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Abstract

This paper deals with the problem of informative path planning for a UAV deployed for precision agriculture applications. First,
we observe that the “fear of missing out” data lead to uniform, conservative scanning policies over the whole agricultural field.
Consequently, employing a non-uniform scanning approach can mitigate the expenditure of time in areas with minimal or negligible
real value, while ensuring heightened precision in information-dense regions. Turning to the available informative path planning
methodologies, we discern that certain methods entail intensive computational requirements, while others necessitate training on an
ideal world simulator. To address the aforementioned issues, we propose an active sensing coverage path planning approach, named
OverFOMO, that regulates the speed of the UAV in accordance with both the relative quantity of the identified classes, i.e. crops
and weeds, and the confidence level of such detections. To identify these instances, a robust Deep Learning segmentation model is
deployed. The computational needs of the proposed algorithm are independent of the size of the agricultural field, rendering its
applicability on modern UAVs quite straightforward. The proposed algorithm was evaluated with a simu-realistic pipeline, combining
data from real UAV missions and the high-fidelity dynamics of AirSim simulator, showcasing its performance improvements over
the established state of affairs for this type of missions. An open-source implementation of the algorithm and the evaluation pipeline
is also available: https://github.com/emmarapt/OverFOMO.
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Figure 1: Graphical illustration of the core rationale behind the proposed active sensing approach. UAV is scanning a field with an on board system to estimate the
vegetation coverage via captured images, the objective is to on-line regulate its speed so as 1) to cover in detail the whole area and 2) in the minimum possible time.
Intuitively, one would like to speed up in areas with little to no information, i.e. vegetation coverage, (Snapshot 1) and slowdown in areas that have rich information to
be sure that it can capture everything in great detail (Snapshot 4). However, the amount of information is not the sole factor that should define such changes, as the
system that estimates this information could be occasionally inaccurate, mostly due to camera movement. In Snapshot 2, although probably there is not significant
information underneath, the UAV should slow down to increase its confidence and be sure about this estimation. On the other hand, Snapshot 3 illustrates a case
where, although the vegetation coverage is definitely high, the absolute certainty in such estimation allows for an extra increase in the UAV speed, allowing to save
precious flight time.

1. Introduction1

Unmanned Aerial Vehicles (UAVs) are probably the robotics2

platforms with the highest adoption rate from professionals in3

their fields. For example, UAVs are now vital assets for rescuers4

to quickly search large areas [1], construction engineers to moni-5

tor their project’s evolution [2], firefighters to quickly assess and6

identify the fire front [3], farmers and agronomist to effectively7

assess the crops health [4], etc. Such a diverse adoption drives8
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more people and effort to be devoted to UAVs related research9

and development, leading, in turn, to a further increase in the10

type of the supported applications. One of the critical factors11

that have affected this UAV success cycle is the recent advance-12

ments in deep learning and specifically in computer vision tasks13

[5]. Now, more than ever, we have at our disposal powerful14

tools that can process the UAV-related data both in an offline15

and onboard fashion. One of the most severe bottlenecks has16

to do with the available quantity and quality of data (diverse,17

clean, and annotated) to deploy the deep learning techniques.18

Therefore, it is of paramount importance to develop efficient19

methodologies for automatic meaningful data acquisition, using20

limited infrastructures.21

One of the UAV application areas that could benefit greatly22

from such methodologies lies within the precision agriculture23

domain. More precisely, in these applications the UAV collected24

data are used, in post-processing fashion, to construct homoge-25

neous orthomosaic [6], define the crops’ health [7], find crop26

line [8], detect and recognize harmful weeds [9], etc. The prob-27

lem to be investigated in this paper deals with the intelligent28

design of UAV scanning policy, so as to avoid spending time29

in areas with little to no real value while being extra precise30

in information-rich areas. In essence, we seek to answer the31

following question: Can the online received information “steer”32

the UAV towards a more efficient data collection policy? In33

literature, this problem is usually referred to as Informative Path34

Planning (IPP) [10, 11].35

1.1. Related Work36

Currently, the vast majority of the UAV agriculture coverage37

mission planners applies a variance of back-and-forth method-38

ology exploiting the Spanning-Tree Coverage (STC) algorithm39

[12], or boustrophedon approach [13]. Although this family40

of approaches is relatively simple, it has been proven quite ef-41

fective, rendering it the “go-to” approach [14]. The problem42

with such approaches is the implied assumption of a uniform43

distribution of the information across the field to be surveyed.44

In practice, this is rarely the case, forcing the UAV path to be45

either too pessimistic and eventually cover fewer square meters46

than it could or not pessimistic enough resulting in inadequate47

coverage in specific subparts of the field. Recognizing that, a48

fair amount of IPP works have been proposed ,which deploy49

a trajectory adjusting mechanism based on the online received50

data.51

Research-wise, a large number of UAV-based IPP applica-52

tions have been developed using Gaussian processes (GPs) as a53

natural way of encoding spatial correlations among the online re-54

ceived data and creating terrain maps of continuous scalar fields.55

Within the realm of IPP, GPs have gained considerable popularity56

as a Bayesian method for effectively modeling spatiotemporal57

phenomena and their inherent correlations [15], enabling the58

collection of data that takes into account both map structure and59

uncertainty. However, the primary challenge encountered when60

directly applying Gaussian Processes (GPs) [16, 17] is the signif-61

icant computational burden that arises due to the accumulation62

of dense imagery data over time.63

Ruckin et al. [10] introduced an IPP methodology utilizing64

Bayesian techniques as an active learning acquisition function65

to quantify the pixel-wise model uncertainty in semantic seg-66

mentation. Their approach aimed to maximize the improvement67

in the model’s performance by assimilating the most informa-68

tive terrain data with the highest uncertainty, linking thus the69

information gain from the active learning acquisition function70

to a planning objective. Vivaldini et al. [17] proposed an on-71

line UAV-based IPP system, wherein the acquisition function72

is designed to minimize the uncertainty associated with the dif-73

ferentiation between diseased trees and healthy trees as well74

as roads in a Gaussian map interpolation. The path planning75

module strategically selects sampling points to achieve compre-76

hensive environmental coverage, utilizing the Rapidly-exploring77

Random Trees (RTT) algorithm to optimize the gathering of cru-78

cial information. To minimize the distance traveled and ensure79

sufficient coverage of the surveyed area, an objective function80

is responsible for guiding the UAV toward reducing the average81

uncertainty of an image at a given position (x, y) on the cur-82

rent classification map. Although their experimental evaluation83

demonstrated favorable outcomes in comparison to static cover-84

age paths, the proposed methodology allocates the UAV’s battery85

life to repetitive back-and-forth movements, which undeniably86

leads to suboptimal efficiency in continuous terrain monitoring.87

Popovic et al. [18, 19] proposed an IPP framework for active88

classification, exploiting the spatial correlation encoded in a89

Gaussian Process model as a prior for Bayesian data fusion to90

facilitate expedited map updates. They proposed an adaptable91

path-planning approach that generates dynamically viable trajec-92

tories at varying altitudes in a continuous 3D space to achieve93

high-quality aerial imaging with constant-time measurements by94

computing the informative objective with the new map represen-95

tation. Their strategy, however, assumes swift map updates with96

minimal computational overhead, while simultaneously allocat-97

ing the UAV’s temporal resources to vertical maneuvers. While98

their simulated and real-life experiments yielded positive results99

when compared to static coverage paths, it is noteworthy that100

the suggested methodology has predominantly been appraised101

in limited-scale field trials where the temporal exigency of the102

UAV’s battery life is relatively inconsequential. This attribute103

assumes critical significance, particularly in vast spatial domains,104

as the allocation of the UAV’s battery life to the monitoring of105

new informational content becomes an overriding concern. In106

contradistinction, our study employs real-time sensor data and107

progressively generates adaptable speed-based trajectories at a108

continuous pace over time, wherein the computational demands109

for online recalculations remain decoupled from the temporal110

prerequisites for map revisions, as they solely rely on the present111

image acquisition.112

Stache et al. [20] proposed an IPP framework for precision113

agriculture, specifically targeting crop/weed segmentation, simi-114

lar to our work. The distinguishing characteristic of their method-115

ology lies in the incorporation of an accuracy model for deep116

learning-based architectures, enabling the quantification of the117

relationship between UAV altitude and semantic segmentation118

accuracy. They introduced a dynamic path planning approach119

based upon the boustrophedon method within a continuous 3D120
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spatial domain, generating evolving trajectories at various alti-121

tudes for monitoring and close inspection tasks. Nevertheless,122

their approach, which involves replanning at variable altitudes,123

prioritizes the acquisition of higher-resolution data over mini-124

mizing flight time for comprehensive monitoring of the entire125

agricultural field.126

One of the major factors that hinder the wider appliance of127

such methods is the computation needs during each replanning128

phase. Additionally, because several candidate paths along with129

their anticipated measurements should be simulated before each130

replanning step, their computational needs grow exponentially131

with respect to the field area to be covered. Previous studies132

have developed quite elaborate plans to mitigate this by pruning133

the action-space [19, 21]; however, this kind of relaxation could134

seriously degrade the quality of the achieved performance. Re-135

cent approaches attempt to mitigate this issue by treating the IPP136

as a standard Reinforcement Learning (RL) problem, learning137

policies that are able to compute inexpensive plans online [22].138

However, the performance of this approach is highly correlated139

to the matching between the real world and the simulative envi-140

ronment with realistic data that the RL agent will be trained on.141

Last but not least, the majority of the available approach does142

not incorporate a hard constraint with respect to the available143

battery of the UAV, rendering their realization particularly tricky.144

Aiming to overcome this “fear of missing out” important data,145

we propose OverFOMO, an active sensing coverage path plan-146

ning approach that adopts the STC algorithm as a blueprint for147

the UAV path while, depending on the online received informa-148

tion, it adjusts its focus on specific areas. Assuming an UAV149

covering an agricultural field, figure 1 illustrates the proposed150

active sensing approach using 4 key snapshots. Snapshots 1 and151

4 depict two representative examples that define the core mo-152

tivation behind the proposed system, revealing that the quality153

of received information is inversely proportional to the UAV’s154

speed, basically due to blurring effects. More specifically, the155

received image in snapshot 1 contains only a few crops and156

is relatively clear; therefore, the UAV can afford to speed up.157

Snapshot 4 presents a case where the received image is full of158

vegetation, but the speed of the UAV makes the segmentation159

process less confident. In that case (Snapshot 4), the UAV should160

slow down to make more accurate detections, especially in this161

high vegetation density subpart of the field. Snapshots 2 and162

3 present the ability of the proposed active sensing scheme to163

handle “tricky” cases. Snapshot 2 seems to contain low vegeta-164

tion coverage; however, the predicted segmentation is insecure,165

and therefore the UAV should speed down rapidly to verify that166

indeed there are no missing crops around that area. Moving to167

the other side of the spectrum, the received image in snapshot 3168

contains much vegetation; however, the on-board segmentation169

process is super confident about the identification and therefore,170

the speed can be safely increased without sacrificing loss of171

information.172

Although there have been proposed several alternatives to173

the usual practice with the back-and-forth movements [12, 13],174

that online calculate the next monitoring position (e.g., previ-175

ously mentioned IPP methods), their time efficiency is usually176

significantly reduced [23, 24], leaving the back-and-forth move-177

ments as the “go-to” option for this type of missions. Within178

this paper, instead of proposing another approach that calculates179

the best next monitoring position, we strategically combine ele-180

ments of the two approaches to achieve beyond state-of-the-art181

performance. More specifically, we keep the back-and-forth182

movements as the blueprint of the UAV path to also retain the183

performance guarantees that come with such an approach, and,184

at the same time, we attempt to regulate online the time spent185

in each sub-area based on the local information, similar to what186

a person would do. In a nutshell, the contributions of this work187

are:188

• Development of a novel active sensing coverage path plan-189

ning scheme that inherits the STC optimality and complete-190

ness guarantees. The computational needs for the online191

recalculation do not depend on the size of the operation192

field, making it suitable for various applications while re-193

specting operational constraints (e.g., remaining battery,194

etc.).195

• Development of a novel Deep-Learning-based module for196

adjusting the UAV speed, similar to what a human would do,197

taking into consideration both the quantity of the detected198

relevant instances (i.e. crops and weeds) and certainty199

(quality) about these detections. Note that the method could200

be extended to different operational scenarios, e.g. scan201

a sea area and regulate UAV speed according to marine-202

related classes (oil spill, algae bloom, etc.)203

• An open-source, modular, simurealistic pipeline that com-204

bines the high-fidelity dynamics of AirSim [25] with real205

RGB images sourced from publicly available UAV datasets.206

• Validation of the proposed approach, using the aforemen-207

tioned simurealistic pipeline, against the widely-used STC-208

based coverage methods, showcasing its performance. Con-209

trary to the prevailing state-of-the-art STC planners [8, 26],210

which entails a uniform scanning speed across the surveyed211

region, our method incorporates adaptive agent speed, re-212

sulting in reduced flight duration and enhanced image qual-213

ity.214

2. Problem formulation215

Following the standard UAV-based monitoring Precision Agri-216

culture (PA) process [27, 28, 29], we assume a UAV capable217

of acquiring images mounted with an RGB camera flying at218

fixed altitude. The studied problem is defined as controlling219

in-real-time the UAV mission parameters i.e speed, so as to ac-220

quire the best possible field representation, i.e the fidelity of field221

orthomosaic, within the minimum flight time.222

2.1. Decision Variables223

Assuming a fixed sampling rate, i.e. images per time, the IPP
setup is reduced to design the series of sensing waypoints that
will comprise the UAV trajectory:

τ = [w1,w2, . . . ,wn] , (1)
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where wi ∈ R2 denotes the image capturing position in the224

plane of the operational height. The time needed to complete a225

trajectory is denoted with C(τ) and it should be less or equal to226

the maximum operational flight time Tmax of the UAV.227

2.2. Field Representation Quality Assessment228

After the completion of the UAV mission, all {I1, I2, . . . , In}229

images, gathered from the sampling positions as defined in (1),230

are going to be stitched to generate the field’s orthomosaic. The231

quality of the extracted orthomosaic is related to the quality232

of the captured images {I1, I2, . . . , In} and proportional to the233

comprehensibility of the enclosed semantic content.234

A common approach to measure this attribute is segmenting235

relative instances over the generated orthomosaic, such as crops236

and weeds from soil [28]. The discrimination capability of a237

well-trained and robust segmentation model is related to the238

quality of the visual input. As in the majority of semantic seg-239

mentation problems, the model efficiency gets assessed by using240

the Intersection over Union (IoU) [30].241

2.3. Informative Path Planning Problem242

Having defined the estimation approach for the field’s repre-243

sentation quality, the general IPP problem, under the context244

of precision agriculture, can be translated to the following opti-245

mization problem:246

maximize
τ

IoUcrop(τ) + IoUweed(τ)
αC(τ)

subject to C(τ) − Tmax ≤ 0
(2)

where α is used to weight C(τ) in terms of IoUcrop(τ) +247

IoUweed(τ), depending on the specifics of each application.248

For example, a usual configuration is targeting for the best pos-249

sible representation (terms: IoUcrop(τ) + IoUweed(τ)) within a250

given time budget Tmax. For this configuration, α is chosen to251

be appropriate small to render the influence of the denominator252

technically negligible (of course, the constraint always holds).253

A direct difficulty in solving (2) lies within the immense con-254

tinuous domain of (1). Actually, the number of different possible255

combinations of (1) increases exponentially with respect to the256

size of the field [31], which determines the number n of image257

capturing positions. However, the most severe obstacle has to258

do with the fact that both the explicit forms of IoUcrop(·) and259

IoUweed(·) are not available prior to the UAV mission, since260

ground-truth information is required. As a consequence, any261

approach that relies on evaluating different combinations of (1)262

on (2) cannot be realized within this context. On the contrary,263

the solution should be seeked in a method capable to assess264

during the ongoing mission the quality of the captured images265

and regulate the UAV speed accordingly, in order to extract the266

best possible field representation in the minimum flight time.267

Toward this direction, one of our main objectives is to deploy an268

approach that tackles (2) and its limitations, in a indirect manner.269

3. Adaptive Coverage Path Planning270

This section describes the details of OverFOMO, the proposed271

active sensing coverage path-planning algorithm, designed for272

previously defined optimization problem (2).273

3.1. Problem Translation using Coverage Path Planning274

First, let us define the Coverage Path Planning (CPP) problem
[14] that is defined by the geometry of the agricultural field
and the UAV characteristics. In short, Coverage Path Planning
problem deals with the problem of designing a robot path that
covers an area of interest in the minimum possible time. One of
the most popular CPP approaches is Spanning-Tree Coverage
(STC) [12] algorithm. STC first discretizes the operational area
and then generates a minimum spanning-tree that will be used
as a guide for the robot path. Overall, STC algorithm is a
polynomial time algorithm, with respect to the field size, that
guarantees complete grid coverage in the minimum possible
time [12]. Hence, STC algorithm can be realized as a kernel
for optimal coverage paths and generate a sequence of sensing
waypoints (1), as follows:

x = STC(P, o, h, dt, s) (3)

where P denotes the polygon that contains the agricultural field,275

o is the overlap between two images in adjacent flight path276

lines [32], h is the UAV flight altitude, dt denotes the time-lapse277

interval for the capture of each image and s is the UAV speed.278

Due to the fact that we are dealing with the IPP for a specific
field, P is considered known and constant. o and h are defined
according to the specifics of each agricultural mission, e.g., plant
growth rate, season, required resolution of the orthomosaic, etc.
The remaining two parameters are the ones that dominate the
density of the captured images (Ii from wi position) along the
STC-based path. The list of STC parameters can be further
reduced, by setting the dt to its smallest feasible value for the
onboard sensor that does not compromise the quality of the
received images. After these realizations, STC-based trajectory
for a given agricultural field and a given type of UAV can be
defined as:

x = STC(s) (4)

Hence, utilizing (4), we now have a UAV path that completely279

covers the agricultural field at the minimum possible time for a280

given s. Inevitably, the definition of s gives rise to a trade-off. A281

small s value would provide premier quality on the captured im-282

ages and, therefore, in our ability to distinguish accurately crops283

and weeds, however, it would result in covering only a small284

fraction of the agricultural field, due to flight time limitations.285

On the other hand, an increased s value could mitigate this by286

covering larger areas, in the expense of our discrimination accu-287

racy. The usual practice is to apply a constant s at the beginning288

of the mission and perform the whole mission with such speed289

[8, 27, 26, 28]. However, during the operation, the UAV receives290

images that characterize the quantity of useful information that291

lies under its current path.292

Within this paper, we want to exploit this online-received293

information and adjust the speed of the UAV during its flight,294
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making the data acquisition process more efficient. Thus, assum-295

ing that ti − ti−1 denotes a fixed time-interval needed for both296

the information assessment and the change in the UAV speed,297

we want to guide the image capturing process by the following298

adaptive path-planning scheme:299

x(t) =


STC(s1), t0 < t ≤ t1
STC(s2), t1 < t ≤ t2

...

STC(sn), tn−1 < t ≤ C(τ)

(5)

Hence, by plugging the time-varying x(t) into τ, the opti-300

mization problem of (2) now is reduced to online adjust s for301

every time-interval of (5). In the upcoming subsections, we302

discuss the details of speed adjustment, i.e. calculating online303

{s1, s2, . . . , sn} of (5), based on the online-received information304

gain at each time-interval.305

3.2. Coverage Ratio & Confidence Level306

Before providing the exact methodology that online adjusts307

the speed of the UAV, let us first define two key metrics that308

assess the information gain with respect to the current image309

frame that corresponds to the i-th time-interval in (5).310

The main rationale is the fact that the information enclosed311

in the captured Ii image is correlated to the amount of depicted312

crops and weeds. Thus, a deep-learning modelM capable of se-313

mantically segmenting images to identify three classes, namely314

crop, weed and background, is deployed. M is fed with the315

acquired w × l image Ii and produces a confidence score map316

S i ∈ Rw×l×3 that contains the probability of each pixel belong-317

ing in each class, i.e. S i = M(Ii). As a direct outcome, the318

prediction mask is derived using S class
i = argmax (S i), assigning319

a class id for every pixel. While S prob
i = max(S i) derives the320

overall confidence map, containing the probability of each pixel321

belonging to the assigned class. For improved clarity, a visual322

representation of the aforementioned terms is provided in figure323

2.324

The first metric is oriented to quantify the amount of the
captured crops and weeds. To accomplish that, we utilize the
coverage ratio (cr), inspired by [20] and defined as follows:

cr(S class
i ) =

Ncrop + Nweed

Ncrop + Nweed + Nbackground (6)

where Ncrop, Nweed and Nbackground denotes the number of pixels325

from S class
i that have been classified in each class correspond-326

ingly. Note that the denominator resembles the total number327

of pixels in the image frame. Conceptually, cr : R2 → [0, 1]328

estimates the plants and weeds coverage on the target area by329

applying (6) rule in a pixel-wise segmented image of Ii. Low330

values of cr(S class
i ) imply that the vegetation enclosed in the cap-331

tured image is limited and thus, the information gain of this area332

is low. Correspondingly, high values of cr are related to areas of333

lush vegetation, where the information gain is considered high.334

Having this in mind, a simple formulation for the speed in335

(5) would be a linear mapping between cr and the speed, i.e.336

as the cr is increased the speed gets decreased and vice versa.337

However, such a formulation can have several pitfalls since the338

detected weed/crop instances’ accuracy is not considered.339

Towards this direction, the confidence of the acquired predic-
tions is included as a second metric for assessing the information
gain. More specifically, for every processed image Ii the confi-
dence level (cl) is calculated as follows:

cl(S prob
i , S class

i ) =
∑

j∈C p j +
∑

j∈W p j

Ncrop + Nweed (7)

where C andW denote the set of pixels that have been annotated340

as crop and weed, respectively, and p j denotes the corresponding341

confidence score for j-th pixel of S prob
i .342

The main idea here is that when the confidence level cl :343

R2 → [0, 1] of the acquired prediction is high enough, then the344

UAV speed can be increased to reduce the flight time since the345

captured image quality is adequate to make robust predictions.346

Respectively, a lower confidence level may imply that the quality347

of the processed image is low, and thus, the UAV should decrease348

its speed to capture a clearer view of the scene. With respect to349

the information gain, the confidence level can be considered as350

an inverse metric of the observed entropy. Higher values imply351

that the scene is well-known to the prediction modelM and it352

can be clearly conceived; thus, the UAV can proceed faster since353

the acquired information is limited in this static environment. On354

the contrary, lower confidence level values imply an unknown355

environment, conceived with ambiguity; thus, speed should be356

decreased to increase the observation time.357

3.3. Speed Adjustment358

Having calculated cr (6) and cl (7) for the currently received359

i-th image, we can now calculate the objective speed adjustment.360

To perform this update we need a mapping function G(·) : R2 →361

[−1, 1] that translates both cr and cl into speed changes with362

respect to the maximum allowed discrepancy q around UAV’s363

nominal speed s̄, i.e.364

si = clip (u, s̄ − q, s̄ + q) ,
u = si−1 +G(cr, c f )q, with s0 = s̄

(8)

where clip function constrains the updated speed between365

safe/acceptable bounds. Hence, to derive the needed behavior in366

terms of speed change, G(·) is defined as follows:367

G(cr, c f ) = ω1(cl)g1(cr) + ω2(cl)g2(cl) (9)

where g1(·) and g2(·) denote the translation functions from cr368

and cl, respectively, to a relative speed change. Additionally,369

for each term a regulation function is defined, namely ω1(·) and370

ω2(·), to prioritize one term over the other. g1(·) and g2(·) have371

chosen to be linear piecewise functions, whileω1(·) andω2(·) are372

of type of parabola with respect to their parameters. For ease of373

understanding, figure 3 graphically illustrates the form of these374

functions. Additional information regarding the calibration of375

g(·) and w(·) functions is provided in Appendix B.376

Note that the speed adjustment si in position wi is with respect377

to the previous speed “state” si−1, instead of the nominal speed378
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Figure 2: Demonstration example of the semantic segmentation model output which is employed to calculate cr and cl metrics. Captured image Ii is fed to the
model and produces the 3-channel array S i (illustrated per channel and highlighted with pale-green color), where each channel contains the probability of the image
pixels belonging to the corresponding class. S class

i = argmax (S i) leads to the segmented outcome, where each pixel is assigned to one of the 3 classes, enabling the
estimation of cr metric. The overall confidence map, providing the probability of each pixel belonging to the assigned class, is acquired via S prob

i = max(S i) and
enables the calculation of cl metric.

Figure 3: Graphical illustration of the employed functions in (9). Translation
functions (left) g1(·) and g2(·) aim to map the calculated cr and cl, respectively,
to a relative speed change. Weighting functions (right) ω1(·) and ω2(·) aim to
regularize the contribution of g1(·) and g2(·) to the final decision.

s̄. The specific choice enables more smooth transitions of the379

vehicle speed, while the adapting process can be considered to380

some extent stateful. Furthermore, contrary to the established381

approaches, the presented method does not adjust the overlap382

among consecutively captured images to a fixed value [29]. To383

this end, tuning parameter q is enabled to regulate the range384

of the speed adjustments and, thus, maintain the image overlap385

within acceptable (application-wise) thresholds [33]. Towards386

this direction, the proposed method aims to control the qual-387

ity of the captured image data by adjusting the vehicle speed388

(with respect to the semantic content of the scene) and, thus,389

regulating the image distortion due to motion blurring. Both q390

and s̄ are user-defined parameters that can express both the user391

requirement and the UAV hardware characteristics.392

The main rationale of weighting functions ω1(·) and ω2(·)393

in (9) is to adjust the contribution of each term based on the394

confidence of the prediction. For instance, assuming that cl395

value is 0, then the estimated value of cr and, by extension the396

value of g1(cr) is irrelevant since it is based on inaccurate pre-397

dictions. Similarly, in the case of cl = 0.5 the prediction can398

be considered to some extent as ambiguous and the formulation399

favors coverage ratio measurements in order to regulate speed1.400

Aiming to provide further insights regarding the system’s behav-401

ior under different scenarios, in figure 4 is demonstrated a 3D402

representation of G(·) function for its whole domain.403

1Please note that, although the information gain can be described quite
effectively by these functions, their forms can be further fine-tuned to achieve
better, problem-oriented performance.

Figure 4: 3D graph of the designed G(·) function to adapt UAV speed according
to the information gain.

3.4. Proposed Method as a Whole404

Having analyzed the key points in the previous sections, the405

proposed adaptive path planning can be summarized as “estimate406

the information gain captured in image Ii and adapt the vehicle407

speed according to it”. Since there is no ground truth, we employ408

the two metrics, coverage ratio (cr) and confidence level (cl),409

in order to tackle its absence and concurrently quantify the410

information enclosed in each image. Coverage ratio estimates411

the amount of crops and weeds in the scene and aims to answer412

the question “how much significant is this area?”. Confidence413

level aims to quantify the validity of the model estimation and414

responds to the question “how much accurate though is the415

estimation regarding the significance of this specific area?”.416

At each step, the proposed method answers these two ques-417

tions and regulates the UAV speed accordingly through function418

G(·). In figure 5 we present a comprehensive set of operational419

scenarios, providing insights regarding the expected behavior420

of an adaptive system that self-regulates its speed, which was421

our main motivation, along with the key-values of the Over-422

FOMO that lead to the corresponding adjustment. The first two423

rows of the figure refer to cases where the model can provide a424

concrete estimation regarding the amount of existing crops or425

weeds and the UAV speed is regulated according to the quantity426
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Figure 5: Illustration of different operational cases of the adaptive coverage path planning. Each row presents the analysis conducted for the corresponding captured
image. For each case, the corresponding cr and cl metrics are mentioned (%). Vertical red line in the figures of the fourth column corresponds to the cl metric, based
on which the weighting values are calculated and employed in (9) to calculate the corresponding G value. Last column provides a short description of each case
among with the expected behavior of an adaptive system and the corresponding G value of our method, which is employed in (8) to update the UAV speed accordingly.

of the detected instances. Rows 3 and 4 refer to cases where427

the quality of captured data deteriorated due to motion blurring.428

One can notice the impact of this effect on the calculated cl429

metric. Despite the amount of estimated crops and weeds, the430

vehicle speed is decreased since the quality of captured data431

implies ambiguous estimations. The last row resembles the case432

where the estimator is overly confident implying that the data433

quality is adequate and therefore a partial deterioration, by in-434

creasing the UAV speed, can be tolerated to save flight time.435

As demonstrated, the proposed adaptive scheme can confront436

variable cases. In this direction, the proposed adaptive scheme437

considers the quantity (cr) and the quality (cl) of the information438

gained per image, aiming to operate in a sweet spot where the439

quality of captured data is maximized while the flight time is440

minimized.441

In a nutshell, Algorithm 1 outlines the proposed adaptive cov-442

erage path planning as a whole. Putting everything together,443

the proposed approach alleviates both the combinatory nature444

and the unknown factor by a careful combination of two in-445

gredients: i) the STC algorithm that is capable of computing446

offline optimal coverage paths with O(n) complexity, and ii) an447

online speed adjustment scheme that takes into consideration448

the current information gain.449

Algorithm 1 Adaptive Coverage Path Planning

Require: P, o, h, dt, s̄, q,M
Ensure: τ

Offline phase:
1: Define a STC-based trajectory parametric over s (5)

Online phase:
2: for each viewpoint wi at ti do
3: Acquire frame Ii

4: S i ←M(Ii) and S class
i ← argmax (S i)

5: Calculate cr and cl according to (6) and (7)
6: G(cr, c f ) = ω1(cr)g1(cr) + ω2(cl)g2(cl)
7: si ← apply (8)
8: end for
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4. Experimental Evaluation450

In this section, our active sensing planning approach is evalu-451

ated via a simu-realistic pipeline by incorporating a high-fidelity452

simulator and a large-scale dataset for precision agriculture ap-453

plications.454

4.1. Dataset455

The exploited dataset was WeedMap [27], which contains456

multi-spectral images from sugar beet crops and weeds interfer-457

ing in the crop lines. Data were collected during two campaigns,458

the first led to 3 orthomosaic maps while the second to 5. For459

every map the depicted plants were pixel-wise annotated, lead-460

ing to 3 different classes, namely crop, weed and background.461

Every orthomosaic is provided also in a tiled version, where the462

original image is divided into patches of 480×360 pixels. In our463

case, only RGB data from the second campaign were utilized.464

4.2. Detection Model465

Regarding the detection modelM that semantically segments466

crop and weed instances, a deep-learning method was utilized. In467

specific, the well-known UNet [34] architecture enhanced with468

EfficienNetB1 [35] network as backbone was employed. This469

design was selected based on the balanced trade-off amongst470

inference time and model accuracy, taking into consideration471

that our aim was to deploy a real-time operating system. The de-472

ployed model was trained on WeedMap for 500 epochs. A set of473

image processing techniques was utilized for data augmentation,474

in specific, image rotation, resize, vertical/horizontal flip and475

brightness change. At last, 255 × 255 patches were randomly476

cropped from the tiled input images. Training was conducted477

with Adam optimizer with learning rate and batch size equal to478

10−3 and 16, respectively.479

4.3. Setup480

To evaluate the proposed method in the context of the afore-481

mentioned dataset and assess its performance as a real-time482

interaction system, a hybrid simu-realistic framework was de-483

signed. The main goal here is to simulate real-world missions,484

with real-time interactions, in order to generate the required set485

of viewpoints wi, collect the corresponding images Ii and pro-486

duce the most optimal field representation i.e a 2D orthomosaic,487

within the minimum operational time.488

To accurately simulate the UAV’s physics and dynamics and489

emulate its motion control, AirSim [25], an open-source high-490

fidelity simulator for autonomous vehicles, was utilized. AirSim491

is capable of forwarding the world dynamics, including a wide492

range of weather dynamics, at a high frequency allowing for real-493

time, hardware-in-the-loop ready, realistic simulations. All the494

experiments were carried out with a single drone within AirSim495

platform. The geo-referenced orthomosaic images of WeedMap496

fields, allow the direct mapping of the simulated UAV location497

in world coordinates to the pixel-level coordinates of the corre-498

sponding field’s orthophoto. Thus, the exploited testing fields499

can be considered as natural parts of the environment and the500

UAV’s camera input can be simulated by cropping image patches501

from the related orthophoto, with respect to the vehicle position.502

In Table 1 are provided further details regarding the parameters503

related to the UAV flight and the simulated camera sensor. The504

selection was based on the corresponding information provided505

in WeedMap dataset.506

Table 1: Path planning and sensor specifications.

Type Description Specification Unit

UAV System
Flight altitude 10 meters

fbest 1 frame/sec

Visual Sensor
Overlap 70 %

Gimbal pitch -90 degrees
Image size (width × height) 640 × 480 pixels

In this light, for each agricultural field in the deployed dataset,507

QGIS platform2 was used to specify the filled-in polygon P of508

(3) and an STC-based coverage path was designed and integrated509

into AirSim. During the simulated flight with initial speed s̄, a510

set of processing operations are applied in a recursive manner in511

order to adapt the UAV speed in real-time. The core loop of this512

process is illustrated in figure 6. In specific, with time interval513

fbest, the coordinates of drone viewpoint wi are extracted from514

AirSim environment. The acquired point is mapped to the cor-515

responding geo-referenced orthomosaic image of the examined516

field and a 640 × 480 image is cropped according to the AirSim-517

emulated UAV trajectory. Furthermore, motion blur is applied to518

the cropped image according to the current UAV speed, aiming519

to create realistic captured data. In specific, we followed the520

formulation presented in [36]. Assuming there is no additive521

noise, the blurred image Bi is simply acquired by the convolution522

of a blur kernel K with the captured image Ii, i.e Bi = K ∗ Ii.523

We know that the UAV is moving in the same direction as the524

vertical axis of the captured images. Thus, the blur kernel K525

can be easily emulated with a vertical kernel (ones in the middle526

column and zeros everywhere else). In order to simulate the527

blurring effect impact according to vehicle speed, we increased528

the kernel size, e.g. 3 × 3, 5 × 5, etc, respectively. Next, the529

acquired image Ii is forwarded to the proposed adaptive scheme,530

that assess the information gain enclosed in it and adapts the531

vehicle speed based on the proposed translation function G(·).532

The update information is fed back to the simu-realistic environ-533

ment, regulating the UAV speed on-the-fly. The aforementioned534

process is repeated at the next time interval, for viewpoint wi+1.535

4.4. Baseline536

To evaluate the efficiency of the proposed speed adjustment537

methodology, we chose to compare it against the “go-to” STC-538

based coverage path-planning approach for precision agriculture539

applications [14, 8, 26], where the UAV is moving with constant540

speed. Note that the flight path in both scenarios is identical,541

while the sampling interval remains the same in all cases. How-542

ever, variations in speed lead to collecting data from different543

viewpoints wi. Moreover, according to the vehicle speed during544

2https://qgis.org/en/site/

8



Figure 6: Graphical illustration demonstrating the core loop of the designed experimental setup. A simu-realistic flight environment, based on AirSim, is deployed to
produce, in real time, UAV viewpoint wi. Image Ii is cropped at wi position from the field orthophoto and blurred according to current UAV speed. Ii is processed by
the proposed adaptive scheme to estimate the information gain of the scene and adjust UAV speed to si, based on the designed G(·) translation function.

the capturing time, acquired images differ in terms of image qual-545

ity due to motion blurring. We refer to the deployed non-adaptive546

method as STC-PA, while the proposed method is mentioned as547

OverFOMO. Through this comparison, we aim to answer the548

following question: instead of covering the field with constant549

speed s̄, can the speed adjustments of the proposed method lead550

to more meaningful data in less or comparative time?551

4.5. Performance Analysis552

The proposed method was extensively evaluated under dif-553

ferent flight scenarios and agricultural environments. More554

specifically, for each one of the 5 crop areas, we deployed the555

adaptive planning process through the aforementioned simureal-556

istic pipeline, for different selections of nominal speed, in m/s,557

namely s̄ ∈ {3, 4, 5, 6}. q parameter of (8) was set to 1 implying558

that UAV can increase or decrease its nominal speed by 1 m/s559

at maximum. The evaluation process is based on recreating the560

orthomosaic map from the set of images I collected during the561

OverFOMO mission. Next, the stitched outcome is semantically562

segmented, utilizing the aforementioned trained model, and IoU563

is calculated for crop and weed class. Our aim is to quantify564

the quality of the reconstructed map in terms of the enclosed565

semantic content and thus, provide a metric of the scanning566

efficiency of the planned mission.567

The aforementioned evaluation process is applied for each568

one of the examined fields, computing the execution time and569

the IoU for crop and weed class. In order to conduct credible570

validations, in each case the testing field is excluded from the571

training process of the detection model. The same approach is572

followed for both the STC-PA and the OverFOMO approach.573

The two methods are compared in figure 7, where is presented574

the average IoU over the 5 examined fields and its variance575

for crop and weed class correspondingly, for different nominal576

speeds. In total, 20 flight scenarios (4 nominal speeds × 5577

fields) were executed for each of the two evaluated approaches.578

Furthermore, for the STC-PA method we examine the case of579

s̄ = 2 m/s which is considered as the ideal scenario, where580

the UAV is moving with the minimum speed and thus, data are581

collected totally undistorted (no motion blur is applied).582

For both classes, the proposed method outperforms STC-PA.583

The efficiency of adaptive planning, in terms of IoU, is clear in584

case of crop detection, while in case of weed the maximum IoU585

of the proposed method is constantly higher than the compara-586

tive for the whole set of examined nominal speeds. In terms of587

execution time, for lower values of nominal speed, the adaptive588

method is to some extent slower yet, in favor of higher accuracy.589

As the nominal speed increases the execution time gap between590

the two methods is decreased, while for s̄ = 6 m/s, the proposed591

method outperforms the STC-PA in terms of flight time also. All592

in all, results imply that OverFOMO scans efficiently an exam-593

ined area, collecting high quality data from the areas containing594

rich semantic content while passing by areas of lower interest to595

reduce the flight time.596

4.6. Qualitative Analysis597

In order to validate further the efficiency of the developed598

method we evaluate the generated orthomosaic maps in terms599

of image quality. Towards this direction, simulated missions600

deployed with the STC-PA and the OverFOMO method are con-601

ducted for the field “002” of the Weedmap dataset, with nominal602

speed s̄ = 3 m/s. Next, we estimate the image similarity, in603

terms of Structural Similarity Index (SSIM) [37], among the604

original orthomosaic (provided in the dataset) and the one built605

via data collected from the OverFOMO mission. The same pro-606

cess is followed for the STC-PA method. In figure 8 qualitative607

results for the two comparative approaches are presented. More608

specifically, in figure 8(a) the original orthomasaic image is pre-609

sented, while in figure 8(b) is illustrated the annotated ground610

truth, aiming to provided further insights regarding the semantic611

content of the examined scene. In figure 8(c) & (d) the estimated612

SSIM index is demonstrated for the cases of STC-PA and Over-613

FOMO, respectively. For visualization purposes, the similarity614

of the generated orthomosaics to the original one is illustrated in615

red-blue colorscale. Blue areas indicate higher similarity, while616

yellow and red regions indicate deviations between the generated617

and the original image. For a more comprehensive comparison,618

the histogram of the calculated SSIM values is provided for each619

case in figure 8(e).620

Results imply that the proposed method leads to a more accu-621

rate orthomosaic map compared to the current “go-to” approach,622

especially for areas of high information gain, where the mea-623

sured similarity is higher (note dark blue regions in figure 8(d)).624

The fidelity of the generated orthomosaic indicates that the col-625

lected data of the adaptive mission can enclose more precisely626
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Figure 7: Averaged IoU for the testing fields of Weedmap dataset. Solid line
refers to mean value and shaded region to variance. Black star refers to the ideal
scenario where STC-PA method is applied with nominal speed s̄ = 2 m/s and
can be considered as the convergence point of the two methods. For both crop
(top) and weed (bottom) classes, the proposed adaptive method leads to higher
performance, implying more accurate scanning of the examined area.

the semantic content of the scene. This is also supported by the627

provided histograms in figure 8(e), where the proposed method628

reports higher similarity values for the majority of cases. Taking629

into consideration the overall patterns of SSIM index values,630

with respect to the information of figure 8(b), one can derive631

that the proposed method regulates the vehicle speed according632

to the semantic content of the scanned field. In areas where the633

information gain is high, i.e. lush vegetation, UAV decelerates to634

acquire high quality - less blurry - data, while in areas of lower635

interest it accelerates since the information gain is considered636

minimum. On the contrary, the STC-PA method of constant637

speed scanning presents, to some extent, constant image quality638

levels, distributed across the whole field, without taking into639

consideration the semantic content of the scene.640

5. Conclusions641

In this work an UAV active sensing coverage path planning642

scheme for precision agriculture tasks has been presented. Our643

method is capable of adjusting the UAV speed based on the per-644

ceived visual information (i.e. observed crops and weeds), while645

the computational needs for the online processing are uncoupled646

to the operation field’s size. A core-element of the proposed647

approach is a robust deep learning-based module, allowing to648

regulate the vehicle speed according to the quantity of the de-649

tected instances and the quality (confidence) of such detections.650

The proposed method has been extensively validated through651

a designed simu-realistic environment, conducting several mis-652

sions with different nominal speed for 5 different agricultural653

fields of WeedMap dataset. Compared to the well-known lawn-654

mover coverage path planning, our method manages to capture655

higher quality data in comparable execution times. In the fu-656

ture we aim to deploy our method in real-world scenarios by657

employing UAVs with on-board capabilities.658
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Appendix A. Image Quality vs Method Performance667

In this appendix are presented further details regarding how668

the proposed method’s performance is affected from the effi-669

ciency of the employedMmodel, the deduction of image quality670

due to speed increment and the possible misclassifications.671

More specifically, the clarity of the on-the-fly captured images672

affects the segmentation confidence during the online phase of673

the adaptive system. Through the extensive evaluation of the de-674

ployed deep-learning model, we noticed that motion blur mostly675

affects the clearness of the depicted weeds and crops, increas-676

ing the ambiguity of their exact shape and size, and under the677

perspective of Bayesian modeling [38], increasing the aleatoric678

uncertainty. Epistemic uncertainty is also inherent in the predic-679

tion system, and it is reflected in the deviation of the captured680

image from the distribution of the training data. The offline vali-681

dation of the employed semantic segmentation model, implied682

that it can generalize well in previously unseen data and thus,683

the effect of the epistemic uncertainty is not crucial. However,684

training data refer to an ideal scenario where the utilized images685

contain no distortion. Thus, during the online phase, aleatoric686

uncertainty expressed through the blurring effect significantly687

affects the efficiency of the on-the-fly prediction.688

The above analysis comprises the challenging nature of the689

problem that we aim to tackle. Towards this direction, we use690

this uncertainty to our advantage in order to regulate the UAV691

speed according to it. By considering the confidence score of the692

segmented outcome, through the cl metric, we aim to estimate693

the information gain at each sensing waypoint in respect to the694

confidence of this estimation.695

In figure A.9 we present the proposed method performance696

for an input image which is gradually deteriorated via motion697

blurring. One can notice that although the cr metric is slightly698

decreased, the cl value is significantly dropped, implying uncer-699

tainty in the acquired estimations and deterioration of the image700
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Figure 8: Qualitative results for the STC-PA and the proposed OverFOMO approach. In (a) is presented the original orthomosaic image, while in (b) the semantic
content of the examined scene. In (c) and (d) is illustrated the image similarity, in terms of SSIM, among the original (b) and the generated orthomosaic via coverage
missions planned following the STC-PA and the OverFOMO method, respectively. Both missions are conducted with same nominal speed. Red colors resemble lower
values of SSIM, while higher values of SSIM are mapped with blue colors.In (e) is presented the corresponding histogram of the calculated SSIM index for both cases.

Figure A.9: Illustration of the impact of motion blur on the proposed method performance. In each row, the motion blurring applied to the input image is increased,
leading to lower values of cl (%) metric, although cr (%) remains at similar levels. Last column presents in the 3D space the calculated G value (red outline) among
with the corresponding values of the previous blurring cases. One can note the gradual decrease of G value, implying the reduction of vehicle speed. All in all, the
proposed OverFOMO approach takes into consideration the confidence of the segmentation model and adjusts the UAV speed accordingly to acquire more accurate
estimations that meet the application-oriented requirements.

quality due to the enhancement of the blurring effect. Please701

note the calculated G values in all cases, which are gradually de-702

creased, implying the adjustment of speed to lower values. The703

presented illustration demonstrates the ability of the proposed704

method to adapt the vehicle speed in order to avoid missing vital705

information and cope with possible misclassifications due to low706

image quality.707

11



Appendix B. Calibration of Translation and Weighting708

Functions709

In order to obtain the g(·) and w(·) functions of figure 3 we710

followed a reverse engineering approach to make the adaptive711

system meet the expected behavior of the characteristic cases712

presented in figure 5. According to the presented formulation713

for G(·), we want the translation functions g1(·), g2(·) to map714

the input to values from -1 to 1. Similarly, the weight functions715

w1(·),w2(·) should range from 0 to 1 and sum to 1. Based on that,716

we focused on a family of linear-wise and parabola functions717

for g(·) and w(·), respectively. Moreover, during the training718

and evaluation of theM model that segments the images, we719

acquired valuable insights. First, we know that since it is a720

3 class problem, the probability p j cannot be lower than 0.33.721

Thus, we do not expect values lower than that for cl metric.722

Moreover, by examining sample images of the evaluation set723

we concluded that adequately accurate detections are acquired724

when cl is around 0.75, thus we considered this as a break-725

point. Similarly, we noticed that at the current altitude the peak726

coverage ratio is around 0.4 while cr values below 0.15 refer to727

areas of low vegetation. Regarding the w(·) parabola functions,728

they were designed to control the contribution of each metric and729

express the system’s expected behavior. We want to ignore the730

estimated coverage ratio in case that this estimation is ambiguous731

or overly strong. In case of moderate belief, we want the system732

to be guided accordingly, taking also into consideration the cr733

value. Please note that the presented functions are not the unique734

solution, even for the specific IPP problem. One can select735

different functions, or tune their key-points according to the736

use-case and in respect to how much tolerance can be enclosed737

to the information quality - speed trade off.738
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