DOI: 10.5281/zenodo.10205589

VISIR-2 ship weather routing model: an introduction

Gianandrea Mannarini¹,

Mario Leonardo Salinas¹, Lorenzo Carelli¹, Nicola Petacco², Josip Orović³

1) Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)

Ocean Predictions and Applications Division

via Marco Biagi 5, 73100 Lecce (Italy)

2) DITEN, University of Genova (Italy)

3) Maritime Department, University of Zadar (Croatia)

seminar at MMT-3ME TU-Delft on Nov.23, 2023

last update: 2023-11-25

www.cmcc.it

Outline

Introduction Numerical features Vessel performance curves Computational performance Validation Case studies Operational service Discussion

Motivation

New (IMO MEPC-80) decarbonisation strategy

- 2030: uptake of low-carbon fuels (5-10%) ٠
- 2050: a zero-carbon shipping

EU-ETS for shipping

- all calls at EU ports included
- starts 2024, progressive application ٠
- CO2, CH4, N20 •

MEPC 80

role of weather routing

- saving money ٠
- saving emissions
- hardly quantified so far, open models needed ٠

[1] https://www.imo.org/en/MediaCentre/PressBriefings/pages/Revised-GHG-reduction-strategy-for-global-shipping-adopted-.aspx [2] https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shippingsector_en#:~:text=Inclusion%20of%20maritime%20emissions%20in,of%20the%20flag%20they%20fly.

VISIR-2 resources

open access – open review manuscript

https://egusphere.copernicus.org/preprin ts/2023/egusphere-2023-2060/ https://doi.org/10.5194/egusphere-2023-2060 Preprint. Discussion started: 16 November 2023 © Author(s) 2023. CC BY 4.0 License.

VISIR-2: ship weather routing in Python

Gianandrea Mannarini¹, Mario Leonardo Salinas¹, Lorenzo Carelli¹, Nicola Petacco², and Josip Orović³

¹Ocean Predictions and Applications Division, CMCC, via Marco Biagi 5, 73100 Lecce, Italy
 ²DITEN, Università degli Studi di Genova, via Montallegro 1, 16145 Genova, Italy
 ³Maritime Department, University of Zadar, Ul. Mihovila Pavlinovića, 23000 Zadar, Croatia

 ${\small \textbf{Correspondence: } Gianandrea \ Mannarini \ (gianandrea.mannarini @cmcc.it)} \\$

open language - open source model code

https://zenodo.org/records/8305527

Kinematics: geometry

F: forward speed (along vessel's heading)
STW: speed through water (differs from F if leeway present)
SOG: speed over ground (along vessel's course – graph edge)
C: ocean current

L: leeway velocity

Key hypotheses:

- linear superposition of velocities (STW, sea currents, leeway)
- *ship's motion to occur along a graph edge*

 \rightarrow angle of attack δ between ship's heading and course

$$\delta = \psi_s - \psi_e$$

- → SOG as a vector sum of:
 STW and C (no leeway) or:
 F and ω (general)
- $S_g = F\cos(\delta) + \omega_{\parallel}$ $0 = -F\sin(\delta) + \omega_{\perp}$

Kinematics: angle of attack

as F depends on environmental field's angle,

need to solve a transcendental equation for angle of attack δ :

$$\sin \delta = \frac{\omega_{\perp}(\delta, \delta_i(\delta))}{F(|\delta_i(\delta))|, |\delta_a(\delta)|)} \quad \Leftrightarrow \quad F \neq 0$$

solve numerically (scipy.optimize.root, not vectorizable) or via iteration (vectorizable):

$$egin{array}{rcl} \delta^{(0)} &=& 0 \ \delta^{(k)} &=& h(\delta^{(k-1)}) & \mbox{for} & k=1,2,\ldots \end{array}$$

$$h(x) = \arcsin\left(rac{\omega_{\perp}(\delta = x, \delta_i = x - \gamma)}{F(|x - \gamma|)}
ight)$$

Graph structure

Graph stencil for connectivity

up to 4th order neiabhours (v=4)

benefits of pruning of collinear edges (dashed) :

- saving RAM memory
- more faithful representation of the environmental fields

connectivity and number N_{q_1} of edges in the first quadrant

u	$\Delta heta$ [°]	N_{q1}	$\nu(\nu+1)$
1	45.0	2	2
2	26.6	4	6
3	18.4	8	12
4	14.0	12	20
5	11.3	20	30
6	9.5	24	42
7	8.1	36	56
8	7.1	44	72
9	6.3	56	90
10	5.7	64	110

Graph computation

indexing via a K-dimensional Tree

a spatial data structure which can effectively be queried for:

- *nearest neighbours (coast proximity of nodes)*
- range queries (coast intersection of edges)

implementation in Python: scipy.spatial.KDTree

Pseudo-shoreline

pseudo-shoreline: avoiding too shallow water for a given vessel

high resolution bathymetry dataset → compute as a zero contour line of under-keel clearance:

UKC = z - T

retain in the graph just edges with UKC > 0

- GSHHG "high" res shoreline: 200m
- *GEBCO_2022* bathy : 463 m
- EMODnet bathy: 116 m

Space and Time interpolation

Remap environmental fields to the graph grid: Two options:

- averaging between the edge head and tail's values ("Sint = 0")
- interpolating their values to the 315 edge barycentre ("Sint = 1", default)

- a) environmental field values (grey dots) interpolated in time on a finer grid with $\Delta \tau$ spacing ("Tint = 2" or blue dots)
- b) edge weight at the nearest available timestep (floor function used, blue segments) is selected

VISIR-2 suite modules

Greater modularity with respect to VISIR-1

facilitating both R&D and operational applications

conda virtual environment ("visirvenv") for portability

Run	4	MAIN_Tracce ×
	\uparrow	/Users/gmannarini/opt/anaconda3/envs/visir-venv-gmd2023/bin/python /Users/gmannar
r	\downarrow	Choose an option from the list below
	=	or type Q to quit.
	-1	
==		n. Tracce namelist
	÷	
~	Î	0. myTracce.yaml
		Type a number in [0, 0], or Q to quit: 0
		08:41:06 [INFO] Starting Tracce job: myTracce
		08:41:06 [INFO]** Plevel = 0.7 **
		08:41:06 [INFO] X Delay of 0 hours *
		08:41:06 [INFO] Reading edge weights.
		08:41:06 [INFO] Weight file read. Populating nx graph
		08:41:06 [INFO]Populating networkX graph
		08:41:06 [INFO] init nx nodes
		08:41:06 [INFO]: 100% 2165/2165 [00:01<00:00, 2041.62it/s]
		08:41:08 [INFO] assign edge weights to graph
		08:41:08 [INFO]: 100% 87346/87346 [00:00<00:00, 262179.08it/s]
		08:41:08 [INFO]Least distance route
		08:41:08 [INFO] Least distance metrics:
		08:41:08 [INFO] - navigation distance: 49.015 [nmi]
		08:41:08 [INFO] - navigation duration: 6.003 [hrs]
		08:41:09 [INFO]Least time route
		08:41:09 [INFO] Least time metrics:
		08:41:09 [INFO] - navigation distance: 49.989 [nmi] (+2.0%)
		08:41:09 [INFO] - navigation duration: 5.758 [hrs] (-4.1%)
		08:41:09 [INFO]* Completed run with delay of 0 hours *
		08:41:09 [INFO]** Completed run with Plevel = 0.7 **

Process finished with exit code 0

https://zenodo.org/records/8305527

Vessel performance curves: ferry

use of University of Zadar ship command-bridge/ engine-room coupled simulator:

- wind waves
- no leeway
- explored dependence of STW on
 - engine load
 - significant wave height
 - relative wave direction
- outcome interpolated through a neural network (multi-layer perceptron via the scikit-learn package)

Name	Symbol	Value	Units
Length overall	LOA	125	m
Draft middle	T	5.3	\mathbf{m}
Deadweight	DWT	4,050	\mathbf{t}
Main engine power	P_{main}	4,000	kW
Main engine rated speed	$n_{ m eng}$	750	rpm
Service speed	v_S	19	\mathbf{kn}

Mannarini et al 2021, https://doi.org/10.3390/jmse9020115

Vessel performance curves: sailboat

Symbol Value Units Name Length of hull L_{hull} 10.68 m Draft T2.2 m m^3 Displacement ∇ 5,773 m^2 Rudder wetted surface 1.42 _ m^2 3.31 Keel wetted surface _ m^2 Main sail area 38 m^2 Jib sail area 3.97 Spinnaker area 95 m^2 -

use of WinDesign Velocity Prediction Program:

- both hydrodynamic and aerodynamic effects
- wave added resistance via "Delft method" on DSYHS series
- same wind-wave relationship of the ferry used
- for upwind, main sail and jib assumed; otherwise: main sail and spinnaker

Claughton et al 1999, 2003

Shortest path problem: least-CO₂ algorithm

Dijkstra's algorithm generalized for dynamic edge weights

same complexity of static algorithm under FIFO hypothesis

built on single_source_Dijkstra function of the networkX library

use of data structures (heaps) to achieve ideal performance

key advancement for least-CO2 paths is retrieving an edge weight at a specific time step

Algorithm 2 GET_TIME_INDEX

Input: (paths, d, wT, Ntau, Dtau), respectively a dictionary of paths, node costs, type of edge weight, maximum number of timesteps, and time resolution

Output: t_idx , the time step at which the costs d are realised along the paths

1: if wT = "time" then

- 2: $t_idx \leftarrow min(Ntau, \lfloor d/Dtau \rfloor)$
- 3: else
- 4: # compute cTime cumulative time
- 5: $cTime \leftarrow 0$
- 6: $t_idx \leftarrow 0$
- 7: for edge in paths do
- 8: # evaluate edge delay at time step t_idx
- 9: $cTime \leftarrow cTime + edge.cost.at_time(t_idx, "time")$
- 10: $t_idx \leftarrow min(Ntau, \lfloor time/Dtau \rfloor)$
- 11: end for
- 12: end if

Algorithm 1 _DIJKSTRA_TDEP

- Input: (G, source, target, wT, Ntau, Dtau), respectively a networkX graph, source and target nodes, type of edge weight, maximum number of timesteps, and time resolution
 Output: (costs, paths), Two dictionaries keyed by node id: path costs from the source (e.g. cumulated CO₂), and corresponding optimal paths
- 1: $costs \leftarrow \{\}$
- 2: $seen \leftarrow \{source: 0\}$
- 3: $paths \leftarrow \{source : [source]\}$
- 4: # fringe is a min-priority queue of (cost, node) tuples
- 5: $fringe \leftarrow heap()$
- 6: fringe.push(0, source)
- 7: while $fringe \neq \emptyset$ do
- 8: $(d,v) \leftarrow fringe.pop()$
- 9: **if** $v \in costs$ **then**
- 10: # Already visited node
- 11: skip
- 12: end if
- 13: $costs[v] \leftarrow d$
- 14: if v = target and $\forall n \in G.neigh(target), n \in seen$ then
- 15: exit
- 16: end if
- $17: \quad t_idx \leftarrow get_time_index(paths[v], d, wT, Ntau, Dtau)$
- 18: # Iterate on v's forward-star
- 19: for (u, cost) in G.succ(v) do
- 20: # evaluate edge weight of wT type at time step t_idx
- 21: $c \leftarrow cost.at_time(t_idx, wT)$
- 22: $vu_cost \leftarrow costs[v] + c$
- 23: if $u \notin seen \text{ or } vu_cost < seen[u]$ then
- 24: $seen[u] \leftarrow vu_cost$
- 25: $fringe.push(vu_cost, u)$
- 26: $paths[u] \leftarrow paths[v] + [u]$
- 27: end if
- 28: end for
- 29: end while

Numerical performance: optimal paths

Three variants of the algorithm:

- least-distance
- least-time
- least-CO2

Assessment for:

- "Dijkstra": optimal sequence of graph nodes
- "total" : "Dijkstra" + marine and vessel dynamical information along the path

Outcome:

- linearity in the number of DOF
- 10x faster than VISIR-1
- least-distance routine still to be improved
- *RAM: 420B per DOF (5x more than VISIR-1, to be improved e.g via single precision)*

Validation

VISIR-2 routes and metrics were compared to

• *MIT model based on partial differential* equations (*LSE*, *)

benchmark	ν	$1/(\Delta x)$	$\Delta \tau$	L_0	T_0	ref_time	V2_time	rel_err
	-	$1/^{\circ}$	min	nmi	hr	T_0	T_0	%
LSE	2	94	30	126.5	7.809	1.762	1.773	0.617
LSE	3	134	30	126.5	7.809	1.766	1.753	-0.774
Techy	5	25	5	140.1	6.640	1.056	1.0563	0.028

- *semi-analytical results (cycloid, Techy)*
- openCPN (dynamic programming)

				wind					current	+ wind	
				Westl	oound	Eastb	ound	Westl	oound	Eastb	ound
version	ν	$1/\Delta x$	$\Delta \Theta$	T^*	dT^*	T^*	dT^*	T^*	dT^*	T^*	dT^*
		[1/deg]	[deg]	[hr]	[%]	[hr]	[%]	[hr]	[%]	[hr]	[%]
VISIR-2	4	12	14	34.6	0.2	57.7	4.0	57.7	4.0	32.3	0.2
	5	15	11	34.5	0.0	57.2	3.2	57.2	3.2	31.6	-1.9
	6	18	9	33.4	-3.4	56.4	1.8	56.4	1.8	31.0	-3.7
	7	21	8	32.9	-4.7	55.4	-0.1	55.4	-0.1	30.8	-4.3
	8	23	7	32.9	-4.7	56.2	1.3	56.2	1.3	30.9	-4.0
openCPN				34.6		55.4		55.4		32.2	
	-							\sim			

*) Mannarini et al 2019, <u>doi.org/10.1109/TTTS.2019.293561</u>2

(bug in VISIR-2 manuscript's Tab.6)

Visualization

dynamic environmental fields rendered via

- concentric shells originating at the departure location
- shape of shells defined by isochrones

saving of 1 dimension (can be used for departure date or engine load)

type	meaning	bulging
isometres	equal distance	at obstructions (shoals, islands, landmass in general)
isochrones	equal duration	against gradients of 1/STW
isopones	equal emissions	against gradients of emissions

Marine forecast data

dynamic environmental fields from data-assimilative models

type	product	Spatial resolution	Time resolution
Waves	MED- SEA_ANALYSISFORECA ST_WAV_006_017	(1/24)º 2.5 miles	1 hour
Currents	MEDSEA_ANALYSISFOR ECAST_PHY_006_013	(1/24)º 2.5 miles	1 hour
Wind	Set I - HRES	(1/10)º 6.0 miles	3 hours

Case study: ferry

Geography

- Mistral wind
- Liguro-Provençal current •

Numerical experiments

- *graph with* $(v, 1/\Delta x) = (4, 12/^{\circ})$ •
- daily departures, 3 engine loads, two • orientations, with/without currents (5840 runs)
- 4 min/run •

Outcome

- large diversions to avoid upwind sailing • and exploit currents
- *two-digit CO2 savings possible* •
- bundle of optimal solutions shifts N-E in • winter

One year of routes – video:

Case study: ferry

Statistics of **CO2** savings in 2022

	upwind						downwind			
	ITPTO - FRTLN						FRTLN - ITPTO			
	χ [%]					χ [%]				
	70	80	90	100	avg	70	80	90	100	avg
wa	3.1	2.3	1.5	1	2.0	0.9	0.6	0.4	0.3	0.7
wa-cu	3.7	2.8	1.9	1.3	2.5	1.2	0.9	0.6	0.5	0.9

- largest savings are upwind
- currents increase savings, especially downwind

- increase in wave height can lead to either substantial or minimal savings
- key is angle of attack of waves
- > 2% for beam or head seas
- >10% once a month, on average

- bi-exponential distribution
- larger decay length inversely proportional to engine load χ
- tail can extend to values ranging between 25 and 50%

Case study: sailboat

Geography

- Meltemi wind
- Asia minor current
- archipelagic domain

Numerical experiments

- graph with $(v, 1/\Delta x) = (5, 15/^{\circ})$
- daily departures, two orientations, with/without currents or leeway (2,920 runs)
- *7 min/run*

Outcome

- large diversions to avoid upwind sailing
- no clear seasonal trend for diversions

Case study: sailboat

Statistics of **time** savings in 2022

	dou	vnwinc	ł	upwind			
	agains	t curre	ent	with	curren	t	
	GRMC	ON - TRI	MRM	TRMR	M - GR	MON	
	$-dT^*$	$dT^* N_f^{(g)}$		$-dT^*$	$N_f^{(g)}$	$N_f^{(o)}$	
wi	3.0	263	1	3.0	300	1	
wi-le	3.0	274	4	3.1	315	4	
wi-cu	3.2	262	1	3.6	303	2	
wi-cu-le	-le 3.4 273 1		1	3.2	320	6	

- largest savings from currents when along sailing direction
- savings from leeway in downwind routes only thanks avoidance of speed loss along geodetic

- time saving increases with spatial diversion
- max saving for skipping upwind conditions along geodetic route

- currents results in a change in duration (slower/faster) up to about 5%
- *leeway consistently extends the duration of routes (its cross-course component reduces SOG)*

Operational service: GUTTA-VISIR

https://www.gutta-visir.eu

Operational service: GUTTA-VISIR (video tutorial)

https://www.youtube.com/watch?v=-qORsU-Jh_8&t=4s

Results

- ✓ VISIR-2: a modular, validated, documented, and portable model for ship weather routing
- ✓ for vessels with an angle-dependent performance curve, an improved level of accuracy in the velocity composition with sea currents
- ✓ variant of the Dijkstra's algorithm developed (minimise not just the CO2 emissions but any figure of merit depending on dynamic edge weights)
- \checkmark quasi-linear computational performance up to 1 billion DOF
- ✓ 10x faster than VISIR-1
- \checkmark Bi-exponential distribution of CO2 savings found for a ferry
- \checkmark sailboat routes: duration savings of about 3% , neglecting leeway would underestimate durations

Possible uses of VISIR-2

□ inter-comparison studies

□ creation of baseline numerical experiments

□ weather routing of vessels with Wind-ASsisted Propulsion (WASP)

□ narrowing the uncertainty about the potential of weather routing for CO2 emission reduction

a exploit generality of its algorithm for minimizing the consumption of costly zero-carbon fuel

□ generate a dataset of optimal routes for the training of AI systems for autonomous vessels

□ educational purposes (ship officials and maritime surveillance authorities, beginner sailors)

Outlook

Computer Science

- computational performance improvements for the least-distance procedure
- reduce the computer's memory allocation
- more use of object-oriented programming principles

Naval architecture

- vessel intact stability
- voluntary speed reduction
- considerations for slamming, green water, lateral acceleration and passenger comfort

Algorithms

- multi-objective optimisation techniques
- consideration of tacking time and motor-assistance for sailboats
- adaptive routing strategies (rerouting)

VISIR-2 resources

open access – open review manuscript

https://egusphere.copernicus.org/preprin ts/2023/egusphere-2023-2060/ https://doi.org/10.5194/egusphere-2023-2060 Preprint. Discussion started: 16 November 2023 © Author(s) 2023. CC BY 4.0 License.

VISIR-2: ship weather routing in Python

Gianandrea Mannarini¹, Mario Leonardo Salinas¹, Lorenzo Carelli¹, Nicola Petacco², and Josip Orović³

¹Ocean Predictions and Applications Division, CMCC, via Marco Biagi 5, 73100 Lecce, Italy
 ²DITEN, Università degli Studi di Genova, via Montallegro 1, 16145 Genova, Italy
 ³Maritime Department, University of Zadar, Ul. Mihovila Pavlinovića, 23000 Zadar, Croatia

 ${\small \textbf{Correspondence: } Gianandrea \ Mannarini \ (gianandrea.mannarini @cmcc.it)} \\$

open language - open source model code

https://zenodo.org/records/8305527

www.cmcc.it

