
Chapter 43

LFG and Tree-Adjoining Grammar
Jamie Y. Findlay
University of Oslo

This chapter gives an introduction to Tree-Adjoining Grammar (TAG) and draws
some comparisons with Lexical Functional Grammar (LFG). It is primarily aimed
at those familiar with LFG who are looking to learn about TAG and see where the
two formalisms differ/overlap, but the comparisons will also be of interest to those
coming from a TAG background. After introducing TAG, the chapter considers
questions of generative capacity, lexicalisation, and the factoring of redundancies
from grammars. It then concludes by illustrating the potential for combining LFG
and TAG, and discusses the theoretical implications of doing so.

1 Introduction and roadmap

The purpose of this chapter is to give an introduction to some of the properties of
Tree-Adjoining Grammar (TAG: Joshi et al. 1975, Joshi & Schabes 1997, Abeillé &
Rambow 2000, Joshi 2005; Kallmeyer 2010: ch. 4) and to draw some comparisons
with Lexical Functional Grammar (LFG: Kaplan & Bresnan 1982, Bresnan et al.
2016, Dalrymple et al. 2019; Belyaev 2023b [this volume]). It is primarily aimed
at those familiar with LFG who are looking to learn about TAG and see where
the two formalisms differ/overlap, but the comparisons will also be of interest
to those coming from a TAG background (although details of the LFG formalism
will not be covered – the interested reader is directed to the references above and
other chapters in this volume).

A TAG is a mathematical formalism for describing a set of trees, just as a
context-free grammar (CFG) is a mathematical formalism for describing a set
of strings. Unlike a CFG, which generates or recognises a string by repeatedly
rewriting symbols until the target string is produced, a TAG does so by com-
bining members from a starting set of elementary trees using two operations

Jamie Y. Findlay. 2023. LFG and Tree-Adjoining Grammar. In Mary Dalrymple (ed.),
Handbook of Lexical Functional Grammar, 2069–2125. Berlin: Language Science Press.
DOI: 10.5281/zenodo.10186054

https://doi.org/10.5281/zenodo.10186054


Jamie Y. Findlay

(called substitution and adjunction) until a tree whose yield is the target
string is produced. This gives TAGs a greater generative capacity than CFGs,
which is why they are of particular interest to researchers in natural language
syntax: since Shieber (1985), we have known that the complexity of natural lan-
guage syntax exceeds the context-free space which CFGs are capable of describ-
ing. In Section 2, I will briefly discuss this finding and the choice it has forced
modern linguistic theories to make regarding their formal foundations. Section 4
delves more deeply into the generative power of TAG and compares it to that of
LFG.

When TAG is used in a linguistic capacity, a number of properties are generally
added to the basic formalism in order to better align it with certain theoretical
assumptions and to enable more natural or transparent analyses of particular
grammatical phenomena (e.g. the inclusion of feature structures on nodes to fa-
cilitate an analysis of agreement). In Section 3, I introduce some of the details
of the TAG formalism along with these linguistically-motivated theoretical as-
sumptions.

One important property generally assumed in linguistic applications of TAG is
known as lexicalisation, the property whereby each of the basic structures of
a grammar is associated with a single lexical item. Lexicalised grammars purport-
edly have a number of desirable traits, and I discuss lexicalisation in more detail
in Section 5. This property sets TAG apart from CFG-based formalisms such as
LFG, since the latter cannot in general be lexicalised – a perhaps surprising result
given the lexical focus of LFG.

Section 6 briefly compares the TAG and LFG approaches to the factoring out
of redundancies from grammars. TAG makes use of a so-called metagrammar,
a formal system used to produce grammars, which can capture high-level gen-
eralisations and make grammar engineering easier. LFG uses templates, which
are part of the grammar proper, and allow pieces of linguistic description to be
given names and reused.

Lastly, Section 7 considers the possibility of incorporating a TAG into the LFG
architecture, replacing the standard CFG-based description of c-structure. This
offers fertile new analytical possibilities, and has pleasing consequences for the
descriptive power of LFGmore generally, since it allows templates to be extended
to the domain of phrase structure, opening the door to a fully constructional LFG.

2 Moving beyond context-free grammars

Context-free grammars have played (and continue to play) a major role in the
development of syntactic theory at least since their formal elaboration in the

2070



43 LFG and Tree-Adjoining Grammar

1950s (Chomsky 1956), with their conceptual roots going back even further (at
least to e.g. Harris 1946, Wells 1947). However, there was also always a sneaking
suspicion that natural language syntax was formally more complex than CFGs
could describe. Nevertheless, by the early ’80s there had been no successful proof
of this fact (Pullum & Gazdar 1982). Bresnan et al. (1982) demonstrated that the
presence of cross-serial dependencies means that the dependency structure of
Dutch requires more than context-free power to describe, although owing to
the lack of morphological marking of such dependencies, the string language of
Dutch remains context free. It turns out, however, that Swiss German exhibits
the same cross-serial dependencies, but its nouns are case-marked, and since dif-
ferent verbs can assign different cases to their objects, this means that the depen-
dencies show up in the string language as well. Thus, greater-than-context-free
power is definitely needed to describe Swiss German (Shieber 1985). Since there is
no reason to suspect that speakers of Swiss German are biologically distinct from
speakers of other languages, or that some people would be intrinsically unable
to learn Swiss German as a first language, this means that the human language
faculty generally allows for languages which require greater than context-free
power to describe, and so CFGs alone are inadequate as the basis of a grammati-
cal formalism.

Given this fact, there are two different kinds of response for the syntactic the-
orist. We can either

1. replace the CFG with something more powerful; or

2. beef up the CFG with something extra, so that the combination is more
powerful.

Chomskyan generative grammar had already taken the second approach from
the start: the addition of transformations to a CFG base pushes the formalism
well beyond context-freeness, into the space of Type-0, unrestricted grammars
(Peters & Ritchie 1973). LFG similarly adds something extra to the CFG compo-
nent: in this case, a separate level of representation, f(unctional)-structure; the
combination of the two takes the formalism as a whole at least into the Type-1,
context-sensitive space (Berwick 1982 – although see Section 4).

However, in order to account for cross-serial dependencies, we do not need
a full-blown context-sensitive (or even more powerful) grammar. Instead, we
only need amoremodest mildly context-sensitive grammar (Joshi 1985). Such
grammars have the useful property, shared with context-free grammars, of being
parsable in polynomial time, unlike the (worst case) exponential parsing time

2071



Jamie Y. Findlay

of context-sensitive grammars (Joshi & Yokomori 1983, Vijay-Shanker & Joshi
1985), though they still go beyond the expressive power of CFGs in permitting
the description of cross-serial dependencies. Responses to the challenge of the
non-context-freeness of natural language which take approach number 1 above,
and replace the CFGwholesale, tend to do so with a formalismwhich is explicitly
mildly context sensitive, therefore, rather than anything more powerful. One ex-
ample of this is Combinatory Categorial Grammar (CCG: Steedman 1987, 2000);
another is TAG.1

3 An introduction to TAG

A TAG is a tree rewriting system which consists of a set of elementary trees
and the two operations of substitution and adjunction for combining them.
Substitution simply inserts one tree at the frontier of another (at a non-terminal
node), while adjunction inserts a tree inside another, attaching it at a non-frontier
node (more formal definitions of these processes will be given below).2

Most linguistic work in TAG now assumes a lexicalised version, LTAG (Sch-
abes et al. 1988), in which each tree is anchored by, i.e. has as its terminal node(s),
a single lexical item (which may still consist of several words, as in the case of
phrasal verbs, idioms, etc.). Similarly, while trees in a TAG (qua mathematical
formalism) can be of any size, in linguistic applications the general principle
applied is that trees should correspond to the extended maximal projection
(Grimshaw 2000, 2005) of a lexical item, i.e. the syntactic projection which in-
cludes all functional heads and the full argument structure of the item. Some
examples of elementary trees matching these restrictions are given in Table 1. In
this chapter, I will use “TAG” to refer specifically to this sub-class of lexicalised,

1In fact, things are a little more complex than this. In some definitions of mild context sensi-
tivity (e.g. Kallmeyer 2010: 23–24), “permutation-complete” languages like MIX (the language
consisting of the subset of {𝑎, 𝑏, 𝑐}∗ with an equal number of 𝑎s, 𝑏s, and 𝑐s; see Bach 1981) are
included (Salvati 2015, Nederhof 2016); in others (e.g. Joshi et al. 1991), they are not (Kanazawa
& Salvati 2012). TAG and CCG are in the class which does not contain MIX, and so Steed-
man (2019: 415) suggests they should be called slightly non-context-free to distinguish
them from the larger class which does contain MIX. Nothing in this chapter hinges on this
distinction, so I continue to use the more traditional “mildly context sensitive”, without taking
a position on whether or not this refers to the class of languages containing MIX or not.

2In the original formulation (Joshi et al. 1975), TAG only has one combining operation – ad-
junction. The addition of substitution, however, improves the descriptive capabilities of the
framework, making it easier to use for linguistic purposes, while leaving its formal expressive
power the same, since adjunction can be used to simulate substitution (Abeillé 1988: 7). In this
chapter I will therefore continue to assume that both operations are used.

2072



43 LFG and Tree-Adjoining Grammar

Table 1: Some elementary trees

Initial trees Auxiliary trees

NP

N

Benjamin

S

NP↓ VP

V

loves

NP↓

VP

AdvP

Adv

really

VP*

S

NP↓ VP

V

thinks

S*

linguistically-constrained TAG rather than merely to the mathematical formal-
ism, except where otherwise indicated.

Elementary trees come in two types, illustrated in Table 1. An initial tree is
one where all of the frontier nodes are either terminals or non-terminals marked
as substitution sites using the down arrow (↓).3 Substitution sites indicate
arguments of a predicate. An auxiliary tree is like an initial tree except that
one of the frontier nodes, called the foot node, shares the same label as the root,
and is marked with an asterisk (*). Auxiliary trees are combined with other trees
via adjunction, to be described below. When two elementary trees have been
combined, we have a derived tree, which can then be further manipulated just
like an elementary tree.

In the next two subsections, I introduce the two operations used to combine
trees in TAG: substitution and adjunction.

3.1 Substitution

When the root of a tree has a label which matches that of a non-terminal frontier
node in another tree, the first tree can be inserted at that frontier node in the
second; this is called substitution, and is the process normally used to combine a
predicate and its arguments. Example (1) shows this process schematically, while

3In fact, every non-terminal frontier node can serve as a substitution site, so the ↓-annotation
is formally redundant. Nevertheless, it is often included in expository text (if not in compu-
tational implementation) to make it clear at a glance that a tree does not represent a fully
completed derivation.

2073



Jamie Y. Findlay

(2) gives a linguistic example involving two cases of substitution: the derivation
for Benjamin loves Kasidy.

(1) Substitution (after Abeillé & Rambow 2000: 5)

A↓

S A

⇒
A

S

A

(2) S

NP↓

NP

N

Benjamin

VP

V

loves

NP↓

NP

N

Kasidy

⇒
S

NP

N

Benjamin

VP

V

loves

NP

N

Kasidy

A tree rewriting grammar which makes use of substitution alone is called a
Tree Substitution Grammar (TSG), and is at least weakly equivalent to a CFG
– that is, such grammars describe the same set of string languages (weak equiva-
lence), although there are some tree languages which can be described by a TSG
for which an equivalent CFG does not exist (so strong equivalence is not guaran-
teed).4 This is easy to see if we imagine converting a CFG into a TSG: all we do

4Any CFG can easily be converted into a TSG by simply turning each phrase-structure rule
into a tree rooted in the left-hand symbol with the right-hand symbols as daughters, as will be
illustrated in the text. But to convert a TSG into a CFG, it may be necessary to relabel some
nodes, since the dependency between a mother and its daughters may be tree-specific, and so
not hold generally (for example, it might be the case that only trees anchored by transitive
verbs have a VP dominating both a V and an NP node) – so the CFG might have to have more
non-terminal symbols than the TSG (e.g. VPtrans and VPintrans instead of just VP).

2074



43 LFG and Tree-Adjoining Grammar

is replace each phrase-structure rule with the equivalent tree which it describes
(cf. McCawley’s 1968 conception of phrase-structure rules as node admissibility
conditions, i.e. descriptions of trees). For example, the CFG in (3) corresponds to
the TSG in (4):

(3) S ⟶ NP VP
NP ⟶ Miles
VP ⟶ V
V ⟶ sighs

(4) S

NP↓ VP↓

NP

Miles

VP

V↓

V

sighs

Although TSGs and CFGs are formally very close (at least weakly equivalent),
there is an important theoretical difference between them: TSGs have an ex-
tended domain of localitywith respect to CFGs. Every rule in a CFG describes
a tree of depth 1, but trees in a TSG can be of arbitrarily large size, which means
that certain grammatical dependencies, like agreement or extraction, can be de-
scribed locally in a TSG (i.e. in a single elementary tree) when they cannot be in
a CFG (i.e. they cannot be described in a single rule). For example, the TSG in
(5) is equivalent to that in (4), except that now the verb and its subject are in the
same elementary tree, and so the agreement relationship between the two could
be described locally.

(5) S

NP↓ VP

V

sighs

NP

Miles

Many possibilities exist as to how to describe such a dependency – for example,
by using complex categories in the style of GPSG (onwhich seeGazdar et al. 1985),
or by using feature structures (on which see Section 3.3); but the point is that
however one chooses to represent this relationship, it can be described locally
in a TSG when it can only be described indirectly in a CFG, e.g. by percolating
features up from V to VP, thus making them visible to the S → NP VP rule which
introduces the subject.

2075



Jamie Y. Findlay

3.2 Adjunction

If we add adjunction, a second type of combining operation, to a TSG, we obtain
a TAG. While substitution allows a tree to be inserted at a frontier node of an-
other tree, adjunction allows insertion at a non-frontier node: the adjoining tree
expands the target node around itself. A tree which adjoins into another tree,
called an auxiliary tree, must therefore have at least one frontier node with the
same label as its root – this is called the foot node. The process of adjunction is
represented schematically in (6):

(6) Adjunction (after Abeillé & Rambow 2000: 9)

S

A

A

A∗
⇒

A

S

A

A

Because of the requirement that the root and foot of an auxiliary tree have
the same label, such trees can be seen as factoring recursion out of the grammar.
Rather than having a cyclic path through the rewrite rules (as in a CFG), we have
a tree which directly encodes such a cycle (in (6), an A contained within an A),
which can then be added into a structure via adjunction. For this reason, such
auxiliary trees are used to model the recursive aspects of natural language syntax
– most notably modification and sentential embedding.

Modifiers such as adjectives and adverbs, but also e.g. relative clauses, are rep-
resented as auxiliary trees. For example, really is a VP-adverb which appears to
the left of the VP it modifies, and so is represented by the tree in (7):

(7) VP

AdvP

Adv

really

VP*

2076



43 LFG and Tree-Adjoining Grammar

To see this in use, consider the derivation for the sentence Benjamin really
loves Kasidy: after the substitutions shown above in (2) to generate Benjamin
loves Kassidy, we can then adjoin the tree from (7) at the VP node in the clause,
as in (8):

(8) S

NP

N

Benjamin

VP

V

loves

NP

N

Kasidy

VP

AdvP

Adv

really

VP∗

⇒
S

NP

N

Benjamin

VP

AdvP

Adv

really

VP

V

loves

NP

N

Kasidy

Of course, such a process can be repeated indefinitely many times, since there is
always still a tree-internal VP node available to be adjoined to, as in (9):

(9) S

NP

N

Benjamin

VP

AdvP

Adv

really

VP

V

loves

NP

N

Kasidy

VP

AdvP

Adv

really

VP∗

⇒
S

NP

N

Benjamin

VP

AdvP

Adv

really

VP

AdvP

Adv

really

VP

V

loves

NP

N

Kasidy

This accounts for the iterability of modifiers like really.
Another, perhaps more theoretically interesting, area of recursion in the gram-

mar is in the domain of subordination, i.e. sentential embedding. Verbs which
take sentential complements are represented as auxiliary trees, as in (10), for ex-
ample:

2077



Jamie Y. Findlay

(10) S

NP↓ VP

V

thinks

S∗

Notice that this means that sentential arguments are treated rather differently
from other arguments in TAG: while arguments are normally combined with
their governors by means of the former being substituted into the latter, sen-
tential arguments combine with their governors by means of the latter being
adjoined into the former – this is shown in (11):

(11)

S

NP

N

Benjamin

VP

V

loves

NP

N

Kasidy

S

NP

N

Jake

VP

V

thinks

S∗

⇒

S

NP

N

Jake

VP

V

thinks

S

NP

N

Benjamin

VP

V

loves

NP

N

Kasidy

For simple declarative sentences this is a rather unnecessary complication,
since the same effect could be achieved by making the foot node of the sentential-
embedding verb a substitution site instead. However, the factoring of recursion
into auxiliary trees interacts with another TAG principle – the local representa-
tion of syntactic dependencies. Owing to their extended domain of locality, it is
possible to represnt many kinds of syntactic dependencies locally (i.e. in a single
elementary structure) in TAG that would require some additional mechanism in
other frameworks. This principle extends to filler-gap relations as well, such as
that between a fronted focus phrase and its verbal governor, as in (12):

(12) Kassidy Benjamin loves (whereas Kira he merely likes).

2078



43 LFG and Tree-Adjoining Grammar

The tree in (13) represents the appropriate form of the verb loves, with its object
extracted:5

(13) S′

NP𝑖 ↓ S

NP↓ VP

V

loves

NP

𝑡𝑖
Through substitution alone, this can be used to derive (14):

(14) S′

NP𝑖

N

Kassidy

S

NP

N

Benjamin

VP

V

loves

NP

𝑡𝑖
But of course the distance between the fronted phrase and the gap can span
multiple clauses, and can be arbitrarily large, as shown in (15):

(15) Kassidy [Jadzia knows [Jake thinks … [Benjamin loves]]].

5The use of a trace in object position here is not an essential part of the TAG analysis, though
in practice it is common. One reason for this, as argued for by Kroch (1987) and Kroch & Joshi
(1985), is that empty elements allow for easier specification of some constraints on extraction in
terms of the topology of trees, rather than necessitating additional mechanisms, like functional
uncertainty and off-path constraints in LFG. A reviewer points out that traces are also useful in
the metagrammar (see Section 6 on this concept), since they allow tree fragments to be reused
more easily.

2079



Jamie Y. Findlay

Since sentential embedding verbs are treated as auxiliary trees, this poses no
problem – they are adjoined to the internal S node, and thus extend the distance
between the gap and the filler:

(16)

S′

NP𝑖

N

Kassidy

S

NP

N

Benjamin

VP

V

loves

NP

𝑡𝑖

S

NP

N

Jake

VP

V

thinks

S∗

⇒

S′

NP𝑖

N

Kassidy

S

NP

N

Jake

VP

V

thinks

S

NP

N

Benjamin

VP

V

loves

NP

𝑡𝑖

What is more, this can clearly be repeated: other trees can be adjoined at the
topmost S node, further increasing the distance between the filler and the gap.
Thus, a potentially quite radically non-local dependency, between the fronted
expression and its governing verb, can be expressed locally in the grammar, in
a single elementary tree, because the operation of adjunction allows for the dis-
tance between nodes in a tree to grow over the course of a derivation. This same
process can be applied to other kinds of filler-gap dependencies, such as wh-
questions and relative clauses, though for ease of exposition I have chosen not to
illustrate these here (since for these we must also account for things like subject-
auxiliary inversion and do-support).6 The TAG approach is in contrast to that of
many other syntactic theories which instead derive or infer the relation between
filler and gap via some additional syntactic mechanism, be that movement or, in
the case of LFG, a functional uncertainty path.

3.3 Expressing constraints

Adjunction of an auxiliary tree, which has a root and foot node with the same
label, captures the effects of recursion in other formalisms. However, once an
auxiliary tree has been adjoined in, there will be two nodes with the same la-
bel where there was previously just one. This means that if we adjoin the same

6The interested reader should consult the detailed analyses of these and other constructions in
English provided by the XTAG project (XTAG Research Group 2001).

2080



43 LFG and Tree-Adjoining Grammar

tree again (e.g. as in (9), where we adjoin really twice), there are two distinct
possible targets (and after that adjunction there will be three, etc.). This has the
potential to dramatically complicate parsing, since there will be multiple distinct
possible derivations for the same tree (without there also being a genuine am-
biguity of interpretation), and so we would like a means of controlling where
adjunction takes place. TAG originally did this by using local constraints on ad-
junction (Joshi 1987: 100ff.), annotations added to the nodes of elementary trees
indicating which auxiliary trees can be adjoined there. If the list of adjoiners is
empty, we have a null adjunction (NA) constraint, which prohibits adjunction
at the node. If the list is non-empty, then we have a seletive adjunction (SA)
constraint, which limits the trees which can adjoin. There are also obligatory
adjunction (OA) constraints, which are like SA constraints except that one of
the listed trees must be adjoined at the annotated node. In classic TAG, this is
achieved simply by a diacritic indicating that the constraint is an OA one rather
than an SA one. We will see below how this can be achieved in a less stipulative
way by making use of feature structures.

Using these constraints, we can avoid having multiple possible parses for sen-
tences by marking the foot node of auxiliary trees with an NA constraint (as is
done in the XTAG grammar of English, for example – XTAG Research Group
2001). This means we do not add an extra potential target for adjunction each
time such a tree is adjoined in, since only the root of the auxiliary tree is avail-
able for further adjunction.

In addition to this practical motivation, adjunction constraints play a crucial
theoretical role: they are a vital part of what makes TAGmildly context sensitive.
Without adjunction constraints, the formalism is still more powerful than a CFG,
but there are several mildly context-sensitive languages which it cannot express,
such as the copy language {𝑤𝑤 | 𝑤 ∈ Σ∗}, or the language {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}, also
called count-3 (Kallmeyer 2010: 27, 58; we return to count-3 in Section 4).

Let us now consider an example illustrating the linguistic utility of selective
and obligatory adjunction constraints. Vijay-Shanker (1987: 134–135) considers
non-finite sentential complements such as (17):

(17) John tried [PRO to leave].

Assuming the subordinate clause has the tree in (18), our analysis needs to do two
things: ensure that such clauses cannot appear on their own as full sentences –
as illustrated in (19) – and ensure that they can be embedded only under verbs
that select for infinitival forms – as illustrated in (20).

2081



Jamie Y. Findlay

(18) S

NP

PRO

VP

to leave

(19) *To leave.

(20) a. John tried to leave.
b. *John imagined to leave.

In other words, something must be adjoined into the root node S (an OA con-
straint), and that something must only be a sentential embedding verb that se-
lects for a non-finite complement clause (an SA constraint).
Originally, these constraintswere simply seen as listings of (permitted/required)

auxiliary trees, but this is not particularly linguistically illuminating, and also
difficult to maintain for a grammar writer. This is remedied in later TAG work
through the use of feature structures. It is common to associate nodes with fea-
ture structures in CFG-based grammars (e.g. in GPSG – Gazdar et al. 1985) in
order to represent grammatical features such as case, number, tense, etc. Indeed,
this is what LFG’s f-structures do too (although there multiple structures from
different nodes are merged into one). However, in a TAG, we cannot guarantee
the integrity of each node in the tree: through adjunction, it may be split up into
two nodes, corresponding to the root and foot nodes of an auxiliary tree. For this
reason, in feature structure-based TAG (FTAG: Vijay-Shanker 1987: ch. 5; Vijay-
Shanker & Joshi 1988), each node is associated with a pair of feature structures,
called the top and bottom feature structures. The top features refer to the rela-
tion of the node to its siblings and its ancestors, i.e. the view from above the node
in a tree. The bottom features refer to its relation to its descendants, i.e. the view
from below (Vijay-Shanker 1987: 129). Ultimately, the top and bottom features
of a node must unify, to give a single description of the properties of that node.
However, during the course of a derivation, adjunction may split up the node so
that it is now two nodes instead; in that case, its top features will be unified with
the top features of the root of the auxiliary tree involved, and its bottom features
will be unified with the bottom features of the auxiliary tree’s foot node. This is
shown schematically in (21):

2082



43 LFG and Tree-Adjoining Grammar

(21) Adjunction in FTAG (after Vijay-Shanker 1987: 130)

S

A𝑡𝑛𝑏𝑛

A𝑡root
𝑏root

A
𝑡foot
𝑏foot

⇒
S

A𝑡root ⊔ 𝑡𝑛
𝑏root

A
𝑡foot
𝑏foot ⊔ 𝑏𝑛

Substitution is simpler, since the root node of the substituted tree is simply iden-
tified with the substitution site, and so both top and bottom feature structures
unify, as shown in (22):7

(22) Substitution in FTAG

A𝑡𝑛𝑏𝑛

S A𝑡𝑚𝑏𝑚
⇒

A

S

A𝑡𝑛⊔ 𝑡𝑚𝑏𝑛⊔ 𝑏𝑚

These feature structures can be used to enforce various linguistic constraints.
For example, we can enforce subject agreement in initial trees for verbs by speci-
fying number and person features on the subject NP position. More interestingly,
we can use features to account for the constraints on adjunction discussed above.
Because the features associated with whatever tree is adjoined at a node have to
unify appropriately with its top and bottom features, we can control which trees
are compatible by giving them (mis)matching features which make unification
possible or not. What is more, we can give a more principled account of obliga-
tory adjunction constraints by making the top and bottom features of a particu-
lar node incompatible with one another. This means that unless adjunction takes
place and the node is split up, unification will be impossible, and the derivation
will fail. Returning to our example from above, (23) shows the tree from (18) with
two added feature annotations:

7The diagram in (22) follows Vijay-Shanker’s (1987) original formulation, where substitution
sites also contain bottom features. In much other work using FTAG, this is not the case, so 𝑏𝑛
in (22) would be absent, and the final bottom features of A in the derived tree would simply be
𝑏𝑚 (XTAG Research Group 2001: 13). This is of course equivalent to (22) with 𝑏𝑛 instantiated as
the empty feature structure.

2083



Jamie Y. Findlay

(23) S[tense+][tense−]

NP

PRO

VP

to leave

Since these features are incompatible and cannot unify, we have achieved the
first of our goals, which is to ensure that this tree cannot appear on its own –
i.e., to implement an OA constraint. Owing to the feature mismatch, this tree is
illicit unless something adjoins to the root node. To achieve the SA constraint,
we need to consider the elementary trees of verbs like tried and imagined. In (24)
and (25) we present them with just the relevant features added:

(24) S[tense+]

NP↓ VP

V

tried

S∗[tense−]

(25) S[tense+]

NP↓ VP

V

imagined

S∗[tense+]

The difference between the two verbs is that tried selects for a non-finite, un-
tensed, complement clause, whereas imagined selects for a tensed one – this is
indicated by the top features on their foot nodes. If we attempt to adjoin imagined
into the tree for the subordinate clause in (23), then we end up with mismatching
features on the foot node, which means they cannot unify, and the tree remains
illicit, as shown in (26):

2084



43 LFG and Tree-Adjoining Grammar

(26) S[tense+][tense+]

NP↓ VP

V

imagined

S[tense+][tense−]

NP

PRO

VP

to leave

If we adjoin the tree for tried, however, then there is no mismatch, and the deriva-
tion succeeds.

If we allow a fully-fledged unification-based feature system in FTAG, with re-
cursive feature structures of potentially unbounded size, then FTAG becomes
undecidable (Vijay-Shanker 1987: 155f.). This is a very bad result given the empha-
sis that TAG places on tractable, polynomial parsing. For this reason, the feature
structures in FTAG are more restricted, and do not permit recursion/re-entrancy,
which makes them quite unlike LFG’s f-structures.

3.4 Derivation trees and dependencies

In a CFG as classically conceived, the familiar phrase-structure tree is in fact a
representation of the derivation, i.e. of the process by which the output, namely
the string, was produced. TAGs also have these derivation trees, representing
the way in which trees were combined during a derivation – but, of course, in
a TAG, the output of the derivation is already a tree, called the derived tree to
set it apart. The derived tree represents word order, constituency, and category
information, like LFG’s c-structure. So what linguistic information does a TAG
derivation tree encode? Since each elementary tree in a (lexicalised) TAG corre-
sponds to a lexical item, the derivation tree actually represents relations between
lexical items, and so has much in commonwith a dependency grammar represen-
tation of the sort illustrated by Meaning-Text Theory (Mel’čuk 1988), the more
contemporary Universal Dependencies project (UD: Nivre et al. 2016), or, indeed,
an LFG f-structure (on the relationship between dependency grammars and LFG,
see also Haug 2023b [this volume]).

2085



Jamie Y. Findlay

A derivation tree for Benjamin really loves Kasidy, the derivation for which
was shown in (2) and (8), is given in (27) (cf. Joshi & Schabes 1997: 74ff.):

(27) love

Benjamin Kasidy really

1
2.2

2

Here nodes are labelled with the lexeme corresponding to the elementary tree
in question. Whenever a tree is substituted or adjoined into another tree, it be-
comes its daughter in the derivation tree. The derivation tree in (27) shows that
three trees, corresponding to Benjamin, Kasidy, and really, were combined with
the tree for love. Each edge is also labelled, standardly with a node address which
indicates where the tree was substituted or adjoined.8 However, we can equally
well use different labels, such as assigning grammatical function names to ar-
gument positions and then treating other positions as adj (cf. Rambow & Joshi
1997: 175). This would give us the derivation tree in (28) instead of (27), making
the parallel with dependency structures quite explicit:

(28) love

Benjamin Kasidy really

subj
obj

adj

Rambow & Joshi (1997) discuss the relationship between TAG and dependency
grammars in more detail.

Unfortunately, the TAG treatment of sentential embedding somewhat under-
mines the neat parallel between derivation trees and dependency structures (Ram-
bow et al. 1995, 2001). Recall that arguments are normally substituted into their
governors, but that clausal complements have their governors adjoined into them.
This reverses the normal dependency relations, andmeans that “(standard) LTAG
derivation trees do not provide a direct representation of the dependencies be-
tween the words of the sentence, i.e., of the predicate-argument andmodification
structure” (Rambow et al. 2001: 117, emphasis in original). To see why this is so,
consider the derivation tree for (11), Jake thinks Benjamin loves Kasidy:

8These are so-called Gorn addresses (Gorn 1967). The root has the address 0 (or sometimes 𝜖,
i.e. the empty string), the 𝑘th child of the root (reading left-to-right) has the address 𝑘, and for
all other nodes, the 𝑞th child of a node with address 𝑝 has the address 𝑝.𝑞 (Joshi & Schabes
1997: 75).

2086



43 LFG and Tree-Adjoining Grammar

(29) love

Benjamin Kasidy think

Jake

In (30) think is a dependent of love, because the think tree is adjoined into the
love tree, when of course in any real dependency grammar the relation would be
reversed:

(30) think

Jake love

Benjamin Kasidy

There are technical means of handling this unhappy result (see e.g. Joshi &
Vijay-Shanker 2001, Kallmeyer & Kuhlmann 2012), but it nevertheless makes the
parallel with dependency structures rather less direct. All the same, we might be
tempted to see the division of labour between derived trees and derivation trees
in TAG as analogous to that between c-structure and f-structure in LFG, where
the former represents constituency, word order, and category information, and
the latter encodes a sentence’s dependency structure. This is certainly true to
a point, but the parallel is imperfect, because f-structure also represents other
information beyond the dependency structure of a sentence – syntatic features
like person, number, tense, aspect, etc., which in TAG are encoded in the fea-
ture structures associated with each node instead. Still, one thing that derivation
trees and f-structures have in common is that they are both seen as the appro-
priate level of representation to serve as input to the semantic component of the
grammar.

3.5 Semantics

There have been a variety of different proposals for interfacing TAG with a se-
mantic theory, and space precludes a full presentation here. Nonetheless, this
section gives a (superficial) overview of the relevant literature, so that the inter-
ested reader can investigate further.

2087



Jamie Y. Findlay

An early proposal for doing semantics with TAG makes use of Synchronous
TAG (STAG: Shieber & Schabes 1990). In STAG, elementary trees from one gram-
mar are paired with those from another, and links are established between indi-
vidual nodes in those trees. Then, when adjunction or substitution applies in one
grammar, it must also take place in the other, at the linked node, and using the
equivalent, paired tree. By pairing a TAG grammar with a tree-based semantic
representation, we can therefore implement a “rule-to-rule” approach to seman-
tic derivation (to use Bach’s 1976 terminology).9 Nothing requires the paired trees
to be isomorphic, so on the syntactic side it is the structure of the derivation tree,
not the derived tree, which determines the meaning. Although this approach
has largely fallen out of favour in TAG circles, see Nesson & Shieber (2006, 2007,
2008) for a modern revival.

Another approach which uses the derivation tree as the basis for semantic in-
terpretation is that of Joshi & Vijay-Shanker (2001). Here elementary trees are
associated with triples of semantic expressions, the first of which specifies the
main variable of the predication, the second of which gives the predicate with its
arguments, and the third of which specifies which argument variables are asso-
ciated with which nodes in the tree. When a tree is substituted into another tree,
its main variable is identified with the corresponding argument variable in the
target tree’s semantics (special consideration has to be made for adjunction, as
discussed above: the order of dominance in the derivation tree will be different
for sentential vs. non-sentential complements – see Joshi & Vijay-Shanker 2001:
152f.). Since this makes use of a unification-based semantics, the order of combi-
nation of the elementary trees is irrelevant, and the derivation tree thus offers an
appropriate level of representation, since it abstracts away from order, and sim-
ply says how and where trees were combined. This unification-based approach
has been developed more recently by Laura Kallmeyer and colleagues, introduc-
ing a new focus on underspefication (Gardent & Kallmeyer 2003, Kallmeyer &
Joshi 2003, Kallmeyer & Romero 2004, 2008). This has also been integrated with
Frame Semantics (Kallmeyer & Osswald 2013).

In LFG, the de facto standard approach to the syntax-semantics interface is
Glue Semantics (Asudeh 2023 [this volume]). Observing that, for example, the
operation of function application as used in natural language semantics is order
insensitive, and that quantifier scope ambiguities show that semantic interpreta-
tion does not (always) respect the constituent structure of a sentence (see Asudeh
2012: ch. 5), Glue rejects c-structure as the appropriate level of input to seman-
tics, and uses (a projection of) f-structure instead (where order is irrelevant and

9Alternatively, by pairing two TAG grammars from different languages, we can implement a
machine translation system – see Abeillé et al. (1990).

2088



43 LFG and Tree-Adjoining Grammar

many c-structure hierarchies are collapsed). Thus, as in TAG, it is the dependency
structure, not the phrasal structure, which is taken as relevant for semantic in-
terpretation. Interestingly, however, one of the only examples of TAG theorists
criticising the derivation-tree-based approach to semantic interpretation is when
Glue Semantics has been combinedwith TAG (Frank& vanGenabith 2001). Frank
& van Genabith argue that the derivation tree is not suitable as the input to se-
mantic interpretation, mostly on the basis that, as discussed above, it provides
the wrong dependency structure, and they instead make use of the derived tree
in their Glue-based framework.

3.6 The big picture

Linguistic theories based on TAG have two key properties (Joshi & Schabes 1997:
95f.):

1. Extended domain of locality: Since TAG elementary trees encompass
the whole extended projection of a lexical item, dependencies which in
a simple CFG-based grammar would be spread across multiple rules, e.g.
agreement, can be expressed “locally” in a TAG (i.e. in the same elementary
structure). This is what enables a TAG to lexicalise a CFG (see Section 5).

2. Factoring recursion from the domain of dependencies: Relatedly, the
elementary trees are the structures over which the vast majority of depen-
dencies are stated, and that includes filler-gap relations. Such dependencies
are therefore local in nature, but can become long distance via the adjunc-
tion operation. Recursion is thereby factored out of the domain over which
these dependencies are initially stated.

This approach is summed up by Bangalore & Joshi (2010: 2) in the slogan “com-
plicate locally, simplify globally”. That is, local, elementary representations are
where almost all linguistic constraints are stated, meaning that they can become
quite complex, but the payoff is that the composition of elementary trees can be
achieved by just two, very general, operations: substitution and adjunction. This
also means that cross-linguistic variation is entirely a matter of what elementary
trees a grammar contains, a position very much in keeping what Baker (2008:
353) calls the Borer-Chomsky Conjecture, after Borer’s (1984) proposal and
Chomsky’s (1995) later adoption of it, whereby parametric variation is restricted
to the lexicon.

How does this compare with LFG? The second property certainly divides the
frameworks: LFG grammars include recursive c-structure rules, and filler-gap

2089



Jamie Y. Findlay

dependencies are expressed syntactically, not lexically. This means, moreover,
that the lexicon is not the only source of complexity in LFG grammars; many
constructions are analysed as instantiating complex annotated phrase structure
rules (see e.g. the analysis of long-distance dependencies in Dalrymple et al. 2019:
ch. 17). There is more overlap between the two frameworks when it comes to the
first property. Via the parallel projection architecture (see Belyaev 2023b: sec. 5
[this volume]), LFG does obtain an extended domain of locality: for example,
agreement can be encoded locally in the agreement controller’s lexical entry via
the use of paths through f-structure (see Haug 2023a [this volume]). However,
since c-structure is generated by a CFG, any non-local dependencies between c-
structure nodes (i.e. those spanning more than one “generation” in the tree) can
only be expressed indirectly via other levels of representation. That is, we have
no extended domain of locality at c-structure per se, only parasitically via other
levels. To the extent that phrasal constructions larger than a tree of depth 1 are
objects we want to be able to represent in the grammar, this is a shortcoming.
We return to this point in Section 7.2.

Construction Grammar (CxG: Fillmore et al. 1988, Goldberg 1995, 2006, Kay
& Fillmore 1999, Boas & Sag 2012, Hoffmann & Trousdale 2013, i.a.) of course
considers such objects as basic to linguistic theorising, and for this reason it has
been argued that TAG is a natural means of formalising CxG (Lichte & Kallmeyer
2017). For example, among the properties of constructions listed by Fillmore et al.
(1988: 501), one is that they “need not be limited to a mother and her daughters,
but may span wider ranges of the sentential tree” – precisely the enlarged defi-
nition of locality which a TAG provides, and which LFG denies (at least directly).
TAG has a natural means of representing both “formal” and “substantive” idioms,
to use Fillmore et al.’s (1988) classification: formal idioms can be included in the
set of trees associated with each lexical item of the appropriate class (Lichte &
Kallmeyer 2017: 208f.), and substantive idioms can be represented as elementary
trees in their own right (Abeillé 1995). While LFG can quite well represent for-
mal idioms at the more schematic end of the scale (see e.g. Asudeh et al. 2013), it
struggles with substantive idioms, precisely because it lacks an extended domain
of locality at c-structure (Findlay 2023: sec. 4).

4 Generative capacity

TAG was designed specifically as a formalism with only mildly context-sensitive
power (in the technical sense of Joshi 1985). Thismeans there are languages out of
the reach of context-free grammars that TAGs can describe, but also that there are

2090



43 LFG and Tree-Adjoining Grammar

languages properly considered context sensitive which TAG cannot. Such a con-
strained expansion into the context-sensitive space enables parsing algorithms
for TAG to preserve the computationally appealing property of a polynomial run
time.

As a simple demonstration of the increased generative capacity of a TAGwhen
compared to a CFG, consider the artificial formal language {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}, also
known as count-3 – that is, the language which contains all strings consisting
of some number of 𝑎s followed by the same number of 𝑏s, then the same number
of 𝑐s. Partee et al. (1990: 497) demonstrate through application of the pumping
lemma for context-free languages that count-3 is not context free. By contrast,
there is a quite straightforward TAG grammar for count-3, shown in (31):10

(31) S

𝜖

SNA

a S

b S∗NAc

So, we can see that TAGs are more powerful than CFGs. They are not, however,
very much more powerful. There are many kinds of language which they cannot
describe, including those which it has been shown can be described by similarly
modest extensions to context-free grammars. One example of this is the language
MIX (Bach 1981), mentioned in footnote 1, which consists of all permutations
of each string in the set {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}, i.e. any number of 𝑎s, 𝑏s, and 𝑐s, in
any order, provided there is the same number of each. Salvati (2015 – originally
circulated as a technical report in 2011) showed thatMIX is in the class of multiple
context-free languages, where a multiple context-free grammar (MCFG) is itself
a mildly context-sensitive grammar formalism, for which the parsing problem is
also decidable in polynomial time. However,MIX is not a tree-adjoining language,
as conjectured by Joshi et al. (1991) and proved by Kanazawa & Salvati (2012): so
there are languages which are only slightly within the context-sensitive space
and which are still not describable by a TAG. More generally, although count-3
and count-4 (i.e. {𝑎𝑛𝑏𝑛𝑐𝑛𝑑𝑛 | 𝑛 ≥ 0}) are tree-adjoining languages, count-5 is not
(Joshi 1985: 223f.).

10Recall that a node annotated with “NA” bears a null adjunction constraint – see Section 3.3. As
mentioned above, without adjunction constraints, TAG becomes less expressive, and cannot
describe count-3: see Kallmeyer (2010: 222) for a proof.

2091



Jamie Y. Findlay

The carefully constrained computational complexity of TAG is in marked con-
trast to the situation in LFG (although see below for attempts to constrain the
power of the LFG formalism). Whereas the class of tree-adjoining languages is
equivalent to that of the mildly context-sensitive languages (or, perhaps, the
slightly non-context-free languages: see fn. 1), the languages described by LFGs
are equivalent to the class of recursively enumerable languages (Nakanishi et al.
1992). This has the expected deleterious effect on computational complexity: the
parsing problem for LFGs is NP-complete (Berwick 1982), and so, in the worst
case scenario, computationally intractable (assuming P ≠ NP).

There have been attempts to remedy this situation, however. While the LFG
formalism as a whole may be computationally very complex, some of the proper-
ties responsible for this are not relevant for the description of natural languages
– this opens the possibility that the formalism could be constrained to allow
tractable parsing (i.e. in polynomial time) while still preserving its usefulness
as a tool for describing natural languages. Seki et al. (1993) propose one such re-
striction, which limits the kinds of functional annotations permitted on c-struc-
ture nodes, and the number of nodes which can correspond to a single f-structure.
This successfully buys tractability for the resulting formalism, but at a heavy the-
oretical cost: many staple aspects of LFG analyses are no longer available, includ-
ing the very common ↑ = ↓ head-sharing annotation, or functional control equa-
tions like (↑ xcomp subj) = (↑ subj). More recently, Wedekind & Kaplan (2020)
have addressed this limitation, describing amore expressive but still tractable ver-
sion of the LFG formalism, which is provably equivalent to a Linear Context-Free
Rewriting System (LCFRS), and therefore in the mildly context-sensitive space.
(See also Kaplan & Wedekind 2023 [this volume] and references therein for dis-
cussion of the formal and computational properties of LFG.) This approach only
covers the original LFG formalism of Kaplan & Bresnan (1982), however, and it
remains to be seen whether certain extensions to this basic formalism, such as
functional uncertainty (Kaplan et al. 1987, Kaplan & Zaenen 1989), can be accom-
modated as straightforwardly in this new approach.

One point worth noting is that even in the absence of a tractable version of
LFG, this contrast between TAG and LFG should not automatically be viewed as
a failing on the part of the latter. In fact, it reflects a rather deep meta-theoretical
question: do we want the formalism itself to say something interesting about
the class of natural languages? The view embodied by TAG is that we should
be interested in “finding a grammar formalism that, by itself, gives already a
close characterization of the class of natural languages” (Kallmeyer 2010: 7).11 By

11This view is also shared by Combinatory Categorial Grammar (CCG: Steedman 2000) and
Multiple Context Free Grammars (MCFGs: Seki et al. 1991), among others.

2092



43 LFG and Tree-Adjoining Grammar

contrast, the view embodied by LFG is that “it is the theory that imposes the
constraints, not the language in which the theory is expressed” (Pollard 1997:
9).12 In theoretical terms, at least, it does not seem obvious that one approach is
better than the other – they are merely different perspectives on the problem.13

5 Lexicalisation

I mentioned at the start of Section 3 that linguistic applications of TAG assume
that the grammar is “lexicalised”. Abeillé & Rambow (2000: 7) give the following
definition of this term (emphasis in original):

We will call a grammar lexicalised if every elementary structure is associ-
ated with exactly one lexical item (which can consist of several words), and
if every lexical item of the language is associated with a finite set of elemen-
tary structures in the grammar.

In contrast to (L)TAG, LFG grammars are not in general lexicalised, which is per-
haps somewhat surprising givenwhat the “L” in “LFG” stands for. Although there
is a focus in LFG on the lexicon as a richly structured respository of grammatical
information, there is no requirement that this information cannot be expressed
through non-lexical means. This section begins by sketching the potential for lex-
icalising CFG-based formalisms, like LFG, and then explores what the potential
advantages of lexicalised grammars are.

In general, CFGs are not lexicalised. For example, the toy grammar in (3), re-
peated below, is not lexicalised, since the first and third rules are not associated
with any lexical item – they consist purely of non-terminals.

(3) S ⟶ NP VP
NP ⟶ Miles
VP ⟶ V
V ⟶ sighs

12This view is also shared by Head-Driven Phrase Structure Grammar (HPSG: Pollard & Sag
1994) and Minimalism (Chomsky 1995), among others.

13Of course, from a more practical point of view, it matters very much whether a formalism is
tractable if it is to be used in some natural language processing task. However, there is already
a very successful computational implementation of LFG in the form of the Xerox Linguistic En-
vironment (XLE: Kaplan & Newman 1997; Crouch et al. 2011), which employs various “packed
computation” (Lev 2007) heuristics to ensure efficient parsing (Maxwell & Kaplan 1989, 1993,
1996). So whatever limitations may exist in principle, they do not necessarily apply in practice.

2093



Jamie Y. Findlay

Since LFG is based on a CFG, via c-structure, LFG grammars standardly make
use of many non-lexicalised rules like these, which means that LFG grammars
are generally not lexicalised.

It is possible to convert a non-lexicalised grammar into a lexicalised one, but
this can require a change to the formalism used. We can speak of one grammar
(weakly or strongly) lexicalising another if the former is (weakly or strongly)
equivalent to the latter, except that the former is lexicalised whereas the latter
is not.14 For example, the Tree Substitution Grammar shown above in (5), and
repeated below, strongly lexicalises the grammar in (3), since each elementary
object in (5) is associated with a lexical item, and the grammar describes the same
string and tree language as (3).

(5) S

NP↓ VP

V

sighs

NP

Miles

Sometimes it is possible to use a CFG to strongly lexicalise another CFG, but it
turns out that this cannot be guaranteed in principle. For, although there is a way
of converting any CFG into so-called Greibach normal form (Greibach 1965),
where the right-hand side of each rule begins with a terminal symbol – thereby
lexicalising the grammar – such grammars do not in general generate the same
set of trees as the grammars they normalise, since they will include different
(and many more) rules. That is, converting a CFG into Greibach normal form
only weakly lexicalises it. The extended domain of locality of a TSG/TAG allows
us to avoid this problem, however, and makes tree grammars like this “naturally”
lexicalised (Schabes et al. 1988: 579). In fact, to strongly lexicalise an arbitrary
CFG, we require a TAG, not simply a TSG (see Kallmeyer 2010: 22f. for a proof).
And although a TSG may be sufficient to lexicalise many linguistically relevant
CFGs, it places syntactically undesirable restrictions on the resulting grammar,

14Two (classes of) grammars are weakly equivalent if they describe the same (sets of) string
languages (though the corresponding (sets of) tree languages may differ). They are strongly
equivalent if they also describe the same (sets of) tree languages.

2094



43 LFG and Tree-Adjoining Grammar

and so a TAG is preferable here too (Schabes et al. 1988: 579; Schabes 1990: ch. 1).
But why should we care whether a grammar is lexicalised or not?

One early advantage touted for lexicalised grammars was based on parsing. In
a lexicalised grammar, a given sentence can contain at most as many elementary
structures as there are words in the sentence. Since each lexical item is associated
with a finite number of elementary structures, this also means that the number
of analyses for the sentence is finite, thus guaranteeing that the recognition prob-
lem is decidable (Schabes et al. 1988: 581f.). As Kallmeyer (2010: 21; emphasis in
original) puts it, “[l]exicalized grammars are finitely ambiguous, i.e., no sequence
of finite length can be analyzed in an infinite number of ways”. However, in prac-
tice, the dangers of non-terminating parses are virtually non-existent in sensibly-
written natural-language grammars, and so this advantage is not so great as it
may seem.15

A related claim is that lexicalised grammars assist parsing because “parsing
need consider only those trees of the grammar that are associated with the lexical
symbols in the input string” (Eisner & Satta 2000: 79f.), rather than searching the
whole grammar, and so the specific words used in a sentence “help to restrict
the search space during parsing” (Kallmeyer 2010: 20). Once again, however, this
argument carries less practical weight than it might seem, since parsing times for
TAG grammars are actually rather slow: the best parsing algorithms for TAGs
have a time complexity of 𝒪(𝑛6), as opposed to 𝒪(𝑛3) in the case of CFGs, for
example (Kallmeyer 2010: ch. 5).16

There are, however, more theoretical reasons to be interested in lexicalised
grammars. Firstly, it is by virtue of lexicalisation that the derivation tree of a
sentence corresponds to its dependency structure (Kuhlmann 2010: 4ff.), as dis-
cussed in Section 3.4. Because each elementary object in a lexicalised grammar
corresponds to a lexical item, by tracking the combination of those objects we are
in fact tracking the combination of lexical items. Especially given the recent in-
terest in dependency grammars prompted by the Universal Dependencies project
(Nivre et al. 2016), it is clearly advantageous if our formalism has a transparent
connection to dependency structures (see also Haug 2023b [this volume] on the
relationship between LFG and dependency grammars).

Secondly, a lexicalised grammar fits very well with a lexicalist view of syntac-
tic theory. Since the 1970s (at least since the publication of Chomsky 1970), there

15My thanks to Adam Przepiórkowski and Timm Lichte for discussion of this point.
16Although this is true of TAGs in general, if our only concern is lexicalising an existing CFG-
based grammar, then we could likely devise a parser specialised for TAG grammars that lex-
icalise CFGs which would have a complexity below 𝒪(𝑛6). My thanks to a reviewer for this
observation.

2095



Jamie Y. Findlay

has been a trend in linguistic theory towards giving lexical analyses of many phe-
nomenawhichwere previously treated as purely syntactic. Indeed, driven by this
trend, a plethora of linguistic frameworks have emerged which very deliberately
place the lexicon front and centre, treating it as a “richly structured” object, and
assuming “an articulated theory of complex lexical structure” (Dalrymple 2001: 3)
– this includes LFG, as well as (to a greater or lesser extent) Generalized Phrase
Structure Grammar (GPSG: Gazdar et al. 1985), Head-Driven Phrase Structure
Grammar (HPSG: Pollard & Sag 1994, Müller & Wechsler 2014), Combinatory
Categorial Grammar (CCG: Steedman 2000), Minimalism (Chomsky 1995), and
others. Such a focus on the richness of the lexicon is in stark contrast to the his-
torically more prominent view of it as a mere “collection of the lawless”, to use
Di Sciullo & Williams’s (1987: 4) term, where it is simply a repository of excep-
tions, “incredibly boring by its very nature”, about which “there neither can nor
should be a theory” (ibid.: 3f.). Given that a lexicalist syntactic theory assumes a
richly detailed lexicon, in its most parsimonious form this is all it would require,
the syntactic component being encoded in the lexical entries themselves. In fact,
this is just what lexicalisation provides: in TAG, for example, aside from the ba-
sic operations of adjunction and substitution, any other grammatical constraints
are described in the elementary trees of lexical items; that is, in the lexicon. In
a lexicalised grammar, the lexicon essentially is the grammar.17 This means that
every language shares the same computational component, and the only differ-
ences between languages are in the lexicon (cf. the Borer-Chomsky Conjecture,
mentioned above). This is unlike LFG, for example, where languages differ both
in their lexica and in the set of c-structure rules they employ.

6 Factoring out redundancies

Natural language grammars involve a large amount of redundancy: for example,
the TAG elementary trees for loves and thinks shown in Table 1 are identical ex-
cept for their lexical anchors and for the fact that loves takes an NP complement
where thinks takes an S complement. Similarly, all proper nouns will have ele-
mentary trees like Benjamin, and all VP adverbs will have elementary trees like
really, except they may follow rather than precede the VP they modify (i.e. the

17Note that it is possible to collapse the lexicon/grammar distinction without also collapsing
the word/phrase (or, equivalently, morphology/syntax) distinction: the processes which build
word forms, i.e. the leaf nodes of elementary trees in TAG, need not be the same as those which
build derived trees in the syntax. Thus, the formal language theory objections to Construction
Grammar presented by Asudeh et al. (2013: 4f.) are only objections to the most radical version
of the theory, and need not be taken as objections to constructional approaches generally.

2096



43 LFG and Tree-Adjoining Grammar

order of the foot node VP* and the AdvP node may be reversed). There is less re-
dundancy when it comes to trees in an LFG grammar, because elementary trees
are broken down into smaller-scale phrase-structure rules, but there is plenty of
repetition in functional descriptions, where, for example, all 3sg verbs in Eng-
lish will bear the same annotations describing the person and number of their
subjects.

Such redundancy or repetition is unavoidable, but it brings with it two undesir-
able properties: firstly, from a theoretical perspective, it means that certain gen-
eralisations may not be expressed; e.g. there are things that thinks and loves have
in common, such as requiring a 3sg subject, and so it is not a mere coincidence
that there is overlap in their TAG elementary trees or in their LFG functional de-
scriptions. But nowhere in either grammar is this generalisation expressed qua
generalisation. Secondly, from a grammar engineering perspective, this kind of
redundancymakes updating and extending grammars very difficult: if we change
how we analyse a particular phenomenon, we have to make sure we change ev-
ery instance of it in the grammar (e.g. change every transitive elementary tree);
and if we introduce a new feature to deal with some new phenomenon, we have
to make sure it is handled correctly in all the existing structures, by manually
adapting them one by one. This is clearly likely to lead to inconsistencies and
inaccuracies due to human error.

It is therefore desirable to find a means of factoring out redundancies from a
grammar, and expressing the generalisations they capture in a single place. Both
LFG and TAG have a means of achieving this. In TAG, it is common practice
to make use of a metagrammar, essentially a grammar responsible for gener-
ating grammars, where such redundancies can be described just once. Candito
(1996, 1999) was one of the first to develop such a metagrammar;18 her version
describes elementary trees along three dimensions: 1) subcategorisation (i.e. how
many arguments a verb selects for), including the canonical syntactic functions
of the subcategorised arguments; 2) valency alternations/redistribution of syntac-
tic functions; i.e. the actual syntactic function of the arguments; 3) the surface
syntactic manifestation of these functions. Each of these dimensions is described
by an inheritance hierarchy, and the classes of the metagrammar, corresponding
to specific linguistic constructions, such as the English by-passive, inherit from

18Candito’s approach was the first to make use of non-destructive inheritance hierarchies, a
move which has served as the basis for more modern metagrammar implementations (such as
XMG, to be introduced below), but it was not the first to tackle the question of factoring redun-
dancies from TAG grammars. Earlier approaches (Becker 1994 and Srinivas et al. 1994), how-
ever, make use of (destructive) lexical rules, which has made them less appealing to researchers
who prefer a monotonic approach (I thank a reviewer for bringing this to my attention).

2097



Jamie Y. Findlay

one of the terminal classes in the first dimension, one of the terminal classes in
the second dimension, and as many of the terminal classes in the third dimen-
sion as there are arguments to realise. Constructions can therefore be described
by listing the terminal classes they inherit from each of the three dimensions, a
label which Kinyon (2000) calls a hypertag (following from the notion of su-
pertag introduced by Bangalore 1997 – see also Bangalore & Joshi 2010).

The most recent implementation of the concept of metagrammar is the eX-
tensible MetaGrammar (XMG) of Crabbé et al. (2013). This does away with
Candito’s three explicit dimensions, and instead employs a highly expressive de-
scription language that enables linguistic structures to be given a single, complex
description, including multiple levels of representation (e.g. syntax and seman-
tics). It is also designed so that it can be extended to cover new phenomena or
linguistic formalisms, and so fewer theoretical assumptions are baked into the
formalism. XMG makes use of an inheritance hierarchy, but a single hierarchy
instead of Candito’s three: rather than taking the approach of describing default
syntactic function assignments (dimension 1) and then overriding themwith spe-
cific valency frames (dimension 2), which might vary, e.g. in the case of diathesis
alternations, XMGmakes heavy use of disjunctions between alternating descrip-
tions, which enables such alternations to be described fully declaratively, and in
just one place. For example, we can express the familiar active-passive diathesis
of English as in (32), where each term in italics refers to a class in the meta-
grammar’s inheritance hierarchy that gives a partial description of a (sub-)tree
(Crabbé et al. 2013: 616).

(32) TransitiveDiathesis → (Subject ∧ ActiveVerbForm ∧ Object)
∨ (Subject ∧ PassiveVerbForm ∧ ByObject)
∨ (Subject ∧ PassiveVerbForm)

Each of the disjuncts in (32) combines these descriptions to give a partial de-
scription of a full elementary tree schema (an elementary tree minus its lexical
anchor). For now I leave aside the details of how these classes actually describe
trees; a simplified version of the logical description language employed will be
introduced in the next section. The crucial observation here, and the move which
sets XMG apart from earlier approaches to metagrammatical analysis, is that the
description in (32) does not privilege one elementary tree/realisation of argu-
ments as basic, but simply describes all possible realisations simultaneously.

The terminal classes of the metagrammar are families of trees which are then
associated with lemmas, and represent all the different ways of realising that
lemma’s arguments (e.g. active vs. passive, wh-extraction, clefting, etc.). The
TransitiveFamily associated with a lemma like love might just consist of (32),

2098



43 LFG and Tree-Adjoining Grammar

while the DitransitiveFamily of a verb like give might inherit from the Transi-
tiveFamily but add an additional object argument:

(33) TransitiveFamily → TransitiveDiathesis
DitransitiveFamily → TransitiveDiathesis ∧ IndirectObject

This modular and structured approach to the metagrammar means that, for in-
stance, if the analysis of a particular phenomenon changes, we just need to mod-
ify the relevant class(es): when the grammar is compiled anew, all of the impli-
cated elementary trees will be altered accordingly. The choice of classes can also
have theoretical implications, and may shed light on important linguistic gener-
alisations.19

Although themetagrammatical approach has been used to generate LFG gram-
mars as well as TAGs (Clément & Kinyon 2003a,b), this is not common practice in
LFG work. Rather, since redundancies in an LFG grammar are far more abundant
in the functional descriptions associated with lexical entries than in phrase struc-
ture, the standard solution employed here is to make use of templates, a type
of macro which can be used to abbreviate pieces of functional description that
are re-used across lexical entries (Dalrymple et al. 2004, Crouch et al. 2011; see
also Belyaev 2023a: sec. 5.1 [this volume]). These templates can take arguments,
and can also call other templates, creating a hierarchical organisation – though
it should be noted that this is an inclusion hierarchy rather than an inheritance
hierarchy, since template calls can be negated (Asudeh et al. 2013: 18f.). The se-
mantics of template invocation (represented by prefixing the template namewith
a ‘@’ symbol) is substitution: the template name is replaced by its contents. This
means that a grammar without templates is extensionally equivalent to one with
them, but in the latter it will be possible to express generalisations that cannot
be expressed in the former.

By way of illustration, (34–35) present some templates which capture some
of the same information present in the XMG classes shown above. The Tran-
sitiveDiathesis template takes a predicate name as its argument, and consists
of a disjunction of three other templates; it will be called by the lexical entry of
any transitive verb which participates in the active/passive alternation in Eng-
lish. Each of the three templates it invokes provides a pred value for the verb in

19Although metagrammars of this sort can certainly be useful theoretical tools, this is not to say
that they are intended as models of how the human language faculty functions. As a reviewer
points out, it is perhaps implausible that, in the process of language acqusition, the language
learner has to recompile their entire grammar every time they make a change or add a new
observation. In this regard, LFG’s templates (to be introduced below), which are nothing more
than abbreviations, might seem more promising as a model of the learner’s competence.

2099



Jamie Y. Findlay

question, associating it with the correct set of grammatical functions, and also
provides mapping equations which link the GFs to argument positions at seman-
tic structure, or express the fact that the argument is not syntactically realised,
in the case of the short passive (this approach to mapping is described in Asudeh
& Giorgolo 2012 and Findlay 2016; see also Findlay et al. 2023: sec. 6.2 [this vol-
ume]).

(34) TransitiveDiathesis(𝑃) ≡
@ActiveTransitive(𝑃) ∨ @ByPassive(𝑃) ∨ @ShortPassive(𝑃)

(35) a. ActiveTransitive(𝑃) ≡ (↑ pred) = ‘𝑃⟨subj,obj⟩’
(↑𝜎 arg1) = (↑ subj)𝜎
(↑𝜎 arg2) = (↑ obj)𝜎

b. ByPassive(𝑃) ≡ (↑ pred) = ‘𝑃⟨subj,oblby⟩’
(↑𝜎 arg1) = (↑ oblby)𝜎
(↑𝜎 arg2) = (↑ subj)𝜎

c. ShortPassive(𝑃) ≡ (↑ pred) = ‘𝑃⟨subj⟩’
(↑𝜎 arg1)𝜎−1 = ∅
(↑𝜎 arg2) = (↑ subj)𝜎

One noteworthy difference between the use of a metagrammar and the use
of templates is that the latter but not the former are part of a grammar itself. A
metagrammar, as the name suggests, sits outside the grammar proper: it outputs
grammars, where the elementary objects do not (necessarily) contain informa-
tion about which metagrammar classes they instantiate. Templates, on the other
hand, are part of the description language of the grammar, although of course
they aremerely names for pieces of functional description, and so have no special
formal status themselves.

7 Combining LFG and TAG

Now that we have seen some of the key concepts of TAG, along with their moti-
vations and apparent benefits, we might wonder whether LFG could also benefit
from some of these boons if we were to combine the two approaches – most
naturally, by using a TAG instead of a CFG to describe LFG’s c-structure. Joshi
(2005: 496) described this idea as being “of great interest”, and it was previously
explored by Kameyama (1986) and Burheim (1996) – but unfortunately only in
unpublished work, which has proved impossible to track down. More recently,

2100



43 LFG and Tree-Adjoining Grammar

the idea has been revived by Findlay (2017a,b, 2019). In this section, I outline
two different approaches to achieving the goal of combining LFG and TAG, and
discuss some of the consequences of adopting such a merger.20

7.1 Two approaches

The most straightforward way of combining TAG and LFG is simply to take a
TAG grammar and add appropriate LFG annotations to the elementary trees. Of
course, once we have access to the whole tree, we gain a greater degree of flex-
ibility in how we express functional annotations. Most notably, we can refer to
any node in the tree directly, rather than being limited to the current node or
its mother – a consequence of TAG’s extended domain of locality. For example,
instead of relying on a sequence of ↑ = ↓ annotations to pass information from a
lexical item to the top of its extended projection, we can refer to the top directly.
For the sake of simplicity, let us use node labels as shorthand for the nodes them-
selves.21 Then the (↑ pred) = ‘love’ annotation on the verb loves, for example,
could be rewritten as (S𝜙 pred) = ‘love’, using S𝜙 to refer to the f-structure of
the clause directly, rather than indirectly via V𝜙 (the instantiation of ↑), which
is equated with both VP𝜙 and S𝜙 . Indeed, since we can use absolute rather than
relative labels for the nodes in the tree, there is no need to mark annotations
actually on the tree at all; instead, we can treat lexical entries as pairs consist-
ing of the tree on the one hand and the annotations on the other, which refer to
nodes in the tree. This arguably simplifies the process of determining an f-struc-
ture from an annotated c-structure, since many identities which would normally
have to be computed are instead already given in the descriptions. Table 2 shows
the elementary trees from Table 1 augmented in this fashion.

The trees then combine as usual for a TAG, using the operations of substitution
and adjunction, albeit understood in a particular fashion. Substitution involves
identifying two nodes, so that, e.g. if the tree for Benjamin were substituted into
the subject position of the tree for loves, NP and NP1 would be identified (and
therefore so would their f-structures, requiring the nodes to bear compatible an-
notations – and thereby accounting for the agreement facts, for example). Ad-

20One concern about replacing the CFG component of LFG with a more powerful TAG might be
that it makes the formalism as a whole more computationally complex. However, since TAGs
are strictly less powerful than LFGs (see Section 4), such a concern is ultimately baseless.

21Of course, in reality nodes and their labels are distinct: several nodes can bear the same label,
for example (e.g. there can be more than one NP in a tree). When this happens, I follow the
TAG convention of suffixing node labels with numbers (e.g. NP1 and NP2), but it should be
borne in mind that this is just a representational choice, and that in reality such nodes have
identical labels.

2101



Jamie Y. Findlay

junction involves three steps: first we excise a sub-tree rooted at the adjunction
site; next, we replace it with the adjoining auxiliary tree; finally, we unify the foot
node of the auxiliary tree with the root node of the excised sub-tree it replaced.22

This way, we identify the target of adjunction with the foot of the auxiliary tree,
and correctly distribute the annotations between the two “parts” of the expanded
node without the need for top and bottom feature structures.23,24

This first approach is much more in the spirit of TAG than of LFG, since the
c-structure component is derivational, making use of the combining opera-

22Note that it is particularly important in this setting that adjunction is only defined where the
adjoining tree’s root and foot nodes are of the same category. In some TAG settings this would
not need to be stated explicitly, depending on how adjunction is defined, but here the root of
the auxiliary does not unify with anything, and so there is nothing which formally requires
the root and foot nodes of such a tree to have the same category (I thank a reviewer for this
observation). Allowing trees with mismatched root and foot nodes to participate in adjunction
would have undesirable consequences: for example, we do not want the tree for loves in Table 2
to act as an NP modifier (e.g. *the Benjamin loves boy).

23A reviewer asks how obligatory adjunction can be implemented in this setting, since in FTAG
it exploits the possibility of mismatching top and bottom features (see Section 3.3). Ultimately,
the answer is that the greater expressive power of the LFG projection architecture means that
the effects of obligatory adjunction constraints will be captured in different ways in different
situations. Constraining equations will frequently be relevant: for example, returning to the
example of to leave from (18), to implement the SA constraint we might specify that tried
requires its comp to contain the feature [finite −], whereas imagined requires it to contain
[finite+]; if to leave specifies that its f-structure contains [finite−], then it will be compatible
with the former but incompatible with the latter. If we wish to avoid to leave appearing on
its own (i.e. we rule out fragments), we might implement a general ban on root f-structures
containing [finite −], or we might rely on the resource sensitivity of Glue Semantics, since an
infinitive alone will not permit a linear logic proof terminating in the goal type of propositions.

24Findlay (2017a: 222, fn. 12) claims that we are forced to adopt the second proposal to be dis-
cussed below, using descriptions of trees, because adjunction means that the ↑ and ↓ chains in
annotations will be disrupted. This would be true if we were forced to refer to f-structures only
indirectly, via mother-daughter links, but fails to appreciate the additional freedom afforded
by being able to refer to nodes absolutely, as discussed above. There is, however, a small wrin-
kle when it comes to verbal trees for extraction constructions (e.g. wh-questions): if nothing
is adjoined to them, we want to unify the f-structures of the root S′ and the S node it imme-
diately dominates; but if a sentential embedding verb is adjoined there, we cannot identify
the two f-structures, or else we will end up with a cyclic f-structure which is its own comp.
All this shows us though is that we have to take care when writing the functional annotations.
Here, for example, we can solve the problem by actually reintroducing an element of relativity:
we identify the root node’s f-structure with the f-structure of its S daughter (e.g. by defining
a predicate CatDaughter(𝑛, 𝐶) which identifies the unique daughter of node 𝑛 which bears
label 𝐶 , and is undefined if there is none or more than one), regardless of which node that
actually ends up being. I omit the formal details of how this can be achieved, since ultimately
we will settle on the second approach to integrating TAG and LFG described below, but it is
important to note that this first approach is not unworkable.

2102



43 LFG and Tree-Adjoining Grammar

Table 2: Some elementary trees with associated LFG annotations

Initial trees

⟨

NP

N

Benjamin

,
NP𝜙 = N𝜙
(NP𝜙 pred) = ‘Benjamin’
(NP𝜙 num) = sg
(NP𝜙 pers) = 3

⟩ ⟨

S

NP1↓ VP

V

loves

NP2↓
,

S𝜙 = VP𝜙 = V𝜙
(S𝜙 pred) = ‘love’
(S𝜙 tense) = pres
(S𝜙 subj) = NP1𝜙
(S𝜙 obj) = NP2𝜙
(NP1𝜙 num) = sg
(NP1𝜙 pers) = 3

⟩

Auxiliary trees

⟨

VP1

AdvP

Adv

really

VP2*

,
VP1𝜙 = VP2𝜙
AdvP𝜙 = Adv𝜙
(AdvP𝜙 pred) = ‘really’
AdvP𝜙 ∈ (VP1𝜙 adj)

⟩ ⟨

S1

NP↓ VP

V

thinks

S2*

,

S1𝜙 = VP𝜙 = V𝜙
(S1𝜙 pred) = ‘think’
(S1𝜙 tense) = pres
(S1𝜙 subj) = NP𝜙
(S1𝜙 comp) = S2𝜙
(NP𝜙 num) = sg
(NP𝜙 pers) = 3

⟩

tions of substitution and adjunction. Let us therefore call it LFG-TAG. But as
Kaplan (1995: 11) points out, this procedural, or constructive, approach to
grammatical analysis is in contrast to the descriptive (a.k.a. declarative or
model-based) approach which is the “hallmark of LFG” (ibid.). Findlay (2019:
ch. 5) therefore explores another way of combining the two frameworks which
is more in keeping with the LFG spirit. In brief, we associate lexical entries with
descriptions of trees, rather than with the trees directly, as is standard practice in
metagrammars, for instance.25 In the simplest cases there is a one-to-one corre-
spondence between a description and the (minimal) tree it describes, and so we
could straightforwardly translate LFG-TAG into a more LFG-like format. How-
ever, descriptions can also make use of negation, disjunction, or other operations
that go beyond simple conjunction of propositions, and in this case the relation
between descriptions and trees is no longer isomorphic (Kaplan 1995: 14).

25The use of tree descriptions has been discussed extensively in the context of TAG – see, for
instance, Vijay-Shanker (1992), Rogers & Vijay-Shanker (1994), Rambow et al. (1995, 2001),
Kallmeyer (2001).

2103



Jamie Y. Findlay

In order to add descriptions of trees to LFG lexical entries, we need a suitable
language to write the descriptions in. There are a variety of different possibilities,
but here we will assume a fairly simple language based on that used in XMG
(Crabbé et al. 2013: 599), which will consist of the following:26

(36) 1. a set N of node variables
2. a set P of unary labelling predicates, including all terminal and

non-terminal labels
3. the following binary predicates:

• →, immediate dominance (the mother-of relation)
• →∗, dominance (the transitive, reflexive closure of →)
• ≺, linear precedence27

The tree in (37) can then be described by the set of constraints in (38):28

(37) S

NP VP

V

loves

NP

(38) S(𝑛1) 𝑛1 → 𝑛2 𝑛2 ≺ 𝑛3
NP(𝑛2) 𝑛1 → 𝑛3 𝑛4 ≺ 𝑛5
VP(𝑛3) 𝑛3 → 𝑛4
V(𝑛4) 𝑛3 → 𝑛5
NP(𝑛5) 𝑛4 → 𝑛6
loves(𝑛6)

However, as it stands, the constraints in (38) are too rigid. Specifically, they
will not allow adjunction at the VP node, since then at least one statement in the

26We will also assume that sufficient axioms are in place to ensure the usual well-formedness
conditions on trees, e.g. that they are singularly rooted, that branches cannot cross, etc. Rogers
(1998: 15f.) gives one such set of axioms.

27Here this is to be understood as the transitive closure of immediate linear precedence, i.e. what
Crabbé et al. (2013: 599) represent as ≺+. In other words, a node linearly precedes everything
to its right, but does not linearly precede itself.

28In descriptions, we will assume that all node variables are ultimately existentially bound.

2104



43 LFG and Tree-Adjoining Grammar

description will no longer be true: if we identify the target 𝑛3 with the root of the
adjoining tree, then 𝑛3 → 𝑛4 will no longer hold (the foot node of the auxiliary
tree will dominate 𝑛4 instead), and if we identify it with the foot node of the
adjoining tree, then 𝑛1 → 𝑛3 will not be true instead. The basic problem is that
“[t]he composition operation of adjoining creates a new structure that does not
maintain all of the properties that held in the original (fully specified) structures
of which it is composed” (Vijay-Shanker 1992: 486). What this means is that we
cannot operate with fully specified descriptions, but must make use of partial
descriptions instead.

For each nodewhere adjunction can apply, we instead describe a pair of quasi-
nodes which stand in the dominance relation (Vijay-Shanker 1992: 486ff.). That
is, instead of (38), we have (40), which is represented schematically in (39) (where
a dashed line represents dominance rather than immediate dominance):

(39) S

NP VP

VP

V

loves

NP

(40) S(𝑛1) 𝑛1 → 𝑛2 𝑛2 ≺ 𝑛3
NP(𝑛2) 𝑛1 → 𝑛3 𝑛5 ≺ 𝑛6
VP(𝑛3) 𝑛3 →∗ 𝑛4
VP(𝑛4) 𝑛4 → 𝑛5
V(𝑛5) 𝑛4 → 𝑛6
NP(𝑛6) 𝑛5 → 𝑛7
loves(𝑛7)

As elsewhere in LFG, we take the solution to a set of constraints to be theminimal
structure (or structures) which satisfies all the constraints. Since the dominance
relation is reflexive, the minimal tree which satisfies (40) remains (37), i.e. one
where we equate 𝑛3 and 𝑛4. But, crucially, if something is adjoined here, the nodes

2105



Jamie Y. Findlay

can come apart, with the result that 𝑛3 is identified with the root of the auxiliary
tree and 𝑛4 with its foot node.

Now that we have a description of this tree, we can combine it with functional
descriptions to form a full LFG lexical entry:29

(41) S(𝑛1) 𝑛1 → 𝑛2 𝑛2 ≺ 𝑛3 𝑛1𝜙 = 𝑛3𝜙
NP(𝑛2) 𝑛1 → 𝑛3 𝑛5 ≺ 𝑛6 𝑛4𝜙 = 𝑛5𝜙
VP(𝑛3) 𝑛3 →∗ 𝑛4 (𝑛5𝜙 pred) = ‘love’
VP(𝑛4) 𝑛4 → 𝑛5 (𝑛5𝜙 tense) = pres
V(𝑛5) 𝑛4 → 𝑛6 (𝑛1𝜙 subj) = 𝑛2𝜙
NP(𝑛6) 𝑛5 → 𝑛7 (𝑛4𝜙 obj) = 𝑛6𝜙
loves(𝑛7) (𝑛2𝜙 num) = sg

(𝑛2𝜙 pers) = 3
To parse a sentence, we just collect up all of the constraints associated with each
lexical item and find the minimal structures – both c-structure and f-structure –
which satisfy them.

Of course, (41) is not particularly readable, so we might prefer to collect some
parts of the description in various templates. For example, the tree for any transi-
tive verb will share most of the description in (41), so we can factor out this part
of the description, parametrising the only variable, namely the lexical anchor:

(42) TransitiveTree(𝑠, np1, vp1, vp2, v, np2, a, anchor) ≡
S(𝑠) 𝑠 → np1 np1 ≺ vp1 𝑠𝜙 = vp1𝜙
NP(np1) 𝑠 → vp1 𝑣 ≺ np2 vp2𝜙 = 𝑣𝜙
VP(vp1) vp1 →∗ vp2 (𝑠𝜙 subj) = np1𝜙
VP(vp2) vp2 → 𝑣 (vp2𝜙 obj) = np2𝜙
V(𝑣) vp2 → np2
NP(np2) 𝑣 → 𝑎
anchor(𝑎)

29Here I have kept to a more conservative annotation scheme than above, whereby e.g. lexical
contributions are associated with the f-structure of 𝑛5, i.e. the V node, rather than with that of
the root S. This is because adjunction may in principle alter the structure of the tree so that it is
no longer the case that the f-structure of the S node is the same as the f-structure of the V node.
In fact, with verbal trees like this, that will not be the case, because the only auxiliary trees
which target VPs in a TAG grammar will be auxiliary verbs or adverbial modifiers, neither
of which will break the link between V and S in terms of f-structure-identity. But it will, for
example, be relevant for verbal trees containing extraction sites, which can be targetted by
sentential embedding verbs, thereby separating the root’s f-structure from the head verb’s.

2106



43 LFG and Tree-Adjoining Grammar

We have to “expose” all nodes as parameters of the template, so that they can be
referred to by other constraints in the same lexical entry, thereby taking advan-
tage of the extended domain of locality afforded by having the description of the
whole tree in one place. However, since all of the parameters in (42) except the
lexical anchor will simply be node variables, I propose a shorthand: when calling
the template, all but the last parameter will be omitted (though, to repeat, when
defining it all the parameters must be specified); if we wish to refer to any of the
other parameters, we can do so by using the template name and suffixing it with
the appropriate parameter.30 For example, TransitiveTree.𝑠 refers to the first
parameter, a node variable which corresponds to the root node 𝑠 in (42). With
these conventions in place, we can write a more readable lexical entry for loves as
in (43), using a local name, %up, to refer to the verb’s f-structure – see Belyaev
2023a: sec. 3.2.5 [this volume] for the details on local names):31

(43) @TransitiveTree(loves)
%up = TransitiveTree.𝑣𝜙
(%up pred) = ‘love’
(%up tense) = pres
(%up subj num) = sg
(%up subj pers) = 3

One theoretical advantage of this approach is that we can build up trees from
smaller parts by making use of nested template calls. This allows us to capture
connections between phrasal configurations in a way which CFG rules do not.
For example, there is no relationship between the two rules in (44), even though
the latter is obviously partially described by the former:32

30This is based on the conventions of XMG for exported variables (Crabbé et al. 2013: 602–604).
31Here I have reverted to describing the agreement constraints on the subject via the verb’s f-
structure rather than via the NP’s, to make this lexical entry closer to the LFG standard. But
of course the option is still open to us to describe it via the tree directly, by associating Tran-
sitiveTree.np1𝜙 with a name, e.g. %subj-np, and then declaring that (%subj-np num) = sg.
Although these options are extensionally equivalent here, there can be theoretical/descriptive
reasons to prefer one over the other. Cross-linguistically, for example, we might want to treat
subject agreement as the same kind of phenomenon both in languages where phrase-structure
position is a clear guide to grammatical function (like English) and in languages where it is
not (like Warlpiri); so it would make sense to retain the standard LFG approach of describing
agreement via f-structure. But in other cases it might make more sense to refer to a particular
phrase-structure position, and the integration of an extended tree description into the lexical
entry means we now have that choice.

32Of course, we can use the convention of surrounding optional nodes in parentheses, and then
we can express the relationship between the two rules within a single phrase-structure rule as
follows:

2107



Jamie Y. Findlay

(44) a. VP ⟶ V
↑=↓

NP
(↑ obj) = ↓

b. VP ⟶ V
↑=↓

NP
(↑ obj) = ↓

NP
(↑ obj𝜃 ) = ↓

On the other hand, if we have a template DitransitiveTree which calls the
TransitiveTree template (as well as another template which adds a secondary
object), then this containment relationship is made explicit, as shown in (45).

(45) DitransitiveTree(anchor) ≡ @TransitiveTree(anchor)
@SecondaryObject

Of course the TransitiveTree template can also be decomposed into a call of
an IntransitiveTree template plus a PrimaryObject one, and so on. By con-
tinuing along these lines, we can capture all the various generalities across trees
in a template inclusion hierarchy, recreating the class hierarchies of a TAGmeta-
grammar inside an LFG grammar itself.

7.2 Implications

Having now seen how LFG and TAG can be combined, let us consider the conse-
quences of such a merger. There are several potential gains which such a move
could bring, along with several unanswered questions which require further re-
search.

Firstly, the second approach described above offers a pleasing harmonisation
of LFG lexical entries. Standard LFG lexical entries contain descriptions of all
levels of the projection architecture, but since such lexical entries are really just
context-free phrase-structure rules, the description of c-structure is limited to
information about the word itself and its mother. In contrast, descriptions of all
other levels of structure can refer to arbitrarily distant elements (via functional
uncertainty). The inclusion of tree descriptions removes this irregularity from
the grammar, since now non-local elements of c-structure can also be included.

(i) VP ⟶ V
↑= ↓

NP
(↑ obj) = ↓ ( NP

(↑ obj𝜃 ) = ↓)

However, once we move beyond simple examples like this, such an approach becomes un-
wieldy, with multiply nested parentheses and very complex disjunctions. Unlike the templatic
approach, which provides a readable front-end to the formal complexity, and allows us to rep-
resent the relationship(s) between sub-trees in an inclusion hierarchy, this approach forces us
to create fewer but more complex rules, which does nothing to aid human-readability.

2108



43 LFG and Tree-Adjoining Grammar

Secondly, we now have the opportunity to lexicalise an LFG grammar (indeed,
Findlay 2019: ch. 5 calls the description-based approach described above “Lexi-
calised LFG”). As outlined above, the extended domain of locality of a TAGmeans
that all dependencies, including long-distance ones, can be encoded locally in a
lexical entry. Lexicalisation seems a natural goal for a lexicalist theory like LFG,
and it is perhaps lamentable that it was not possible before.

Thirdly, we can now straightforwardly account for idioms (Findlay 2019: ch. 6).
These are problematic for the current leading account of constructions in LFG
(Asudeh et al. 2013), since they do not simply add additional constructional mean-
ing to existing lexical meaning, but rather replace the lexical meaning with an-
other, different meaning (that is, shooting the breeze involves neither shooting
nor a uniquely contextually salient breeze). This forces lexicalist theories like
LFG to adopt an approach which treats idioms as conspiracies of independent
lexical items that select for one another (see Findlay 2023: sec. 4.3). Such ap-
proaches face a host of problems, not least of which is that they singularly fail to
capture our intuitions about idioms – viz. that they are “things” (asWilliams 2007
puts it), and not mere epiphenomena of the grammar (see Findlay 2019: 58ff. for
discussion of various other problems). But now that we can have lexical entries
containing multiple, separable word forms, something which is not possible in
vanilla LFG, there is no obstacle to encoding multiword expressions in a single
place, thus enabling a much more satisfying analysis. Findlay (2019: ch. 3) pro-
vides detailed discussion of the need for this kind of constructional approach to
idioms, as well as arguments against other types of analysis.

Fourthly, in addition to idioms, we have a straightforward account of construc-
tional phenomena more broadly. Similar arguments can be made here about the
need for constructions to have some ontological status in the theory – to be
“things”.33 Admittedly, Asudeh et al. (2013) demonstrate that we do not need to
admit constructions as first-class entities in our theory in order to explain some
kinds of constructional effects, but they only consider constructionswhich can be
described by a single lexical entry or a single context-free phrase-structure rule,
and so the constructions in question can be described in a single place. Other
constructions require reference to wider spans of phrase structure, or require

33There is suggestive psycho- and neurolinguistic evidence that the way we process language
makes heavy use of prefabricated chunks (“prefabs”) (Pawley & Syder 1983, Wray 2002) and of
constructions more generally (Bencini & Goldberg 2000, Kaschak & Glenberg 2000, Goldwater
& Markman 2009, Pulvermüller 2010, Allen et al. 2012, Johnson & Goldberg 2012). Obviously
grammatical theory need not have anything to say about how language is processed in the
mind, but it might still be seen as an advantage if it at least makes available the kinds of
objects the mind seems to work with – e.g. constructions.

2109



Jamie Y. Findlay

the presence of multiple specific words, potentially in quite distant parts of the
phrase, and here the approach will once again have to rely on multiple interact-
ing lexical entries and phrase-structure rules which conspire to give the correct
constructional effects. Even if this gives the right results, one might, again, ob-
ject that it does so for the wrong reasons, since it fails to account for the unitary
nature of constructions as grammatical objects. By contrast, in the description-
based approach to merging TAG and LFG, although constructions are still not
added as new objects in the ontology of the theory, they nevertheless have a
kind of first-class status, since they can either be entire (complex) lexical entries
or be a part of a lexical entry in the form of a tree template which can be called
by all the different words which can fill the empty slots in the construction. See
Findlay (2023) for a broader discussion of the connection between LFG and Con-
struction Grammar, and for arguments that vanilla LFG is inadequate to give a
satisfactory analysis of certain multiword (substantive) constructions.

Alongside these advantages of combining LFG and TAG, there remain some
unexplored implications which are ripe for future work. Firstly, one of the parade
examples of LFG’s utility is in describing languages with highly flexible word or-
ders, such as Warlpiri (see e.g. Bresnan et al. 2016: ch. 1). With TAG’s focus on
configurational properties, we need to ensure that incorporating a TAG into LFG
does not undo its ability to describe these non-configurational languages. Given
the flatter tree structures generally assumed for such languages (Simpson 1991,
Austin & Bresnan 1996), a first pass solution in the present framework would
be to simply make use of looser tree descriptions, which, for example, lack lin-
ear precedence relations between a verb and its arguments, so that the the entry
for a verb does not describe a unique minimal tree, but rather several minimal
trees which represent the different orderings of arguments. Of course, these dif-
ferent orderings are not just random, and actually correspond to different infor-
mation structures, so simply allowing free choice between them is inadequate.
Instead, we should once again make use of disjunction, this time between the de-
scriptions corresponding to the different orderings of verb and arguments, where
each of the different word orders is also accompanied by the correct information-
structural annotations.

Such languages also often permit discontinuous constituents, and these will
require their own solution. For example, some adjuncts might be represented not
as auxiliary trees that induce a more articulated structure, but rather as simpler
trees whose root merely unifies with another node, such as the clausal root S,
adding the adjunct as a sister to the existing daughters. Obviously this sketch
needs to be developed into a fully fleshed-out proposal beforewe can be confident
that no analytical clout has been lost.

2110



43 LFG and Tree-Adjoining Grammar

Another open question arises from the fact that using a TAG as the basis of
the c-structure component means that we can employ adjunction to account for
long-distance dependencies. This then removes a foundational motivation for
functional uncertainty (Kaplan & Zaenen 1989), one of the major sources of for-
mal complexity in LFG. Unfortunately, this does not mean we can simply re-
move functional uncertainty from the formalism, since it has been employed
by researchers in various other domains beyond filler-gap dependencies – most
notably in LFG’s binding theory (e.g. Dalrymple 1993, Dalrymple et al. 2018). De-
termining whether these analyses can be reformulated so that functional uncer-
tainty could be done away with altogether remains a task for future work, per-
haps drawing on existing TAG analyses of binding (e.g. Ryant & Scheffler 2006,
Champollion 2008, Storoshenko et al. 2008, Storoshenko & Han 2013).

Lastly, including a description of a tree which incorporates the full extended
projection of a predicate in its lexical entry means that we can take a rather dif-
ferent view of argument structure. A predicate’s arguments and the possibilities
for their realisation can be encoded directly in its lexical entry, rather than rely-
ing on a separate level of representation like a-structure (on which see Findlay
et al. 2023 [this volume]). And alternative argument realisations, e.g. diathesis
alternations, can be expressed through disjunctive templates, as discussed above
in parallel with XMG, rather than through a separate mechanism of mapping
between a-structure and f-structure. Work on developing templatic approaches
to argument structure include Asudeh & Giorgolo (2012), Findlay (2016, 2020),
and Przepiórkowski (2017), but these do not take c-structure into account: with
the new TAG perspective, the phrase-structural effects of argument structure/
mapping phenomena can also be directly expressed.

8 Conclusion

Tree-Adjoining Grammar offers a rather different perspective on some gram-
matical phenomena from that of CFG-based formalisms.34 For instance, it allows
us to describe constraints on filler-gap relationships via the structure of the el-
ementary trees in the grammar rather than via an independent principle like
Subjacency. It also provides a natural account of the fact that many “lexical”
items in fact incorporate several distinct word forms (e.g. phrasal verbs, com-
pounds, idioms), and of constructional meaning, by virtue of its expanded con-
cept of locality. And, computationally speaking, it possesses just the right degree

34TAG has also played an important role outside of theoretical linguistics – specifically in both
computational linguistics (see e.g. Kallmeyer et al. 2008, Kasai et al. 2017, Koller 2017) and
psycholinguistics (see e.g. Ferreira 2000, Ferreira et al. 2004).

2111



Jamie Y. Findlay

of context-sensitivity to account for natural languages while remaining parsable
in polynomial time. Nonetheless, its representation of dependency structures is
imperfect, and its focus on the primacy of phrase structure leaves it somewhat
impoverished when compared to the richly expressive parallel projection archi-
tecture of LFG, which facilitates a much fuller view of the grammar as a whole.
Combining the two approaches might therefore offer a tempting opportunity to
acquire the best of both worlds. In Section 7 we saw how this could be achieved,
and the possibilities this affords for LFG, both in terms of descriptive power and
in terms of potentially further-reaching formal or architectural changes.

Acknowledgements

Much of this work stems frommyD.Phil. thesis (Findlay 2019), whichwas funded
by a UKArts and Humanities Research Council studentship (grant reference AH/
L503885/1), and for which I am indebted to my fantastic supervisors, Ash Asudeh
and Mary Dalrymple. The writing of this chapter was completed while I was em-
ployed under a Norwegian Research Council grant (number 300495, “Universal
Natural Language Understanding”), which I gratefully acknowledge.

References

Abeillé, Anne. 1988. Parsing French with Tree Adjoining Grammar: Some lin-
guistic accounts. In COLING ’88: Proceedings of the 12th Conference on Compu-
tational Linguistics, 7–12. Budapest. DOI: 10.3115/991635.991637.

Abeillé, Anne. 1995. The flexibility of French idioms: A representation with Lexi-
calized Tree Adjoining Grammar. In Martin Everaert, Erik-Jan van der Linden,
André Schenk & Rob Schreuder (eds.), Idioms: Structural and psychological per-
spectives, 15–42. Hove: Lawrence Erlbaum Associates.

Abeillé, Anne &Owen Rambow. 2000. Tree Adjoining Grammar: An overview. In
Anne Abeillé & Owen Rambow (eds.), Tree Adjoining Grammars: Formalisms,
linguistic analysis and processing, 1–68. Stanford: CSLI Publications.

Abeillé, Anne, Yves Schabes & Aravind K. Joshi. 1990. Using Lexicalized TAGs
for machine translation. In COLING ’90: Proceedings of the 13th Conference on
Computational Linguistics, vol. 3, 1–6. DOI: 10.3115/991146.991147.

Allen, Kachina, Francisco Pereira, Matthew Botvinick & Adele E. Goldberg. 2012.
Distinguishing grammatical constructions with fMRI pattern analysis. Brain
and Language 123(3). 174–182. DOI: 10.1016/j.bandl.2012.08.005.

2112

https://doi.org/10.3115/991635.991637
https://doi.org/10.3115/991146.991147
https://doi.org/10.1016/j.bandl.2012.08.005


43 LFG and Tree-Adjoining Grammar

Asudeh, Ash. 2012. The logic of pronominal resumption (Oxford Studies in The-
oretical Linguistics). Oxford: Oxford University Press. DOI: 10 . 1093 /acprof :
oso/9780199206421.001.0001.

Asudeh, Ash. 2023. Glue semantics. InMary Dalrymple (ed.),Handbook of Lexical
Functional Grammar, 651–697. Berlin: Language Science Press. DOI: 10.5281/
zenodo.10185964.

Asudeh, Ash, Mary Dalrymple & Ida Toivonen. 2013. Constructions with Lexical
Integrity. Journal of Language Modelling 1(1). 1–54. DOI: 10.15398/jlm.v1i1.56.

Asudeh, Ash & Gianluca Giorgolo. 2012. Flexible composition for optional and
derived arguments. In Miriam Butt & Tracy Holloway King (eds.), Proceedings
of the LFG ’12 conference, 64–84. Stanford: CSLI Publications.

Austin, Peter K. & Joan Bresnan. 1996. Non-configurationality in Australian abo-
riginal languages. Natural Language & Linguistic Theory 14(2). 215–268. DOI:
10.1007/bf00133684.

Bach, Emmon W. 1976. An extension of classical transformational grammar. In
Jerrold M. Sadock, David J. Dwyer, Seok C. Song & Emmon Bach (eds.), Prob-
lems in linguistic metatheory: Proceedings of the 1976 conference, 183–224. East
Lansing, MI: Michigan State University.

Bach, Emmon W. 1981. Discontinuous constituents in generalized categorial
grammars. In V. A. Burke & James Pustejovsky (eds.), Proceedings of the 11th an-
nual meeting of the North Eastern Linguistics Society, 1–12. Amherst: Graduate
Linguistics Student Association of the University of Massachusetts, Amherst.

Baker, Mark C. 2008. The macroparameter in a microparametric world. In
Theresa Biberauer (ed.), The limits of syntactic variation, 351–374. Philadelphia:
John Benjamins. DOI: 10.1075/la.132.16bak.

Bangalore, Srinivas. 1997. Complexity of lexical descriptions and its relevance for
partial parsing. University of Pennsylvania. (Doctoral dissertation).

Bangalore, Srinivas & Aravind K. Joshi. 2010. Introduction. In Srinivas Bangalore
& Aravind K. Joshi (eds.), Supertagging: Using complex lexical descriptions in
natural language processing, 1–31. Cambridge, MA: The MIT Press. DOI: 10 .
7551/mitpress/8370.003.0004.

Becker, Tilman. 1994. HyTAG: A new type of Tree Adjoining Grammars for hybrid
syntactic representations of free word order languages. Saarbrücken: Universität
des Saarlandes. (Doctoral dissertation). http://www.dfki.de/~becker/becker.
diss.ps.gz.

Belyaev, Oleg. 2023a. Core concepts of LFG. In Mary Dalrymple (ed.), Handbook
of Lexical Functional Grammar, 23–96. Berlin: Language Science Press. DOI:
10.5281/zenodo.10185936.

2113

https://doi.org/10.1093/acprof:oso/9780199206421.001.0001
https://doi.org/10.1093/acprof:oso/9780199206421.001.0001
https://doi.org/10.5281/zenodo.10185964
https://doi.org/10.5281/zenodo.10185964
https://doi.org/10.15398/jlm.v1i1.56
https://doi.org/10.1007/bf00133684
https://doi.org/10.1075/la.132.16bak
https://doi.org/10.7551/mitpress/8370.003.0004
https://doi.org/10.7551/mitpress/8370.003.0004
http://www.dfki.de/~becker/becker.diss.ps.gz
http://www.dfki.de/~becker/becker.diss.ps.gz
https://doi.org/10.5281/zenodo.10185936


Jamie Y. Findlay

Belyaev, Oleg. 2023b. Introduction to LFG. In Mary Dalrymple (ed.), Handbook
of Lexical Functional Grammar, 3–22. Berlin: Language Science Press. DOI: 10.
5281/zenodo.10185934.

Bencini, Giulia M. L. & Adele E. Goldberg. 2000. The contribution of argument
structure constructions to sentencemeaning. Journal of Memory and Language
43(4). 640–651. DOI: 10.1006/jmla.2000.2757.

Berwick, Robert C. 1982. Computational complexity and Lexical-Functional
Grammar. American Journal of Computational Linguistics 8(3–4). 97–109. DOI:
10.3115/981923.981926.

Boas, Hans C. & Ivan A. Sag (eds.). 2012. Sign-Based Construction Grammar. Stan-
ford: CSLI Publications.

Borer, Hagit. 1984. Parametric syntax: Case studies in Semitic and Romance lan-
guages (Studies in Generative Grammar 13). Dordrecht: Foris Publications.
DOI: 10.1515/9783110808506.

Bresnan, Joan, Ash Asudeh, Ida Toivonen & Stephen Wechsler. 2016. Lexical-
Functional Syntax. 2nd edn. (Blackwell Textbooks in Linguistics 16). Malden,
MA: Wiley-Blackwell.

Bresnan, Joan, Ronald M. Kaplan, Stanley Peters & Annie Zaenen. 1982. Cross-
serial dependencies in Dutch. Linguistic Inquiry 13(4). 613–635. https://www.
jstor.org/stable/4178298. Reprinted in Savitch, Bach, Marsh & Safran-Naveh
(1987: 286-319).

Burheim, Tore. 1996. Aspects of merging Lexical-Functional Grammar with Lex-
icalized Tree-Adjoining Grammar. Unpublished manuscript, University of
Bergen.

Candito, Marie-Hélène. 1996. A principle-based hierarchical representation of
LTAGs. In COLING ’96: Proceedings of the 16th Conference on Computational
Linguistics, 194–199. DOI: 10.3115/992628.992664.

Candito, Marie-Hélène. 1999. Représentation modulaire et paramétrable de gram-
maires électroniques lexicalisées : application au français et à l’italien. Université
Paris 7. (Doctoral dissertation).

Champollion, Lucas. 2008. Binding theory in LTAG. In Proceedings of the Ninth
International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+9), 1–8. Tübingen: Association for Computational Linguistics. https://
aclanthology.org/W08-2301.

Chomsky, Noam. 1956. Three models for the description of language. IRE Trans-
actions on Information Theory 2(3). 113–124. DOI: 10.1109/tit.1956.1056813.

Chomsky, Noam. 1970. Remarks on nominalization. In Roderick A. Jacobs & Peter
S. Rosenbaum (eds.), Readings in English transformational grammar, 184–221.
Waltham, MA: Ginn.

2114

https://doi.org/10.5281/zenodo.10185934
https://doi.org/10.5281/zenodo.10185934
https://doi.org/10.1006/jmla.2000.2757
https://doi.org/10.3115/981923.981926
https://doi.org/10.1515/9783110808506
https://www.jstor.org/stable/4178298
https://www.jstor.org/stable/4178298
https://doi.org/10.3115/992628.992664
https://aclanthology.org/W08-2301
https://aclanthology.org/W08-2301
https://doi.org/10.1109/tit.1956.1056813


43 LFG and Tree-Adjoining Grammar

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: The MIT Press.
DOI: 10.7551/mitpress/9780262527347.001.0001.

Clément, Lionel & Alexandra Kinyon. 2003a. Generating LFGs with a MetaGram-
mar. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’03
conference, 105–125. Stanford: CSLI Publications.

Clément, Lionel & Alexandra Kinyon. 2003b. Generating parallel multilingual
LFG-TAG grammars from a metagrammar. In Proceedings of the 41st annual
meeting of the Association for Computational Linguistics, 184–191. DOI: 10.3115/
1075096.1075120.

Crabbé, Benoît, Denys Duchier, Claire Gardent, Joseph Le Roux & Yannick
Parmentier. 2013. XMG: eXtensible MetaGrammar. Computational Linguistics
39(3). 591–629. DOI: 10.1162/COLI\_a\_00144.

Crouch, Richard,MaryDalrymple, RonaldM. Kaplan, TracyHollowayKing, John
T. III Maxwell & Paula S. Newman. 2011. XLE Documentation. Xerox Palo Alto
Research Center. Palo Alto, CA. https : / / ling . sprachwiss .uni - konstanz .de /
pages/xle/doc/xle_toc.html.

Dalrymple, Mary. 1993. The syntax of anaphoric binding. Stanford: CSLI Publica-
tions.

Dalrymple, Mary. 2001. Lexical Functional Grammar (Syntax and Semantics 34).
New York: Academic Press. DOI: 10.1163/9781849500104.

Dalrymple, Mary, Dag T. Haug & John J. Lowe. 2018. Integrating LFG’s binding
theory with PCDRT. Journal of Language Modelling 6(1). 87–129. DOI: 10.15398/
jlm.v6i1.204.

Dalrymple, Mary, Ronald M. Kaplan & Tracy Holloway King. 2004. Linguistic
generalizations over descriptions. In Miriam Butt & Tracy Holloway King
(eds.), Proceedings of the LFG ’04 conference, 199–208. Stanford: CSLI Publica-
tions.

Dalrymple, Mary, Ronald M. Kaplan, John T. III Maxwell & Annie Zaenen (eds.).
1995. Formal issues in Lexical-Functional Grammar. Stanford: CSLI Publica-
tions.

Dalrymple, Mary, John J. Lowe& LouiseMycock. 2019. The Oxford reference guide
to Lexical Functional Grammar. Oxford: Oxford University Press. DOI: 10.1093/
oso/9780198733300.001.0001.

Di Sciullo, Anna Maria & Edwin Williams. 1987. On the definition of word (Lin-
guistic Inquiry Monographs 14). Cambridge, MA: The MIT Press.

Eisner, Jason & Giorgio Satta. 2000. A faster parsing algorithm for Lexicalized
Tree-Adjoining Grammars. In Proceedings of the Fifth International Workshop
on Tree Adjoining Grammar and Related Frameworks (TAG+5), 79–84. Univer-
sité Paris 7. http://aclweb.org/anthology/W00-2011.

2115

https://doi.org/10.7551/mitpress/9780262527347.001.0001
https://doi.org/10.3115/1075096.1075120
https://doi.org/10.3115/1075096.1075120
https://doi.org/10.1162/COLI\_a\_00144
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://doi.org/10.1163/9781849500104
https://doi.org/10.15398/jlm.v6i1.204
https://doi.org/10.15398/jlm.v6i1.204
https://doi.org/10.1093/oso/9780198733300.001.0001
https://doi.org/10.1093/oso/9780198733300.001.0001
http://aclweb.org/anthology/W00-2011


Jamie Y. Findlay

Ferreira, Fernanda. 2000. Syntax in language production: An approach using
Tree-Adjoining Grammars. In Linda Wheeldon (ed.), Aspects of language pro-
duction, 291–330. Hove: Psychology Press.

Ferreira, Fernanda, Ellen F. Lau & Karl G. D. Bailey. 2004. Disfluencies, language
comprehension, and Tree Adjoining Grammars. Cognitive Science 28(5). 721–
749. DOI: 10.1207/s15516709cog2805_5.

Fillmore, Charles J., Paul Kay & Mary Catherine O’Connor. 1988. Regularity and
idiomaticity in grammatical constructions: The case of let alone. Language 64.
501–538.

Findlay, Jamie Y. 2016. Mapping theory without argument structure. Journal of
Language Modelling 4(2). 293–338. DOI: 10.15398/jlm.v4i2.171.

Findlay, Jamie Y. 2017a. Multiword expressions and lexicalism. In Miriam Butt
& Tracy Holloway King (eds.), Proceedings of the LFG ’17 conference, 200–229.
Stanford: CSLI Publications.

Findlay, Jamie Y. 2017b. Multiword expressions and lexicalism: The view from
LFG. In Proceedings of the 13thWorkshop on Multiword Expressions (MWE 2017),
73–79. Valencia, Spain: Association for Computational Linguistics. http : / /
aclweb.org/anthology/W17-1709.

Findlay, Jamie Y. 2019. Multiword expressions and the lexicon. Oxford: University
of Oxford. (D.Phil. Thesis).

Findlay, Jamie Y. 2020. Mapping Theory and the anatomy of a verbal lexical entry.
InMiriamButt & Ida Toivonen (eds.), Proceedings of the LFG ’20 conference, 127–
147. Stanford: CSLI Publications.

Findlay, Jamie Y. 2023. Lexical Functional Grammar as a Construction Grammar.
To appear in Journal of Language Modelling 11(2).

Findlay, Jamie Y., Roxanne Taylor & Anna Kibort. 2023. Argument structure
and mapping theory. In Mary Dalrymple (ed.), Handbook of Lexical Functional
Grammar, 699–778. Berlin: Language Science Press. DOI: 10 . 5281 / zenodo .
10185966.

Frank, Anette & Josef van Genabith. 2001. GlueTag: Linear logic based seman-
tics for LTAG – and what it teaches us about LFG and LTAG. In Miriam Butt
& Tracy Holloway King (eds.), Proceedings of the LFG ’01 conference, 104–126.
Stanford: CSLI Publications.

Gardent, Claire & Laura Kallmeyer. 2003. Semantic construction in feature-based
TAG. In Proceedings of the 10th conference of the European chapter of the ACL
(EACL ’03), vol. 1, 123–130. DOI: 10.3115/1067807.1067825.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum & Ivan A. Sag. 1985. Generalized
Phrase Structure Grammar. Cambridge, MA: Harvard University Press.

2116

https://doi.org/10.1207/s15516709cog2805_5
https://doi.org/10.15398/jlm.v4i2.171
http://aclweb.org/anthology/W17-1709
http://aclweb.org/anthology/W17-1709
https://doi.org/10.5281/zenodo.10185966
https://doi.org/10.5281/zenodo.10185966
https://doi.org/10.3115/1067807.1067825


43 LFG and Tree-Adjoining Grammar

Goldberg, Adele E. 1995. Constructions: A Construction Grammar approach to ar-
gument structure. Chicago: University of Chicago Press.

Goldberg, Adele E. 2006. Constructions at work: The nature of generalization in
language. Oxford: Oxford University Press.

Goldwater, Micah B. & Arthur B. Markman. 2009. Constructional sources of im-
plicit agents in sentence comprehension. Cognitive Linguistics 20(4). 675–702.
DOI: 10.1515/COGL.2009.029.

Gorn, Saul. 1967. Explicit definitions and linguistic dominoes. In John Francis
Hart & Satoru Takasu (eds.), Systems and computer science, 77–115. University
of Toronto Press. DOI: 10.3138/9781487592769-008.

Greibach, Sheila A. 1965. A new normal-form theorem for context-free phrase
structure grammars. Journal of the Association for Computing Machinery 12(1).
42–52. DOI: 10.1145/321250.321254.

Grimshaw, Jane. 2000. Locality and extended projection. In Peter Coopmans,
Martin Everaert & Jane Grimshaw (eds.), Lexical specification and insertion,
115–133. Amsterdam/Philadelphia: John Benjamins. DOI: 10.1075/cilt.197.07gri.

Grimshaw, Jane. 2005. Extended projection. In Words and structure, 1–74. Stan-
ford: CSLI Publications. Published version of 1991 manuscript by the same
name.

Harris, Zellig. 1946. From morpheme to utterance. Language 22(3). 161–183. DOI:
10.2307/410205. Reprinted in Joos (ed) (1957), Readings In Structural Linguistics,
University of Chicago Press, 142–153.

Haug, Dag. 2023a. Agreement. In Mary Dalrymple (ed.), Handbook of Lexical
Functional Grammar, 193–218. Berlin: Language Science Press. DOI: 10.5281/
zenodo.10185942.

Haug, Dag. 2023b. LFG and Dependency Grammar. In Mary Dalrymple (ed.),
Handbook of Lexical Functional Grammar, 1829–1859. Berlin: Language Science
Press. DOI: 10.5281/zenodo.10186040.

Hoffmann, Thomas&Graeme Trousdale (eds.). 2013. The Oxford handbook of Con-
struction Grammar. Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/
9780195396683.001.0001.

Johnson, Matthew A. & Adele E. Goldberg. 2012. Evidence for automatic access-
ing of constructional meaning: Jabberwocky sentences prime associated verbs.
Language and Cognitive Processes 28(10). 1–14. DOI: 10 . 1080 /01690965 .2012 .
717632.

Joshi, Aravind K. 1985. Tree adjoining grammars: How much context-sensitivity
is required to provide reasonable structural descriptions? In David R. Dowty,
Lauri Karttunen & Arnold M. Zwicky (eds.), Natural language parsing: Psycho-

2117

https://doi.org/10.1515/COGL.2009.029
https://doi.org/10.3138/9781487592769-008
https://doi.org/10.1145/321250.321254
https://doi.org/10.1075/cilt.197.07gri
https://doi.org/10.2307/410205
https://doi.org/10.5281/zenodo.10185942
https://doi.org/10.5281/zenodo.10185942
https://doi.org/10.5281/zenodo.10186040
https://doi.org/10.1093/oxfordhb/9780195396683.001.0001
https://doi.org/10.1093/oxfordhb/9780195396683.001.0001
https://doi.org/10.1080/01690965.2012.717632
https://doi.org/10.1080/01690965.2012.717632


Jamie Y. Findlay

logical, computational, and theoretical perspectives, 206–250. Cambridge, UK:
Cambridge University Press.

Joshi, Aravind K. 1987. An introduction to Tree Adjoining Grammars. In Alexis
Manaster-Ramer (ed.), Mathematics of language: Proceedings of a conference
held at the University of Michigan, Ann Arbor, October 1984, 87–114. Amsterdam:
John Benjamins. DOI: 10.1075/z.35.07jos.

Joshi, Aravind K. 2005. Tree-adjoining grammars. In Ruslan Mitkov (ed.), The Ox-
ford handbook of computational linguistics, 1st edn., 483–498. Oxford: Oxford
University Press. DOI: 10.1093/oxfordhb/9780199276349.013.0026.

Joshi, Aravind K., Leon S. Levy & Masako Takahashi. 1975. Tree adjunct gram-
mars. Journal of Computer and System Sciences 10(1). 136–163. DOI: 10 . 1016 /
S0022-0000(75)80019-5.

Joshi, Aravind K. & Yves Schabes. 1997. Tree-Adjoining Grammars. In Grzegorz
Rozenberg & Arto Salomaa (eds.),Handbook of formal languages, vol. 3: Beyond
words, 69–123. Berlin: Springer.

Joshi, Aravind K. & K. Vijay-Shanker. 2001. Compositional semantics with Lex-
icalized Tree-Adjoining Grammar (LTAG): How much underspecification is
necessary? In Harry Bunt, ReinhardMuskens & Elias Thijsse (eds.),Computing
meaning, vol. 2 (Studies in Linguistics and Philosophy 77), 147–163. Dordrecht:
Springer. DOI: 10.1007/978-94-010-0572-2_9.

Joshi, Aravind K., K. Vijay-Shanker & David Weir. 1991. The convergence
of mildly context-sensitive formalisms. In Peter Sells, Stuart M. Shieber &
ThomasWasow (eds.), Foundational issues in natural language processing. Cam-
bridge, MA: The MIT Press.

Joshi, Aravind K. & Takashi Yokomori. 1983. Parsing of tree adjoining grammars.
Tech. rep. Department of Computer & Information Science, University of Penn-
sylvania.

Kallmeyer, Laura. 2001. Local tree description grammars. Grammars 4. 85–137.
Kallmeyer, Laura. 2010. Parsing beyond context-free grammars. Berlin: Springer.

DOI: 10.1007/978-3-642-14846-0.
Kallmeyer, Laura & Aravind K. Joshi. 2003. Factoring predicate argument and

scope semantics: underspecified semantics with LTAG. Research on Language
and Computation 1(1–2). 3–58. DOI: 10.1023/A:1024564228892.

Kallmeyer, Laura & Marco Kuhlmann. 2012. A formal model for plausible de-
pendencies in lexicalized tree adjoining grammar. In Proceedings of the 11th
International Workshop on Tree Adjoining Grammars and Related Formalisms
(TAG+11), 108–116. Paris. https://aclanthology.org/W12-4613.

2118

https://doi.org/10.1075/z.35.07jos
https://doi.org/10.1093/oxfordhb/9780199276349.013.0026
https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1007/978-94-010-0572-2_9
https://doi.org/10.1007/978-3-642-14846-0
https://doi.org/10.1023/A:1024564228892
https://aclanthology.org/W12-4613


43 LFG and Tree-Adjoining Grammar

Kallmeyer, Laura, Timm Lichte, Wolfgang Maier, Yannick Parmentier, Johannes
Dellert & Kilian Evang. 2008. TuLiPA: Towards a multi-formalism parsing
environment for grammar engineering. In Stephen Clark & Tracy Holloway
King (eds.), Proceedings of the workshop on Grammar Engineering Across Frame-
works (GEAF08), 1–8. Association for Computational Linguistics. https://www.
aclweb.org/anthology/W08-1701.pdf.

Kallmeyer, Laura & Rainer Osswald. 2013. Syntax-driven semantic frame compo-
sition in Lexicalized Tree Adjoining Grammars. Journal of Language Modelling
1(2). 267–330. DOI: 10.15398/jlm.v1i2.61.

Kallmeyer, Laura & Maribel Romero. 2004. LTAG semantics with semantic unifi-
cation. In TAG+7: Seventh International Workshop on Tree Adjoining Grammar
and Related Formalisms, 155–162. Vancouver. https://aclanthology.org/W04-
3321.

Kallmeyer, Laura & Maribel Romero. 2008. Scope and situation binding in LTAG
using semantic unification. Research on Language and Computation 6(1). 3–52.
DOI: 10.1007/s11168-008-9046-6.

Kameyama, Megumi. 1986. Characterising Lexical Functional Grammar (LFG) in
terms of Tree Adjoining Grammar (TAG). Unpublished manuscript, Depart-
ment of Computer and Information Science, University of Pennsylvania.

Kanazawa, Makoto & Sylvain Salvati. 2012. MIX is not a tree-adjoining language.
In Proceedings of the 50th annual meeting of the Association for Computational
Linguistics, 666–674. Association for Computational Linguistics. https://www.
aclweb.org/anthology/P12-1070.

Kaplan, Ronald M. 1989. The formal architecture of Lexical-Functional Grammar.
Journal of Information Science and Engineering 5. 305–322. Revised version pub-
lished as Kaplan (1995).

Kaplan, Ronald M. 1995. The formal architecture of Lexical-Functional Grammar.
In Mary Dalrymple, Ronald M. Kaplan, John T. III Maxwell & Annie Zaenen
(eds.), Formal issues in Lexical-Functional Grammar, 7–27. Stanford: CSLI Pub-
lications. Earlier version published as Kaplan (1989).

Kaplan, Ronald M. & Joan Bresnan. 1982. Lexical-Functional Grammar: A formal
system for grammatical representation. In Joan Bresnan (ed.), The mental rep-
resentation of grammatical relations, 173–281. Cambridge, MA: The MIT Press.
Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen (1995: 29–130).

Kaplan, Ronald M., John T. III Maxwell & Annie Zaenen. 1987. Functional uncer-
tainty. In CSLI Publications Monthly Newsletter. Stanford: Stanford University.

Kaplan, Ronald M. & Paula S. Newman. 1997. Lexical resource reconciliation in
the Xerox Linguistic Environment. In Proceedings of the ACL workshop on Com-

2119

https://www.aclweb.org/anthology/W08-1701.pdf
https://www.aclweb.org/anthology/W08-1701.pdf
https://doi.org/10.15398/jlm.v1i2.61
https://aclanthology.org/W04-3321
https://aclanthology.org/W04-3321
https://doi.org/10.1007/s11168-008-9046-6
https://www.aclweb.org/anthology/P12-1070
https://www.aclweb.org/anthology/P12-1070


Jamie Y. Findlay

putational Environments for Grammar Development and Engineering. Associa-
tion for Computational Linguistics.

Kaplan, Ronald M. & Jürgen Wedekind. 2023. Formal and computational proper-
ties of LFG. In Mary Dalrymple (ed.),Handbook of Lexical Functional Grammar,
1035–1082. Berlin: Language Science Press. DOI: 10.5281/zenodo.10185982.

Kaplan, Ronald M. & Annie Zaenen. 1989. Long-distance dependencies, con-
stituent structure, and functional uncertainty. In Mark Baltin & Anthony
Kroch (eds.), Alternative conceptions of phrase structure, 17–42. Chicago: Uni-
versity of Chicago Press. Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen
(1995: 137–165).

Kasai, Jungo, Bob Frank, Tom McCoy, Owen Rambow & Alexis Nasr. 2017. TAG
parsing with neural networks and vector representations of supertags. In Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, 1712–1722. Copenhagen: Association for Computational Linguistics.
DOI: 10.18653/v1/D17-1180. http://aclweb.org/anthology/D17-1180.

Kaschak, Michael P. & Arthur M. Glenberg. 2000. Constructing meaning: The
role of affordances and grammatical constructions in sentence comprehension.
Journal of Memory and Language 43(3). 508–529. DOI: 10.1006/jmla.2000.2705.

Kay, Paul & Charles J. Fillmore. 1999. Grammatical constructions and linguistic
generalizations: The What’s X doing Y? construction. Language 75. 1–33.

Kinyon, Alexandra. 2000. Hypertags. InCOLING 2000: The 18th International Con-
ference on Computational Linguistics, vol. 1. DOI: 10.3115/990820.990885.

Koller, Alexander. 2017. A feature structure algebra for FTAG. In Proceedings of
the 13th International Workshop on Tree Adjoining Grammars and Related For-
malisms (TAG+13). https://www.aclweb.org/anthology/W17-6201.

Kroch, Anthony. 1987. Unbounded dependencies and subjacency in a Tree Ad-
joining Grammar. In Alexis Manaster-Ramer (ed.), Mathematics of language:
Proceedings of a conference held at the University of Michigan, Ann Arbor, Octo-
ber 1984, 143–172. Amsterdam: John Benjamins. DOI: 10.1075/z.35.09kro.

Kroch, Anthony & Aravind K. Joshi. 1985. The linguistic relevance of Tree Adjoin-
ing Grammar. Tech. rep. MC-CS-85-16. Department of Computer & Informa-
tion Sciences, University of Pennsylvania.

Kuhlmann, Marco. 2010. Dependency structures and lexicalized grammars: An al-
gebraic approach. Berlin: Springer. DOI: 10.1007/978-3-642-14568-1.

Lev, Iddo. 2007. Packed computation of exact meaning representations. Stanford:
Stanford University. (Doctoral dissertation).

Lichte, Timm & Laura Kallmeyer. 2017. Tree-Adjoining Grammar: A tree-based
constructionist grammar framework for natural language understanding. In
Proceedings of the AAAI 2017 Spring Symposium on Computational Construction

2120

https://doi.org/10.5281/zenodo.10185982
https://doi.org/10.18653/v1/D17-1180
http://aclweb.org/anthology/D17-1180
https://doi.org/10.1006/jmla.2000.2705
https://doi.org/10.3115/990820.990885
https://www.aclweb.org/anthology/W17-6201
https://doi.org/10.1075/z.35.09kro
https://doi.org/10.1007/978-3-642-14568-1


43 LFG and Tree-Adjoining Grammar

Grammar and Natural Language Understanding (Technical Report SS-17-02),
205–212. Association for the Advancement of Artificial Intelligence. https://
www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewFile/15330/14536.

Maxwell, John T. III & Ronald M. Kaplan. 1989. An overview of disjunctive con-
straint satisfaction. In Proceedings of the 4th International Workshop on Parsing
Technologies (IWPT 1995), 18–27. Also published in Tomita (1991) as ‘A Method
for Disjunctive Constraint Satisfaction’, and reprinted in Dalrymple, Kaplan,
Maxwell & Zaenen (1995: 381–402).

Maxwell, John T. III & Ronald M. Kaplan. 1993. The interface between phrasal
and functional constraints. Computational Linguistics 19. 571–590.

Maxwell, John T. III & Ronald M. Kaplan. 1996. Unification-based parsers that
automatically take advantage of context freeness. In Miriam Butt & Tracy Hol-
loway King (eds.), Proceedings of the LFG ’96 conference, 1–31. Stanford: CSLI
Publications.

McCawley, James D. 1968. Concerning the base component of a transformational
grammar. Foundations of Language 4(3). 243–269.

Mel’čuk, Igor A. 1988. Dependency syntax: Theory and practice. Albany, NY: State
University of New York Press.

Müller, Stefan & Stephen Wechsler. 2014. Lexical approaches to argument struc-
ture. Theoretical Linguistics 40(1–2). 1–76. DOI: 10.1515/tl-2014-0001.

Nakanishi, Ryuichi, Hiroyuki Seki & Tadao Kasami. 1992. On the generative ca-
pacity of Lexical-Functional Grammars. IEICE Transactions on Information and
Systems E75-D(4). 509–516. https://search.ieice.org/bin/summary.php?id=e75-
d_4_509.

Nederhof, Mark-Jan. 2016. A short proof that O2 is an MCFL. In Proceedings of
the 54th annual meeting of the Association for Computational Linguistics, 1117–
1126. Association for Computational Linguistics. https : / /www.aclweb .org /
anthology/P16-1106.

Nesson, Rebecca & Stuart M. Shieber. 2006. Simpler TAG semantics through syn-
chronization. In Shuly Wintner (ed.), Proceedings of the 11th Conference on For-
mal Grammar (FG 2006), 129–142. Stanford: CSLI Publications. https : / / csli -
publications.stanford.edu/FG/2006/nesson.pdf.

Nesson, Rebecca & Stuart M. Shieber. 2007. Extraction phenomena in syn-
chronous TAG syntax and semantics. In Dekai Wu & David Chiang (eds.),
Proceedings of the Workshop on Syntax and Structure in Statistical Translation.
Rochester, New York, 26 April 2007.

Nesson, Rebecca & Stuart M. Shieber. 2008. Synchronous vector-TAG for natural
language syntax and semantics. In Proceedings of the Ninth International Work-

2121

https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewFile/15330/14536
https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewFile/15330/14536
https://doi.org/10.1515/tl-2014-0001
https://search.ieice.org/bin/summary.php?id=e75-d_4_509
https://search.ieice.org/bin/summary.php?id=e75-d_4_509
https://www.aclweb.org/anthology/P16-1106
https://www.aclweb.org/anthology/P16-1106
https://csli-publications.stanford.edu/FG/2006/nesson.pdf
https://csli-publications.stanford.edu/FG/2006/nesson.pdf


Jamie Y. Findlay

shop on Tree Adjoining Grammars and Related Formalisms (TAG+ 9). Tübingen.
http://tagplus9.cs.sfu.ca/papers/NessonShieber.pdf.

Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Ha-
jič, Christopher D. Manning, RyanMcDonald, Slav Petrov, Sampo Pyysalo, Na-
talia Silveira, Reut Tsarfaty & Daniel Zeman. 2016. Universal Dependencies v1:
A multilingual treebank collection. In Proceedings of the 10th International Con-
ference on Language Resources and Evaluation (LREC’16), 1659–1666. Portorož:
European Language Resources Association (ELRA). https://aclanthology.org/
L16-1262.

Partee, Barbara H., Alice ter Meulen & Robert E. Wall. 1990. Mathematical meth-
ods in linguistics. Dordrecht: Kluwer Academic Publishers. DOI: 10.1007/978-
94-009-2213-6.

Pawley, Andrew & Frances Hodgetts Syder. 1983. Two puzzles for linguistic the-
ory: Nativelike selection and nativelike fluency. In Jack C. Richards & Richard
W. Schmidt (eds.), Language and communication, 191–226. London: Longman.

Peters, Stanley&R.W. Ritchie. 1973. On the generative power of transformational
grammars. Information Sciences 6. 49–83. DOI: 10.1016/0020-0255(73)90027-3.

Pollard, Carl. 1997. The nature of constraint-based grammar. Linguistic Research
15. 1–18. http://isli.khu.ac.kr/journal/content/data/15/1.pdf.

Pollard, Carl & Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.
Chicago: University of Chicago Press & CSLI Publications.

Przepiórkowski, Adam. 2017. A full-fledged hierarchical lexicon in LFG: The
FrameNet approach. In Victoria Rosén & Koenraad De Smedt (eds.), The very
model of a modern linguist – In honor of Helge Dyvik, 202–219. Bergen: Bergen
Language & Linguistics Studies (BeLLS). DOI: 10.15845/bells.v8i1.1336.

Pullum, Geoffrey K. & Gerald Gazdar. 1982. Natural languages and context-free
languages. Linguistics and Philosophy 4. 471–504. DOI: 10.1007/bf00360802.

Pulvermüller, Friedmann. 2010. Brain embodiment of syntax and grammar: Dis-
crete combinatorial mechanisms spelt out in neuronal circuits. Brain and Lan-
guage 112(3). 167–179. DOI: 10.1016/j.bandl.2009.08.002.

Rambow, Owen&Aravind K. Joshi. 1997. A formal look at dependency grammars
and phrase-structure grammars, with special consideration of word-order phe-
nomena. In Leo Wanner (ed.), Recent trends in Meaning-Text Theory (Studies
in Language Companion Series 39), 167–190. Amsterdam: John Benjamins.

Rambow, Owen, K. Vijay-Shanker & David Weir. 1995. D-Tree Grammars. In Pro-
ceedings of the 33rd annual meeting of the Association for Computational Lin-
guistics (ACL ’95), 151–158. DOI: 10.3115/981658.981679.

2122

http://tagplus9.cs.sfu.ca/papers/NessonShieber.pdf
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://doi.org/10.1007/978-94-009-2213-6
https://doi.org/10.1007/978-94-009-2213-6
https://doi.org/10.1016/0020-0255(73)90027-3
http://isli.khu.ac.kr/journal/content/data/15/1.pdf
https://doi.org/10.15845/bells.v8i1.1336
https://doi.org/10.1007/bf00360802
https://doi.org/10.1016/j.bandl.2009.08.002
https://doi.org/10.3115/981658.981679


43 LFG and Tree-Adjoining Grammar

Rambow, Owen, K. Vijay-Shanker & David Weir. 2001. D-tree substitu-
tion grammars. Computational Linguistics 27(1). 87–121. DOI: 10 . 1162 /
089120101300346813.

Rogers, James. 1998.A descriptive approach to language-theoretic complexity. Stan-
ford: CSLI Publications.

Rogers, James & K. Vijay-Shanker. 1994. Obtaining trees from their descriptions:
An application to Tree-adjoining Grammars. Computational Intelligence 10(4).
401–421. DOI: 10.1111/j.1467-8640.1994.tb00005.x.

Ryant, Neville & Tatjana Scheffler. 2006. Binding of anaphors in LTAG. In Pro-
ceedings of the Eighth International Workshop on Tree Adjoining Grammar and
Related Formalisms, 65–72. Sydney. DOI: 10.3115/1654690.1654699.

Salvati, Sylvain. 2015. MIX is a 2-MCFL and the word problem in ℤ2 is captured
by the IO and the OI hierarchies. Journal of Computer and System Sciences 18(7).
1252–1277. DOI: 10.1016/j.jcss.2015.03.004.

Savitch, Walter J., Emmon W. Bach, William Marsh & Gila Safran-Naveh (eds.).
1987. The formal complexity of natural language (Studies in Linguistics and Phi-
losophy). Dordrecht: Springer. DOI: 10.1007/978-94-009-3401-6.

Schabes, Yves. 1990. Mathematical and computational aspects of lexicalized gram-
mars. University of Pennsylvania. (Doctoral dissertation).

Schabes, Yves, Anne Abeillé & Aravind K. Joshi. 1988. Parsing strategies with
‘lexicalized’ grammars: application to Tree Adjoining Grammars. In COL-
ING ’88: Proceedings of the 12th Conference on Computational Linguistics, 578–
583. Stroudsburg, PA: Association for Computational Linguistics. DOI: 10.3115/
991719.991757.

Seki, Hiroyuki, Takahashi Matsumura, Mamoru Fujii & Tadao Kasami. 1991. On
multiple context-free grammars. Theoretical Computer Science 88(2). 191–229.
DOI: 10.1016/0304-3975(91)90374-b.

Seki, Hiroyuki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando & Tadao Kasami.
1993. Parallel multiple context-free grammars, finite-state translation systems,
and polynomial-time recognizable subclasses of Lexical-Functional Grammars.
In Proceedings of the 31st annual meeting of the Association for Computational
Linguistics, 130–139. Columbus, OH: Association for Computational Linguis-
tics. DOI: 10.3115/981574.981592.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy 8(3). 333–343. DOI: 10 . 1007 /978 - 94 - 009 -
3401-6_12.

Shieber, Stuart M. & Yves Schabes. 1990. Synchronous Tree Adjoining Grammars.
In Proceedings of the 13th International Conference on Computational Linguistics
(COLING ’90), 253–258. Helsinki.

2123

https://doi.org/10.1162/089120101300346813
https://doi.org/10.1162/089120101300346813
https://doi.org/10.1111/j.1467-8640.1994.tb00005.x
https://doi.org/10.3115/1654690.1654699
https://doi.org/10.1016/j.jcss.2015.03.004
https://doi.org/10.1007/978-94-009-3401-6
https://doi.org/10.3115/991719.991757
https://doi.org/10.3115/991719.991757
https://doi.org/10.1016/0304-3975(91)90374-b
https://doi.org/10.3115/981574.981592
https://doi.org/10.1007/978-94-009-3401-6_12
https://doi.org/10.1007/978-94-009-3401-6_12


Jamie Y. Findlay

Simpson, Jane. 1991. Warlpiri morpho-syntax: A lexicalist approach. Dordrecht:
Kluwer Academic Publishers.

Srinivas, Bangalore, Dania Egedi, Christy Doran & Tilman Becker. 1994. Lexi-
calization and grammar development. In Proceedings of KONVENS 94, Vienna,
Austria, September 1994, 310–319. DOI: 10.48550/ARXIV.CMP-LG/9410015.

Steedman, Mark. 1987. Combinatory grammars and parasitic gaps. Natural Lan-
guage & Linguistic Theory 5(3). 403–440. DOI: 10.1007/bf00134555.

Steedman, Mark. 2000. The syntactic process. Cambridge, MA: The MIT Press.
DOI: 10.7551/mitpress/6591.001.0001.

Steedman, Mark. 2019. Combinatory Categorial Grammar. In András Kertész,
Edith Moravcsik & Csilla Rákosi (eds.), Current approaches to syntax: A com-
parative handbook, 389–420. Berlin: De Gruyter Mouton.

Storoshenko, Dennis R. & Chung-hye Han. 2013. Using synchronous tree adjoin-
ing grammar to model the typology of bound variable pronouns. Journal of
Logic and Computation 25(2). 371–403. DOI: 10.1093/logcom/exs064.

Storoshenko, Dennis R., Chung-hye Han&David Potter. 2008. Reflexivity in Eng-
lish: An STAG analysis. In Proceedings of the Ninth International Workshop on
Tree Adjoining Grammar and Related Frameworks (TAG+9), 149–156. Tübingen.
http://www.aclweb.org/anthology/W08-2320.

Tomita, Masaru (ed.). 1991. Current issues in parsing technology. Dordrecht:
Kluwer Academic Publishers. DOI: 10.1007/978-1-4615-3986-5.

Vijay-Shanker, K. 1987. A study of Tree Adjoining Grammars. University of Penn-
sylvania. (Doctoral dissertation).

Vijay-Shanker, K. 1992. Using descriptions of trees in a Tree Adjoining Grammar.
Computational Linguistics 18(4). 481–517. http://dl.acm.org/citation.cfm?id=
176313.176317.

Vijay-Shanker, K. & Aravind K. Joshi. 1985. Some computational properties of
Tree Adjoining Grammars. In Proceedings of the 23rd annual meeting of the As-
sociation for Computational Linguistics, 82–93. Association for Computational
Linguistics. DOI: 10.3115/981210.981221.

Vijay-Shanker, K. & Aravind K. Joshi. 1988. Feature structure based Tree Adjoin-
ing Grammars. In Proceedings of the 12th Conference on Computational Linguis-
tics (COLING ’88), 714–719. Budapest: Association for Computational Linguis-
tics. DOI: 10.3115/991719.991783.

Wedekind, Jürgen & Ronald M. Kaplan. 2020. Tractable Lexical-Functional Gram-
mar. Computational Linguistics 46(2). 515–569. DOI: 10.1162/coli_a_00384.

Wells, Rulon S. 1947. Immediate constituents. Language 23(2). 81–117. DOI: 10 .
2307/410382.

2124

https://doi.org/10.48550/ARXIV.CMP-LG/9410015
https://doi.org/10.1007/bf00134555
https://doi.org/10.7551/mitpress/6591.001.0001
https://doi.org/10.1093/logcom/exs064
http://www.aclweb.org/anthology/W08-2320
https://doi.org/10.1007/978-1-4615-3986-5
http://dl.acm.org/citation.cfm?id=176313.176317
http://dl.acm.org/citation.cfm?id=176313.176317
https://doi.org/10.3115/981210.981221
https://doi.org/10.3115/991719.991783
https://doi.org/10.1162/coli_a_00384
https://doi.org/10.2307/410382
https://doi.org/10.2307/410382


43 LFG and Tree-Adjoining Grammar

Williams, Edwin. 2007. Dumping lexicalism. In Gillian Ramchand&Charles Reiss
(eds.), The Oxford handbook of linguistic interfaces, 353–382. Oxford: Oxford
University Press. DOI: 10.1093/oxfordhb/9780199247455.013.0012.

Wray, Alison. 2002. Formulaic language and the lexicon. Cambridge, UK: Cam-
bridge University Press. DOI: 10.1017/cbo9780511519772.

XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for English.
Tech. rep. IRCS-01-03. Philadelphia: Institute for Research in Cognitive Science,
University of Pennsylvania. https://www.cis.upenn.edu/~xtag/gramrelease.
html.

2125

https://doi.org/10.1093/oxfordhb/9780199247455.013.0012
https://doi.org/10.1017/cbo9780511519772
https://www.cis.upenn.edu/~xtag/gramrelease.html
https://www.cis.upenn.edu/~xtag/gramrelease.html



