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This chapter provides a summary of a range of work on probabilistic models of Lex-
ical Functional Grammar (LFG). LFG grammars as originally conceived in Kaplan
& Bresnan (1982) were defined by grammatical rules and constraints, so could not
describe ill-formed strings, and they failed if confronted with well-formed strings
outside their coverage. In contrast, the hybrid LFG-DOP model of Bod & Kaplan
1998 and Bod & Kaplan 2003 could generalize well-formed analyses via the Discard
operation to allow ill-formed and previously uncovered well-formed strings to be
handled. Way (1999) andWay (2001) extended LFG-DOP to handle translation, and
demonstrated two advantages of his LFG-DOTmodels: (i) being probabilistic, LFG-
DOT was able to handle a range of translation phenomena that were problematic
for the description of LFG-MT (Kaplan et al. 1989); and (ii) having f-structure con-
straints enabled LFG-DOT to overcome problems for DOT (Poutsma 2000), a model
of translation based on DOP (Bod 1992, Sima’an 1997, Bod 1998). Like most proba-
bilistic models, LFG-DOP (and LFG-DOT) require large amounts of annotated data.
In a range of seminal work on grammar induction – now a research field in its own
right, but at the time quite a novelty – it was demonstrated how strings could be
automatically annotated with both LFG c- and f-structure information (Sadler et al.
2000, Cahill et al. 2002a). These were then used for multilingual probabilistic pars-
ing (Cahill et al. 2005, Cahill, Burke, O’Donovan, et al. 2008) and lexicon induction
experiments (O’Donovan 2006), which we describe here.
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1 Introduction

In this chapter we summarize work on extensions to the core LFG formalism
that facilitate large-scale probabilistic LFG parsing and translation models. Tra-
ditional LFG grammars (Kaplan & Bresnan 1982) are defined in terms of well-
formed grammatical rules and constraints. This has two main limitations: (i) ill-
formed input cannot be handled easily;1 and (ii) when a grammar produces mul-
tiple analyses for an input, there is no inherent way of ranking the competing
solutions.

We describe LFG-DOP (Bod & Kaplan 1998), a hybrid model of Data-Oriented
Parsing (DOP: Bod 1992, Sima’an 1997, Bod 1998) and LFG that allows for prob-
abilistic tree parsing, and which is beyond context-free in its generative power.
We describe how this work led to the LFG-DOT framework (Way 1999, 2001) for
machine translation (MT) with LFG.

Large-scale probabilistic parsing typically requires substantial amounts of an-
notated training data. We describe techniques developed to automatically gener-
ate large-scale LFG-annotated treebanks that provide the training data needed
for probabilistic LFG parsing. We describe how this work was not only applied
to English, but also several other languages including German (Cahill et al. 2005,
Rehbein & van Genabith 2009), French (Schluter 2011), Spanish (O’Donovan et al.
2005, Chrupała & van Genabith 2006), Chinese (Burke, Cahill, et al. 2004, Guo
2009), Japanese (Oya & van Genabith 2007) and Arabic (Tounsi et al. 2009a). A re-
lated field of work was the automated extraction of large-scale lexical resources
from these LFG-annotated treebanks (O’Donovan 2006). Although large-scale
LFG-DOT experimentation has not been conducted to date,2 these grammars
and semantic forms (i.e. subcategorisation frames) are exactly what LFG-DOT
requires to build its models. Accordingly, we sketch what would need to be done
to conduct such experiments.

Finally, we compare this semi-automatic approach to lexicon and grammar
induction to that based on the hand-crafted XLE grammars.

2 LFG-DOP

This section describes howLFGwas combinedwithData-Oriented Parsing (DOP)
models to create a more robust, probabilistic model of language processing, LFG-

1This applies equally to legitimate strings which are not covered by the grammar.
2Bod (2000) acknowledges that Cormons (1999) “accomplished [the] first simple experiment
with LFG-DOP”. Bod & Kaplan (2003) includes a large-scale evaluation of LFG-DOP against a
DOP baseline. Hearne (2005) extends these experiments for DOP, demonstrating higher accu-
racy for the exact match metric using improved sampling techniques.
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24 Treebank-driven parsing, translation and grammar induction using LFG

DOP. In later sections, we will show how both DOP and LFG-DOP were used to
build powerful, robust models of MT.

2.1 Data-Oriented Parsing

DOP models (Bod 1992, Sima’an 1997, Bod 1998) assume that past experiences of
language are significant in both perception and production. DOP prefers perfor-
mance models over competence grammars, in that abstract grammar rules are
eschewed in favour of models based on large collections of previously occurring
fragments of language. Previously uncovered sentences are processed with ref-
erence to existing fragments from the treebank, which are combined using prob-
abilistic techniques to determine the most likely analysis for the new fragment.

The general DOP architecture stipulates four parameters on which particular
models are instantiated:

1. A formal definition of well-formed representations for sentence analyses;

2. A set of decomposition operations for splitting sentence analyses into a set
of fragments;

3. A set of composition operations for recombination of such fragments in
order to derive analyses of new strings;

4. A definition of a probability model indicating the likelihood of a sentence
analysis based on the probabilities of its constituent parts.

DOP models typically assign a surface phrase-structure (PS) tree to strings
(hence ‘Tree-DOP’, or ‘DOP1’ in Bod (1992)). However, context-free models are
insufficiently powerful to deal with all aspects of human language. LFG, on the
other hand, is known to be beyond context-free, and can capture and provide
representations of linguistic phenomena other than those occurring at surface
structure.3

3Note that the question of what grammar type in the Chomsky Hierarchy (Chomsky 1956) was
capable of processing human language was a significant one when LFG was first proposed,
but appears to be less of a concern nowadays. This was relevant for Chomsky’s claims of Uni-
versal Grammar (Chomsky 1981), of course, but different languages have been demonstrated
to require different grammar types; for example, Dutch cross-serial dependencies can only be
handled by a context-sensitive grammar, whereas English is arguably context-free. Note that
Futrell et al. (2016) claim the Amazonian language Pirahã to be finite-state, so the Chomsky
Hierarchy no longer seems to be particularly helpful as a characterisation of human languages
in general. Nonetheless, the fact that LFG is beyond context-free would allow it to claim that
it is a general enough model to cope with languages like Dutch. Note too that a grammar for-
malism should be sufficiently constrained to ensure that parsing can be done in polynomial
time.
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2.2 Combining DOP with LFG: LFG-DOP

Accordingly, Bod & Kaplan (1998) augmented DOP with the syntactic represen-
tations of LFG to create a new, more powerful hybrid model of language process-
ing – LFG-DOP – which adds a level of robustness not available to models based
solely on LFG.

LFG-DOP is defined using the same four parameters as in Tree-DOP. We de-
scribe each of these in the next sections.

2.2.1 Representations in LFG-DOP

The LFG-DOP representations are those traditionally used in LFG, where each
string is annotated with a c-structure, an f-structure, and a mapping 𝜙 between
them. Well-formedness conditions operate solely on f-structure, as usual.

2.2.2 Decomposition in LFG-DOP

Since we are now dealing with ⟨𝑐, 𝑓 ⟩ pairs of structure, the Root and Frontier
decomposition operations of DOP need to be adapted to stipulate exactly which
c-structure nodes are linked to which f-structure fragments, therebymaintaining
the fundamentals of c- and f-structure correspondence. As LFG c-structures are
little more than annotated PS trees, we can proceed very much on the same lines
as in Tree-DOP. Root erases all nodes outside of the selected node, and in addition
deletes all 𝜙-links (informally, parts of the f-structure linked to a c-structure node)
leaving the erased nodes, as well as all f-structure units that are not 𝜙-accessible
from the remaining nodes. Bod & Kaplan (1998) define 𝜙-accessibility as follows:

“An f-structure unit f is 𝜙-accessible from a node n iff either n is 𝜙-linked to
f (that is, 𝑓 = 𝜙(𝑛)) or f is contained within 𝜙(𝑛) (that is, there is a chain of
attributes that leads from 𝜙(𝑛) to f).” (Bod & Kaplan 1998: 146)

As an example, consider (1):

(1) S:𝑛1

NP:𝑛2

John

VP:𝑛3

V:𝑛4

swims

⎡⎢⎢⎢
⎣

subj [pred ‘John’
num sg ]

𝑓2
pred ‘swim〈(↑ subj)〉
tense pres

⎤⎥⎥⎥
⎦

𝑓1𝑓3𝑓4
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The 𝜙-links are shown in (2):

(2) 𝜙(𝑛1) = f1, 𝜙(𝑛2) = f2, 𝜙(𝑛3) = f3, 𝜙(𝑛4) = f4, 𝜙(𝑛1) = 𝜙(𝑛3) = 𝜙(𝑛4)
𝜙-accessibility reflects the intuitive notion that nodes in a tree carry infor-

mation only about the f-structure elements to which the root node of the tree
permits access, as in (1). Note that all f-structure units are 𝜙-accessible from the
S, VP and V nodes, but tense and the top-level pred (the main verb swim) cannot
be accessed via 𝜙 from the subject NP node.

Frontier operates as in Tree-DOP, deleting all subtrees of the selected frontier
nodes. It also deletes all 𝜙-links of these deleted nodes togetherwith any semantic
form (e.g. in (1), ‘swim〈(↑ subj)〉’) as is the case if the V:swims node is deleted in
(3):

(3) S:𝑛1

NP:𝑛2

John

VP:𝑛3
[subj [pred ‘John’

num sg ]
𝑓2

tense pres
]

𝑓1𝑓3

This illustrates the ability of Root nodes to access certain f-structure features
even after subnodes have been deleted. Even though the V:swims node is deleted
in the c-structure tree, only the semantic form ‘swim〈(↑ subj)〉’ is deleted from
the f-structure, and the tense feature remains.4

It is, however, possible to prune (3) still further, as (4) illustrates:

(4) S:𝑛1

NP:𝑛2

John

VP:𝑛3
[subj [pred ‘John’

num sg ]
𝑓2

]𝑓1𝑓3

This is achieved by applying a third, and new operation, Discard, to the tense
feature in (3).5 The Discard operation adds considerably to LFG’s robustness by

4Note that subject-tense agreement is seen in some languages e.g. Hindi. Accordingly, there is
no universal principle which should rule out fragments such as (3).

5This function generates appropriate fragments for English which have no subject-tense depen-
dency; accordingly, we would expect more fragments like (4) in English treebanks, but fewer
such fragments for Hindi, say, given the point made in fn. 4.
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providing generalized fragments from those derived via Root and Frontier by
freely deleting any combination of attribute-value pairs from an f-structure ex-
cept those that are 𝜙-linked to some remaining c-structure node, or that are gov-
erned by the local predicate (i.e. required to be present). Its introduction also
necessitates a new definition of the grammaticality of a sentence with respect to
a corpus, namely any sentence having at least one derivation whose fragments
are produced only by Root and Frontier and not by Discard. Way (1999) splits
fragments into separate bags of Discard and non-Discard fragments in order “to
facilitate the consideration of grammaticality.” Bod (2000) demonstrates that this
is helpful for LFG-DOP, too, on experiments with the Verbmobil and Homecen-
tre corpora, which compare favourably with the original model of Bod & Kaplan
(1998). In contrast, Hearne & Sima’an (2004) present an improved back-off esti-
mation method where non-Discard fragments are naturally preferred.

We omit here the complete LFG-DOP treebank (ignoring the effects of the
Discard operator) for the sentence John swims, but refer the interested reader to
Figure 4.1 in Way (2001: 114). Nonetheless, as he does, we point out that each
c-structure fragment in an LFG-DOP corpus is not necessarily linked to a unique
f-structure fragment. From his Figure 4.1, consider the three fragments in (5):

(5) S

NP VP

V

swims

VP

V

swims

V

swims

These three c-structure fragments all map to the same f-structure fragment in
(6) because of equations such as 𝜙(𝑛1) = 𝜙(𝑛3) = 𝜙(𝑛4) in (2):

(6) [
subj [num sg]
pred ‘swim〈(↑ subj)〉’
tense pres

]

This f-structure shows that swims being singular requires a singular subject.
Of course, to be completely accurate, we should add in a subj:pers:3 constraint
too, to prevent strings such as I swims and you swims from being deemed gram-
matical.
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We can illustrate the effect of Discard in relaxing the subj:num:sg constraint
with swims in (7):

(7) VP

V

swims

[
subj []
pred ‘swim〈(↑ subj)〉’
tense pres

]
VP

V

swims

[subj []
pred ‘swim〈(↑ subj)〉’]

Accordingly, if the ill-formed string The men swims were input, it could be pro-
cessed by LFG-DOP because of generalised fragments like these, but would be
ruled out as ungrammatical in LFG, given f-structures like (6). Note that Discard
has been applied to the rightmost f-structure in (7).

2.2.3 Composition in LFG-DOP

Composition in LFG-DOP is also a two-step operation. C-structures are com-
bined by leftmost substitution, as in Tree-DOP, subject to the matching of their
nodes. F-structures corresponding to these nodes are then recursively unified,
and the resulting f-structures are subjected to the grammaticality checks of LFG.

2.2.4 Probability models for LFG-DOP

𝐶𝑃(𝑓 ∣ 𝐶𝑆) denotes the probability of choosing a fragment f from a competition
set CS of competing fragments. In Tree-DOP, we wanted to select a tree t from a
treebank, whereas in LFG-DOP we are interested in selecting a ⟨𝑐, 𝑓 ⟩ pair from a
corpus. The probability of an LFG-DOP derivation is the same as in Tree-DOP; it
is just the derivation itself which changes. As in DOP, then, an LFG-DOP deriva-
tion𝐷 = ⟨𝑓1, 𝑓2...𝑓𝑛⟩ is produced by a stochastic branching process which at each
stage in the process randomly samples from a competition set CS of competing
samples, as in (8) (cf. example (10) in Bod & Kaplan 1998: 148):

(8) 𝑃(⟨𝑓1, 𝑓2...𝑓𝑛⟩) =
𝑛

∏
𝑖=1

𝐶𝑃(𝑓𝑖 ∣ 𝐶𝑆𝑖)

This competition probability 𝐶𝑃(𝑓 ∣ 𝐶𝑆) is expressed in terms of fragment
probabilities 𝑃(𝑓 ) in (9) (cf. example (11) in Bod & Kaplan 1998: 148):
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(9) 𝐶𝑃(𝑓 ∣ 𝐶𝑆) = 𝑃(𝑓 )
∑

𝑓 ′∈ 𝐶𝑆
𝑃(𝑓 ′)

Taking (8) and (9) together, the probability of a derivation 𝑓 is calculated by
multiplying together the probabilities of the fragments 𝑓𝑖 which are composed to-
gether to form that fragment; this is analogous to how derivations are computed
in Tree-DOP: there, we just have tree fragments, whereas in LFG-DOP, we have
tree fragments together with their associated f-structure fragments.

In Tree-DOP, apart from the Root and Frontier operations, there are no other
well-formedness checks. LFG, however, has a number of grammaticality condi-
tions, some of which – the Completeness check at least – cannot be evaluated
during the stochastic process. Accordingly, probabilities for valid representations
can only be defined by sampling post hoc from the set of representations which
are output from the stochastic process. The probability of sampling a valid rep-
resentation is (10) (cf. example (12) in Bod & Kaplan 1998: 148):

(10) 𝑃(𝑅 ∣ R is valid) = 𝑃(𝑅)
∑

𝑅′ 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑
𝑃(𝑅′)

Bod&Kaplan (1998) note that (10) assigns probabilities to valid representations
whether or not the stochastic process guarantees validity. The valid representa-
tions for a particular utterance u are obtained by a further sampling step, with
their probabilities given by (11) (cf. example (13) in Bod & Kaplan 1998: 148):

(11) 𝑃(𝑅 ∣ R is valid and yields u) = 𝑃(𝑅)
∑

𝑅′ 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 𝑎𝑛𝑑 𝑦𝑖𝑒𝑙𝑑𝑠 𝑢
𝑃(𝑅′)

Comparing (10–11) with the equivalent formula for calculating the probability
of a particular analysis for a Tree-DOP representation, Way (2001) observes that
the LFG-DOP formulae contain references to valid structures. In Tree-DOP, apart
from the root-matching criterion, there are no other validity conditions; in LFG-
DOP, depending on the competition set chosen, there may be several.

Omitting the details for reasons of space, Bod & Kaplan (1998) give three dif-
ferent competition sets depending on the stage at which the LFG grammaticality
checks are carried out, which affect the the probability models for LFG-DOP:
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1. A straightforward extension of the Tree-DOP probability model, where
the choice of a fragment depends only on its Root node (i.e. c-structure
matching category) and not on the Uniqueness, Completeness or Coher-
ence conditions of LFG, which are enforced off-line.

2. Root nodes must match, and f-structures must be unifiable if two LFG frag-
ments are to be combined. This model takes the LFG Uniqueness condition
(namely that each attribute has only one value) as well as the Root category
into account. As the resultant fragments produced vary depending on the
derivation followed, unifiability must be determined at each step in the
process.

3. In addition to the previous two steps, the LFG Coherence check is en-
forced at each step, ensuring that each grammatical function (subj, obj
etc.) present in the f-structure is governed by a pred. This means that in
this model, we are dealing only with well-formed c-structures which corre-
spond to coherent and consistent f-structures, i.e. structures which satisfy
LFG’s Uniqueness check, thereby permitting unification only where ex-
actly appropriate. As we have noted already, the LFG Completeness check
can only be enforced after all other validity sampling has taken place.

Let us now return to the sentence John swims, and show one possible deriva-
tion of the ⟨𝑐, 𝑓 ⟩ pair in (1). A straightforward way of doing this would be to
compose (via the ‘o’ operator in (12)) the ⟨𝑐, 𝑓 ⟩ fragment in (3) with the leftmost
fragment in (7), which we include in full in (12):

(12) S:𝑛1

NP:𝑛2

John

VP:𝑛3
[subj [pred ‘John’

num sg ]
𝑓2

tense pres
]𝑓1𝑓3𝑓4

o

VP:𝑛3

V:𝑛4

swims

[
subj []
pred ‘swim〈(↑ subj)〉’
tense pres

]𝑓1𝑓3𝑓4
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This is possible given that the VP node in the upper tree is vacant, so the lower
VP tree can be substituted for this node. The respective f-structures are then uni-
fied to give the ⟨𝑐, 𝑓 ⟩ fragment in (1). Throughout the derivation of this ⟨𝑐, 𝑓 ⟩ pair,
we have satisfied DOP’s Root condition (leftmost substitution of ‘like’ categories
only), as well as the Uniqueness, Completeness and Coherence grammaticality
conditions of LFG. As a consequence, the resultant structures in (1) are valid. This
is equivalent to using the third option given above for possible competition sets.

Of course there will be many other possible derivations which contribute to
the overall probability of the sentence John swims. Note that if we enforce LFG’s
grammaticality checks on-line, leftmost substitution of non-Discard fragments
reduces the size of the competition set for future iterations of the composition
process. In (12), for instance, enforcing the Uniqueness condition on-line (models
2 or 3 above) prevents any fragment other than a singular intransitive VP from
being substituted into the VP slot. In Tree-DOP, any VP could be substituted at
this node.

3 LFG-DOT

In this section, we demonstrate that problems with the LFG-MT (Kaplan et al.
1989) and Data-Oriented Translation (DOT: Poutsma (2000)) models of transla-
tion can be solved by LFG-DOT.6 As the LFG-DOT models proposed by Way
(1999) and Way (2001) are based on LFG-DOP, they have the same advantages as
shown in the previous section, albeit now for translation:

1. Being a probabilistic model, LFG-DOT can overcome problems encoun-
tered by LFG-MT which is based solely on LFG’s constraints; and

2. By appealing to LFG’s f-structure constraints, LFG-DOT can overcome
problems encountered by DOT which is based solely on trees.

3.1 LFG-MT

A translation model based on LFG was first presented in Kaplan et al. (1989). This
original model introduces the 𝜏 -correspondence as a mapping between source

6Hearne (2005) demonstrates that reasonably large-scale models can be built with DOT that
considerably outperform SMT. Bod (2007) contains results which demonstrate similar improve-
ments over SMT, but for really large-scale models at the time. Given the massive time and
space constraints involved in processing DOP models, it is noteworthy that Bod was able to
build DOTmodels trained on more than 750K sentence-pairs of German-English Europarl data
(Koehn 2005).

1134



24 Treebank-driven parsing, translation and grammar induction using LFG

and target f-structures. For swim, we would need a transfer lexicon entry such
as (13) for translation between English and French:

(13) swim:
(𝜏 ↑ pred) = nager
(𝜏 ↑ subj) = 𝜏 (↑ subj)

Being a straightforward translation example, this entry demonstrates two things:
(i) that the translation of the verb swim is nager, and (ii) that the translation of
the subject of swim is the subject of nager.

This model is very elegant, and allows for some difficult translation problems
to be handled by the LFG-MT formalism. For example, verbs with different se-
mantic forms can be handled relatively straightforwardly. Assume the transla-
tion case in (14):

(14) The student answers the question ⟷ L’étudiant répond à la question.

This case can be dealt with as in (15):

(15) answer:
(𝜏 ↑ pred) = répondre
(𝜏 ↑ subj) = 𝜏 (↑ subj)
(𝜏 ↑ obl obj) = 𝜏 (↑ obj)

This states that répondre is the corresponding French predicate of answer, that
the translation of the subj is straightforward, and that the translation of the obj
of answer is the obl obj of répondre.

The LFG-MT model of Kaplan et al. (1989) can also deal correctly with the
like–plaire relation-changing case, as (16) demonstrates:

(16) like:
(𝜏 ↑ pred) = plaire
(𝜏 ↑ obl) = 𝜏 (↑ subj)
(𝜏 ↑ subj) = 𝜏 (↑ obj)

That is, the subject of like is translated as the oblique argument of plaire, while
the object of like is translated as the subject of plaire.

However, a line of work showed that while the 𝜏 -equations of Kaplan et al.
(1989) are by and large able to link exactly those source–target elements which
are translations of each other, there are a number of cases where this machin-
ery is unable to cope with a set of translation cases, in particular embedded
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headswitching examples and the correct translation of adjuncts (cf. Arnold et
al. 1990, Sadler & Thompson 1991, Way 2001).7

It is worth noting that an updated version of LFG-MT was described in Kaplan
&Wedekind (1993) which used the concept of Restriction to try to overcome some
of the problems in mapping between flat syntactic f-structures to hierarchical
semantic ones. However, as well as receiving criticism from a monolingual per-
spective (cf. Butt (1994) and complex predicates in Urdu), Way (2001) demon-
strates this new approach failed to ensure that only the correct translations en-
sued; rather, it was left to a human expert to select the correct translation from
a set of alternatives, many of which were incorrect. Despite being an improve-
ment on the original model of Kaplan et al. (1989), it is still open to criticism as a
general model of translation.

Another solution proposed around this time involved using linear logic (van
Genabith et al. 1998), but this involved addingmassive redundancy in the transfer
lexicon, cf. Way (2001: 92–96).

Note too that work continued on using LFG as a basis for MT after LFG-DOT
was introduced. One such model was that of Riezler & Maxwell (2006). Note
that their paper is not a comparison of LFG-MT, but rather with SMT (Koehn
et al. 2003). Note that they add a ‘fragment grammar’ which “allows sentences
that are outside the scope of the standard grammar to be parsed as well-formed
chunks” (p.251), but they do not compare this with the bag of Discard-generated
fragment-pairs in LFG-DOT. This work is extended by Graham & van Genabith
(2012), who incorporate a deep syntax language model directly into the decoder,
as opposed to using it post hoc to improve the grammaticality of the target trans-
lations. Note that neither approach shows how their models handle any of the
traditional ‘hard’ translation cases. For the approach of Riezler &Maxwell (2006),
being based on transfer rules – albeit automatically extracted ones – it will surely
fail in similar ways to LFG-MT. As to themodel of Graham& vanGenabith (2012),
and approaches based on SMT in general, it is doubtful whether the system de-
signers can answer the question how such translational phenomena are handled,
as SMT does not work in this way. Of course, test sets can be designed which
include such ‘hard’ cases, and the translation output inspected, but SMT systems

7To give the reader some insight into the first-mentioned issue without having to consult the
primary literature, LFG-MT can cope with ‘straightforward’ headswitching examples like The
baby just fell ⟷ Le bébé vient de tomber. However, when such examples appear in embedded
clauses, as in I think that the baby just fell ⟷ Je pense que le bébé vient de tomber, ad hoc
solutions are required to avoid target f-structures being doubly rooted, i.e. two 𝜏 -equations
result in inconsistent solutions where one piece of f-structure is required to simultaneously
fill two different slots.
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by their very nature are far less inspectable than systems which include syntac-
tic constraints, so even if such sentences were translated correctly, it would be
hard to know why exactly. Of course, this problem is worse again with today’s
state-of-the-art neural models; despite the improved quality that can be derived,
our knowledge as to what is going on internally inside the systems is less than
it’s ever been.

3.2 Data-Oriented Translation

Poutsma (2000) produced two models of tree-based translation, DOT1 and DOT2.
These models were formulated along the same lines as DOP and LFG-DOP, with
definitions of the representations to be used, how these were to be decomposed,
recomposed, and a probability model.

In DOT, the latter determined the likelihood of a target translation given a
source string. The representations used were PS trees, decomposition described
how to extract well-formed subtree-pairs from these representations,8 and the
composition operator used was leftmost substitution (to ensure unique deriva-
tions) of matching Root labels.

We illustrate a linked translation pair in DOT in (17) for the the sentence pair
⟨ John swims, Jan zwemt ⟩:9

(17) S

NP

John

VP

V

swims

S

NP

Jan

VP

V

zwemt

If we assume that the sentential fragment in (17) is unseen in ourDOT treebank,
one derivation of the translation Jan zwemt given the source sentence John swims
might be (18):

8In his thesis, Way 2001 introduces the label 𝛾 to refer to the function that links DOT source
and target subtree fragments. See Section 3.3.2 for models which use the 𝛾 function in LFG-
DOT, and Poutsma 2000: Sect. 2.1 for a description of how linked subtrees like the V-labelled
fragments in (18) are extracted from tree pairs such as (17).

9Here we ‘translate’ names to indicate that the translation process has been successful, as op-
posed to merely passing over a source word as untranslated – an out-of-vocabulary item – into
the target side.
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(18) S

NP

John

VP

V

S

NP

Jan

VP

V

o V

swims

V

zwemt

Way (1999) showed that the DOT1 model could not always explicitly relate
parts of the source-language structure to the corresponding, correct parts in the
target structure, so fails to translate correctly where source and target strings
differ with respect to word order (e.g. the like ⇔ plaire relation changing case
– which LFG-MT can handle, cf. (16) – plus many more ‘hard’ translation cases
described in Way et al. (1997)).

DOT2 was developed as a consequence of these failings, and improves over
DOT1 by not restricting the composition operation to left-most substitution on
both sides. With that change, DOT2 manages to overcome cases of word-order
difference by and large. However, Way (2001) notes that:

“this is compromised by a lesser amount of compositionality in the trans-
lation process. Given the small number of fragments playing a role in the
derivation of some translations involving complex phenomena, almost the
exact linked sentence pair may need to be present in order for a translation
to be possible. Furthermore, any such translations produced have extremely
small probabilities with respect to the corpus. Finally, of course, translation
systems which are based purely on PS trees will ultimately not be able to
handle certain linguistic phenomena.” (Way 2001: 190)

To illustrate the ‘limited compositionality’ problem in DOT2, Way (2001) ap-
peals to the translation pair in (19):10

(19) DE: Johannes schwimmt gerne ⇔ EN: John likes to swim.

Essentially, the VPs cannot be broken down further; schwimmt and swim are
not translationally equivalent – one is inflected and the other is in the infinitive
form – so in their source–target tree pairs, links cannot be drawn between the
fragment-pair in (20), as we might otherwise wish to do, in order to describe the
basic translation relations in (19):

10Given that other similar cases exist, e.g. DE: Josef läuft zufällig ⇔ EN: Joseph happens to run,
the redundancy in the DOT2 approach really shows itself to be problematic when such cases
are combined, as in strings such as John likes to happen to swim (i.e. John likes to swim by
chance, rather than planning ahead), and John happens to like to swim.
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(20) VP

V Adv

gerne

VP

V

likes

V′

to V

Accordingly, while it is possible for DOT2 to cope with such examples in con-
trast to DOT1, which couldn’t handle them at all, the exact VPs (likes to swim,
here) have to exist a priori in the treebank. This is because these linked VP pairs
are handled non-compositionally in DOT2 between German and English, but the
monolingual VPs are treated compositionally in DOP. As can be seen, DOT2 ap-
proximates to a translation dictionary for such cases – as likes to can be followed
by pretty much any verb in English, and gerne can modify pretty much any verb
in German – which is clearly impractical, and so can be disregarded as a general
model of translation.

3.3 Combining DOT and LFG-MT: the best of both worlds

In his thesis, Way (2001) provides four LFG-DOT models which solve all these
‘hard’ cases:

1. Model 1: Translation via 𝜏
2. Model 2: Translation via 𝜏 and 𝛾
3. Model 3: Translation via 𝛾 with Monolingual Filtering

4. Translation via 𝛾 and ‘Extended Transfer’

3.3.1 LFG-DOT1

Way (2001) describes this as a simple linear model, as in (21):

(21) LFG-DOP-𝜙
𝑐 𝑓

𝑐′ 𝑓 ′
LFG-DOP-𝜙′

𝜏

The different components needed are:
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• a source language LFG-DOP model;

• the 𝜏 mapping;

• a target language LFG-DOP model.

Way (2001: 193) notes that “LFG-DOT1 contains two monolingual LFG-DOP
language models … [so] Discard can be run on both source and target sides. This
means that LFG-DOT1 can cope with ill-formed or previously uncovered input
which LFG-MT would not be able to handle at all”. Despite this advantage, LFG-
DOT1 unsurprisingly suffers from the same problems as LFG-MT, as its transla-
tion function is described by the same operator 𝜏 .

3.3.2 LFG-DOT2

Given that 𝜏 is an insufficient operator to define all translation problems (cf. fn. 7,
for example), Way (2001) describes the translation relation using both the 𝛾 and
𝜏 functions in his LFG-DOT2 model, summarised in (22):

(22) LFG-DOP-𝜙
𝑐 𝑓

𝑐′ 𝑓 ′
LFG-DOP-𝜙′

𝛾 𝜏

This is clearly a more complex model than LFG-DOT1, necessitating:

• a source language LFG-DOP model;

• the 𝛾 mapping (i.e. the DOT2 model of translation, cf. fn. 8);

• a target language LFG-DOP model;

• a probabilistic transfer component.

Way (2001) provides a number of ways in which the 𝛾 and 𝜏 functions might
co-operate in his LFG-DOT2 model. He notes that using LFG-DOP as the source
and target language models overcomes the shortcomings of both Tree-DOP and
LFG, and that including 𝜏 allows certain ‘hard’ cases (like relation-changing) to
be handled correctly, unlike the DOT1 model.
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Furthermore, Way (2001) notes that LFG-DOT2 is more robust than LFG-MT,
in that Discard can produce generalized fragments which may be able to deal
with input for which LFG-MT cannot offer any translation.

Ultimately, as the 𝜏 mapping cannot always produce the desired translation,
Way jettisons this function in his LFG-DOT3 and LFG-DOT4 models, to which
we turn next.

3.3.3 LFG-DOT3

LFG-DOT3 relies solely on 𝛾 to express the translation relation. The architecture
of LFG-DOT3 is shown in (23):

(23) LFG-DOP-𝜙
𝑐 𝑓

𝑐′ 𝑓 ′
LFG-DOP-𝜙′

𝛾

Way (2001) demonstrates that contrary to other models described here, em-
bedded headswitching cases in LFG-DOT3 are handled in the same manner as
non-embedded headswitching cases, exactly as required (cf. fn. 7). He also shows
that LFG-DOT3 can cope with certain cases of combinations of exceptional phe-
nomena which prove problematic for other formalisms. However, like DOT2 (cf.
Section 3.2), LFG-DOT3 also suffers from the problem of limited compositional-
ity.

3.3.4 LFG-DOT4

To overcome this problem, Way (2001) uses a restricted form of Discard in an
‘extended transfer’ phase in LFG-DOT4 to generalize the translation relation ap-
propriately. Essentially, in LFG-DOP (and consequently LFG-DOT), fragments
generated by Discard occupy an unjustifiably large proportion of the probabil-
ity space. Accordingly, Way (1999) proposes to split fragments into two bags:
those generated by Root and Frontier, and those generated by Discard. In LFG-
DOT4, Way (2001) allocates a small amount of the probability space to lemma-
tized translation pairs produced by a second application of Discard.11 To revisit

11Another way of mitigating this problem is suggested by Way (2001: 112), namely to adopt the
approach of Zaenen & Kaplan (1995), which cuts down on the possible number of LFG-DOP
fragments compared to the description of LFG in Kaplan & Bresnan (1982). In Zaenen & Kaplan
(1995), lexical heads are 𝜙-linked only to semantic forms and not to their enclosing f-structures,
while other primitive feature values remain unlinked.
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the problematic example in (19), if Discard is used to relax the tense constraint,
then the V nodes in (20) can be linked; they couldn’t before as the V in German
was a finite verb, while the V in English was an infinitive. Accordingly, Way
(2001: 190) suggests that “this model describes the translation relation exactly as
required, and furthermore overcomes the problems of LFG-MT … and DOT mod-
els of translation”. See Table 1 for a summary of the comparative advantages and
disadvantages of each of the models covered in this chapter.12

Table 1: A comparison of the advantages and disadvantages of the MT
models described in this work

Model Ill-formed Word Embedded All ‘hard’ Avoids limited
input order headswitching cases compositionality

LFG-MT N Y N N N

DOT1 Y N N N N
DOT2 Y Y Y N N

LFG-DOT1 Y Y N N N
LFG-DOT2 Y Y Y N N
LFG-DOT3 Y Y Y Y N
LFG-DOT4 Y Y Y Y Y

4 Automatic derivation of f-structures from treebanks

In this section we consider how the resources needed for large-scale LFG-DOP
and LFG-DOT models can be generated. We also explain the two different ways
in which f-structures can be derived from a tree.

4.1 Towards large-scale resources for LFG-DOP and LFG-DOT

LFG-DOP needs large collections of monolingual annotated data (treebanks) in
order to parse monolingual input, and LFG-DOT needs large collections of bilin-
gual annotated data. At the time LFG-DOP and LFG-DOT were being developed,
no such large f-structure annotated data existed. Constituency treebanks had

12See Way (2003) for more details on these models, and Hearne (2005) for an alternative LFG-
DOT model based on LFG-DOT3 but which incorporates a different probability model and
fragmentation procedure.
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been available for several years, and large-scale hand-crafted LFG grammars
were available only for a few languages. However, neither could provide the
input needed to support the training of LFG-DOP or LFG-DOT models. Con-
stituency treebanks alone could not provide the linguistic detail needed, and
hand-crafted grammars were unable to select the most likely parse from a (some-
times) large number of possible solutions.

To address these shortcomings, van Genabith, Way, et al. (1999b) and van Gen-
abith, Sadler, et al. (1999) proposed initial methods to automatically derive the
LFG-treebank resources required to support training LFG-DOP and LFG-DOT
models, although this was not the main driving force behind this work.

Initially, the work conducted produced grammars and lexicons for English,
which seeded high-performing probabilistic parsers (see Section 5). Later, related
methods were used to extract similar resources for a range of other languages (cf.
Section 6). Once the general approach had been validated for different languages
and treebanks, it is possible to sketch a research project which could generate
the resources needed for large-scale LFG-DOP and LFG-DOT experimentation.

Taking a large-scale parallel corpus such as Europarl (Koehn 2005), we would
need to:

1. Parse source and target sides to generate c-structure trees for the two lan-
guages;

2. Run the f-structure annotation algorithm(s) over each side;

3. Apply the Root and Frontier operations to extract the separate bags of frag-
ments.

After step 2, we have ⟨𝑐, 𝑓 ⟩ pairs of structure for all sentences on both sides of
the corpus, so we can build LFG-DOPmodels for the individual source and target
sides by running Root and Frontier operations on each side, and start producing
⟨𝑐, 𝑓 ⟩ pairs for new monolingual input. To generate resources for the better of
the four models, LFG-DOT4, we need to align each source tree generated in step
1 with each target tree generated in the same step. Fortunately, Europarl contains
information regarding which sentences in one language map to which sentences
in another, so we can now apply Root and Frontier operations on both sides to
extract the separate bags of fragments that are needed, and start translating new
input strings. This experiment remains for future work.

4.2 Direct transformation vs. indirect annotation

The initial approaches of van Genabith, Way, et al. (1999b) and van Genabith,
Sadler, et al. (1999) focused on deriving f-structure annotations from PS trees. The
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intuition was that there were already reasonably reliable tools for automatically
producing a tree from an input sentence, and so it would be easier to scale a
tree-annotation plus f-structure derivation approach, compared to automatically
deriving c- and f-structure simultaneously from raw input.

There are two ways to derive an f-structure from a tree: direct transformation
or indirect annotation. The direct method recursively and destructively trans-
forms a treebank tree into an f-structure. The indirect method only ever adds
information: it annotates the treebank tree with f-structure annotations (equa-
tions). These annotations are then collected and passed to a constraint solver
which resolves the equations and, if the equations are consistent, outputs an f-
structure.

Examples (24)–(26) illustrate the indirect method: all nodes in the tree in (24)
are annotated with equations in (25), which are collected and resolved into an
f-structure in (26).

(24) S

NP-SBJ

NP

RB

Not

PDT

all

DT

those

SBAR

WHNP-3

WP

who

S

NP-SBJ

-NONE-

*T*-3

VP

VBD

wrote

VP

VBP

oppose

NP

DT

the

NNS

changes
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(25) (S
(NP-SBJ[up-subj=down]

(NP[up=down]
(RB[down-elem=up:adjunct] Not[up-pred='not'])
(PDT[up-spec:det=down] all[up-pred='all'])
(DT[up=down] those[up-pred='those'])

)
(SBAR[up-relmod=down]

(WHNP-3[up-topicrel=down,up-topicrel:index=3]
(WP[up=down] who[up-pred=pro,up-pron_form='who'])

)
(S[up=down]

(NP-SBJ[up-subj=down,up-subj=up:topicrel]
(-NONE- *T*-3)

)
(VP[up=down]

(VBD[up=down] wrote[up-pred='write',up-tense=past])
)

)
)

)
(VP[up=down]

(VBP[up=down] oppose[up-pred='oppose',up-tense=pres])
(NP[up-obj=down]

(DT[up-spec:det=down] the[up-pred='the'])
(NNS[up=down] changes[up-pred='change', up-num=pl,up-pers=3])

)
)
(. .)

)

(26) subj : adjunct : 1 : pred : not
spec : det : pred : all
pred : those
relmod : topicrel : index : 3

pred : pro
pron_form : who

subj : index : 3
pred : pro
pron_form : who

pred : write
tense : past

pred : oppose
tense : pres
obj : spec : det : pred : the

pred : change
num : pl
pers : 3
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The earliest approach to automatically identifying functional grammatical cat-
egories such as subj, obj, etc in PS trees is probably that of Lappin et al. (1989).
Nodes in trees are linked to their corresponding grammatical functions. Their
motivation was to generate a set of grammatical function-based transfer rules as
part of an MT project.

A regular expression-based, indirect automatic annotationmethod is described
in Sadler et al. (2000). This involves extracting a context-free PS grammar (CFG)
from a treebank fragment. F-structure annotation principles are stated in terms of
regular expressions matching CFG rules. By applying regular expression-based
annotation principles to the rules that are extracted, and using these annotated
rules to re-match the original trees, f-structures can be generated for these trees.
The number of annotation principles is appreciably smaller than the number of
extracted CFG rule types since the regular expression-based annotation princi-
ples capture linguistic generalisations.

The flat, set-based tree description rewriting method of automatically annotat-
ing trees with f-structure descriptions developed by Frank (2000) can be seen as
a generalisation of the regular expression-based technique of Sadler et al. (2000).
Here the idea is that each tree is translated into a flat description using terms from
a tree description language (e.g. lex, arc, phi etc.). Annotation principles are then
defined in terms of rules employing a rewriting system originally developed for
transfer-based MT architectures (Kay et al. 1994). In certain circumstances, the
principles can be applied order-independently, or in a particular cascading order.
One of the advantages of this method is that tree fragments of arbitrary depth
can be considered, whereas in the regular expression-based method, tree depth
is limited to 1 (i.e. CFG rules).

The earlier approaches were limited in scale to corpora in the order of hun-
dreds of trees. In Cahill et al. (2002a), a first version of a large-scale indirect
annotation algorithm was described. This algorithm was scaled to a corpus con-
taining tens of thousands of trees. The algorithm recursively traverses a PS tree
and annotates f-structure information on each node. McCarthy (2003) and Burke
(2006) continued to expand this algorithm in terms of linguistic coverage. The
algorithm itself is modular and separates the linguistic data from the traversal
algorithm. There are two stages to the algorithm: (i) “proto”-f-structures are gen-
erated which contain unresolved long-distance dependencies (LDDs); and (ii)
trace information encoded in the treebank is used to correctly link moved con-
stituents to where they should be interpreted semantically. Given a PS tree with
f-structure-annotated nodes, a constraint solver based on the one described in
Gazdar & Mellish (1989) was used to produce the final f-structure representation
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for the tree. This body of work yielded the first large-scale algorithm for con-
verting a treebank into a corpus of f-structures. This was a prerequisite for the
parsing work that built on this corpus as described in Section 5.

Similar efforts to automatically acquire wide-coverage grammars for TAG (Xia
1999), HPSG (Miyao et al. 2003), and CCG (Hockenmaier & Steedman 2002) ap-
peared around the same time as the work on LFG.

5 Probabilistic parsing & lexicon induction using LFG

With the availability of large-scale f-structure-annotated treebanks, it was now
possible to train probabilistic LFG parsers.

The initial parsing experiments of Cahill et al. (2002b) were conducted on the
Penn Treebank (Marcus et al. 1994). Two main approaches were compared:

1. Parse with a standard CFG parser and then automatically annotate the
resulting tree (pipeline architecture)

2. Automatically annotate the nodes in the trees of a large corpus with f-
structure information and train a probabilistic parser on it (integrated ar-
chitecture)

Both approaches yielded c-structures whose node labels included f-structure
annotations. These f-structure annotations were then collected and resolved to
generate a final f-structure. Initial parsers generated what were called “proto”-
f-structures which did not include any LDD resolution. It should be noted that
since these techniques were probabilistic, a set of n-best trees (and therefore f-
structures) could also straightforwardly be produced. This was not possible with
hand-crafted grammarswhich output all possible f-structure solutions for a given
sentence without any way to sort them. Riezler et al. (2002) showed that it was
possible to post hoc rank the output of such a parser, however.

In Cahill (2004) and Cahill et al. (2004), additional functionality was added to
the original algorithm to allow for LDD resolution. This yielded more complete f-
structures. Therewere twomain components to the algorithm: (i) a set of possible
functional uncertainty paths, and (ii) a subcategorisation lexicon.

In order to obtain the set of possible functional uncertainty paths, all observed
paths between co-indexedmaterial were extracted from the f-structures automat-
ically derived from the Penn Treebank. These paths were associated with proba-
bilities. O’Donovan et al. (2004) and O’Donovan (2006) describe an approach for
automatically acquiring a large-scale subcategorisation lexicon from the Penn
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Treebank. This relies on the intuition that if the original conversion of the tree-
bank into f-structures is of high enough quality, then the lexical entries for all
predicates can be reverse-engineered (van Genabith, Way, et al. 1999a). Frames
are not predefined, yet the frames that are automatically acquired fully reflect
LDDs in the source data-structures, discriminate between active and passive
frames, and conditional probabilities are associated with each frame.

Given a set of semantic forms 𝑠 with probabilities 𝑃(𝑠|𝑙) (where 𝑙 is a lemma),
a set of paths 𝑝 with 𝑃(𝑝|𝑡) (where 𝑡 is either topic, topicrel or focus) and an
f-structure 𝑓 , the core of the algorithm to resolve LDDs recursively traverses 𝑓
to identify the most likely location of co-indexed material.

Evaluation of the f-structures produced by both parsing approaches was car-
ried out against several corpora over time: the DCU-105 corpus (Cahill et al.
2002a), the automatically converted Section 23 of the Penn Treebank, the PARC
700 corpus (King et al. 2003) and the CBS 500 (Carroll et al. 1998). F-structures
were converted into dependency triple format and compared to the gold-standard
triples to give results in terms of precision, recall and f-score. Results demon-
strated state-of-the-art results compared to other ‘deep’ parsers available at the
time. Cahill, Burke, O’Donovan, et al. (2008) summarize a large set of parser com-
parisons, and show that the f-structures produced by the automatic processes
described above were able to outperform two hand-crafted parsers: RASP (Car-
roll & Briscoe 2004) and the the English ParGram LFG run on XLE (Riezler et al.
2002). Rimell et al. (2009) conduct a comparison of several “deep” parsers on a
specialized corpus of sentences containing only LDDs. They find that the HPSG
and CCG parsers perform better than the DCU LFG parser on this set of difficult
sentences.

6 Multilingual probabilistic LFG induction

The approach developed for English was language-independent. Given a large
enough and detailed treebank, one could theoretically follow the same frame-
work to generate parsers and lexicons for other languages. Indeed, given that
comparable treebank existed for some languages other than English, a large body
of work ensued in this direction.

Cahill et al. (2003) first attempted this for German using the TiGer Treebank
(Brants et al. 2002). This treebank differs from the Penn Treebank in that it en-
codes parses in terms of labeled graphs that allow crossing edges. In Cahill et
al. (2003), the graphs are first converted to trees similar to those found in the
Penn Treebank with trace information added to account for moved constituents.
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A set of rules was then developed that automatically assigned f-structure equa-
tions to the nodes in the trees, and the same techniques described in Cahill et al.
(2002b) were used to automatically acquire the first large-scale probabilistic LFG
for German.

We provide an example graph from the TiGer treebank in (27) for the German
sentence “Geschäftemachen ist seine Welt und nicht die Politik” (“Business is his
world, not politics”).

(27) S

HD PD SB

CNP

CJ CD CJ

NP NP

NK NK NG NK NK

“ Geschäftemachen ist seine Welt und nicht die Politik . ”
Business is his world and not the politics

$( NN VAFIN PPOSAT NN KON PTKNEG ART NN $.

‘Business is his world, not politics.’

In (28), the graph in (27) is first automatically converted into a PS tree with
traces and coindexation to indicate linked elements, analogous to how this kind
of information is encoded in the English Penn-II treebank.

(28)
TOP

$*LRB*

“

S

CNP-SB

NN-CJ

Geschäftemachen

*T1*-CD

-

*T2*-CJ

-

VAFIN-HD

ist

NP-PD

PPOSAT-NK

seine

NN-NK

Welt

KON-*T1*

und

NP-*T2*

PTKNEG-NG

nicht

ART-NK

die

NN-NK

Politik

$.

.

In (29), the tree in (28) is then annotated with f-structure equations. The an-
notation algorithm relies heavily on the functional component of the tree node
labels (e.g. that sb indicates a subject).
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(29)
TOP

$*LRB*

“

S

CNP-SB
↑subj=↓

NN-CJ
↓∈(↑conj

Geschäftemachen

*T1*-CD

-

*T2*-CJ

-

VAFIN-HD
↑=↓

ist

NP-PD
↑xcomp.pred=↓

PPOSAT-NK
↑spec:poss=↓

seine

NN-NK
↑=↓

Welt

KON-*T1*
↑subj=↓

und

NP-*T2*
↓∈↑subj:conj

PTKNEG-NG
↓ ∈↑adjunct

nicht

ART-NK
↑spec:det=↓

die

NN-NK
UP=↓

Politik

$.

.

Finally, the equations in (25) are collected and passed through a constraint
solver to generate the f-structure in (30), using the same procedure as for English.

(30)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

xcomp.pred [spec [poss [pred pro]]
pred Welt

]

subj

⎡⎢⎢⎢⎢⎢
⎣

conj

⎧⎪
⎨⎪
⎩

[pred Geschäftemachen]
⎡⎢⎢
⎣

pred Politik
spec [det [pred die]]
adjunct {[pred nicht]}

⎤⎥⎥
⎦

⎫⎪
⎬⎪
⎭

coord-form und

⎤⎥⎥⎥⎥⎥
⎦

pred ist

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Rehbein & van Genabith (2009) continued this work and explored the effect
of the design of the treebank on the success of the technique. They compared
extracting a probabilistic LFG from both TiGer and TüBa-D/Z (Telljohann et al.
2006) and found (1) that automatically inducing linguistic resources from (semi-)
free word order languages such as German is much harder than for more con-
figurational languages like English, and (2) that the the treebank encoding can
have a significant effect on the success of the automatic f-structure annotation
approach. Rehbein & van Genabith (2009) found that the encoding of linguistic
structures in the TiGer treebankwas better suited for automatic induction of LFG
resources, because it was more difficult to automatically learn the grammatical
function relations as they were encoded in the TüBa-D/Z.

For Chinese, Burke, Lam, et al. (2004) first applied the approach to the Penn
Chinese Treebank (Xue et al. 2002). We provide in (31) an example tree from this
treebank.
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(31) (IP-HLN
(NP-PN-SBJ

(NR江泽民)
(NR李鹏))

(VP
(VV电唁)
(NP-OBJ

(NP-PN
(NR尼克松))

(NP
(NN逝世)))))

“江泽民李鹏电唁尼克松逝世”
‘Jiang Zemin and Li Peng condoled the bereavement of Nixon by a
telegram.’

Each node in the tree in (31) is then annotated with f-structure equations, and
the f-structure in (32) is derived.

(32) subj : coord_form : null
coord : 1 : pred : '江泽民'

pers : 3
noun_type : proper
gloss : ‘Jiang_Zemin’

2 : pred : '李鹏'
pers : 3
noun_type : proper
gloss : ‘Li_Peng’

pred : '电唁'
gloss : condole_by_a_telegram
obj : adjunct : 3 : pred : '尼克松'

pers : 3
noun_type : proper
gloss : ‘Nixon’

pred : '逝世'
pers : 3
noun_type : common
gloss : ‘bereavement’

“江泽民李鹏电唁尼克松逝世”
“Jiang Zemin and Li Peng condoled the bereavement of Nixon by a
telegram.”
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Guo et al. (2007) and Guo (2009) extended this work in terms of coverage,
robustness, quality and fine-grainedness of the resulting LFG resources. They
propose a more general two-stage annotation architecture, avoiding some of the
limitations of the PS annotation-based method. They argue that this approach
may bemore suitable for less configurational languages. This algorithmworks by
transducing the tree into an f-structure by means of an intermediate dependency
structure.

In (33), we show an example where predicate information is first extracted
from the tree, and then a simpler set of function-based annotations converts the
intermediate structure into an f-structure. The advantages of this approach are
that it guarantees a single connected f-structure, as well as simplifying the pro-
cess of taking LDDs into account.

(33)
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O’Donovan et al. (2005) proposed an adaptation of the original approach for
Spanish using the CAST3LB treebank (Civit 2003). In (34), we provide an example
from the CAST3LB treebank.

(34)

S

sn-SUJ

espec

da0ms0

el
the

grup.nom

ncms000

recurso
recourse

sp

prep

spss00

de
of

sn

espec

da-fs0

la
the

grup.nom

ncfs000

amnestía
amnesty

gv

vaip3s0

ha
has

vsp00sm

sido
been

vmp00sf

exigido
demanded

The tree in (34) is then annotated with equations, as illustrated in (35). The
equations are then resolved into the f-structure in (36).
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(35) S

sn-suj
↑ subj=↓

espec
(↑ spec det)=↓

da0ms0
↑=↓

el
the

grup.nom
↑=↓

ncms000
↑=↓

recurso
recourse

sp↓ ∈(↑ adj)

prep
↑=↓

spss00
↑=↓

de
of

sn
↑ obj=↓

espec
(↑ spec det)=↓

da-fs0
↑=↓

la
the

grup.nom
↑=↓

ncfs000
↑=↓

amnestía
amnesty

gv
↑=↓

vaip3s0
↑perfect=+

ha
has

vsp00sm
↑passive=+

sido
been

vmp00sf
↑=↓

exigido
demanded
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(36)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘exigir’
perfect +
passive +
tense present

subj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

spec [det [
pred ‘el’
num sing
gend masc

]]

pred ‘recurso’
num sing
gend masc

adj

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘de’

obj

⎡⎢⎢⎢⎢⎢⎢
⎣

spec [det [
pred ‘el’
num sing
gend fem

]]

pred ‘amnestía’
num sing
gend fem

⎤⎥⎥⎥⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

This was extended in Chrupała & van Genabith (2006) where three main is-
sues were addressed: (i) new constructions that had standard LFG analyses (e.g
clitic doubling and null subjects); (ii) new constructions where no LFG analy-
sis was available (e.g. periphrastic constructions in Spanish, see Figure 1); and
(iii) limitations of the previous approach due to treebank- and language-specific
assumptions which did not hold for Spanish and the CAST3LB treebank. Simi-
lar to what Guo et al. (2007) and Rehbein & van Genabith (2009) had found in
their adaptations, the original approach assumed that the functional information
could easily be derived from the tree configuration, but this proved not to be the
case for many languages. Therefore, the functional tags in the parser output were
critical for the success of these annotation algorithms. As a result, Chrupała &
van Genabith (2006) outlined an improved method for tagging functions in parse
trees, not only for Spanish, but for English, too. This was an important step in
the development of a probablistic Spanish LFG parser based on the CAST3LB
treebank.

In the case of French, no suitable treebank was immediately available. There-
fore, Schluter & van Genabith (2007) first modified the Paris 7 Treebank (Abeillé
et al. 2004), as this was the closest in format to what would be needed. A sub-
set of the original treebank was transformed to yield a leaner, more coherent,
treebank with several transformed structures, and new linguistic analyses. In
Schluter & van Genabith (2008), it was shown that a probabilistic parser trained
on the cleaner, modified treebank performed better than a parser trained on the
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S

sn-SUJ

El hombre
the man

gv

vm

debió
must-pst

inf

vm

acabar
end.up

gerund

vm

creyendo
believing

S-CD

que la vecina...
that the neighbor...

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

subj 1 [“el hombre”]
pred ‘deber’
tense past
light +

xcomp

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

subj 1
pred ‘acabar’
light +

xcomp
⎡⎢⎢⎢
⎣

subj 1
pred ‘creer’
light −
comp [“que la vecina...”]

⎤⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Figure 1: Treatment of periphrastic constructions outlined in Chrupała
& van Genabith (2006)
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much larger, but noisier, original treebank. In addition, Schluter & van Genabith
(2008) and Schluter (2011) showed that the techniques for automatically acquir-
ing LFG resources from treebanks could successfully be adapted to the French
case. Thanks to a rich morphological and functional annotation in the treebank,
the automatic annotation algorithm can rely on node labels rather than infer-
ring functional labels via tree configurations. This leads to fewer incomplete f-
structures, and fewer cases where LDDs have not been resolved.

Oya & van Genabith (2007) showed that the approach can also be adapted for
Japanese using the Kyoto Text Corpus (Kurohashi & Nagao 1997). The Japanese
corpus encodes syntactic units in addition to rich morphological information.
The automatic annotation algorithm adds f-structure equations at the level of
syntactic unit. Figure 2 shows how the f-structure equations are added to each
syntactic unit of the sentence “Taro went to Seoul“. In the case of Japanese LFG
parsing, the key to successful parsing results was in zero pronoun identification.

Finally, Tounsi et al. (2009a) and Tounsi et al. (2009b) demonstrated that the ap-
proach was also possible for Arabic using the Penn Arabic Treebank (Maamouri
& Bies 2004). The annotation algorithm was able to take advantage of rich mor-
phological tags in the treebank to support the fact that Arabic is a morphologi-
cally rich language.

In most cases we observe that the original reliance on tree configurations to
identify functional properties worked best for English. For the other languages,
relying on functional information already in the original treebank, and then en-
suring that the CFG parser also contains that information, yielded the most ac-
curate f-structure parsers. Evaluation of LFG parsing for the other languages
followed roughly the same procedure as for English, using a small manually an-
notated corpus of sentences from the treebank used to derive the algorithm and
parser.

7 Related approaches to grammar induction

A natural evaluation of this approach to creating large-scale probabilistic LFG
parsers is to compare large-scale grammars created manually using the XLE plat-
form.

The method proposed in Riezler et al. (2002) provides a mechanism for rank-
ing all possible solutions generated by the hand-crafted grammar, relying on the
same kinds of treebank resources as the methods described above. Kaplan et al.
(2004) show that the accuracy of the hand-crafted grammar is more accurate
than the Collins (1999) parser (f-score of 77.6 vs 74.6), while only slightly slower
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#S-ID:950101001-001
* 0 2D
太郎 たろう *名詞人名 * * (Taro Noun Person**)
が が *助詞格助詞 * * (ga particle Case **)
F0:pred =’Taro’,
F0:case=’ga’,
F2:subj=F0,
* 1 2D
ソウル そうる *名詞地名 * * (souru “Seoul” * Noun Place**)
に *助詞格助詞 * * (ni particle Case**)
F1:pred=’Seoul’,
F1:case=’ni’,
F2:obl=F1,
* 2 -1D
行った いった 行く 動詞 *子音動詞過去形 (itta ’went’ iku Verb * ConsonantStem pst)
F2:pred=’iku’,
F2:tns=’pst’,
F2:stmt=’decl’,
F2:style=’plain’.
EOS

(a) The automatically annotated sentence

⎡⎢⎢⎢⎢⎢⎢⎢⎢
⎣

subj [pred ‘Taro’
case ga ]

obl [pred ‘Seoul’
case ni ]

pred ‘iku〈subj, obl〉’
stmt ’decl’
style ’plain’
tense pst

⎤⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(b) The resulting f-structure

Figure 2: An example from the Kyoto Text Corpus: from syntactically
annotated sentence to f-structure

(total 299 CPU seconds vs 200 CPU seconds to parse 560 sentences). The two
approaches have the same goal: to provide a ranked list of LFG parses for a given
input. The difference is in how this ranked list is derived, and how much man-
ual effort is required. Furthermore, in Cahill, Maxwell, et al. (2008) it was shown
that a simple pruning mechanism on the c-structure forests generated by the
XLE parser could significantly reduce parsing time, while maintaining compara-
ble accuracy.
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8 Conclusion

This chapter has described methods based on LFG that permit accurate, robust,
scalable, probabilistic LFG parsers and MT systems to be built from large collec-
tions of automatically annotated data. While this is commonplace nowadays, it
was much less so 20–25 years ago.

LFG-DOP extends LFG by generalizing well-formed analyses to allow ill-for-
med and previously uncovered strings to be handled. LFG-DOT, a robust, hybrid
model of translation based on LFG-DOP, was demonstrated to be able to solve
‘hard’ cases of translation that proved difficult for DOT and LFG-MT.

The range of work on automatic annotation of LFG grammars summarised
here was an important step in ensuring scalability and robustness that is com-
monplace nowadays. Once large-scale treebanks could be generated via these
techniques, competitive probabilistic parsers were built, and large-scale lexical
resources were induced. However, most experiments carried out using LFG-DOP
(and LFG-DOT) were relatively small-scale, but we sketch here a method for
large-scale experimentation using the resources created via the techniques de-
scribed in this paper.

As well as the important extension of the core LFG framework to account for
probabilistic parsing, this seminal work also provided the foundations for the
now commonplace task of large-scale deep linguistic LFG annotation. In sum, the
work described in this chapter laid the foundations for multilingual annotation
of treebanks, which in turn allowed competitive scalable parsing and MTmodels
to be developed that are accepted as best practice today.
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