possesses the required dynamics to perform
high dimensional, non-linear temporal mapping of inputs.
It is important to note that the non-linear dynamics driven
by input should be dominant over the internal dynamics of
the reservoir, to make the influence of inputs separable in
high dimensions and learn them effectively [10]. The high-
dimensional reservoir states are the observables that can be
directly measured or ‘read-out’ from the reservoir to train
the output layer.

For an input 𝑥t and target output 𝑦t, the reservoir’s
high dimensional state variables can be defined as a vector
𝑠t = [𝑠1, 𝑠2, 𝑠3, … 𝑠N] consisting of N observables denoting
N dimensions. The state 𝑠t indicates the response of a
reservoir at any timestep and can be defined similarly to
equation (2) as:
 𝑠t	 = 	𝑓(𝑥t, 𝑠t-1) (3)

where 𝑓 can represent any non-linear function that maps
an input 𝑥t to N-dimensional state 𝑠t with respect to
previous state 𝑠t-1. A readout function F can then be used
to map the states to the output like equation (1) as:
 ŷt	 = 	𝐹(𝑠t) (4)
where ŷt and F can be typically obtained by simple linear
regression, that minimises the loss function to approximate
ŷt ≈ yt	.

RC is also capable of multitasking where multiple
readout layers can be used with a single reservoir each
learning a different target output. This makes it an
interesting approach for music modelling as there are
multiple features associated with music that need learning
simultaneously.
5.1 High-dimensional temporal mapping

In the context of physical reservoirs, the fluid
dynamics of waters in a controlled environment can be
considered to validate the basic requirements for a
reservoir [21]. Consider the input is encoded and fed into
the water in the form of mechanical disturbance like
dropping stones of variable size at a fixed height. The
projections of the water surface at arbitrarily chosen points
(or states) are monitored for features such as amplitude,
frequency, and phase. Like the feature space of a neural
network, the state space of the surface of the water has
projected the input encoded with a single feature to
multiple features, making it more separable. If multiple
encoded inputs are sequentially fed to a bucket of water
(i.e., a closed system) at a fixed frequency, the waves that
are reflected influence the next input’s state, creating a
complex state over time with fading memory like RNNs.

In the context of ESN, the input reverberates or
spreads through the neural network, influencing the next
input similarly. The advantage of ESN over recurrent
neural networks is in the reduced design complexity and
faster training speeds, as only the output layer is optimised.
5.2 Echo state property and parameters

Along with the discussed properties that are common
to both artificial neural networks and reservoirs, another
important property to be satisfied by reservoirs, in general,
is the echo state property, which states an output at any
given time should depend on the current fading memory
and not the initial conditions [10]. Essentially the effect of
initial conditions should be vanished or ‘washed out’
gradually, to ensure that the random initialisation does not
affect the response of initial time steps. Hence, the RC
framework uses a parameter called washout period Twashout
during which the collected states from the reservoir are not
trained. Only the input and output pairs after t > Twashout,
are considered for training.

A stable reservoir is expected to satisfy the echo state
property. This can be validated by measuring the responses
of the reservoir with different initial conditions and
ensuring convergence. The time it takes for the responses
to converge can be a good estimate to define the washout
period. The echo state property can be realised by a
parameter called spectral radius (ρ) which is a measure of
the non-linear transformation of the reservoir [10]. It is

denoted as the largest eigenvalue ρ(W) of the reservoir’s
internal weight matrix (W). A common condition for
stability is to satisfy ρ(W) < 1.

Other considerations used to model an ESN, is the
sparse connectivity between reservoir units and leaking
rate ε which controls how much of past information to
retain or leak through each time step.

5. Quantum Reservoir Computing
Quantum Computing gives access to the exponentially

expandable state space called Hilbert Space. The large
degrees of freedom make it an attractive space for high-
dimensional computing tasks like machine learning where
high expressive power is desired [22].

Commonly, quantum machine-learning techniques are

developed with parameterised circuits, which are
comparable to the hidden layers of neural networks that
undergo optimization [23]. In these cases, the inputs are
generally prepared as initial state and the parameterised
circuit is configured with a sequence of gates where the
parameters can control the rotation of qubits. As with any
supervised learning task, the measurement outcomes for a
given input state are compared with the actual output data,
to compute a gradient and adjust the parameters of the
circuit with each iteration.

In contrast, Quantum Reservoir Computing (QRC) is

based on an approach that leaves the quantum system
undisturbed through all the iterations and aims to harness
the internal evolving effects as a computational resource.
Here, a quantum substrate is used as a reservoir whose
states in response to a given input are measured and
optimized at the output layer. In this context, any naturally
occurring noise that near-term devices are prone to can be
added to the overall dynamics as an advantage for QRC.
In recent years, QRC has been implemented with a few
different architectures demonstrating their potential in
temporal learning tasks [9, 26, 27, 24]. These architectures
are discussed below.
5.1 Quantum states and measurements

The evolution of a pure quantum state ψ from time
(t-1) to (t) is given by unitary time evolution operator U
which can be derived from Schrodinger’s equation for a
closed quantum system as:
 	|ψt⟩	=	U	|ψt	-	1⟩																														(5)
where U is generally given as e−iHτ. In Equation 5, H is the
Hamiltonian operator (describing the energy of the
quantum system) and τ is evolution time.

A more generalized version of Equation (5) with quantum
states represented as density matrices ρ rather than wave
functions ψ can be derived from the von Neumann
equation, shown in Equation 6.

ρt	=	Uρt-1U†			 	 	 	 		(6)	
The density matrix representation ρ applies to realistic

environments when a quantum state ψ loses its purity and
becomes statistically mixed due to noise or upon

measurement. The overall quantum reservoir dynamics
subject to time evolution can be generalized with a
completely positive trace-preserving (CPTP) map, where
T accounts for unitary operations as well as any naturally
occurring noise as shown in Equation 7.

		ρt	=	Tρt-1		 	 	 	 	 			(7)	
The measurement of quantum states after evolution

can be performed using Pauli operators [22], which are
matrices used to describe both quantum operations and the
measurement of states. Thus, for a n-qubit system, 2n states
can be measured on a given computational basis [22].

5.2 Temporal learning review with different QRC
architectures

QRC was first introduced in 2017 [9], where
researchers simulated the non-linear quantum dynamics of
a quantum system for temporal learning tasks and showed
that a few qubits exhibit powerful performance
comparable to hundreds of nodes in neural network
approaches such as ESN and RNN. This is an Analog
realisation of the framework where the dynamics arise
from interacting spins in a network (or ensemble) of
quantum subsystems modelled using a Hamiltonian
operator. An example of such Hamiltonian is the widely
studied fully connected traverse field Ising model
described in Equation 8, as H which essentially encodes
the rules for how the quantum subsystems (or qubits),
should be intertwined.

𝐻	 = 	∑ 𝐽i,j𝑋i𝑋j	 + hi𝑍i (8)
where the tunable coefficients are Ji,j representing the
inter-qubit interaction strength between qubit pairs i and j,
and h denotes the magnetic coupling. X and Z are Pauli
operators acting on qubits i and j.

In this class of framework, the Hamiltonian
parameters are randomly set to model the quantum
reservoir, which is then subject to time evolution when
injected with an input through one auxiliary qubit. This is
analogous to exciting the entire state space of a fluid
surface by injecting a single mechanical disturbance onto
it. The information from the single auxiliary qubit
traverses or spreads through the ensemble of subsystems
in the reservoir, evolving it in time.

This class of framework have been recently
demonstrated using gate-based IBM Quantum systems as
an application for temporal trajectory prediction of mobile
wireless networks in comparison with RNN and ESN
networks [27]. Here, the input xt at a time step t is encoded
as angles of RY rotation gates acting on the auxiliary qubit
which initializes its state to @1 − 	xt|0⟩ + @xt|1⟩ . And the
simulation of analogue time-evolution described in
Equations (5-7) is performed on digital gate-based systems
by employing the Suzuki Trotterization method, which
effectively discretizes or slices the evolution time into
smaller steps by decomposing the unitary operator U into
smaller components for approximation [30].

The above-discussed architecture of QRC for
temporal learning of a sequence consisting of k timesteps
can be performed by encoding and feeding the input

through the auxiliary qubit to let the system evolve at every
ith timestep iτ with a total simulation time of kτ. The results
extracted from the simulation as reservoir states St can then
be trained using a readout layer to learn a specific task such
as non-linear mapping, prediction, or classification.

A general workflow of such temporal learning
architecture equivalent to RNNs is shown in Figure 4.

Figure 4: General time evolution architecture.

Due to the increased number of gates required to

realise the quantum dynamics in the above class, another
class of QRC architecture was developed for digital gate-
based implementation on NISQ devices for temporal
learning [24]. Here, the reservoir dynamics is modelled
digitally using arbitrary parameterized circuits and the
input is encoded as probabilities controlling the overall
evolution of the quantum system i.e., an input xt at a time
step t is encoded onto a control qubit’s state as
(xt)|0⟩⟨0| + (1-xt)|1⟩⟨1|. This input-dependent quantum
reservoir dynamics can be realised from Equation 7, as
follows:

			ρt	=	T(xt)ρt-1	 	 	 	 					(9)	
Figure 5 shows the quantum circuit implementation of

QRC proposed in [24] where ρ(u) and ρ(ε) are single qubit
states, such that the input u controls the unitary evolutions,
and leaking rate ε controls the probability of swapping (or
resetting) the evolved state with an arbitrary state σ
modelling the reservoir’s rate of forgetting its initial state.

Figure 5: The architecture proposed by Chen et al. in [24].

Following the gate-based QRC architecture, [26] has
demonstrated an implementation different from the previ-
ously discussed ones. Here, the unitary evolutions are not
arbitrary but directly parameterized by the input (encoded

as angles) to evolve a default initial state of |0⟩.	This im-
plementation is specifically designed to study the influ-
ence of naturally occurring noise in real quantum hard-
ware. The unitary input-dependent circuit schematics are
intentionally made simpler to let the noise (such as deco-
herence and depolarizing noise) contribute to the reservoir
dynamics. Hence, the CPTP map is not modelled like
Equation 9 but corresponds to the real quantum device in
operation. Figure 6 shows the demonstration of temporal
learning tasks performed in [26].

Figure 6: Temporal learning with QRC introduced by
Suzuki et al. in [26].

5.3 Analysing requirements for sequence modelling

The different implementations of QRC reviewed in
Section 5.2 have used 1-D time series to demonstrate
proof-of-principle temporal learning tasks such as non-
linear mapping and prediction of time series in comparison
to classical neural networks [9, 24, 26, 27] and a simple
classification task in comparison with linear regression
model [26]. There are a few challenges that must be
considered when scaling QRC for feasible and efficient
learning of complex tasks which are high-dimensional and
often data-intensive. The challenges and limitations of
implementing music learning are considered in this section
which motivates the choice of architecture in Section 5.4
used for the demonstration of music learning in this paper.

5.3.1 Measurement efficiency

With all the implementations of QRC frameworks in
NISQ devices discussed above, increasing sequence length
extends the circuit horizontally with each time step as
clearly indicated in Figure 6. This is because the act of
measurement collapses the quantum state (also referred to
as ‘back action’) and the circuit for the next time step must
be re-run from the initial time step x0. This not only
increases the circuit complexity but also the time taken to
execute and measure many circuits one after another. A
typical sequence modelling task requires the following
parameters:

• number of iterations for training (N)
• the batch size of each iteration (B)
• sequence length of each batch (L)

With back action in effect, the total circuit
measurements required to collect data on reservoir states
will be N x B x L, which will equal several thousands of
circuits growing in length.

The restarting measurement protocol can be

reinterpreted if the echo state property of a reservoir is
considered. By introducing a washout period (W), the
measurement restarting time step can now made to be
xW-xL instead of x0. This saves the projective measurement
of N x B x W circuits. Exploiting this property even further,
[32] suggests a ‘rewinding’ protocol where the total
execution length can be fixed to W, sliding the restarting
time step to x(t -W) – xt for measurement of a state a time t.
Hence, experimentation with different measurement
protocols may provide insight into the efficiency of scaling
reservoirs in NISQ devices.

5.3.2 Input encoding

The representation of input plays a major role in the
performance of many neural network architectures. All the
QRC architectures employed for temporal learning
(reviewed in Section 5.2) deal with learning of 1-D time
series, where the input is encoded through a single auxil-
iary qubit, control qubit or gate parameter. This will help
the network understand the relationship between each in-
put event better (or categorize them better using binary
vectors with ‘one-hot encoding’). However, this can be
considered as a limitation for sequence modelling tasks, as
each event at a timestep in the sequence is often encoded
as a high-dimensional vector suitable for a neural network
can work with.

A powerful technique in NLP called ‘word embed-
ding’ is an efficient encoding scheme that encodes each
event in a vocabulary (i.e., all unique events in the data)
into a fixed-length vector of real numbers [33]. This rep-
resentation can capture the semantic relationship between
events. This is very useful for music. A neural network, for
instance, can understand the similarity between, say, the
words ‘cat’ and ‘dog’, by numerical analysis of how close
their vector representations are. The same thing can be
done with musical notes, for example, with respect to har-
monic progressions in a piece of music. Hence, an ideal
QRC architecture for advanced tasks such as these should
accept a vector representation for each timestep at the in-
put layer for better performance.

The use of vector representation such as word embed-
ding can also pave the way for a technique called ‘transfer
learning’ where the embedding layer can be pre-trained
with a different model and re-used, resulting in better effi-
ciency [34]. In NLP, as well as in musical tasks, transfer
learning gives a head start. For instance, the words are pre-
trained with a larger model consisting of a large vocabu-
lary and can be applied for task-specific models which can
be made simpler. Introducing transfer learning to RC can
add to the speed and performance of its already efficient
learning strategy; this will be shown in Section 6.2.

6. Experiments

6.1 An improved architecture

Based on the requirements and review of existing
QRC architecture, we developed a simpler and more effi-
cient one for our experiments. It resembles the architecture
of an RNN.

Firstly, we proposed a more general approach to QRC,
as shown in Figure 7. This is a more generalized scheme
than the ones discussed above. The processing at a single
time step has three main elements irrespective of the class
of architecture (a) the memory until the previous time step
(ht-1), (b) current input (xt) and (c) current output (yt).

Figure 7: General QRC process at a time step.

Accordingly, we developed an architecture inspired
by a recent work on QRC for the study of fluid and ther-
modynamics [31]. This study was not directly applied to
temporal learning, but we found that it is suitable and effi-
cient to implement relative to the architectures in Section
5.2. Here the circuit length is fixed for each timestep but
uses a feedback strategy like RNNs, where the memory of
previous time steps is fed back to the input externally (Fig-
ure 8). The workflow of the architecture has three blocks
of unitary evolution. The circuit is initialized with |0⟩ and
applied with unitary evolution dependent on previously
measured probability amplitudes ht-1, followed by unitary
evolution based on current input xt, followed by arbitrary
unitary evolution with a random set of parameters β.

Figure 8: Hybrid classical-quantum RC architecture.

The advantage of our architecture is that each param-
eter h, x, β can be vectors of different lengths and can be
encoded compactly in a fixed number of qubits. Here the
length of h is fixed to 2n states and β can be fixed to n
qubits. The input vector at a time step x can be of any
length. The circuit schematic proposed in [31] is the same
for all these unitary blocks where the encoding is done by

entangling the values together using a circuit schematic
of an RY gate followed by a CNOT gate as shown in Figure
9. Once the final qubit is reached, the encoding is contin-
ued towards top-qubit in zig-zag manner, thus accommo-
dating vectors of any length.

Figure 9: Unitary circuit schematics.

The main advantage with this architecture is that the
feedback of measurements bypasses the back action issue
and avoids the growing number of gates and circuit com-
plexity of other architectures. Hence, it is efficient to run
them for longer sequence lengths, more batch sizes and
iterations required for typical sequence modelling tasks.
6.1 Preparation

A monophonic sequence of note from the theme of the
soundtrack of the film Mission Impossible is used to
demonstrate the sequence modelling experiments, firstly
with classical neural networks and then with QRC. Figure
10 shows a section of the tune used for training.

Figure 10: Excerpt from the tune used for training.

The training parameters are set arbitrarily and fixed
for all the following models for comparison. No hyper-
parameter tuning is performed. A sequence length of 120
is chosen for training the model with a batch size of 16 at
each iteration and a total of 150 such batches. A cross-
categorical loss function is used that measures the
probability distribution of the next note, and learning is
done with an Adam optimizer [35] at a rate of 0.005.
6.2 Classical neural network experiment

We demonstrate the music learning capability and
the significance of input encoding using classical reservoir
computing made of ESN in comparison with an LSTM
model using the TensorFlow library [28].

The number of recurrent units in LSTM and ESN are
set to 256. The recurrent connections in ESNs are
non-trainable and sparse (connectivity set to 0.1) with
default spectral radius ρ of 0.9 and leaking rate ε of 1.

First, we demonstrate the learning of ESN to compare
the performance with different input embedding
dimensions that are randomly initialized. We then fix the

embedding dimension to a smaller value of 8 and use
pre-trained LSTM input weights to demonstrate the
addition of transfer learning. Figure 11 shows the
significance of input encoding for a RC model’s
performance as discussed in Section 5.3.2.

Figure 11: Input encoding with ESN.

It can be observed that increasing the vector size
(embedding dimension) accelerates the model’s learning to
capture the underlying semantics within the input data.
Using a pre-learnt embedding, the input sequences
represented as vector length of just 8 give the best
performance here – which has learnt the music piece well
and can generalise new music based on it.

Finally, we compare the performance of ESN and
LSTM both with trained input embedding dimension of
64, which makes a total of 3,32,877 trainable parameters
for LSTM and 4,173 trainable parameters for ESN
corresponding to the output layer. In this setup, Figure 12
shows a stable learning of ESN and a deeper convergence
of LSTM. The final loss value of around 0.5 is a good
indication of generalization compared to LSTM which is
close to 0 and is prone to the problem of over-fitting that
may cause the model to memorize the trained music too
much making its generalisation capability poor. This can
vary according to the dataset.

Figure 12: LSTM vs ESN.

Hence, the performance of ESN is on par with LSTM
while using only about 1.25% of the trainable parameters
of LSTM which makes a big difference in efficiency,
especially with the increasing number of recurrent units.

6.3 QRC experiment
We demonstrate a proof-of-principle experiment of

learning music with QRC with using Qiskit Aer Simulator
with Statevector method as the backend [29]. We choose
the simple architecture discussed in Section 5.4 built with
3 qubits and input encoded as the angle of RY rotation in
the first qubit followed by entanglement. The rest of the
specifications are made the same as the previous
experiments. In each batch, with a total sequence length of
200, the washout period is set to 80, so the remaining 120
time steps are used for training to match the previous
experiments. Training of the collected states was
performed with a single linear layer to map the collected
states with corresponding target sequences. For a better
insight on the nature of the learning curve, the number of
training epochs (i.e., a full cycle of training on all batches)
is increased as shown in Figure 13.

Figure 13: QRC training.

The magnitude of error decrease at the initial stage of
training in Figure 13 is a positive sign indicating that the
model has learnt some meaningful aspects of the data. It is
followed by a slow convergence which reaches a
bottleneck indicating room for further improvement to
learn the complexities in the data.

Compared to the performance of neural networks in
Section 6.2, this is indeed an ‘under-fitting’ model that
generalizes the music with more abstraction than the well-
converged classical models. However, the performance
can be deemed reasonable for a simulated 3-qubit system
with only 117 trainable parameters which is around 2.8%
of that of ESN and a mere 0.03% of that of LSTM.

For qualitative analysis, we used the trained readout
layer to generate music from the quantum reservoir by
feeding in a portion of the original tune long enough to
take account of the washout period and getting the ‘free-
running’ or generative response of the reservoir where
each predicted note is fed back to the model to predict the
next one.

At a glance, it can be noted that the pattern of
recurrence of the note G4 twice or thrice (marked with
dotted boxes in Figure 14) is being followed in the
generative part, indicating the model’s capability to learn
simple repetitions from training data. Given that the
maximum appeared note in the original training score is

G4, we repeated the above generative experiment 1000
times (with random initial sequences and generation length
same as the original score length) and found that 95% of
the times, the note with highest frequency appeared to be
G4. This indicates that the model has recognized the
significance of a note, which further adds to the evidence
of progress in learning. Experimentation with diverse
datasets may improve the generalising capability of the
model.

Figure 14: Generated music from QRC. The first 4 bars
represent the final portion of the initial sequence.

For a total of 150 batches of size 16, each with a
sequence length of 120, a total of 2,88,000 measurements
was required, which took under 2 hours on a computer
with 8-core CPU and GPU. Due to the efficient
architecture and the use of a simulator, the measurement
process was feasible in terms of time taken. Thus, paving
the way for hyperparameter tuning to find the best
configuration of the model. However, it is worth noting
that this architecture is not fully quantum as we feed back
the measured states externally which is a classical process,
making this a hybrid quantum-classical reservoir model
[31]. The other fully quantum architectures in Section 5.2
can be experimented efficiently by employing better
measurement protocols discussed in Section 5.3.1.

In the experiment conducted above, no input encoding
scheme was introduced. As shown in Section 5.3.2,
performing similar encoding strategies has the potential to
vastly improve the performance of the model.

7. Concluding discussion
We have shown the potential of QRC for learning

music more efficiently than conventional AI models.
Reducing the scale of trainable parameters while
maintaining or improving performance offers several
benefits in a resource-intensive generative AI landscape.
The initial experiments conducted here suggest the
exponential decrease in trainable parameters, going from
the LSTM (in a scale of 1,00,000) to ESNs (in the scale of
1,000). This result can be further reduced with the
implementation of a physical quantum reservoir, that for a
typical music learning task, hints at trainable parameters in
the scale of 100 at the output layer. The potential to process
high-dimensional musical patterns in the rich Hilbert space

of quantum mechanics opens doors for compelling
research and exploration. In future work, we aim to
optimize the quantum reservoir model with hyper-
parameter tuning and better measurement protocols, to run
in real quantum hardware and eventually scale the model
to handle complex music tasks and large datasets.

References
1. Cope, D. (1996). Experiments in Musical Intelligence. A-R

Editions. ISBN-13: 978-0895793379.
2. Miranda, E. R. (Ed.) (2021). Handbook of Artificial

Intelligence for Music. Springer. ISBN: 978-3030721152.
3. Civit, M., Civit-Masot, J., Cuadrado, F., and Escalona, M. J.

(2022). “A systematic review of artificial intelligence-based
music generation: Scope, applications, and future trends”,
Expert Systems with Applications.
https://doi.org/10.1016/j.eswa.2022.118190

4. Adamatzky, A. (Ed.) (2018). Unconventional Computing.
Springer. ISBN 978-1-493968824.

5. Miranda, E. R. (Ed.) (2017). Guide to Unconventional
Computing for Music. Springer. ISBN: 978-3319842646.

6. Jaeger, H. (2021). Towards a generalized theory compris-
ing digital, neuromorphic and unconventional computing.
Neuromorphic Computing and Engineering, 1(1), 012002.
https://doi.org/10.1088/2634-4386/abf151

7. Kovác, L. (2010). The 20 W sleep-walkers. EMBO Reports,
11(1), 2. https://doi.org/10.1038/embor.2009.266

8. Von Neumann, J. (1945). First draft of a report on the
EDVAC. Moore School of Electrical Engineering,
University of Pennsylvania. Retrieved from
10.5479/sil.538961.39088011475779

9. Fujii, K., & Nakajima, K. (2017). Harnessing Disordered-
Ensemble Quantum Dynamics for Machine
Learning. Physical Review Applied, 8(2).
https://doi.org/10.1103/physrevapplied.8.024030

10. Cucchi, M., Abreu, S., Ciccone, G., Brunner, D., &
Kleemann, H. (2022). Hands-on reservoir computing: A
tutorial for practical implementation. Neuromorphic
Computing and Engineering, 2(3), 032002.
https://doi.org/10.1088/2634-4386/ac7db7

11. Goodfellow, I., Benjio, Y., and Corville,A. (2016). Deep
Learning. The MIT Press. ISBN: 978-0262035613.

12. Hornik, K., Stinchcombe, M., & White, H. (1989).
Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), 359–366.
https://doi.org/10.1016/0893-6080(89)90020-8

13. https://arxiv.org/abs/1211.5063
14. https://arxiv.org/abs/1409.3215
15. https://arxiv.org/abs/1308.0850
16. Gers, F. A., Schmidhuber, J., & Cummins, F. (2000).

Learning to Forget: Continual Prediction with LSTM.
Neural Computation, 12(10), 2451–2471.
https://doi.org/10.1162/089976600300015015

17. https://arxiv.org/abs/1706.03762

18. https://arxiv.org/abs/2211.02001
19. Nakajima, K., & Fischer, I. (Eds.). (2021). Reservoir

Computing. Natural Computing Series. Singapore: Springer
Singapore. https://doi.org/10.1007/978-981-13-1687-6

20. Jaeger, H. (2001). The "echo state" approach to analysing
and training recurrent neural networks (GMD Report No.
148). GMD - German National Research Institute for Com-
puter Science.

21. Fernando, C., & Sojakka, S. (2003). Pattern Recognition in
a Bucket. In Advances in Artificial Life (Vol. 2801, pp. 588–
597). Lecture Notes in Computer Science.
https://doi.org/10.1007/978-3-540-39432-7_63

22. Nielsen, M. A., & Chuang, I. L. (2010). Quantum
Computation and Quantum Information: 10th Anniversary
Edition. Cambridge, UK: Cambridge University Press.
https://doi.org/10.1017/CBO9780511976667

23. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe,
N., & Lloyd, S. (2017). Quantum machine learning. Nature,
549(7671), 195–202. https://doi.org/10.1038/nature23474

24. Chen, J., Nurdin, H. I., & Yamamoto, N. (2020). Temporal
Information Processing on Noisy Quantum Computers.
Physical Review Applied, 14(2), 024065.
https://doi.org/10.1103/PhysRevApplied.14.024065

25. Kutvonen, A., Fujii, K., & Sagawa, T. (2020). Optimizing a
quantum reservoir computer for time series prediction.
Scientific Reports, 10(1), 14687.
https://doi.org/10.1038/s41598-020-71673-9

26. Suzuki, Y., Gao, Q., Pradel, K. C., Yasuoka, K., &
Yamamoto, N. (2022). Natural quantum reservoir
computing for temporal information processing. Scientific
Reports, 12(1), 1353. https://doi.org/10.1038/s41598-022-
05061-w

27. Mlika, Z., Cherkaoui, S., Laprade, J. F., & Corbeil-
Letourneau, S. (2023, January 20). User Trajectory
Prediction in Mobile Wireless Networks Using Quantum
Reservoir Computing. ArXiv preprint arXiv:2301.08796.
Retrieved from https://arxiv.org/abs/2301.08796

28. https://arxiv.org/abs/1603.04467
29. IBM Research. (2021). Qiskit: An open-source framework

for quantum computing [Computer software].
https://qiskit.org/

30. Berry, D. W., Ahokas, G., Cleve, R., & Sanders, B. C.
(2006). Efficient Quantum Algorithms for Simulating
Sparse Hamiltonians. Communications in Mathematical
Physics, 270(2), 359–371. https://doi.org/10.1007/s00220-
006-0150-x

31. Pfeffer, P., Heyder, F., & Schumacher, J. (2022). Hybrid
quantum-classical reservoir computing of thermal
convection flow. Physical Review Research, 4(3).
https://doi.org/10.1103/physrevresearch.4.033176.

32. Mujal, P., Martínez-Peña, R., Giorgi, G. L., Soriano, M. C.,
& Zambrini, R. (2023). Time-series quantum reservoir
computing with weak and projective measurements. npj
Quantum Information, 9(1), 1–10.
https://doi.org/10.1038/s41534-023-00682-z.

33. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013,
September 7). Efficient Estimation of Word Representations
in Vector Space. ArXiv.org. https://arxiv.org/abs/1301.3781.

34. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. ArXiv, abs/1810.04805.

35. https://arxiv.org/abs/1412.6980

https://doi.org/10.1016/j.eswa.2022.118190
https://doi.org/10.1088/2634-4386/abf151
https://doi.org/10.1038/embor.2009.266
https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1308.0850
https://doi.org/10.1162/089976600300015015
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2211.02001
https://doi.org/10.1007/978-981-13-1687-6
https://doi.org/10.1007/978-3-540-39432-7_63
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/PhysRevApplied.14.024065
https://doi.org/10.1038/s41598-020-71673-9
https://doi.org/10.1038/s41598-022-05061-w
https://doi.org/10.1038/s41598-022-05061-w
https://arxiv.org/abs/2301.08796
https://arxiv.org/abs/1603.04467
https://qiskit.org/
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1103/physrevresearch.4.033176
https://doi.org/10.1038/s41534-023-00682-z
https://arxiv.org/abs/1301.3781

