
Chapter 38

LFG and Dependency Grammar
Dag Haug
University of Oslo

This chapter discusses Dependency Grammar from the perspective of LFG. I first
introduce the key ideas behind Dependency Grammar and how they relate to LFG
concepts. I then show how both LFGs and Dependency Grammars can be trans-
lated into Multiple Context-Free Grammars to study formal differences between
the frameworks. Next I discuss two recent efforts to translate from LFG analyses to
the version of Dependency Grammar adopted in Universal Dependencies. Finally
I show how Glue semantics can be applied to dependency structures.

1 Introduction

Dependency Grammar (DG) is a tradition for syntactic analysis based on binary,
asymmetric relations (called dependency relations or just dependencies) between
words. These relations are typically labelled, giving rise to a set of labels that can
be thought of as grammatical functions, which are of course also important in
LFG. In fact, the correspondence between dependencies in DG and grammatical
functions in LFG and their central role in both theories is the main similarity,
formally and conceptually, between the two frameworks.

The primacy of dependencies is what holds together work in the DG tradition.
Aswewill see, it is characteristic of almost all DG theories that they acknowledge
a level of syntax that we will call the core dependencies. This is a set of dependen-
cies restricted so as to form a tree over the words of a sentence, i.e. a structure
where each word has exactly one head, except the root word, which has none
(or equivalently, is attached to a synthetic root node). (1) shows a very simple
example of this.

Dag Haug. 2023. LFG and Dependency Grammar. In Mary Dalrymple (ed.), Handbook
of Lexical Functional Grammar, 1829–1859. Berlin: Language Science Press. DOI: 10.
5281/zenodo.10186040

https://doi.org/10.5281/zenodo.10186040
https://doi.org/10.5281/zenodo.10186040


Dag Haug

(1) Tracy loves Chris

root

subj obj

Most theoretical work and concrete analyses have seen the need to introduce
additional mechanisms or levels of structure beyond core dependencies to give
the theory more analytical bite; this goes all the way back to Tesnière (1959),
the founding work of modern DG. However, there is typically little agreement
about the additional mechanisms or levels of structure between individual schol-
ars working in the DG tradition. So, while the core dependency representation
is often acknowledged as theoretically inadequate, it has enjoyed considerable
popularity as a simplified representation with practical applications in computa-
tional linguistics and natural language processing.

But even restricting attention to core dependencies, there are a number of
choice points where different dependency frameworks make different decisions.
For example, when the core dependencies model structures with a lexical word
and one or more function words (for example, articles and nouns, auxiliaries
and full verbs, or prepositions and their complements), we must take a stance
on whether the lexical or the functional word is the head: the co-head option
often used in LFG is not available. (2) shows what the (unlabelled) dependency
structure of a simple sentence would look like if we take function words as heads
(left) or lexical words as heads (right).

(2) Fido has slept on the mat

root

Fido has slept on the mat

root

It is obviously not necessary to treat all function words the same, and so there
are intermediate variants between these two extremes, taking for example prepo-
sitions and articles as heads, but not auxiliary verbs.

Another point at which dependency grammarians diverge is the treatment of
coordination. Because coordination is normally thought of as symmetric, it is
not easy to represent with directed dependencies. Here the most common com-
peting analyses, shown in (3), involve taking the first conjunct as the head (left),
which entails giving up on symmetry; or tomake the conjunction the head (right)
and maintain symmetry, but at the cost of dissociating the conjuncts from their
normal head (e.g. the verb), which is the basis for most morphosyntactic and
semantic constraints.

1830



38 LFG and Dependency Grammar

(3) Mary likes fruit and vegetables

root

Mary likes fruit and vegetables

root

Faced with the choices illustrated in (2) and (3) many linguists in the DG tradi-
tion have felt that neither analysis is satisfactory, and they have therefore reacted
by enriching the dependency formalism in various ways that result in data struc-
tures that have more in common with LFG. I discuss some key examples of this
in Section 2. Even if much theoretical work in DG assumes such enriched data
structures, most practical applications of DG rely on core dependencies, thereby
forcing choices that, at least from an LFG perspective, are somewhat arbitrary.

One key difference between DG and LFG is that dependency grammarians
typically do not formalize their work and in many cases do not provide (even
informal) rules that generate the constructions they are interested in but con-
tent themselves with providing analyses of the whole structure. This goes back
to the earliest dependency grammarians such as Tesnière, but has become even
more prominent with the increasing use of dependency structures in data-driven
parsing, where the goal is not to define a grammar that recognizes (or generates
strings from) a formal language, but to parse strings into a single plausible struc-
tural representation. Nevertheless, it is possible to conceive of DGs as formal
grammars. In Section 3 I discuss how this can be done using the framework of
Multiple Context-Free Grammars.While this is not an approach that most depen-
dency grammarians follow, it yields a useful framework for comparing DG and
LFG. Another useful perspective on DG and LFG is offered by recent efforts to
translate LFG resources into DG resources, which I discuss in Section 4. Section 5
explores the potential for combining dependency grammars with Glue semantics,
the standard semantic framework in LFG.

2 The dependency grammar tradition and LFG

The idea of using binary, labelled, asymmetric relations to analyze syntax is
found in the work of Pāṇini, Ancient Greek and Roman grammarians and the
speculative grammarians of the Middle Ages (Covington 1984). On its own, this
idea is too vague to define a theoretical framework and both Pāṇini and the spec-
ulative grammarians have also been seen as forerunners of generative grammar
(Kiparsky 1993, Chomsky 1966). What defines the modern dependency grammar
tradition, which started with Tesnière (1959), is the attempt to base syntax pri-
marily, or even exclusively, on the concept of core dependencies, as opposed to

1831



Dag Haug

the concept of constituency developed in American structuralism and the gen-
erative tradition. Although there have been a number of attempts to develop de-
pendency grammar into a full-fledged grammatical theory (the most well-known
ones being Functional Generative Description (Sgall et al. 1986); Meaning–Text
Theory (MTT) (Mel’čuk 1988); and Word Grammar (Hudson 1984, 2010)), none
of these are very widespread beyond the environments where they originated
and hence there is no single, coherent version of DG as a formal framework. The
focus of this section is therefore not to identify assumptions made in specific
frameworks, but rather to compare ideas that are common in the dependency
grammar tradition with LFG.

2.1 Dependency graphs and f-structures

There is an obvious similarity between dependencies, as found in DG, and the bi-
nary, labelled, asymmetric relations between the nodes of an LFG f-structure.1 In
both cases, the relations form a directed labelled graph over nodes corresponding
to linguistic material. The similarity even extends to the set of labels used, which
in both cases contain traditional grammatical functions such as subject and ob-
ject. Formally, however, there are two important differences: First, the nodes of
the f-structure are not words, but correspond to zero, one or several words/c-
structure terminals. This is how LFG escapes the indeterminacy of direction of
headedness in constructions which combine lexical and functional words that
we saw in (2). Second, labelled dependencies are not necessarily functional, i.e.
there may be two or more daughters bearing the same relation to the same head,
in violation of LFG’s uniqueness condition.2

In addition to these two formal differences, there are in practice many more
differences, because DG analyses rarely use the full power of a directed graph and
instead typically emphasize the core dependencies, which form a tree spanning
the words of the sentence. To the extent that e.g. multiple heads are used, one
of the heads is typically considered “primary”. Even so, the formal similarities

1To emphasize the parallelism between f-structures and dependency graphs, we rely here on
the graph-theoretic interpretation of attribute-value matrices, where feature structures and
atomic values are nodes, and attributes are labelled edges between these nodes, and not the
“official” interpretation of f-structures as functions (Kaplan 1995, Kaplan & Bresnan 1982). The
graph-theoretic interpretation is standard in most other unification-based frameworks from
Functional Unification Grammar (Kay 1979) onwards, and was, to my knowledge, first formal-
ized by Moshier & Rounds (1987). It is used in HPSG (Richter 2021); see Przepiórkowski 2023:
section 4 [this volume] for discussion of the differences between the two views.

2LFG can deal with several dependents bearing the same relation by using set-valued attributes
e.g. for adjunct; this introduces the concept of sets, which also has no counterpart in DG.

1832



38 LFG and Dependency Grammar

between dependencies and f-structures mean that similar theoretical questions
can arise in both DG and LFG and even that one can think of LFG’s f-structures as
dependency graphs that take a particular view on certain foundational questions
in DG.3

An overarching question in the DG tradition (see e.g. de Marneffe & Nivre
2019: 199f.) is whether dependency relations are sufficient for analyzing syntax.
In one sense, the answer is obviously no. Like f-structures, dependency struc-
tures say nothing about word order. This is dealt with in the c-structure in LFG,
and scholars within dependency grammar have also seen the need to enrich the
theory with a mechanism for constraining word order. I return to this in Sec-
tion 3. But more fundamentally, one might ask whether core dependencies, tree
structures over words, are sufficient to capture functional aspects of syntax like
f-structures do in LFG.

In fact, it is not too hard to see that core dependencies cannot fully represent
the functional relations of a sentence. Consider for example, the subject in a
raising construction.

(4) It seems to rain.

The expletive it bears a functional relation to the raising verb seems as witnessed
by agreement; but the form of the expletive is licensed by the lexical verb rain
(and would be different in e.g. There seems to be a problem), giving evidence for
a second functional relation. If one insists on core dependencies, one of the two
relations must be privileged.

The alternative is to increase the expressivity of the theory, and this is in fact
what Tesnière did when he introduced two other kinds of relations beside depen-
dencies that can hold between words, namely junction (jonction) and transfer
(translation). Junction is the relation that holds between coordinated items that
are either dependents of the same head or heads of the same dependent. Trans-
lation is the relation that holds between lexical words and functional words that
license their appearing in various dependencies. For example, complementizers
“translate” verbs so as to license their appearing in object position according to
the analysis in Tesnière (1959: 24); similar analyses are given for determiners and
adpositions.

Crucially, words that are linked by junction or transfer form a complex node
(nucleus dissocié) in the dependency graph and jointly contract dependency rela-
tions. In this way, their dependents end up having more than one head; and they

3Furthermore, on the implementation side, Bröker (1998) shows how DGs can be encoded as
LFGs and implemented in the XLE platform.

1833



Dag Haug

can collectively bear a single dependency relation to their head. In this respect,
Tesnière’s analyses are in fact quite close to standard LFG f-structures, where co-
ordination is analyzed in terms of a set-valued attribute (5) and function words
such as e.g. auxiliaries form a single f-struture node with their lexical verb (6).

(5) a. All boys and girls dance.
b. ⎡⎢⎢⎢⎢⎢⎢

⎣

pred ‘dance〈subj〉’

subj

⎧⎪
⎨⎪
⎩

[pred ‘boy’
spec 1 [pred ‘all’]]

[pred ‘girl’
spec 1

]

⎫⎪
⎬⎪
⎭

⎤⎥⎥⎥⎥⎥⎥
⎦

c. All boys — and — girls dance

det

subjdet

subj

root

(6) a. Mary has arrived.
b.

[
pred ‘arrive〈subj〉’
tense perfect
subj [pred ‘Mary’]

]

c. Mary has arrived

subj

root

In this respect, both Tesnière’s theory and LFG’s f-structure reject the idea that
syntactic dependencies can be adequately captured in a tree structure over the
words of a sentence. Nevertheless, LFG’s approach is much more general than
Tesnière’s. Tesnière allows many-to-one relations between words and depen-
dency nodes based on relations that are not dependencies, but he maintains the
tree structure over dependency nodes. Therefore, the only way a word can have
two heads is if those heads form a single node by junction or transfer, as in (5c)
and (6c); but LFG also allows for a word to have two heads that do not form a
group, as in the analysis of functional control verbs (7).

1834



38 LFG and Dependency Grammar

(7) a. Chris persuaded Mary to come
b. ⎡⎢⎢⎢⎢⎢

⎣

pred ‘persuade〈subj, obj, xcomp〉’
subj [pred ‘Chris’]
obj 1 [pred ‘Mary’]
xcomp [pred ‘come〈subj〉’

subj 1
]

⎤⎥⎥⎥⎥⎥
⎦

Such dependencies cannot be expressed in Tesnière’s formalism, because per-
suade and come share the dependent Mary, despite not forming a group. More-
over,Mary bears a different syntactic relation to each of them, which again is not
possible in Tesnière’s formalism. More recent versions of dependency grammar
have typically accounted for control and raising verbs by positing more levels of
representation, see Section 2.2.

Finally, an important difference between Tesnière’s dependency graphs and
f-structures is that f-structures may contain nodes that correpond to no overt
word. A typical case is pro-drop, as in (8) from Italian.

(8) a. vengono
come-prs.3pl

b. [pred ‘come〈subj〉’
subj [pred ‘pro’]]

c. vengono

root

Again, Tesnière’s formalism cannot capture this: dependency nodes may corre-
spond to one word, or more words if they form a group by junction or transfer,
but not to zero. The strategy in later versions of DG has been the same as that
used to address phenomena where LFG uses structure sharing, namely to intro-
duce more levels of representation.
In sum, one can say from an LFGperspective that Tesnière’s dependency graphs,

while certainly more expressive than core dependencies, are insufficiently gen-
eral to deal with the complex functional relations that exist in natural language
sentences.

1835



Dag Haug

2.2 Other levels of syntactic representation

Tesnière’s strategy was to enrich dependency graphs so as to be able to represent
more functional relations than core dependencies can do. More recent versions
of DG have instead opted to keep the core dependencies simple and instead go be-
yond a single level of grammatical description to accommodatemore information.
One prominent example is the so-called tectogrammatical layer found in Func-
tional Generative Description (Sgall et al. 1986) and the associated Prague Tree-
banks (Hajič et al. 2020). This layer is annotated with an enriched dependency
tree that will contain nodes that do not correspond to words (e.g. pro-dropped
subjects) and secondary edges capturing multiple head-phenomena such as con-
trol.4

Melčuk’s Meaning–Text Theory explicitly distinguishes a deep syntactic level
between the semantic level and surface syntax. However, as pointed out by Ka-
hane (2003), the deep syntactic level is the least defined level of MTT and it is not
clear how much information it is supposed to contain. What is clear, however,
is that grammatically imposed coreference relations are resolved in deep syntax,
opening up a way to deal with, e.g., control.

InWord Grammar (Hudson 1984, 2010), too, control is treated by loosening the
tree constraint on dependency structures. Example (9), from Hudson (2003: 521),
illustrates how structure sharing is used to analyze raising (you shared by have
and been)5 and extraction (what shared by have, been, looking and at).

(9) What have you been looking at?

root

extractee subj
xcomp

xcomp prep

subj

extractee

extractee

extractee,complement

4The status of the tectogrammatical layer is not entirely clear: the Prague Dependency Tree-
bank annotation guidelines (https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/html/ch02.
html) say that it “represents the semantic structure of the sentence”, but Hajič et al. (2020) de-
scribe it as “deep syntax”. The difference may be merely terminological.

5Instead of Hudson’s sharer, I have used the LFG relation xcomp which Hudson explicitly men-
tions as an alternative name for the same concept. The diagram in Hudson (2003: 521) does
not have a subject relation between you and looking, although looking is an xcomp of been. It
is unclear whether this is just an error.

1836

https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/html/ch02.html
https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/html/ch02.html


38 LFG and Dependency Grammar

The dependency graph in (9) is essentially identical to the standard LFG anal-
ysis (except that in extraction, LFG usually has structure sharing only between
the gap and the filler position, without involving the intermediate f-structures).
However, inWord Grammar, the edges above and below the words have different
status:

This diagram also illustrates the notion ‘surface structure’ […]. Each depen-
dency is licensed by the grammar network, but when the result is structure-
sharing just one of these dependencies is drawn above the words; the to-
tality of dependencies drawn in this way constitutes the sentence’s surface
structure. In principle any of the competing dependencies could be chosen,
but in general only one choice is compatible with the ‘geometry’ of a well-
formed surface structure, which must be free of ‘tangling’ (crossing depen-
dencies – i.e. discontinuous phrases) and ‘dangling’ (unintegrated words).
There are no such constraints on the non-surface dependencies.” (Hudson
2003: 521)

This illustrates the point that I made in the introduction: different varieties of
dependency grammar may have different notions of “deep syntax”, but they all
share the idea that there is an interesting representation of syntactic dependen-
cies that is a rooted tree over nodes that stand in a one-to-one correspondence
with the words of the sentence. This is very different from LFG: all edges of an
f-structure graph are equal. The subject edge that connects the subject of a con-
trol construction to the control verb has exactly the same status as the subject
edge that connects the subject to the non-finite verb. Thus, there is no “priv-
ileged subgraph” of the f-structure that forms a rooted tree over the words. By
contrast, Hudson’s distinction between the surface structure and the non-surface
dependencies gives rise to such a privileged subgraph, although it must be said
that the distinction between surface and non-surface dependencies is not further
developed in Word Grammar.

Dependency grammars also differ in their treatment of “null words”, i.e. cases
where LFG would have an f-structure node that does not correspond to any sur-
face word, as in e.g. pro-drop. Most dependency analyses would simply leave out
such subjects, as we saw in (8). But here too, many dependency grammars intro-
duce the missing subjects in “deeper” projections, for example in the tectogram-
matical layer of Functional Generative Description. In fact,Word Grammar is one
of the few dependency grammar frameworks that acknowledge empty elements
in the core syntactic graph. Creider & Hudson (2006) present an argument for
this that runs along standard lines of LFG thinking. In Ancient Greek, predicate

1837



Dag Haug

nouns and adjectives agree in case (and adjectives also in number and gender)
with their subjects; and subjects of infinitives are in the accusative.

(10) Ancient Greek (Xenophon, Anabasis 1.3.6)
nomízo:
think-1.prs

gàr
for

humâ:s
you-acc

emoì
me-dat

eînai
be-inf

kaì
and

patrída
fatherland-acc

kaì
and

phílous
friends-acc
‘For I think you are to me both fatherland and friends’

But crucially, the predicative is accusative also when the accusative subject is
absent (11), even in cases where there is a coreferential element in the higher
clause (12).

(11) Ancient Greek (Isocrates 2.15)
philánthro:pon
humane-acc

eînai
be-inf

deî
must

‘one must be humane’

(12) Ancient Greek (Plato, Alcibiades 2, 141a7)
exarkései
suffice-fut

soi
you-dat

túrannon
king-acc

genésthai
become-inf

‘it will be enough for you to become king’

In (12), we observe that the predicate noun turannon does not agree directly with
its logical subject soi, but rather with the unexpressed subject of the infinitive.
Since case agreement is generally agreed to be syntactic (whereas agreement in
number and gender could potentially be semantic), Creider &Hudson (2006) con-
clude that the unexpressed subject of the infinitive must nevertheless be present
in the syntax. This is unsurprising from an LFG point of view, but does not seem
to be generally accepted in DG. It is unclear, for example, how Functional Gener-
ative Description would deal with this kind of data, since null words are inserted
only at the tectogrammatical layer, where there is no case feature.

3 Word order and generative power in DG and LFG

In most versions of dependency grammar, it is assumed that the nodes of a de-
pendency structure are not linearly ordered in themselves: a dependency relation
implies no particular linear order between a head and its dependents, but can be

1838



38 LFG and Dependency Grammar

related to different surface linearizations. This view goes back to Tesnière (1959:
chapter 7), who distinguishes sharply between structural order (dependencies)
and linear order. The main exception to this is Functional Generative Descrip-
tion, which assumes a linear order on the nodes even in the tectogrammatical
layer, to capture information structure.

But even if the nodes of the dependency structures are not linearly ordered,
it is possible (and in fact necessary for most languages) to constrain the relation
between dependency structure and linearization. Onemuch-discussed constraint
is projectivity.6

(13) A dependency graph is projective iff for every edge 𝑛ℎ → 𝑛𝑑 it contains,
𝑛ℎ dominates all nodes that occur between 𝑛ℎ and 𝑛𝑑 (where domination
is the transitive closure of the edge/dependency relation)

An early result due to Gaifman (1965) is that projective dependency grammars
are weakly equivalent to context-free grammars.7 This result may in fact have
led to a lack of interest in dependency grammar because it was widely believed
in the sixties and seventies (and eventually proved in the eighties) that natural
languages are not context-free. On the other hand, the recognition problem for
a dependency grammar with no linearization constraints at all (thus allowing
arbitrary discontinuities) is NP complete (Neuhaus & Bröker 1997).8

With the increasing popularity of dependency grammars in the 2000s, this led
to the search for intermediate linearization constraints between strict projectivity
and arbitrary non-projectivity. One important class of constraints is based on the
notion of block degree (Holan et al. 1998). Intuitively, projectivity as defined in (13)
ensures that the subgraph of 𝑛ℎ (i.e. 𝑛ℎ and the set of nodes it dominates) forms
a single block of adjacent nodes. We can instead allow the subgraph to form two
blocks of adjacent nodes, interrupted by a continuous set of words. We say that
𝑛ℎ has block degree 2; and the block degree of a dependency tree is the highest
block degree of any of its nodes. Equivalently, we can speak of gap degree, which
is block degree minus 1 (i.e., the number of allowed gaps). (14) illustrates this with
an example from Latin.

6It seems that this term originated with a technical report by P. Ihm and Y. Lecerf “Eléments
pour une grammaire générale des langues projectives”, Bruxelles 1960, but I have been unable
to find this paper.

7See also Hays (1964).
8As we will see in Section 4, this is not an issue in data-driven parsing, which sidesteps the
recognition problem and aims directly at providing a contextually plausible parse.

1839



Dag Haug

(14) a. Latin
Mihi
me.dat

nullus
none.nom

est
is

terror
fear.nom

‘I have no fear.’

b. mihi nullus est terror

root

subj

adjobl

The gap degree of est is 0, since its subgraph is continuous; but the gap degree
of terror is 1, since there is one gap in its subgraph – est intervenes between terror
and nullus, but is not dominated by terror. As a result, the gap degree of the whole
tree is 1.
To study the computational complexity of the dependency grammars that could

generate structures like (14), and their relationship to LFG grammars, it is conve-
nient to use phrase structure-based systems that allow discontinuities, so-called
Linear Context-Free Rewriting Systems (LCFRS, Vijay-Shanker et al. 1987) or the
notational variant Multiple Context-Free Grammars (MCFG, Seki et al. 1991). The
MCFG formalism is a generalization of CFG which retains ordinary CFG produc-
tions for the expression of categorial structure, but uses explicit yield functions
to compute the yield of the mother node from the yields of the daughters. In
an ordinary CFG, yield computation is conflated with category formation: a rule
such as DP → D NP says both that the category DP is formed of a D and an NP,
and that the yield of the resulting DP is formed by concatenating the yields of
D and NP. In effect, then, a CFG can be seen as an MCFG with concatenation as
the only yield function.9

To allow for greater expressivity, MCFG allows yields to be tuples of strings.
For example, wemaywant to say that the yield of DP is a pair (2-tuple) consisting
of the yields of D and NP. This pair will then be the input to further yield func-
tions that apply to productions with DP on the right-hand side. More generally,
we may allow yields to be 𝑛-tuples of strings. The interesting point is that there
is a close correspondence between yield components in an MCFG and blocks in
a corresponding dependency structure. We can extract MCFG rules from depen-
dency trees, as shown in Kuhlmann (2013), where a formal exposition is given.
Here I just provide an intuitive understanding of how the tree in (14b) gives rise
to the rules in Table 1.

9See Clark (2014) for an accessible introduction for linguists and Kallmeyer (2010: chapter 6) for
a more formal introduction.

1840



38 LFG and Dependency Grammar

Table 1: Rules extracted from the tree in (14b)

rule yield function compact notation

adj → 𝑔() 𝑔 = ⟨nullus⟩ adj → ⟨nullus⟩
obl → ℎ() ℎ = ⟨mihi⟩ obl → ⟨mihi⟩
subj → 𝑖(adj) 𝑖 = ⟨𝑥1,terror⟩ subj → ⟨𝑥1,terror⟩ (adj)
root → 𝑗(obl subj) 𝑗 = ⟨𝑥1𝑦1 est 𝑦2⟩ root → ⟨𝑥1𝑦1 est 𝑦2⟩(obl subj)

Looking at nullus in (14b), we see that it has no dependents, hence the right-
hand side of the first rule is a constant function which fixes the yield to the string
nullus, and similarly for mihi. For terror, things are more interesting. It takes one
dependent, an adj, and hence its yield function 𝑖 depends on the value of that
argument. Concretely, the yield of the node terror is a tuple, consisting of the
yield of the adj dependent which is represented as 𝑥1,10 and the string terror.
Finally, the verb takes two arguments, subj and obl. The yield is constructed by
concatenating the yield of the obl (i.e. 𝑥1), the first component of the subj (i.e.
𝑦1), the string est, and the second component of subj (𝑦2).

With the rules in Table 1, we can construct the MCFG derivation tree in (15).

(15) ⟨𝑥1𝑦1 est 𝑦2⟩

⟨mihi⟩ ⟨𝑥1,terror⟩

⟨nullus⟩

But notice that because the MCFG grammar is lexical, i.e. each rule introduces
exactly one lexical item, the tree in (15) is isomorphic to the dependency tree in
(14b). In other words, a lexicalized MCFG can simply be interpreted as a depen-
dency grammar which simultaneously restricts word order.

This allows us to compare the generative capacity and the parsing complexity
of dependency grammars with other formalisms. Under a reasonable constraint
on discontinuities,11 the expressivity of an MCFG depends only on the maximal

10The convention is that we use 𝑥 for the yield of the first dependent and 𝑦 for the yield of the
second dependent, and subscript those variables with an index referring to blocks of the yield.

11Namely wellnestedness; a tree is wellnested if there are no disjoint subtrees that overlap lin-
early.

1841



Dag Haug

block degree of the grammar, giving rise to a hierarchy of 𝑘-MCFGs, where 𝑘 is
the block degree of the most complex yield function in the grammar. It turns out
that 2-MCFGs (and hence dependency grammars that allow maximally one gap)
are weakly equivalent to Tree Adjoining Grammars and ‘classical’ Combinatory
Categorial Grammar, as was proven by Bodirsky et al. (2005).12

Even more interesting from an LFG perspective, there is also a result that a
subclass of LFG grammars, so-called finite copying LFGs, can be translated into
weakly equivalent MCFGs/LCFRSs (Seki et al. 1993). Finite copying LFGs are
quite restricted in what functional annotations they allow, in particular they do
not allow head annotations (↑=↓) or reentrancies, and also impose the crucial
constraint that the grammar puts an upper bound on the number of c-structure
nodes corresponding to a single f-structure. Wedekind & Kaplan (2020) show
that we can impose this upper bound while still allowing head annotations and
reentrancies, as long as they are nonconstructive. This allows most functional
equations that are used in linguistic work, including functional control equa-
tions of the type (↑ f g)=(↑h). Wedekind & Kaplan (2020) call these grammars
𝑘-bounded LFGs and prove that for any 𝑘-bounded LFG, a weakly equivalent
𝑘-MCFG can be constructed. Moreover, the MCFG rules can be annotated with
functional descriptions that allow us to construct the f-structure that the corre-
sponding 𝑘-bounded LFG assigns to the sentence, yielding a strongly equivalent
MCFG.

These results allow us to compare dependency grammars and LFGs in a precise
way. First of all, dependency grammars and 𝑘-bounded LFGs are weakly equiva-
lent. Nevertheless, although strongly equivalent MCFGs can be constructed from
both dependency grammars and 𝑘-LFGs, it is not the case that we can construct a
strongly equivalent dependency grammar from an LFG. The interpretation of an
MCFG as a dependency grammar relies on unique lexicalization: each rule con-
tains a single lexical item interpreted as the head. The MCFGs that Wedekind
& Kaplan (2020) construct from LFGs are not lexicalized in this way. They do
contain functional descriptions that allow us to identify the head but, since LFG
allows co-heads, the head is not guaranteed to be unique. Moreover, the func-
tional descriptions in the MCFG constructed from an LFG may contain reentran-
cies, i.e. words having more than one head, which have no interpretation on
the dependency grammar side, thus losing information. A final, minor point is
that Kuhlmann’s interpretation of MCFGs as dependency grammars say noth-
ing about edge labels; it would be natural and straightforward to interpret LFG’s
ordinary function assignments as such labels.

12See also Kuhlmann (2007, 2010).

1842



38 LFG and Dependency Grammar

In sum, then, the formal analysis tells us that the difference between 𝑘-bounded
LFGs and dependency grammars resides exactly in the availability of co-heads
and reentrancies, which provide important information from a linguistic point
of view. Finally, it should be noted that the restriction to 𝑘-bounded LFGs, while
preserving coverage of many, perhaps most, linguistic phenomena, is neverthe-
less not trivial. Rambow (2014) argued that unbounded scrambling as found in
German and other free word order languages falls outside the generative capac-
ity of MCFGs (and mildly context sensitive grammar formalisms in general) and
hence 𝑘-bounded LFGs.

The comparison of dependency grammars and LFGs through MCFGs is also
interesting from other points of view. As Wedekind & Kaplan (2020) point out,
the effect of converting an LFG to an MCFG is to precompute the interaction be-
tween f- and c-structure and construct a grammar that recognizes all and only the
c-structures whose f-descriptions are satisfiable. From a practical point of view,
this may be an advantage in parsing. But from the perspective of theoretical LFG,
it can be argued that MCFGs and the dependency grammars they give rise to con-
flate c- and f-structure, making it harder to state linguistic generalizations. The
advantage of LFG’s projection architecture is precisely “to account for signifi-
ant linguistic generalizations in a factored and modular way by means of related
but appropriately dissimilar representations” (Kaplan 1989: 309). Seen from the
dependency grammar side, the formal results offer a choice: Kuhlmann’s trans-
lation to MCFGs makes it possible to enrich dependency grammars with an ac-
count of word order in a single component; but Wedekind & Kaplan’s (2020)
results show that MCFGs can be “modularized” into a word order component
and a functional component (which is not surprising given that MCFGs gener-
alize CFGs precisely by dissociating dominance and linearization) to give some-
thing very close to LFG. Either way, the formal analysis exposes similarities and
differences between the frameworks. In principle, this paves the way for cross-
fertilization on the theoretical side, but in practice such gains are limited by the
fact that, as I pointed out in Section 1, dependency grammarians typically do not
think in terms of (formal or informal) rules that generate the constructions they
are interested in but content themselves with providing analyses of the whole
structure.

1843



Dag Haug

4 DG and LFG in computational linguistics

4.1 Data-driven dependency parsing

On the computational side, there is a similar difference between DG on the one
hand, and LFG and most other formal linguistic traditions on the other hand, in
that there has generally been little interest in developing formal grammars that
can generate or parse languages. There are some exceptions to this: in the frame-
work of Constraint Dependency Grammar (Maruyama 1990), there is for example
a broad-coverage parser of German (Foth et al. 2005); and Constraint Grammar
(Karlsson et al. 1995) is a widely used system in which implemented grammars
have been created for a wide variety of languages. Many of these grammars con-
tent themselves with assigning syntactic function labels to words, without build-
ing a full syntax tree, but even so, many have proven useful in practical tasks.

Nevertheless, the dominant use of DG in computational linguistics is closely
associated with machine learning approaches where computers find patterns in
human annotated data. For such approaches, it is sufficient that annotators pro-
vide case-by-case analyses of the corpus without actually abstracting the rules
that would create these analyses. Consistency remains a goal, since it makes the
patterns easier to learn, but it is not enforced in the way it would be in grammar-
based annotation such as typical scenarios for creating LFG parsebanks, where
annotators choose between alternative analyses provided by the underlying gram-
mar.

As we have seen several times so far, the constraints on core dependency
syntax, namely the unique mother and the one-to-one correspondence between
nodes and tokens, mean that many theoretically relevant distinctions cannot be
encoded. On the flip side, this makes the annotation task easier as the annotator
does not have to be trained in drawing the distinctions. The result is also of-
ten more accessible to end users: while grammar-based treebanks contain much
more information than dependency trees, this information is typically encoded in
a specific theoretical framework and not always easily accessible to userswithout
training in that framework. In short, core dependency trees offer a tradeoff be-
tween practical considerations and theoretical depth, whichmay be attractive for
many applications where the deeper linguistic distinctions do not matter much.

On top of that, the simple target structure makes it possible to train very ef-
ficient statistical dependency parsers. This approach is fundamentally different
from the formal grammar approach to DG developed by Kuhlmann (2013), which
we saw in Section 3. Data-driven parsers learn from human annotation and try
to provide the most plausible parse in context, without judging acceptability or

1844



38 LFG and Dependency Grammar

enumerating possible parses. In this context, non-projective dependencies are
not an issue and can be captured efficiently (McDonald et al. 2005). Nivre (2008)
introduced algorithms that could produce projective dependency parses in time
linear of the input and algorithms that allow non-projective parses and run in
quadratic time. Such results led to a huge increase of interest in dependency pars-
ing, which quickly became dominant in statistical approaches to computational
linguistics.

Data-driven parsing requires annotated data and the last decade has seen a
large increase in the number of dependency treebanks that are available, espe-
cially driven by the Universal Dependencies (UD) initiative.13 UD developed out
of the Stanford dependencies for English (de Marneffe & Manning 2008) (which
means that there is a certain amount of LFG heritage) as an effort to create an
annotation scheme that can be used across languages. Though it has been driven
mainly by practical considerations in NLP research, it has in recent years also
been used for linguistic research (e.g. Hahn et al. 2020, Berdicevskis & Piperski
2020).

As of release 2.9 (November 2021), UD contains 217 treebanks from 122 lan-
guages. A comparison with LFG’s ParGram approach reveals the strengths and
weaknesses of the approach.14 Drawing on the long tradition of using DG to pro-
vide case-by-case analyses rather than abstracting grammars has made it pos-
sible to achieve an unprecedented breadth of coverage. On the other hand, the
analyses are more shallow than those provided by LFG grammars and the lack of
underlying grammars makes the UD project much more prone to inconsistencies
both within and across treebanks.

4.2 Converting LFG parsebanks to dependency treebanks

The existence of annotated resources in both LFG and DG formats makes it pos-
sible to study differences between the two from a different perspective than the
formal language approach we adopted in Section 3. In this section, we look at
work on converting LFG-based resources to dependency structures to see how
the two formats compare and to what extent information can be preserved when
converting to the less expressive DG format.

For completeness, we mention that there has also been some work on enrich-
ing them to yield LFG-structures, e.g. by Forst (2003) and Haug (2012). However,
both Forst and Haug started from relatively rich dependency annotations (with
secondary edges), so that the conversion to f-structures was not difficult and

13See https://universaldependencies.org/ and de Marneffe et al. (2021).
14For more on ParGram, see Forst & King 2023 [this volume].

1845

https://universaldependencies.org/


Dag Haug

other issues were more important (e.g. the creation of c-structures from the de-
pendency representations by Haug).

Several conversion algorithms have been developed to convert LFG structures
to dependency structures. Here I discuss two recent approaches, byMeurer (2017)
and Przepiórkowski & Patejuk (2020),15 which contrast in interesting ways, since
Meurer starts from the c-structure and Przepiórkowski and Patejuk from the f-
structure. Both are natural starting points: the f-structure represents grammatical
functions, just like the target dependency structure; but the c-structure has the
advantage that its terminal nodes are in one-to-one correspondence with the
words of the sentence, just like in the dependency structure. Both algorithms
target the particular style of dependency annotation adopted in UD, but proceed
in two steps, namely first the creation of a dependency structure, and second, the
modification of that structure to comply with the exact representation chosen in
UD. Here we focus on the first step. To illustrate how the two algorithms work,
we consider the LFG structure in (16)–(17).

(16) IP

(↑ topic)=↓
NP1

↑=↓
N

this

↑=↓
IP

(↑ subj)=↓
NP2

↑=↓
N

John

↑=↓
V′

↑=↓
V

wants

(↑ xcomp)=↓
VP

↑=↓
PART

to

↑=↓
V

see

15Dione (2020) presents an approach that combines Meurer (2017) and Przepiórkowski & Patejuk
(2020). For older work, see Øvrelid et al. (2009) and Çetinoǧlu et al. (2010).

1846



38 LFG and Dependency Grammar

(17) ⎡⎢⎢⎢⎢⎢⎢
⎣

pred ‘want〈subj, xcomp〉’
topic 1 [pred ‘pro’]
subj 2 [pred ‘John’]

xcomp [
pred ‘see〈subj, obj〉’
subj 1
obj 2

]

⎤⎥⎥⎥⎥⎥⎥
⎦

In Meurer’s approach, the first step is to “lexicalize” the c-structure tree by re-
cursively replacing each non-terminal node with its functional head node, as
determined by the annotation ↑=↓. This is straightforward for IP, NP1 and NP2
in (16): wants, this and John are uniquely linked to these nodes via an unbroken
chain of ↑=↓. But more generally, the challenge here is the same as in lexicalizing
an MCFG that results from the Wedekind-Kaplan construction: co-heads and ab-
sence of heads mean there might be no unique daughter to lift. To find a unique
head in such cases the algorithm proceeds as follows: 1) if no daughter of 𝑥 is a
functional head, attach all daughters to the mother of 𝑥 and proceed as before;
2) if more than one daughter of 𝑥 is a functional head, choose the one with the
shortest embedding path; 3) if there is a tie, choose the leftmost node. For the VP
in our example, case 3 applies and we choose to as the head; it is therefore lifted
to the VP node, while see is only lifted to the V node. These lifting operations
yield the tree in (18).

(18) wants

this John to

see

We then need to label the edges. Meurer’s algorithm does that by labelling the
edge between nodes 𝑥 and their daughter 𝑦 in the resulting tree with the f-
structure path from 𝜙(𝑥) to 𝜙(𝑦). So, the edge from John to wants is labelled
subj since that is the path from the f-structure of wants to the f-structure of John.
But because of reentrancies in the f-strucure, the path between two f-structures
is not always unique: for example, there is a path from the f-structure of wants
to the f-structure of this that is labelled topic, but there is another path that is
labelled xcomp obj. In such cases, Meurer chooses the shortest path that con-
tains only grammatical functions (i.e. no discourse functions); in our case that
yields the complex label xcomp.obj where the two elements of the f-structure
path have been concatenated with a dot. Co-heads present another problem for

1847



Dag Haug

the labelling approach: to and see share the same f-structure, so there is no path.
In such cases a dummy relation = is used.

This algorithm produces a projective dependency graph with complex labels,
as shown for our example in the lefthand side of (19). In the next step, the complex
labels are resolved and nodes attached accordingly, potentially introducing non-
projectivity. For our example, when the complex relation xcomp.obj is resolved,
we obtain the non-projective tree on the right-hand side of (19).

(19)

This John wants to see

root

xcomp.obj
subj xcomp =

⇒

This John wants to see

root

obj

subj xcomp =

This then is the input to the final step, where the dependency tree is normalized
according to the UD annotation standard.

Przepiórkowski & Patejuk (2020), by contrast, start from the f-structure, which
already represents the syntactic dependencies. This means the challenge is dif-
ferent, namely to match the nodes of the f-structure to the words of the sentence,
which are the nodes of the target dependency graph. F-structure nodes may cor-
respond to zero, one or several words; they are given by the 𝜙−1, which is part
of the source annotation. F-structures that correspond to no words (e.g. in pro-
drop) may simply be ignored in the dependency structure; but for f-structures
that correspond to more than one word, the “true” head that will take the f-
structure’s place in the corresponding dependency structure must be identified,
and the other words in 𝜙−1 must be attached with appropriate relations. The
basic algorithm is simple: if there is a verbal token in 𝜙−1, choose that as the
true head; otherwise, choose a nominal or adjectival token; otherwise an explicit
lexical conjunction. The other nodes are then attached to the true head with a
relation labelled by their own preterminal category. This produces the structure
in (20) from the f-structure in (17).

(20) This John wants to see

root

topic
subj xcomp

part

obj

1848



38 LFG and Dependency Grammar

As we can see, the output from the algorithm of Przepiórkowski & Patejuk
(2020) is not a tree, but a graph, where all f-structure relations are preserved,
including two incoming edges to this. This is exploited to produce enhanced UD,
which allows for this kind of graph structure; but the output is also trimmed to
produce a basic UD structure.

(19)–(20) illustrate the output of the first steps in the conversions, where the
target is to produce the desired data structure, namely a dependency tree or graph
over words. As mentioned, the next step is to normalize this structure to the con-
crete requirements of the UD annotation standard. This is less interesting from
our point of view, but it is worth looking at a few topics that display divergences
between standard LFG solutions and choices that are made in the dependency
grammar community as exemplified by UD.

First, UD subscribes to the primacy of content words. This means that content
words are typically heads of function words, for example in structures consisting
of auxiliary and verb, adposition and noun, and determiner and noun, as illus-
trated in the lower graph of (2) in Section 1. Also, there are no nested structures
of function words, so e.g. in structures with multiple auxiliaries (may have been
understood), all the auxiliaries attach directly to the lexical verb. While UD may
be extreme among dependency grammar approaches in adopting this principle
across the board, similar analyses are found for some of these structures in other
frameworks. By contrast, such analyses are non-existing in the LFG literature,
except for noun-determiner structures (where the determiner is often analyzed
as a spec dependent of the noun): function words are typically either co-heads,
or lone heads, taking a lexical word as their dependent. For example, there are
analyses of auxiliaries as co-heads specifying features of the f-structure where
the lexical verb contributes the pred, and alternative analyses where auxiliary
verbs take xcomp dependents, potentially in a cascading sequence ending in the
lexical verb.

In fact, the difference between the co-head analysis and the UD dependent
analysis of function words is rather slight, as revealed by the conversion proce-
dure of Przepiórkowski & Patejuk (2020). In f-structures that have functional co-
heads, the lexical head will be chosen as the head during conversion, and hence
the function words will end up as dependents. And in fact, given that UD uses
a flat structure for multiple function words means that the two representations
are more or less equivalent, a point made in the UD documentation too,16 where
it is said that function word relations are different from dependency relations
between content words and in fact form Tesnière-style nuclei.

16https://universaldependencies.org/u/overview/syntax.html

1849

https://universaldependencies.org/u/overview/syntax.html


Dag Haug

This in turn opens the door to theoretical cross-fertilization. What are good
criteria for choosing between the two analyses? The UD argument is that pri-
macy of lexical words maximizes parallelism across languages, and the exact
same argument has been raised in the LFG literature (Butt et al. 1996). On the
other hand, Dyvik (1999) has countered that this leads to a stipulative, rather
than empirical, notion of language universality and also that it can lead to analy-
ses that are language-internally unmotivated. Recently, Osborne & Gerdes (2019)
criticized the UD approach and argued that functional words should always be
heads. They were apparently unaware of the LFG literature on the topic, perhaps
because it is cast in terms of co-heads vs. xcomps. But as we have seen, the dif-
ference between a co-head analysis and a UD-style annotation is very slight, and
so the arguments made in the LFG context are certainly relevant also for the DG
community.

The other main divergence between initial dependencies, as resulting from the
conversion algorithms, and the target UD structures concern coordination. Here
LFGmakes use of an additional data structure, sets, which have no equivalents in
standard dependency grammar or in UD. (Although as we saw above, Tesnière’s
junction comes close.) There are many competing analyses of coordination in the
dependency literature,17 maybe suggesting that the basic data structure of depen-
dency trees is ill-suited tomodel coordination, as Tesnière argued. The UD choice
is to take the first conjunct as the head and attach the other conjuncts to it with a
special dependency relation conj, whereas conjunctions and punctuation marks
are attached to their following conjunct with cc and punct. It is known that
this annotation style cannot capture all important structural differences, such as
the difference between a dependent of the first conjunct and a shared dependent
of multiple conjuncts, or different style of nested coordinations. The conversion
procedure exposes this lack of expressivity, but also makes it possible to quantify
its effect. As observed by Przepiórkowski & Patejuk (2020), only twelve out of
21,732 utterances in the Polish LFG structure bank are effected.18

More generally, Przepiórkowski & Patejuk (2020) conclude that the informa-
tion loss in converting from LFG to (enhanced) UD is in fact negligible, except
in the case of pro-drop structures. As the UD effort continues to expand, there is
therefore considerable potential for theoretical cross-fertilization.

17And also in (pre-UD) dependency treebanks, see Popel et al. (2013).
18See Przepiórkowski & Patejuk (2019) for a proposal as to how nested coordination could be
captured in UD.

1850



38 LFG and Dependency Grammar

5 Semantics

Tesnière in general pays much less attention to meaning than to structure, but
at various points he does talk about semantic dependencies. Several versions of
dependency grammars (Functional Generative Description, Meaning–Text The-
ory) have taken this up and operate with a separate level of semantic structure.
There are also various graph-based semantic representation languages such as
Abstract Meaning Representation (AMR, Banarescu et al. 2013), which arguably
are semantic dependency representations without an accompanying syntactic
representation. All such semantic dependency graphs, whether they are coupled
to syntax or not, differ considerably from standard logic-based formalizations of
meaning as used in LFG and most other formal frameworks. They will not be
further discussed here.

Robaldo’s Dependency Tree Semantics (Robaldo 2006) is much closer to stan-
dard conceptions of formal semantics, as it aims to transform dependency trees
into structures that can be interpreted model-theoretically. But for the purposes
of comparison with LFG, it is more interesting to observe that Bröker (2003:
308), in his discussion of the formal foundations of dependency grammar, briefly
suggested that the similarity between dependency trees and LFG’s functional
structure could make the application of Glue semantics (Dalrymple et al. 1993,
Dalrymple 1999; see also Asudeh 2023 [this volume]) to dependency grammar
a promising research area. Gotham & Haug (2018) flesh out this idea and show
how to combine Universal Dependencies with Partial Compositional Discourse
Representation Theory (Haug 2014).

On the formal side, there are few if any obstacles to such an application. The
fundamental idea behind glue semantics is to have linear logic terms guide the
composition of corresponding lambda terms. In the first order glue setting, the
terms of the linear logic are the f-structures, atomic formulae are formed by ap-
plying predicates to the f-structures (in type-theoretic terms, these predicates act
like unary type constructors) and complex formulae are formed with ⊸, which
acts as a binary function type constructor. Consider (21), which gives the mean-
ings, dependency structure and f-structure for Everybody loves somebody. We
write 𝑒1 for 𝑒(1), i.e. the application of the type constructor/predicate 𝑒 to the
syntactic object/term with index 1.
(21) a. everybody 𝜆𝑃.∀𝑥.person(𝑥) → 𝑃(𝑥) (𝑒1 ⊸ 𝑡2) ⊸ 𝑡2

somebody 𝜆𝑃.∀𝑥.person(𝑥) ∧ 𝑃(𝑥) (𝑒3 ⊸ 𝑡2) ⊸ 𝑡2
loves 𝜆𝑥.𝜆𝑦.love(𝑥, 𝑦) 𝑒1 ⊸ 𝑒3 ⊸ 𝑡2

1851



Dag Haug

b. everybody loves somebody

root

subj obj

c.

[
pred ‘love〈 subj 〉’
subj [pred ‘everybody]
obj [pred ‘somebody’]

]

Clearly, it makes no difference whether we interpret the glue types in (21a) over
the dependency tree in (21b) or the f-structure in (21c): in both cases we just need
the same mapping between the indices 1, 2, 3 and the corresponding f-structures
or dependency nodes.

However, while the formal properties of the two theories are similar enough
that Glue semantics can be used for both LFG and DG, a practical consideration
is that dependency trees typically do not contain all the semantically relevant
information that we find in the corresponding f-structure. Control structures are
a case in point (22).

(22) Abrams persuaded the dog to bark

root

subj obj

det

xcomp

mark

The dependency tree in (22) lacks the information that the dog is the subject
of to bark. However, the label xcomp does tell us that the missing subject of to
bark is one of the dependents of persuaded. As a result, the best we can do is to
introduce a discourse referent 𝑥2 that is the subject of the infinitive clause and
must be linked to one of the participants in the matrix event, though we do not
know which one, unless we have access to the lexical information that persuade
is an object control verb. We see that it is possible to compensate for some of the
information loss in dependency trees, although the result only becomes useful if
we have other, lexical information sources available: dependency trees on their
own do not typically come with the rich semantic lexical entries that glue (and
other formal semantic theories) require. We refer to Gotham & Haug (2018) for
more details.

1852



38 LFG and Dependency Grammar

6 Summary

We have seen that the basic relations for analyzing functional syntax, dependen-
cies in DG and grammatical functions in LFG, are very similar, both formally and
conceptually. Nevertheless, the focus on core dependencies that is often seen in
DG work leaves other levels of analysis less well-developed than in LFG. Word
order, in particular, has not received much attention, but we have seen that it
can be interestingly restricted through the use of lexicalized MCFGs, offering a
point of comparison to LFGs, which can also be translated to MCFGs. Another
point of comparison is offered by work on converting LFG parsebanks to depen-
dency treebanks. Finally, we saw that the similarity between DG and LFG also
means that they can use the same syntax-semantics interface in the form of Glue
semantics.

All in all, the considerable similarities between the two theories suggest there
is ample room for mutually benefiting discussion, especially if the increasing use
of DG in computational linguistics triggers a corresponding interest in theoreti-
cal DG.

Acknowledgements

I thank the two anonymous reviewers, one non-anonymous reviewer (Adam
Przepiórkowski) and the editor Mary Dalrymple for very helpful comments on
a previous version of this chapter.

References

Asudeh, Ash. 2023. Glue semantics. InMary Dalrymple (ed.),Handbook of Lexical
Functional Grammar, 651–697. Berlin: Language Science Press. DOI: 10.5281/
zenodo.10185964.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer & Nathan Schneider.
2013. Abstract Meaning Representation for sembanking. In Proceedings of the
7th Linguistic Annotation Workshop and Interoperability with Discourse, 178–
186. Sofia: Association for Computational Linguistics. https : / /www.aclweb.
org/anthology/W13-2322.

Berdicevskis, Aleksandrs & Alexander Piperski. 2020. Corpus evidence for word
order freezing in Russian and German. In Proceedings of the fourth workshop on
Universal Dependencies (UDW 2020), 26–33. Barcelona: Association for Com-
putational Linguistics. https://aclanthology.org/2020.udw-1.4.

1853

https://doi.org/10.5281/zenodo.10185964
https://doi.org/10.5281/zenodo.10185964
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://aclanthology.org/2020.udw-1.4


Dag Haug

Bodirsky, Manuel, Marco Kuhlmann & Mathias Möhl. 2005. Well-nested draw-
ings as models of syntactic structure. In James Rogers (ed.), Proceedings of
FG-MoL 2005: The 10th conference on Formal Grammar and the 9th meeting
on Mathematics of Language, 195–203. Stanford: CSLI Publications. http : / /
cslipublications.stanford.edu/FG/2005/bodirsky.pdf.

Bröker, Norbert. 1998. How to define a context-free backbone for DGs: Imple-
menting a DG in the LFG formalism. In Processing of dependency-based gram-
mars. https://aclanthology.org/W98-0504.

Bröker, Norbert. 2003. Formal foundations of dependency grammar. In Vilmos
Ágel (ed.), Dependency and valency (Handbook of Linguistics and Communi-
cation Sciences 25), 294–310. Berlin: De Gruyter.

Butt, Miriam, María-Eugenia Niño & Frederique Segond. 1996. Multilingual pro-
cessing of auxiliaries in LFG. In D. Gibbon (ed.), Natural language processing
and speech technology: Results of the 3rd KONVENS conference, 111–122. Berlin:
Mouton de Gruyter.

Çetinoǧlu, Özlem, Jennifer Foster, Joakim Nivre, Deirdre Hogan, Aoife Cahill
& Josef van Genabith. 2010. LFG without c-structures. In NEALT proceedings,
vol. 9, 43–54.

Chomsky, Noam. 1966. Cartesian linguistics: A chapter in the history of rationalist
thought. New York: Harper & Row. DOI: 10.1017/cbo9780511803116.

Clark, Alexander. 2014. An introduction to multiple context free grammars for
linguists. https://alexc17.github.io/papers/mcfgsforlinguists.pdf.

Covington, Michael A. 1984. Syntactic theory in the High Middle Ages. Cambridge,
UK: Cambridge University Press. DOI: 10.1017/cbo9780511735592.

Creider, Chet & Richard Hudson. 2006. Case agreement in Ancient Greek: Impli-
cations for a theory of covert elements. In Kensei Sugayama& Richard Hudson
(eds.), Word Grammar: New perspectives on a theory of language structure, 35–
53. London: Continuum.

Dalrymple, Mary (ed.). 1999. Semantics and syntax in Lexical Functional Grammar:
The resource logic approach (Language, Speech, and Communication). Cam-
bridge, MA: The MIT Press. DOI: 10.7551/mitpress/6169.001.0001.

Dalrymple, Mary, Ronald M. Kaplan, John T. III Maxwell & Annie Zaenen (eds.).
1995. Formal issues in Lexical-Functional Grammar. Stanford: CSLI Publica-
tions.

Dalrymple, Mary, John Lamping & Vijay Saraswat. 1993. LFG semantics via con-
straints. In Proceedings of the 6th conference of the European chapter of the ACL
(EACL 1993), 97–105. Association for Computational Linguistics. DOI: 10.3115/
976744.976757.

1854

http://cslipublications.stanford.edu/FG/2005/bodirsky.pdf
http://cslipublications.stanford.edu/FG/2005/bodirsky.pdf
https://aclanthology.org/W98-0504
https://doi.org/10.1017/cbo9780511803116
https://alexc17.github.io/papers/mcfgsforlinguists.pdf
https://doi.org/10.1017/cbo9780511735592
https://doi.org/10.7551/mitpress/6169.001.0001
https://doi.org/10.3115/976744.976757
https://doi.org/10.3115/976744.976757


38 LFG and Dependency Grammar

de Marneffe, Marie-Catherine & Christopher D. Manning. 2008. The Stanford
typed dependencies representation. In COLING 2008: Proceedings of the Work-
shop on Cross-framework and Cross-domain Parser Evaluation, 1–8. Manchester.
DOI: 10.3115/1608858.1608859.

de Marneffe, Marie-Catherine, Christopher D. Manning, Joakim Nivre & Daniel
Zeman. 2021. Universal Dependencies. Computational Linguistics 47(2). 255–
308. DOI: 10.1162/coli_a_00402.

de Marneffe, Marie-Catherine & Joakim Nivre. 2019. Dependency grammar. An-
nual Review of Linguistics 5(1). 197–218. DOI: 10 . 1146 / annurev - linguistics -
011718-011842.

Dione, Cheikh M. Bamba. 2020. From LFG to UD: A combined approach. In Pro-
ceedings of the fourth workshop on Universal Dependencies (UDW 2020), 57–66.
Barcelona: Association for Computational Linguistics. https : / /aclanthology.
org/2020.udw-1.7.

Dyvik, Helge. 1999. The universality of f-structure: Discovery or stipulation? The
case of modals. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of
the LFG ’99 conference, 1–11. Stanford: CSLI Publications.

Forst, Martin. 2003. Treebank conversion – Establishing a testsuite for a broad-
coverage LFG from the TIGER treebank. In Proceedings of the 4th International
Workshop on Linguistically Interpreted Corpora (LINC-03) at EACL 2003, 205–
216. Association for Computational Linguistics. https : / /www . aclweb . org /
anthology/W03-2404.

Forst, Martin & TracyHolloway King. 2023. Computational implementations and
applications. In Mary Dalrymple (ed.), Handbook of Lexical Functional Gram-
mar, 1083–1123. Berlin: Language Science Press. DOI: 10.5281/zenodo.10185986.

Foth, Kilian, Wolfgang Menzel & Ingo Schröder. 2005. Robust parsing with
weighted constraints. Natural Language Engineering 11(1). 1–25. DOI: 10.1017/
S1351324903003267.

Gaifman, Haim. 1965. Dependency systems and phrase-structure systems. Infor-
mation and Control 8(3). 304–337. DOI: 10.1016/s0019-9958(65)90232-9.

Gotham, Matthew & Dag Haug. 2018. Glue semantics for Universal Dependen-
cies. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’18
conference, 208–226. Stanford: CSLI Publications.

Hahn,Michael, Dan Jurafsky& Richard Futrell. 2020. Universals of word order re-
flect optimization of grammars for efficient communication. Proceedings of the
National Academy of Sciences 117(5). 2347–2353. DOI: 10.1073/pnas.1910923117.

Hajič, Jan, Eduard Bejček, Jaroslava Hlaváčová, Marie Mikulová, Milan Straka,
Jan Štěpánek & Barbora Štěpánková. 2020. Prague Dependency Treebank -
Consolidated 1.0. In Proceedings of the 12th International Conference on Lan-

1855

https://doi.org/10.3115/1608858.1608859
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1146/annurev-linguistics-011718-011842
https://doi.org/10.1146/annurev-linguistics-011718-011842
https://aclanthology.org/2020.udw-1.7
https://aclanthology.org/2020.udw-1.7
https://www.aclweb.org/anthology/W03-2404
https://www.aclweb.org/anthology/W03-2404
https://doi.org/10.5281/zenodo.10185986
https://doi.org/10.1017/S1351324903003267
https://doi.org/10.1017/S1351324903003267
https://doi.org/10.1016/s0019-9958(65)90232-9
https://doi.org/10.1073/pnas.1910923117


Dag Haug

guage Resources and Evaluation (LREC’20), 5208–5218. Marseille: European
Language Resources Association (ELRA). https://www.aclweb.org/anthology/
2020.lrec-1.641.

Haug, Dag. 2012. From dependency structures to LFG representations. In Miriam
Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’12 conference, 271–
291. Stanford: CSLI Publications.

Haug, Dag. 2014. Partial dynamic semantics for anaphora: Compositionalitywith-
out syntactic coindexation. Journal of Semantics 31(4). 457–511. DOI: 10.1093/
jos/fft008.

Hays, David G. 1964. Dependency theory: A formalism and some observations.
Language 40(4). 511–525. DOI: 10.2307/411934.

Holan, Tomáš, Vladislav Kuboň, Karel Oliva & Martin Plátek. 1998. Two useful
measures of word order complexity. In Processing of dependency-based gram-
mars. https://aclanthology.org/W98-0503.

Hudson, Richard. 1984. Word Grammar. Oxford: Blackwell.
Hudson, Richard. 2003. Word Grammar. In Vilmos Ágel (ed.), Dependency and

valency, vol. 25 (Handbook of Linguistics and Communication Sciences), 508–
526. Berlin: De Gruyter. DOI: 10.1093/oxfordhb/9780199738632.013.0019.

Hudson, Richard. 2010. An introduction to Word Grammar. Cambridge, UK: Cam-
bridge University Press. DOI: 10.1017/cbo9780511781964.

Kahane, Sylvain. 2003. The Meaning-Text Theory. In Vilmos Ágel (ed.), Depen-
dency and valency (Handbook of Linguistics and Communication Sciences 25).
Berlin: De Gruyter.

Kallmeyer, Laura. 2010. Parsing beyond context-free grammars. Berlin: Springer.
DOI: 10.1007/978-3-642-14846-0.

Kaplan, Ronald M. 1989. The formal architecture of Lexical-Functional Grammar.
Journal of Information Science and Engineering 5. 305–322. Revised version pub-
lished as Kaplan (1995).

Kaplan, Ronald M. 1995. The formal architecture of Lexical-Functional Grammar.
In Mary Dalrymple, Ronald M. Kaplan, John T. III Maxwell & Annie Zaenen
(eds.), Formal issues in Lexical-Functional Grammar, 7–27. Stanford: CSLI Pub-
lications. Earlier version published as Kaplan (1989).

Kaplan, Ronald M. & Joan Bresnan. 1982. Lexical-Functional Grammar: A formal
system for grammatical representation. In Joan Bresnan (ed.), The mental rep-
resentation of grammatical relations, 173–281. Cambridge, MA: The MIT Press.
Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen (1995: 29–130).

Karlsson, Fred, Atro Voutilainen, Juha Heikkilae & Arto Anttila. 1995. Constraint
grammar: A language-independent system for parsing unrestricted text. Berlin:
Walter de Gruyter.

1856

https://www.aclweb.org/anthology/2020.lrec-1.641
https://www.aclweb.org/anthology/2020.lrec-1.641
https://doi.org/10.1093/jos/fft008
https://doi.org/10.1093/jos/fft008
https://doi.org/10.2307/411934
https://aclanthology.org/W98-0503
https://doi.org/10.1093/oxfordhb/9780199738632.013.0019
https://doi.org/10.1017/cbo9780511781964
https://doi.org/10.1007/978-3-642-14846-0


38 LFG and Dependency Grammar

Kay,Martin. 1979. Functional grammar. In Proceedings of the 5th annualmeeting of
the Berkeley Linguistics Society, 142–158. Berkeley: Berkeley Linguistics Society.
DOI: 10.3765/bls.v5i0.3262.

Kiparsky, Paul. 1993. Paninian linguistics. In Ronald Asher & Seumas Simpson
(eds.), Encyclopedia of languages and linguistics. Oxford: Pergamon.

Kuhlmann, Marco. 2007. Dependency structures and lexicalized grammars. Saar-
brücken: Universität des Saarlandes. (Doctoral dissertation). http://www.ida.
liu.se/~marku61/pdf/kuhlmann2007dependency.pdf.

Kuhlmann, Marco. 2010. Dependency structures and lexicalized grammars: An al-
gebraic approach. Berlin: Springer. DOI: 10.1007/978-3-642-14568-1.

Kuhlmann, Marco. 2013. Mildly non-projective dependency grammar. Computa-
tional Linguistics 39(2). 355–387. DOI: 10.1162/COLI_a_00125.

Maruyama, Hiroshi. 1990. Structural disambiguation with constraint propaga-
tion. In Proceedings of the 28th annual meeting of the Association for Compu-
tational Linguistics, 31–38. Pittsburgh: Association for Computational Linguis-
tics. DOI: 10.3115/981823.981828.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov & Jan Hajič. 2005. Non-
projective dependency parsing using spanning tree algorithms. In Proceedings
of Human Language Technology conference and Conference on Empirical Meth-
ods in Natural Language Processing, 523–530. Vancouver: Association for Com-
putational Linguistics. DOI: 10.3115/1220575.1220641.

Mel’čuk, Igor A. 1988. Dependency syntax: Theory and practice. Albany, NY: State
University of New York Press.

Meurer, Paul. 2017. From LFG structures to dependency relations. Bergen Lan-
guage and Linguistics Studies 8. 183–201. DOI: 10.15845/bells.v8i1.1341.

Moshier, M. D. & W. C. Rounds. 1987. A logic for partially specified data struc-
tures. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL ’87), 156–167. Munich: Association for
Computing Machinery. DOI: 10.1145/41625.41639.

Neuhaus, Peter & Norbert Bröker. 1997. The complexity of recognition of lin-
guistically adequate dependency grammars. In Proceedings of the 35th annual
meeting of the Association for Computational Linguistics and 8th conference of
the European chapter of the ACL (ACL ’98/EACL ’98), 337–343. Association for
Computational Linguistics. DOI: 10.3115/976909.979660.

Nivre, Joakim. 2008. Algorithms for deterministic incremental dependency pars-
ing. Computational Linguistics 34(4). 513–553. DOI: 10.1162/coli.07-056-r1-07-
027.

1857

https://doi.org/10.3765/bls.v5i0.3262
http://www.ida.liu.se/~marku61/pdf/kuhlmann2007dependency.pdf
http://www.ida.liu.se/~marku61/pdf/kuhlmann2007dependency.pdf
https://doi.org/10.1007/978-3-642-14568-1
https://doi.org/10.1162/COLI_a_00125
https://doi.org/10.3115/981823.981828
https://doi.org/10.3115/1220575.1220641
https://doi.org/10.15845/bells.v8i1.1341
https://doi.org/10.1145/41625.41639
https://doi.org/10.3115/976909.979660
https://doi.org/10.1162/coli.07-056-r1-07-027
https://doi.org/10.1162/coli.07-056-r1-07-027


Dag Haug

Osborne, Timothy & Kim Gerdes. 2019. The status of function words in depen-
dency grammar: A critique of Universal Dependencies (UD). Glossa: A Journal
of General Linguistics 4(1). 17. DOI: 10.5334/gjgl.537.

Øvrelid, Lilja, Jonas Kuhn & Kathrin Spreyer. 2009. Cross-framework parser
stacking for data-driven dependency parsing. Traitement automatique des
langues 50(3). 109–138.

Popel, Martin, David Mareček, Jan Štěpánek, Daniel Zeman & Zdeněk Žabokrt-
ský. 2013. Coordination structures in dependency treebanks. In Proceedings of
the 51st annual meeting of the Association for Computational Linguistics (volume
1: long papers), 517–527. Sofia. http://www.aclweb.org/anthology/P13-1051.

Przepiórkowski, Adam. 2023. LFG andHPSG. InMary Dalrymple (ed.),Handbook
of Lexical Functional Grammar, 1861–1918. Berlin: Language Science Press. DOI:
10.5281/zenodo.10186042.

Przepiórkowski, Adam & Agnieszka Patejuk. 2019. Nested coordination in Uni-
versal Dependencies. In Proceedings of the third workshop on Universal Depen-
dencies (UDW SyntaxFest 2019), 58–69. Paris: Association for Computational
Linguistics. DOI: 10.18653/v1/W19-8007.

Przepiórkowski, Adam & Agnieszka Patejuk. 2020. From Lexical Functional
Grammar to Enhanced Universal Dependencies: The UD-LFG treebank of Pol-
ish. Language Resources and Evaluation 54. 185–221. DOI: 10.1007/s10579-018-
9433-z.

Rambow, Owen. 2014. Formal and computational aspects of natural language syn-
tax. Philadelphia: University of Pennsylvania. (Doctoral dissertation).

Richter, Frank. 2021. Formal background. In Stefan Müller, Anne Abeillé, Robert
D. Borsley & Jean-Pierre Koenig (eds.),Head-Driven Phrase Structure Grammar:
The handbook (Empirically Oriented Theoretical Morphology and Syntax), 89–
124. Berlin: Language Science Press. DOI: 10.5281/zenodo.5599822.

Robaldo, Livio. 2006.Dependency tree semantics. Turin: University of Turin. (Doc-
toral dissertation).

Seki, Hiroyuki, Takahashi Matsumura, Mamoru Fujii & Tadao Kasami. 1991. On
multiple context-free grammars. Theoretical Computer Science 88(2). 191–229.
DOI: 10.1016/0304-3975(91)90374-b.

Seki, Hiroyuki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando & Tadao Kasami.
1993. Parallel multiple context-free grammars, finite-state translation systems,
and polynomial-time recognizable subclasses of Lexical-Functional Grammars.
In Proceedings of the 31st annual meeting of the Association for Computational
Linguistics, 130–139. Columbus, OH: Association for Computational Linguis-
tics. DOI: 10.3115/981574.981592.

1858

https://doi.org/10.5334/gjgl.537
http://www.aclweb.org/anthology/P13-1051
https://doi.org/10.5281/zenodo.10186042
https://doi.org/10.18653/v1/W19-8007
https://doi.org/10.1007/s10579-018-9433-z
https://doi.org/10.1007/s10579-018-9433-z
https://doi.org/10.5281/zenodo.5599822
https://doi.org/10.1016/0304-3975(91)90374-b
https://doi.org/10.3115/981574.981592


38 LFG and Dependency Grammar

Sgall, Petr, Eva Hajičová & Jarmila Panevová. 1986. The meaning of the sentence
in its semantic and pragmatic aspects. Prague: Academia.

Tesnière, Lucien. 1959. Éléments de syntaxe structurale. Paris: Klincksieck.
Vijay-Shanker, K., David J. Weir & Aravind K. Joshi. 1987. Characterizing struc-

tural descriptions produced by various grammatical formalisms. In Proceedings
of the 25th annual meeting of the Association for Computational Linguistics, 104–
111. Stanford: Association for Computational Linguistics. DOI: 10.3115/981175.
981190.

Wedekind, Jürgen & Ronald M. Kaplan. 2020. Tractable Lexical-Functional Gram-
mar. Computational Linguistics 46(2). 515–569. DOI: 10.1162/coli_a_00384.

1859

https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190
https://doi.org/10.1162/coli_a_00384



