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ABSTRACT This paper first presents a comprehensive analysis of Non-Line-of-Sight (NLoS) error cases in
the Ultra-Wideband (UWB) Active-Passive Two-Way Ranging (AP-TWR) protocol. Based on this analysis,
we then propose the Adaptive Extended Kalman Filter (A-EKF) positioning method, utilizing variances
calculated from AP-TWR range estimates, which are adapted based on the distance and intermittency of
the range estimates. The proposed method needs no training data, nor any additional information about the
environment the system is deployed in and does not yield any additional time delays. Based on experiments
conducted in an industrial environment, the results show that the proposedmethod outperforms standard non-
adaptive AP-TWR and active-only Single-Sided Two-Way Ranging (SS-TWR) methods in both stationary
and movement tests. The stationary tests show that on average the proposed A-EKF method provides
more than three times lower Root-Mean-Square-Error (RMSE) than the next best method (AP-TWR) in
3D positioning, while SS-TWR consistently performs worse by about 0.4 m in the z-axis. Additionally,
the movement tests confirm the findings of the stationary tests and show that the challenging propagation
conditions of the testing environment cause maximum errors at about 4.5 m for AP-TWR and SS-TWR,
whereas the proposed A-EKF managed to mitigate these effects and reduce the error by 9 times, resulting in
a maximum error of 0.5 m.

INDEX TERMS A-EKF, AP-TWR, EKF, position estimation, SS-TWR, UWB.

I. INTRODUCTION
Ultra-Wideband (UWB) is a term used for radio communi-
cation that covers a bandwidth of over 500 MHz or 20% of
the carrier center frequency. With the IEEE 802.15.4a-2007
amendment to the original IEEE 802.15.4-2006 standard,
additional physical layers were introduced, which enabled
precise ranging for UWB devices [1].

Utilizing UWB technology provides several benefits. The
first one is the reduced interference with other narrowband
wireless technologies thanks to the low transmission power
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of the wideband signal [2]. Another benefit of UWB is
the nanosecond-range duration of the signal pulses, which
reduces the effect of multipath as the signals from multi-
ple propagation paths can be determined and filtered out
accordingly [3]. Additionally, the high temporal resolu-
tion allows for centimeter-level ranging by utilizing Time
of Flight (ToF) estimation by various Two-Way Ranging
methods or using the Time Difference of Arrival (TDoA)
method [4].
Like Bluetooth or WiFi, UWB also relies on the propa-

gation of Radio Frequency (RF) waves, allowing it to func-
tion effectively even in Non-Line-of-Sight (NLoS) situations,
although with diminished performance [2], [5]. In contrast,
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indoor positioning systems based on light, vision, or infrared
technologies are unable to operate in these conditions [6].

To reduce the accuracy/precision penalties induced by
NLoS propagation conditions, numerous NLoS detection
and/or mitigation methods have been proposed [7]. In the
literature, these strategies typically fall into three distinct but
not mutually exclusive categories which are briefly discussed
in the following paragraphs.

Firstly, channel statistics-based methods exploit the addi-
tional information about the propagation channel itself.
These methods may use the various channel state parame-
ters directly supplied by UWB transceiver chips (i.e. Qorvo
DW1000 [8]) or the raw Channel Impulse Response (CIR)
values. The former provides quickly accessible values, while
the latter entails more time-consuming processes to extract
the CIR [9].

Krishnan et al. employed machine learning (ML) meth-
ods (Multi-Layer Perceptron and Boosted Decision Trees)
with the DW1000 supplied parameters of first path power
and total received power to achieve a classification accuracy
of up to 87% [10]. Similarly, [11] utilized readily avail-
able signal parameters reported by the DW1000 transceiver
chip and proposed classifiers based on Gaussian Distribution
and Generalized Gaussian Distribution models, outperform-
ing multiple state-of-the-art ML techniques. The authors
of [12] put forward a Neural Network model, which was
trained on distance measurements, the running standard
deviation of these measurements, and several received sig-
nal parameters. The purpose was to derive weights for a
weighted least squares position estimator, aiming to min-
imize the impact of NLoS. In addition to ML, various
other methods have been researched, such as fuzzy infer-
ence of NLoS parameters combined with adaptive Kalman
filtering [13], utilizing logistic regression for NLoS detec-
tion [14], and devising a power-performance metric based
on the estimated first path power and the total received
power [15].

A sizable amount of research has been conducted by
using the raw CIR: NLoS detection via Capsule Networks
[16], proposing an NLoS-induced outlier-aware position-
ing method based on multilayer perception [17], signal
decomposition by One-Dimensional Wavelet Packet Anal-
ysis in conjunction with Convolutional Neural Networks
(CNN) [18], Transformer deep learning model [19], combin-
ing theMultilayer Perceptron with CNN to reduce calculation
complexity [20], overcoming the problem of site-specific
models by conducting Long Short-Term Memory training
to predict NLoS error magnitude and variance of measure-
ments [21], to name a few of the latest. In addition to
ML and deep learning, other methods utilizing the raw CIR
are explored: NLoS detection using fuzzy comprehensive
evaluation [22], a weighted particle filter based on probabil-
ity density functions of Line-of-Sight (LoS)/NLoS correla-
tion coefficients [23], and adaptively selecting the optimal
anchors based on the channel quality indicators [24].

Although the methods based on raw CIR typically offer
higher accuracy than methods based on the readily available
channel parameters, they propose a drawback on the scalabil-
ity of a positioning system as the extraction of the raw CIR
values from the transceiver is a time-consuming process [9].
Moreover, employing ML models requires large amounts of
high-quality training data, which makes the data-gathering
process tedious, while the training and implementation of
models could turn out computationally expensive [20], [25].

Secondly, the position estimate-based category is with the
broadest reach, covering methods that use position estima-
tion residuals, redundancy of ranging estimates, environment
(geometrical and propagation) data, or time series of position
estimates.

In [26], Chen proposed the seminal Residual Weight-
ing (Rwgh) algorithm, in which the position estimates and
their residuals are calculated with every possible range esti-
mate combination. The final position estimate is found as
a residual-weighted linear combination of the intermediate
position estimates. Jiao et al. improved on the work of Chen,
lowering the computational cost by introducing an iterative
approach to residual weighting [27]. Given N range esti-
mates, this method calculates position estimates and residuals
with N − 1 combinations, choosing the one with the lowest
average residual. It then selects the subsets until possible and
calculates the final weighted position estimate based. Even
though the computational complexity is reduced compared
to Chen’s algorithm, the method still requires in the order of
tens of intermediate position estimate calculations to provide
a final estimate.

Similar to the previous methods, [28] utilized the rang-
ing residuals to propose an iterative residual test to identify
and use only the detected LoS distances for positioning.
Excluding NLoS distances, particularly in situations where
multiple anchors are affected by the NLoS conditions, may
lead to the inadvertent dismissal of crucial data for accurate
positioning. In [29], the authors detected the presence of
NLoS from statistical parameters calculated from the ranging
residuals. While the general detection of Non-Line-of-Sight
(NLoS) presence in positioning demonstrated high accuracy,
discerning individual NLoS range estimates became more
challenging as the accuracy decreased.

In [30] the authors addressed NLoS-corrupted mea-
surements by detecting points of intersection with known
obstacles present in a room. Subsequently, they computed
correction terms based on these intersections to rectify the
inaccuracies caused by NLoS effects. Similarly, Silva et al.
utilized the geometric floor plan of the positioning environ-
ment, alongside information about the surrounding walls’
composition, to propose a through-the-wall ranging model
for positioning [31]. As this information is highly specific to
the positioning environment, the setup of such a positioning
system needs extra steps, such as acquiring floor plans or site
surveying andmatching them to the specific refractive indices
of the walls of the positioning environment.
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Thirdly, range-based methods utilize the time series of
ranging values to detect and mitigate NLoS-induced posi-
tion errors, for example by using the running variance of
range estimates or a known probability density function for
LoS/NLoS detection [32]. Applying such methods requires
a priori error distributions or introduces time latency to the
detection [22]. Furthermore, without additional constraints,
the running variance method could lead to false classifica-
tion if the tag is moving during the estimation process [33].
Momtaz et al. proposed a statistical method of detecting and
eliminating the NLOS errors with lower computational com-
plexity and increased accuracy [34], allowing for a more scal-
able solution than the previously mentioned Rwgh algorithm.
As a downside, this method requires a specific online training
phase, in which the noise term has to be measured. In order
to circumvent some of the restrictions caused by extracting
the CIR samples from the transceiver chip, Barral et al. opted
to use the received signal value in conjunction with ranging
data as features for multiple ML techniques for LoS/NLoS
classification [9].

A. CONTRIBUTIONS
The advent of the UWB Active-Passive Two-Way Ranging
(AP-TWR) protocol researched in [35] and [36] opens up
a new way of providing robust positioning in the presence
of NLoS conditions. The following paragraphs outline the
contributions of this paper.

While previous studies have focused on the performance
of AP-TWR ranging, this paper goes further to examine how
AP-TWR range estimates affect positioning accuracy. The
proposed AP-TWR-based positioning method is validated
and benchmarked in a real industrial environment to assess
its performance.

The formulation of the proposed positioning method
involves a thorough analysis of different NLoS error cases of
AP-TWR, a novel contribution that has not been explored in
the existing literature. Utilizing the redundant range estimates
of AP-TWR allows for the calculation of range estimate noise
variances, which is based on the previous analysis represen-
tative of NLoS propagation conditions. The noise variance is
coupled with the proposed distance and intermittency penal-
ties and used as input parameters to an Extended Kalman
Filter (EKF) to provide a novel NLoS-robust and accurate
positioning method.

The uniqueness of the proposed method lies in its avoid-
ance of computationally expensive iterative NLoS detection
techniques, lack of reliance on channel statistics or CIR
information, independence from acquiring large datasets and
labeling for model training, retention of all ranging data by
not discarding any information, absence of latency issues
typically found in methods computing running parameters,
and the ability to operate without any knowledge about
the environment, such as the composition and placement
of walls or obstructions in a room. The proposed method
stands out as a scalable, relatively easy-to-implement, and

FIGURE 1. The Active-Passive Two-Way Ranging protocol. Tag T starts the
ranging process by transmitting a packet, to which the active anchor Ai
responds, after which T finishes the ranging sequence with a final
transmitted packet. The passive anchor Aj listens to the active
transmission in the air and calculates its passive range estimate.

accurate NLoS-robust positioning solution, capable of effi-
ciently adapting to various environments and ensuring reli-
able performance even in challenging propagation conditions.

The rest of the paper is organized as follows: Section II
gives the theoretical background of the AP-TWR protocol,
Section III presents the effects of NLoS on the AP-TWR
range estimates and formulates the proposed method based
on it, Section IV describes the environment and the param-
eter values used in the experiments, Section V provides the
analysis of the results, and Section VI concludes this paper.

II. ACTIVE-PASSIVE TWO-WAY RANGING
The AP-TWR protocol packet exchange diagram is pictured
in Fig. 1, where the mobile device (tag T) starts the ranging
sequence by transmitting a ranging request packet. Upon
receiving that packet, the current active anchor Ai responds
after its processing time tAi,T , which T promptly receives and
records the round trip time interval tT ,Ai. The final ranging
report packet sent by T is irrelevant from the standpoint of
producing time interval values; rather it is used to commu-
nicate the tT ,Ai values back to the anchors for final range
calculation. Meanwhile, the passive anchor Aj listens to the
packet exchange of T and Ai and records the time interval
between receiving T’s first packet and Ai’s response, tAj,Ai.

The resulting values are used in calculating the AP-TWR
Time of Flight (ToF) estimates via:

tT↔Aj|Ai =


tT ,Ai − tAi,T

2
, for i = j

tT ,Ai + tAi,T
2

+ tAi↔Aj − tAj,Ai, for i ̸= j,

(1)

where the first part corresponds to the active ranging by
Single-Sided Two-Way Ranging (SS-TWR), and the sec-
ond part is used to calculate the passive range estimates,
hence the name AP-TWR. The resulting term tT↔Aj|Ai is
the estimated ToF between T and Aj, calculated with the
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information acquired from listening to Ai’s active rang-
ing. The ToF between Ai and Aj, tAi↔Aj, is considered
known as the anchors are part of a fixed infrastruc-
ture, with known coordinates. Therefore tAi↔Aj can be
measured by ranging between the anchors or calculated
theoretically.

The values of the active anchor index are in the range of
1 ≤ i ≤ m and the index for passive anchors is 1 ≤ j ≤ n,
where the total number of additional passive-only anchors
is l = n − m, such that n ≥ m, meaning that the active
anchors act as passive anchors while they are not actively
transmitting.

The resulting ToF estimates are converted to range esti-
mates via the expression dj|i = c · tT↔Aj|Ai, where c is
the wave velocity in the propagation medium. In this case,
we assume the velocity to be the speed of light in vacuum
c ≈ 3 · 108 m/s, as UWB is based on radio-frequency elec-
tromagnetic waves. Designating k as the temporal measure
i.e. the ranging sequence number, we get the AP-TWR range
estimate measurement matrix at time step k as Td,k :

Td,k =

d1|1,k . . . d1|m,k
...

. . .
...

dn|1,k . . . dn|m,k

 . (2)

Previous studies [35], [36] have solely focused on evaluat-
ing the performance of the AP-TWR, based on the ranging
Root-Mean-Square Error (RMSE). However, in this paper,
we extend the evaluation to include the precision of position
estimates as the primary consideration. Additionally, a novel
position estimation algorithm based on the EKF is proposed,
aiming to further enhance the performance. The specific
contributions of this paper were explained in more detail in
Section I.

III. PROPOSED METHOD
This section provides the theoretical background and formu-
lation of the proposed AP-TWR-based Adaptive Extended
Kalman Filter (A-EKF) positioning system. The following
subsections present the essential information about the effects
of NLoS on AP-TWR range estimates, the mechanisms for
penalizing the inputs based on the distance and the intermit-
tency of the range estimates, and finally the theory and the
algorithm formulation of the proposed method.

A. EFFECT OF NLoS TO AP-TWR ESTIMATES
In order to quantify the effect of NLoS on AP-TWR esti-
mates, (1) is analytically observed when arbitrary NLoS
one-way bias factors β are introduced into the equations,
depending on the severity of the NLoS case. Noting that
for the formulation of this specific AP-TWR NLoS analysis,
all other sources of errors are omitted. Table 1 presents the
seven cases of errors possible for the trio of T, Ai, and Aj.
The different NLoS propagation paths are viewed as separate
cases between the tag and active anchor (T↔Ai), the tag and
the passive anchor (T ↔ Aj), the active and passive anchors

(Ai ↔ Aj), and all possible combinations thereof. Each case
introduces a specific set of bias factors β to the propagation
times tT↔Ai, tT↔Aj, and tAi↔Aj.
In the context of Table 1, the variables with the hat (·̂) are

affected by the NLoS bias, whereas the equivalent variables
without the hat (·) are the true values, unaffected by the bias.
The fourth column presents the NLoS-affected term(s) of
Eq. (1), referenced to Fig. 1. The final two columns present
the net effect of NLoS on the active and passive range esti-
mates of AP-TWR, respectively.

The results of Table 1 show that in Cases 1, 4, 6,
and 7, the active range estimate is additively impaired by
a factor βT↔Ai due to the existing NLoS path between
T and Ai. Interestingly, the passive range estimates are
unaffected by the NLoS between T and Ai, as its bias
term cancels out in the calculation of the passive range
estimates.

On the other hand, the passive range estimates are similarly
affected by NLoS in pairwise Cases 2 & 4, 3 & 6, and 5 &
7. Noting that an obstruction between Ai and Aj (Cases 3,
5, 6, 7) causes a negative βAi↔Aj NLoS term to emerge,
which could translate to an altogether negative NLoS bias in
the passive range estimates, as opposed to a strictly positive
NLoS bias for standard active ranging protocols [37], [38].
The effects of NLoS presented in Table 1 align with the

observed error cases for TDoA defined by Zandian and
Witkowski in [39], while also expanding on it by adding the
NLoS link between the active and passive anchor.

The presence of variable NLoS biases in the AP-TWR
estimates can be used to one’s advantage, as the rows of
(2) may contain estimates from many anchors with vari-
ous propagation conditions between them and the tag. This
translates into fluctuating range estimates in the rows of the
measurement matrix, the measure of which can be expressed
by the row variances σ 2

j|1:m,k corresponding to each time step
k , expressed in matrix form:

Sk =

[
σ 2
1|1:m,k σ 2

2|1:m,k . . . σ 2
n|1:m,k

]T
. (3)

Previous research [36] has shown that taking the medians
of the AP-TWR measurement matrix rows provides robust
range estimates for positioning, therefore we denote the final
range estimates of each time step k in matrix form as:

Nk =
[
d̃1|1:m,k d̃2|1:m,k . . . d̃n|1:m,k

]T
, (4)

where the tilde markers denote the mathematical operation of
median across each row d1|1:m,k . . . dn|1:m,k of (2). The values
of (4) act as the input to the EKF position estimation.

B. DISTANCE PENALTY
Research has shown that the accuracy of position estimation
may be impaired because the ranging error magnitude has
a distance-dependent component [7], [21]. However, some
results show that this relationship is not exactly linear [5].
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TABLE 1. The AP-TWR errors in various NLoS cases between the devices.

As a way to give higher weights to shorter distances,
we propose a parametric exponential scaling coefficient
esc·d̃j|1:m,k , where the scaling constant is defined as sc =
ln sm
sd

. It is calculated via user-set parameters sm and sd such
that the exponential scaler provides a multiplier of sm at
distance sd .
The resulting values corresponding to each distance are

then expressed as the exponential scaling vector:

Bk =

[
esc·d̃1|1:m,k esc·d̃2|1:m,k . . . esc·d̃n|1:m,k

]T
, (5)

which is used to modify the measurement noise vector in
the AP-TWR A-EKF positioning scheme. The usage of the
scaling vector is further explained in Section III-D.

C. INTERMITTENCY PENALTY
The UWB range estimates can be impaired by intermittent
noise, multipath, and obstacles in the environment the system
is operating in [40]. As a result of some or many of the
aforementioned effects, the range estimates supplied by the
UWB system might arrive intermittently.

To establish the intermittency penalty method, we hypoth-
esize that the intermittent values are inherently less accurate,
as the intermittent values show that the system works on the
edge of its detection limit in the ranging process. We set for-
ward two parameters, a positive integer ls and a non-negative
real number lm, i.e., the time history length, and the intermit-
tency multiplier, respectively.

Representing all the historical ranging values as sets on
numbers with a cardinality of ls, corresponding to all anchors
in the system A1,A2, . . . ,AN at time step k , we get:

A1,k = {dA1,k , dA1,k−1, . . . , dA1,k−ls+2, dA1,k−ls+1}

A2,k = {dA2,k , dA2,k−1, . . . , dA2,k−ls+2, dA2,k−ls+1}
...

AN ,k = {dAN ,k , dAN ,k−1, . . . , dAN ,k−ls+2, dAN ,k−ls+1}.

The elements of the sets of time history values assume
the value of 0 in the case where a specific anchor does not
produce a range estimate at that time instance. So, at each
time instance, we get the number of missing range estimates

in the history window for each anchor:

rA1,k = |x1 ∈ A1,k : x1 = 0|

rA2,k = |x2 ∈ A2,k : x2 = 0|
...

rAN ,k = |xN ∈ AN ,k : xN = 0|.

The resulting numbers of missing values are in turn used
to calculate the total set of intermittency penalty multipliers
for each anchor in the system, for each time step value k:

Lk =

{
1 +

lm
lς

· rA1,k , . . . , 1 +
lm
ls

· rAN ,k

}
. (6)

Similar to (5), the intermittency penalty multiplier vector
at time instance k is then formulated as:

Ck =
[
li1,k li2,k . . . lin,k

]T
, (7)

such that the values li1,k , li2,k , . . . , lin,k are elements of the
subset of Lk and i1, i2, . . . , in are the indices of the subset
elements, marking the specific anchors providing their corre-
sponding range estimates at time instance k .

Since only the intermittency penalty magnitude and not
the input positioning data is dependent on time series history,
no extra time-domain latency is introduced to the positioning
process.

D. EXTENDED KALMAN FILTER
The literature encompasses a wide range of position esti-
mation algorithms, spanning various Linear Least Squares
(LLS), Nonlinear Least Squares (NLS), and multiple
Bayesian Filter approaches, to name a few [41]. Among these
methods, the EKF has demonstrated excellent performance in
LoS scenarios while outperforming other methods in NLoS
conditions, on par with the performance of the Unscented
Kalman Filter (UKF) [42]. Furthermore, the EKF exhibits
lower complexity, resulting in calculation times that are more
than three times shorter than those of the UKF [39]. Consid-
ering these factors, the EKF was selected as the foundation
for the method proposed in this paper.

Furthermore, in the scope of this paper, a single-model
approach is utilized due to the absence of information

VOLUME 11, 2023 92579



T. Laadung et al.: A-EKF Position Estimation Based on UWB Active-Passive Ranging Protocol

regarding whether the tag is moving or stationary. However,
incorporating sensors that provide additional information
on the tag’s movement/stationary state could enable adopt-
ing a multi-model approach. For instance, the switch to a
zero-velocity model could be considered for cases where the
tag is detected to be stationary [43].

Following previous works [21], [44], we expand the posi-
tion, velocity, and acceleration model of EKF to three dimen-
sions (3D). We do so by expressing the corresponding values
at each time step asXk , and tying themwith information from
the previous time step k− 1 using the appropriate kinematics
equations:

Xk =



xk
yk
zk
vxk
vyk
vzk
axk
ayk
azk


=



xk−1 + Ts · vxk−1 +
T 2
s
2 a

x
k−1 +

T 3
s
6 w

x
k−1

yk−1 + Ts · vyk−1 +
T 2
s
2 a

y
k−1 +

T 3
s
6 w

y
k−1

zk−1 + Ts · vzk−1 +
T 2
s
2 a

z
k−1 +

T 3
s
6 w

z
k−1

vxk−1 + Ts · axk−1 +
T 2
s
2 w

x
k−1

vyk−1 + Ts · ayk−1 +
T 2
s
2 w

y
k−1

vzk−1 + Ts · azk−1 +
T 2
s
2 w

z
k−1

axk−1 + Ts · wxk−1
ayk−1 + Ts · wyk−1
azk−1 + Ts · wzk−1



,

(8)

where at time step k the coordinates, velocities, and accel-
eration values for each of the three axes are defined as{
xk yk zk

}
,

{
vxk v

y
k v

z
k

}
, and

{
axk a

y
k a

z
k

}
, respectively. The

kinematics equations and sampling time Ts are used to
express the dependency of values at time step k from val-
ues at k − 1. The last terms of each row represent the
position (T 3

s /6)wk−1, velocity (T 2
s /2)wk−1, and acceleration

(Ts · wk−1) noise of the model, respectively.
The process noise can be rewritten as a vector wk−1 =

wxk−1 w
y
k−1 w

z
k−1

T with a covariance matrix Qk−1 =

diag(σ 2
jx , σ

2
jy, σ

2
jz). Therefore, the state vector (8) can be

expressed as a series of matrix calculations, such that:

Xk = AXk−1 + Gwk−1, (9)

where matrix A is the state transition matrix and is written
as:

A =



1 0 0 Ts 0 0 T 2
s
2 0 0

0 1 0 0 Ts 0 0 T 2
s
2 0

0 0 1 0 0 Ts 0 0 T 2
s
2

0 0 0 1 0 0 Ts 0 0
0 0 0 0 1 0 0 Ts 0
0 0 0 0 0 1 0 0 Ts
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, (10)

and G represents the noise transition matrix as:

G =



T 3
s
6 0 0

0 T 3
s
6 0

0 0 T 3
s
6

T 2
s
2 0 0

0 T 2
s
2 0

0 0 T 2
s
2

Ts 0 0
0 Ts 0
0 0 Ts


. (11)

The AP-TWR range estimates zj,k are placed in the obser-
vation/measurement vector Zk , which consists of the sum
of the true distance vector Dk =

[
d1,k d2,k . . . dn,k

]T and
the observation noise vector Vk =

[
v1,k v2,k . . . vn,k

]T .
The latter of which has a covariance matrix of Rk =

diag(σ 2
d1,k

, σ 2
d2,k

, . . . , σ 2
dn,k ):

Zk =


z1,k
z2,k
...

zn,k

 =


d1,k + v1,k
d2,k + v2,k

...

dn,k + vn,k

 = Dk + Vk = HkXk + Vk .

(12)

The vector Dk can be rewritten in the form of circle equa-
tions, where the centers are defined by the anchor coordinates{
xj yj zj

}
:

Dk =


√
(xk − x1)2 + (yk − y1)2 + (zk − z1)2√
(xk − x2)2 + (yk − y2)2 + (zk − z2)2

...√
(xk − xn)2 + (yk − yn)2 + (zk − zn)2

 . (13)

Because the resulting equations are nonlinear, the
first-order Taylor expansion is utilized for linearization,
to produce the Jacobian matrix Hk :

Hk =


∂d1,k
∂xk

∂d1,k
∂yk

∂d1,k
∂zk

0 0 0 0 0 0
∂d2,k
∂xk

∂d2,k
∂yk

∂d2,k
∂zk

0 0 0 0 0 0
...

∂dn,k
∂xk

∂dn,k
∂yk

∂dn,k
∂zk

0 0 0 0 0 0

 , (14)

such that the partial derivatives are calculated at each time
step k as:

∂dj,k
∂xk

=
xk − xj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
(15a)

∂dj,k
∂yk

=
yk − yj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
(15b)

∂dj,k
∂zk

=
zk − zj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
. (15c)
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E. PROPOSED ADAPTIVE EKF METHOD
The proposed positioning method is described in the
algorithm’s pseudocode in Alg. 1, which consists of three
distinct phases: AP-TWR ranging, EKF prediction, and EKF
correction. The algorithm is also visualized as a flowchart in
Fig. 2.

As a first step, the EKF initial state and state covari-
ance matrices need to be initialized; this part is described
in more detail in Section IV. After initialization, the first
phase is launched, where the AP-TWR measurement matrix
is acquired. Since the coordinate is calculated for three axes,
a minimum of four input range estimates is needed. Other-
wise, the position estimation process is skipped for this time
step.

When the number of columns of the measurement matrix
is larger than one i.e., m > 1, the row medians (4) and
variances (3) are calculated. In the other case, the measure-
ment matrix is directly taken as the observation vector and an
appropriately-sized row variance vector Sk is constructed by
repeating a default observation noise variance, σ 2

d . Then the
distance and intermittency penalty vectors are calculated, and
the observation covariance matrix Rk is formed as a diagonal
matrix composed of the Hadamard product of vectors Sk , Bk ,
and Ck .
In the following phase, the state and its covariancematrices

are predicted, noting that the predicted values aremarkedwith
a ‘‘minus’’ superscript. Finally, the Kalman gain is computed
and used to correct the state estimate and covariance provid-
ing a position estimate for that time step.

We adopt the naming convention used in previous stud-
ies [45], [46] that refer to the Kalman Filter as adaptive
when the covariance matricesQ andR are dynamically mod-
ified. Accordingly, we introduce our approach as the Active-
Passive Two-Way Ranging Adaptive Extended Kalman Filter
(AP-TWR A-EKF) positioning method.

IV. EXPERIMENTAL SETUP
This section provides an overview of the experiments to
validate the proposed AP-TWR A-EKF positioning method.

The experiments were conducted using the AP-TWR pro-
tocol implemented in the Eliko UWB RTLS system [47],
which is based on the Qorvo DW1000 UWB transceiver
chip [8]. The true coordinates of the anchors’ and tag’s
locations were surveyed using the Leica DISTO S910
laser distance meter, which provides three-dimensional
coordinates [48].
The Eliko UWB RTLS was deployed in an industrial

environment, at the premises of Krah Pipes OÜ [49] which
specializes in producing large thermoplastic pipes. The fac-
tory premises were selected for conducting the experiments
as they provide challenging conditions for the positioning
system and the proposed method. These conditions include
1) restrictions on the placement of the anchors: most of the
anchors have to be mounted near the ceiling, thus the tag
is almost always positioned outside the 3D convex hull of

Algorithm 1 EKF Positioning for AP-TWR Protocol

Input: Td,k ∈ Rn×m, {sd , σ 2
d , σ 2

jx , σ
2
jy, σ

2
jz} ∈ R>0, {sm, lm} ∈

R≥0, ls ∈ Z>0
Output: X̂k
Initialize: X̂0, P0

1: for k = 1, 2, . . . ,∞ do
AP-TWR ranging

2: if n < 4 then ▷ Less than 4 distances in input
3: skip
4: end if
5: if m > 1 then
6: Zk = Nk ▷ Observation vector
7: Calculate Sk ▷ Row variances
8: else
9: Zk = Td,k

10: Sk =

[
σ 2
d

×n
· · · · · ·

]T
▷ Assign default variance

11: end if
12: Calculate Bk ▷ Distance penalty
13: Calculate Ck ▷ Intermittency penalty
14: Rk = diag(Sk ⊙ Bk ⊙ Ck ) ▷ Hadamard product

EKF Prediction
15: X̂−

k = AX̂k−1 ▷ Predict state
16: P−

k = APk−1AT
+ GQk−1GT

▷ Predict state cov.
EKF Correction

17: Kk = P−

k H
T
k (HkP−

k H
T
k + Rk )−1

▷ Kalman gain
18: X̂k = X̂−

k + Kk (Zk − D−

k ) ▷ Correct state estimate
19: Pk = P−

k − KkHkP−

k ▷ Correct state cov.
20: return X̂k , Pk
21: end for

FIGURE 2. The flowchart of the proposed AP-TWR A-EKF method.

the anchors; and 2) the presence of large metal and concrete
objects obstructing the propagation path, etc.
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TABLE 2. The coordinates of the anchors used in the experiments.

The factory environment of the experiments can be seen
in Fig. 3 where the Leica Disto S910 is marked in cyan, the
two visible anchors in red, and the tag in dark blue color.
Additionally, an industrial crane is mounted on rails on the
ceiling, but it cannot be seen clearly: only the hook block of
the crane is visible in the upper center part of the photo. The
Leica DISTO S910 was installed on a concrete mezzanine
floor, with a height of about 4.5 meters from the ground floor,
such that it could provide the tag and anchor’s true location
across the whole area. The locations of the anchors, measured
with the Leica DISTO S910, are given in Table 2.
The first set of tests was conducted with a stationary tag,

mounted on a tripod, at 30 separate test points across the
factory. The locations of the test points (TP), anchors (A),
and the Leica DISTO S910 can be seen in Fig. 4. At each of
the 30 test points the AP-TWR range estimates were captured
for 30 seconds, using a tag with an update rate of 10 Hz,
providing data from approximately 300 ranging sequences.

The second set of experiments was conducted to validate
the results of the stationary tests. The experiment was per-
formed with a moving tag which was mounted on a tripod,
attached to a shelf trolley. The tag was moved throughout
the factory with reference to the printed lines on the floor,
where the critical points, i.e. turning points, are previously
surveyed to provide a reference true track. The shelf trolley
and the reference lines are also visible in Fig. 3. The data was
captured throughout the movement process for 99 seconds,
resulting in data of 990 separate ranging sequences.

The parameter values of the AP-TWR A-EKF used in the
experiments are given in Table 3. The Eliko UWB RTLS was
configured such that the maximum number of active anchors
mmax of AP-TWR protocol is 6. Although the intermittency
and distance penalty parameters were chosen heuristically,
it is likely that the chosen values are sub-optimal, not provid-
ing the best achievable positioning performance for the pro-
posed method. Finding the optimal parameter values could be
considered in future work.

The default observation noise variance σ 2
d and the process

noise covariance values of Qk−1 are inferred from [21]. The
sampling time Ts was extracted from the tag’s internal clock
during each ranging sequence.

The very first step of the EKF process requires initial-
izing the values of the initial state vector X0 and the state
covariance matrix P0. The initial coordinates

{
x0 y0 z0

}
of

the state vector are given as the true coordinate measured by

TABLE 3. The parameters for the proposed AP-TWR A-EKF positioning
method used in the experiments.

the DISTO S910 for all of the tested EKF variants, which are
discussed in the following paragraphs. This is done to give
all the methods the same initial conditions and to eliminate
the additional errors from converging to the correct location
when the initial position is set to the coordinate origin, for
example. The initial speed and acceleration values for each
axis are set to zero. The initial state covariance matrix P0 is
set as a 9-by-9 identity matrix, corresponding to the size of
the state vector.

The proposed A-EKF positioning method is compared
to the baseline EKF methods, accordingly using standard
AP-TWR range estimates (4) and SS-TWR active-only range
estimates as input. The same exact dataset is utilized for all
of the compared methods, as both the SS-TWR and AP-TWR
range estimates are inherently present in it, making the results
of different methods directly comparable. The initial state,
initial covariance, and Qk−1 matrix values are the same as
stated in Table 3, whereas the diagonal of the appropriately-
sized Rk matrix is filled with the default variance σ 2

d values.
The data acquisition was performed via a custom Python

script that interfaces with the Eliko UWB RTLS server,
extracts the required UWB range estimate packets, and saves
them to a text file. Then a custom script written in R was
used to parse and process the data, as well as to calculate
the range estimates and the metrics for all three methods.
Although this specific implementation provides the results by
post-processing the range estimates, the proposed system is
able to work in real-time applications.

The comprehensive dataset with supplemental materials
and detailed explanations is uploaded to the IEEE Dataport
repository and can be found in [50].

V. RESULTS
This section provides the results of the stationary and moving
experiments and the analysis thereof.

A. STATIONARY TESTS
The results of the stationary experiments are given in Fig. 5,
where the 2D and 3D Root-Mean-Square-Error (RMSE) of
the SS-TWR, standard AP-TWR EKF, and the proposed
A-EKF positioning methods are given across all of the 30 test
points.
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FIGURE 3. Setup for the movement tests in the industrial environment. Visible anchors A1 and A6 are circled in red,
the Leica DISTO S910 in cyan, and the tripod-mounted tag on the shelf trolley in dark blue. The tag is moved in
reference to the lines on the factory floor.

FIGURE 4. The test setup plan. Test point locations are marked with numbered ‘‘TP’’ markers in dark
blue, anchor locations with numbered ‘‘A’’ markers in red, and the location of the Leica DISTO S910 laser
distance meter is marked with a cyan circle.

Firstly, focusing on the 2D results, it can be seen that
for most cases all of the tested methods provide comparable
performance at approximately 0.15 m RMSE. The SS-TWR
EKF shows a more uniform performance across the test
points, with an exception at TP1 and TP8, where the 2D
RMSE is significantly higher than usual, obtaining values of
0.49 m and 1.97 m, respectively. The higher RMSE of TP8 is

a result of the blocking of the LoS of the tag and A1, A6 due to
large pipe mandrels made of metal, visible in the upper-left
side of Fig. 3, while in TP1, the direct propagation path to
anchor A7 is obstructed by the mezzanine floor.
The differences for the standard AP-TWR EKF are more

diverse, as in test points 1, 3, 5, 8, 9, and 29 the 2D RMSE
obtains significantly higher values than normal, ranging from
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FIGURE 5. The 2D and 3D RMSE results across all the stationary test points.

0.53 m (TP1) up to 4.98 m (TP3). Although the reasons
are not as evident as for SS-TWR EKF, the analysis pre-
sented in Table 1 suggests that AP-TWR range estimates
are impaired because of the compound NLoS effects of dif-
ferent propagation paths encountered during each ranging
sequence. The effects could be a result of a combination of the
aforementioned pipe mandrels, the overhead crane blocking
propagation paths between anchors, all of the assets in the
factory, etc.

As both, the standard AP-TWR and SS-TWR, methods do
not provide the EKF with any additional information on the
measurement noise that may be present, the input distances
are treated as equal and the distances with larger error con-
tribute to an increase in the positioning error.

The proposedAP-TWRA-EKF positioningmethod, on the
other hand, is robust against the adverse propagation con-
ditions present in the industrial environment. The proposed
method typically performs at a similar or lower error level
than the baseline methods, whereas the largest differences
come into play at the previously mentioned high error test
points of the baselines. The following analysis gives an
overview of the behavior of A-EKF compared to other meth-
ods in the most significant test points.

At the high-error test points 1, 3, 5, 8, 9, and 29 of
AP-TWR, the proposed A-EKF method reduces the RMSE
respectively by 0.387, 4.902, 2.370, 1.617, 0.904, and

0.501 m, providing a large reduction in the absolute values
of errors in every one of the high error test points. One
minor drawback can be identified at test point 25, where the
proposed method provides slightly lower performance than
the baseline AP-TWR, with according RMSE of 0.445 m
and 0.220 m. In terms of 2D RMSE, the proposed method
performs better than AP-TWR in 18 of the 30 test points.

Comparing the proposed method to the SS-TWR in terms
of 2D RMSE, it can be observed that the errors at TP1 and
TP8 are reduced by 0.343 m and 1.863 m, correspondingly.
Even though the proposed method provides slightly higher
2D errors at TP5 and TP25, the opposite is true for the 3D
case where the A-EKF provides slightly better RMSE per-
formance than SS-TWR. In conclusion, the proposed method
provides a lower RMSE than SS-TWR at 17 of the 30 test
points.

Although the test points show rather similar trends in the
3D RMSE, we see that in typical cases not involving the large
error test points, the proposedmethod alongside the AP-TWR
consistently provides about 0.4 m lower RMSE.

All of the high error test points 1, 3, 5, 8, 9, and 29 of
AP-TWR are again subsequently reduced by 0.597, 4.890,
2.378, 5.117, 1.565, and 0.340 m using the proposed method.
Comparing the 3D results, it is evident that the proposed
A-EKF method provides a reduction in RMSE at half of
the test points when compared to AP-TWR, including the

92584 VOLUME 11, 2023



T. Laadung et al.: A-EKF Position Estimation Based on UWB Active-Passive Ranging Protocol

FIGURE 6. The movement paths of the second set of tests. The upper figure displays the tested methods’ x and y coordinates, while the lower figure
displays the z-coordinate across the ranging sequences. The critical points of the true movement path are marked with consecutive purple dots noted
as MP on the respective figures. Note that on the z-coordinate plot, the movement path critical points are marked approximately in regards to the
sequence number, as the shelf trolley needed to be stopped and its direction adjusted for the next segment of the movement.

previously mentioned points where the error magnitude was
reduced significantly.

Similarly, the high error points 8 and 14 of SS-TWR are
also mitigated by the proposed method, which reduces 3D
RMSE by 5.074 and 0.763 m, correspondingly. Moreover,
the A-EKF outperformed the SS-TWR positioning in 29 out
of the 30 test points, providing moderately higher RMSE at
only TP9.
On average, the tested methods achieved the following

RMSE in 2D positioning: AP-TWR 0.492 m, SS-TWR
0.238 m, and A-EKF 0.149 m, meaning that the proposed
method achieved almost 1.6 times better performance in 2D
as the next best method, the SS-TWR. The 3D results showed
the average RMSE of the methods to be AP-TWR 0.693 m,
SS-TWR 0.765 m, and A-EKF 0.224 m, showing that the

proposed method achieved over 3 times lower RMSE than
the next best method i.e, AP-TWR.

B. MOVEMENT TESTS
The experiments with a moving tag were conducted to vali-
date the results achieved by the stationary tests to show that
the initialization of the methods does not affect the position
estimates. Due to the inherent requirement of knowing the
true coordinate of the tag at each time step, the calculation
of objective error metrics becomes infeasible as the nec-
essary devices to acquire an accurate time series reference
track were unfortunately unavailable to the authors. As a
consequence, the resulting analysis should be approached
with caution as it solely presents the visual movement
paths of the tested methods without calculating objective
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performance parameters in regards to the true movement
track.

Fig. 6 presents the results of the movement tests, which
were described in detail in Section IV. Noting that although
the x-y coordinate plot is zoomed in for clarity such that
A2 is not visible, the anchor still took part in the experiments.
To facilitate the presentation of the 3D data, it was partitioned
into two distinct graphs: a two-dimensional representation
depicting the x-y plane of the factory floor, and a depiction
of the z-coordinate variation corresponding to the ranging
sequence number.

The previously surveyed critical movement points are
marked with numbered purple dots (MP), connected by pur-
ple lines to indicate the true track of the movement. The
approximate locations of arrival at the critical points are
marked with corresponding purple dots in the z-coordinate
graph. The locations on the z-coordinate figure are approx-
imate because at each critical point, the shelf trolley was
stopped to re-position it for the next section of the move-
ment, so parts of the plots also correspond to brief stationary
moments during the movement.

The movement traces in Fig. 6 support the results achieved
in the stationary test, where the proposedA-EKF and the stan-
dard AP-TWR method consistently provide more accurate
results in the z-axis, as was evident in the 3D RMSE graphs
in Fig. 5.

In the first segment of the movement, all of the methods
show slightly higher deviation from the true track, especially
in the z-axis. This increased noise can be explained by the
presence of the mezzanine floor on the right side, since in the
first segment the tag is moved in parallel and almost under
the mezzanine floor, obstructing the LoS paths to anchors 2,
5, and 7.

The next 3 movement segments show rather similar per-
formance for all of the methods, keeping in mind that the
SS-TWR method consistently shows about 0.5 m lower
z-coordinate value compared to the true track, than other
methods.

The final movement segment is impaired by the same pipe
mandrels discussed in the previous section, as can be seen by
the large deviations from the true track of the SS-TWR and
AP-TWR methods. These fluctuations achieve a maximum
of about 4.5 m in the x-y plane and about 1 m in the z-axis,
whereas the proposed A-EKF positioning method deviates by
a maximum of 0.5 m in both the x-y plane and the z-axis,
reducing the maximum errors by about 9 times.

VI. CONCLUSION
This paper presented a comprehensive overview and analysis
of the possible NLoS error cases that may be encountered
with the usage of the UWB AP-TWR protocol. This analysis
was the basis for the proposed A-EKF method, which was
experimentally tested in an industrial environment and bench-
marked against EKF position estimators based on active-only
SS-TWR and standard AP-TWR range estimates. The pro-
posed method can be used in real-time applications and does

not require any additional information on the environment,
signal properties, error models, statistics, or training data,
or cause any additional time delays in the position estimation
process.

Although in 2D the tested methods typically operated with
the same performance, a part of the test points provided
unfavorable propagation conditions for the UWB system,
inducing large errors for standard AP-TWR (maximum about
5 m error) and SS-TWR (maximum about 2 m error), which
the proposed A-EKF method mitigated, reducing errors with
a maximal of less than 0.5 m. On average, the A-EKF pro-
vided almost 1.6 times lower RMSE that the next best i.e.,
the SS-TWR positioning method.

Similar trends were apparent in the 3D RMSE results as
well, with the exception that the SS-TWR method provided
consistently about 0.4 m inferior results than the other meth-
ods. The large errors of some test points are also present in
the 3D results, with a maximum of about 5.4 m for both the
SS-TWR and AP-TWR methods, while the A-EKF provided
a maximum error of only 0.9 m. Across all of the test points,
the average RMSE of the proposed method was more than
3 times lower than the next method, AP-TWR.

The movement tests confirmed the validity of A-EKF sta-
tionary tests by showing that the largest errors of AP-TWR
and SS-TWR, caused by the presence of various assets in
the factory, are reduced ninefold. Both sets of experiments
showed the robustness of the proposed A-EKF positioning
method with its ability to drastically reduce large errors
caused by the propagation conditions.

While the current study has demonstrated the effectiveness
of the A-EKF method, further investigation is warranted
to identify and determine the optimal parameters for this
approach. In-depth analyses and experimentations should
be conducted to explore the impact of different parameter
configurations on the method’s performance, accuracy, and
robustness. This exploration will contribute to refining the
A-EKF algorithm.

The current paper has presented an overview of AP-TWR
NLoS error cases. However, a more comprehensive and
detailed analysis is required to identify and characterize spe-
cific NLoS error scenarios. In-depth investigations should be
conducted to explore the possibilities of developing strategies
to detect and mitigate these specific NLoS cases effectively.
This analysis should encompass a broader range of envi-
ronmental conditions, and diverse deployment scenarios to
enhance the understanding and mitigation of AP-TWRNLoS
errors.
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