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Computational implementations of LFG are computer programs composed of LFG
annotated c-structure rules and lexical entries. LFG was designed to be computa-
tionally tractable and has a strong history of broad-coverage grammar implemen-
tations for diverse languages. As with theoretical LFG, implemented grammars
primarily focus on c-structure and f-structure, but the resulting f-structures are
used as input to semantics and abstract knowledge representation, and some work
has focused on the integration of morphological and phonological information as
well as argument structure. From a theoretical linguistic perspective, implemented
grammars allow the linguist to test analyses and to see interactions between dif-
ferent parts of the grammar. From an application perspective, applications such
as machine translation and question answering take advantage of the abstract f-
structures and the ability of LFG grammars to parse and generate as well as to
detect (un)grammaticality.

Computational implementations of LFG are computer programs composed of
LFG annotated c-structure rules and lexical entries. When parsing, they take
as input a natural language sentence and output c-structures and f-structures
and potentially other projections such as semantics. When generating, they take
as input an f-structure and generate a grammatical natural language sentence.
As with theoretical LFG, these implemented grammars obey the fundamental
premises of LFG such as completeness, coherence, and uniqueness.1 LFG was de-

1This contrasts with approaches which produce f-structure-like representations but do not use
LFG principles or machinery. See Section 3 and Cahill et al. 2002.
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signed from the outset to be computationally tractable and has a strong history
of broad-coverage implementations for multiple languages, primarily through
the ParGram project (Butt, King, et al. 1999) which is built on the XLE grammar
development platform (Crouch et al. 2011).

Grammar engineering involves the implementation of linguistically-motivated
grammars so that natural language utterances and text can be processed to pro-
duce deep syntactic, and sometimes semantic, structures. As with theoretical
LFG, implemented grammars primarily focus on c-structure and f-structure. The
resulting f-structures have been used extensively as input to semantics and ab-
stract knowledge representation. Other work has focused on the integration of
morphological and phonological information, as well as argument structure, but
in general these areas have lagged behind the proposals in the theoretical liter-
ature. In addition, implemented LFG grammars have been used to create large-
scale tree and dependency banks, mapping a corpus of sentences to a set of f-
structures or related dependency structures.

We first introduce the computational implementations of LFG, presenting spe-
cific platforms and touching upon aspects such as core components, grammar
development tools, modularity, and runtime performance (Section 1). We then
discuss implications for theoretical issues (Section 2) and the ParGram grammar
resources (Section 3). Finally, we outline existing and potential applications for
LFG implemented grammars (Section 4).

1 Computational implementations

Computational implementations of LFG grammars focus on annotated phrase
structure rules and lexical entries. These implementations concentrate on cre-
ating high-quality f-structures since most applications use f-structures as their
input (Section 4). This section first introduces the major platforms that support
LFG implementations. The core components provided by these platforms are
then outlined, followed by some specific grammar development tools. Finally
two computational notions, modularity and performance, are discussed.

1.1 Platforms

Since the inception of LFG as a grammar framework several platforms aimed at
processing text according to the LFG formalism have been created. These plat-
forms range from an M.Sc. project (Minos 2014) and introductory French imple-
mentation (Zweigenbaum 1991) to an industrially funded grammar development
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and processing platform which was actively developed for over two decades: the
Xerox Linguistic Environment (XLE). In between those in terms of breadth of ap-
plicability and technical maturity are systems developed in academic research in-
stitutions, in particular XLFG, SxLFG, and the Free Linguistic Environment (FLE).
Active development on many of these systems is limited: for current status and
documentation the platform owners should be consulted.

1.1.1 XLFG and Elvex

XLFG (Clément & Kinyon 2001) is a parsing platform that was first implemented
for didactic purposes.2 It has been used to verify the soundness of several propos-
als to handle a variety of linguistic phenomena (Section 2), e.g. zeugmas, particle
verbs, and non-constituent coordination (Clément 2019).

XLFG uses an Earley parser (Earley 1970) for context-free parsing, and then re-
solves the f-structure constraints on packed c-structure representations (Maxwell
& Kaplan 1989, 1993). It expects tokenized sentences as input and uses full-form
lexicons for lexical lookup (Section 1.2). XLFG does not facilitate the use of ex-
ternal components like finite-state transducers for preprocessing tasks such as
tokenization or morphological analysis (Section 1.2). It has primarily been ap-
plied to parsing French and English, i.e. analyzing French or English text into f-
structures. Recently, work was started on a generator, i.e. mapping f-structures
to text, using XLFG-style grammars for the production of surface realizations
from f-structures. This generator is named Elvex.3

1.1.2 SxLFG

SxLFG (Boullier & Sagot 2005) was also developed with the participation of Li-
onel Clément, but its main authors are Pierre Boullier and Benoît Sagot of INRIA.
The primary focus of SxLFG is on the deep non-probabilistic parsing of large
corpora (Sagot & Boullier 2006) by means of robustness techniques for input
sentences for which no spanning c-structure can be produced. The underlying
context-free parser is the Earley parser of the SYNTAX project. Like XLFG and
XLE, SxLFG resolves f-structure constraints on packed c-structure representa-
tions. The French broad-coverage LFG implementation that has been used exten-
sively with SxLFG includes a large full-form lexicon for French, the Lefff 2 (Sagot
et al. 2006). Like XLFG, SxLFG does not facilitate the use of external components

2XLFG is available at http://www.xlfg.org
3Elvex is available at https://github.com/lionelclement/Elvex
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like finite-state transducers for preprocessing tasks such as tokenization or mor-
phological analysis (Section 1.2). SxLFG was developed for parsing. Generation
has not been in the scope of SxLFG.

1.1.3 XLE (and GWW as precursor) and XLE-Web

The Xerox Linguistic Environment (XLE) was developed by the Natural Lan-
guage Theory and Technology (NLTT) group at the Xerox Palo Alto Research
Center (PARC). It started as a reimplementation in C of the earlier Grammar
Writer’s Workbench (GWW) (Kaplan & Maxwell 1996), which was implemented
in Lisp and is still available. XLE was used by several academic and industry
teams for the development of LFG implementations for more than a dozen lan-
guages (see Section 3 on the ParGram project). XLE, in conjunction with a cus-
tomized broad-coverage grammar, was used to parse the English Wikipedia in
the Powerset search engine (Kaplan 2009).

XLE has mostly been used for parsing, but it includes a generator that can effi-
ciently produce surface realizations from f-structures and even packed f-structure
charts (Maxwell 2006). Thanks to this bidirectionality, it has powered applica-
tions such as machine translation and sentence condensation (Section 4), and it
has been used in research projects on stochastic realization ranking (Cahill &
Forst 2009).

From its inception, XLE was designed to use finite-state transducers for low-
level processing steps such as (de)tokenization and morphological analysis and
generation (Section 1.2). The interface can readily be used with transducers in
Xerox’s finite-state transducer format including ones converted from the Foma
finite-state transducers, and with relatively little programming effort, other ex-
ternal components can be integrated into an XLE grammar (e.g. see Fang & King
2007 on integrating a non-finite state Chinese word breaker into an XLE Chinese
grammar).

In addition to the 𝜙-projection from c-structures to f-structures, the XLE parser
supports further projections from either of those representations. One of them,
the optimality structure, is hard-coded to guide the parsing and generation pro-
cess on the basis of optimality marks (Section 1.5). The use of optimality marks
as a robustness mechanism is one of the many extensions of XLE born out of a
joint effort of the group at PARC and its ParGram partners.

Other extensions of the parser and generator are aimed at reducing latency
and at ranking the (top n) parses or realizations. For the former, the most no-
table mechanism is c-structure pruning (Cahill et al. 2008). C-structure pruning
relies on corpus data annotated with (partial) constituent bracketing and learns
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to eliminate highly unlikely c-structures before the computationally expensive
resolution of f-annotations. For the latter, a component for training4 and apply-
ing maximum-entropy models based on a large variety of features is provided as
part of XLE (Riezler et al. 2002).

Beyond the parser and the generator, XLE also contains a term-rewriting com-
ponent which was first developed for transfer-based machine translation but has
been used for a number of other purposes: identifying and deleting modifiers
in f-structures that can be deleted without changing the meaning of the corre-
sponding sentences too much (Riezler et al. 2003); treebank (Rosén 2023 [this
volume]) conversion from one dependency-oriented format into another (Forst
2003); further normalization of f-structures and/or construction of semantic rep-
resentations (Crouch & King 2006, Bobrow et al. 2007); extraction of features for
parse ranking (Forst 2007) and realization ranking (Cahill & Forst 2009).

Currently XLE is used by the academic members of the ParGram initiative
(Section 3) as well as by individual researchers. It can be used online with LFG
implementations for a number of languages via XLE-Web,5 a web interface for
XLE developed at the University of Bergen, and is used as part of the INESS
infrastructure developed there (Rosén et al. 2009, 2012). See Rosén 2023 [this
volume] for details on using INESS for parsebanking and more generally the
uses of LFG parsebanks. XLE is available for non-commercial research purposes.6

Uses beyond that require a license agreement with PARC and Xerox.

1.1.4 FLE

The Free Linguistic Environment (FLE) (Ćavar et al. 2016) aims to create an LFG-
oriented grammar-development and parsing environment with a license less re-
strictive than XLE’s. It is implemented in C++ and uses the same grammar syntax
as XLE, but it is subject to the Apache 2.0 license. In addition to the context-free
grammar format of XLE, it supports two probabilistic context-free grammar for-
mats. For tokenization and morphological analysis, FLE provides an interface
to Foma transducers.7 FLE uses open-source components when possible. FLE
provides basic parsing functionality but does not contain a generator capable of
producing surface strings for input f-structures.8

4Training data comprises sentences with labeled bracketing, which can be derived from tree-
banks or created manually (Riezler et al. 2002).

5XLE-Web is available at http://clarino.uib.no/iness/xle-web
6XLE is available at https://ling.sprachwiss.uni-konstanz.de/pages/xle/redmine.html
7Foma supports the import from and the export to XFST formats and XFST supports Foma
transducers.

8FLE is available at https://gorilla.linguistlist.org/fle/
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1.2 Core components

The LFG systems described above allow grammar writers to implement LFG
grammars with annotated phrase structure rules and lexical entries similar to
those in theoretical LFG. The main difference is that the formatting is specified
with easier-to-type variants, e.g. symbols like ↑ and ↓ are replaced with ^ and !.

(1) Example theoretical and implemented annotated c-structure rules:

Theoretical notation:
S ⟶ NP VP

(↑ SUBJ)=↓ ↑=↓

Implementation (XLE system) notation:
S --> NP: (^ SUBJ)=!;

VP: ^=!.

1.2.1 Preprocessing

In order to implement an LFG grammar, it is necessary to preprocess the text
that the grammar will parse. Minimally the preprocessing contains a tokenizer
which breaks the text into tokens (i.e. words) and canonicalizes the capitalization
if necessary (e.g. lowercasing sentence initial capitalized words in English unless
they are proper nouns). These canonicalized tokens are then looked up in the lex-
icon. Implemented lexicons are similar to their theoretical counterparts, compris-
ing the word, its part of speech, and f-structure annotations such as pred, case,
and number. This information is integrated into the grammar via the annotated
c-structure rules, as in theoretical LFG. Many implementations integrate a mor-
phological analyzer which associates inflected forms of words with their lemma
and morphological information. When using a morphological analyzer, the text
is first tokenized and canonicalized for capitalization and then processed by the
morphology. The output of the morphology (lemmata and morphological tags)
are looked up in the lexicon. This simplifies the lexiconwhich only has to contain
the lemmata and the morphological tags instead of containing all the inflected
forms. These morphologies are often finite-state transducers (FSTs; Beesley &
Karttunen 2003) which can be used for both parsing and generation.9 For more
details on using FSTs for preprocessing for LFG grammars see Kaplan et al. 2004
and Bögel et al. 2019, for integration of externally developed morphologies and
lexicons within LFG grammars see Kaplan & Newman 1997.

A given inflected form can have multiple morphological analyses. Often all
the analyses are provided as input to the LFG grammar, and the c-structure rules

9Parsing goes from a string (e.g. a natural language sentence) to a c- and f-structure. Generation
goes from an f-structure to a natural language string. Most theoretical LFG focuses on parsing,
although some accounts, especially OT-LFG ones (see papers in Sells 2001), discuss generation.
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Original text: Dogs barked.
Tokenization: Dogs barked .

dogs
Morphology: dog +Noun +Pl bark +Verb +Past . +Punct

dog +Verb +3Sg

Figure 1: Example preprocessing: Tokenization andmorphological anal-
ysis

and f-structure constraints are used to eliminate analyses which are not feasible
in the context of the sentence (e.g. the verbal analysis of dogs in figure 1). Pre-
processing with a part-of-speech (PoS) tagger marks each word with its part of
speech, as in (2). This information can be used to prune the morphological analy-
ses and thus constrain the c-structure built over the sentence. Since PoS taggers
are not perfect even for well-edited text, only certain tags are kept, or fall-back
techniques are used when no analysis is found. See Kaplan & King 2003 and
Dalrymple 2006 for more details on integrating PoS taggers into LFG and other
symbolic grammars.

(2) Dogs/Noun barked/Verb and/Conj the/Det cat/Noun left/Verb ./Punct

1.2.2 Projections

Theoretical LFG posits projections beyond the original lexicon, c-structure and
f-structure. The exact number and combination of these projections is a subject
of lively debate (Belyaev 2023 [this volume]). These include Lexical Mapping
Theory (LMT) to map between underlying argument structure and grammatical
functions in the lexicon (Findlay et al. 2023 [this volume]), phonological and pro-
sodic projections (Bögel 2023 [this volume]), semantics and semantic structure
(Asudeh 2023 [this volume]), and information structure for discourse function
information (Zaenen 2023 [this volume]). Most LFG implemented grammars do
not include these additional projections because f-structures are sufficient for
the applications they target. Even when other projections are included, they are
often different from their theoretical counterparts both in their format and in
how they are projected or derived. The primary additional component that is in-
cluded is the semantic component. This component is based on the f-structure
and is generally not a projection but instead is a separate post-processing step, al-
though in some stages of its development the Norwegian ParGram grammar Nor-
Gram (Dyvik et al. 2016, 2019) included a semantic projection (Halvorsen 1983,
Kaplan 1987, Halvorsen & Kaplan 1995) whose representations were in Minimal
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Recursion Semantics (Copestake et al. 2005). Semantic components include Glue
semantics (Dalrymple et al. 1993, Meßmer & Zymla 2018) and ordered rewriting
rules (Crouch & King 2006). The ordered rewriting rules have been extended into
abstract knowledge representations (Bobrow et al. 2007). XLE-based implemen-
tations have been created for morphological structure (Butt et al. 1996) and pro-
sodic structure and information structure (Butt & King 1998), although none of
these are used in large-scale grammars. Instead, they focus on testing theoretical
hypotheses and determining the complex interactions among different grammar
components (Section 2). The lack of an implementation of LMT has resulted in
issues for the parsing of morphologically rich languages like Turkish and Urdu,
where interactions between passive and causative constructions cannot be easily
captured in LFG implementations (Section 2; Çetinoǧlu et al. 2009).

1.2.3 Ambiguity

Implemented grammars often include components to handle ambiguity (see Sec-
tion 1.5). There are three broad areas around managing ambiguity: computing all
the analyses efficiently; representing the ambiguities compactly; resolving the
ambiguity so that it does not need to be computed and represented. The first
two are discussed in Kaplan & Wedekind 2023 [this volume] and Rosén 2023
[this volume]. Within the grammar writer’s control are components including
preprocessing by PoS taggers and named entity recognition systems, Optimality-
Theory marks to prefer some constructions over others, and stochastic ranking
of analyses.

1.2.4 Configuration

The determination of which components (e.g. which tokenizer, morphology, lexi-
cons, and annotated c-structure rules) to use in an implemented grammar need to
be specified in a configuration (see Crouch et al. 2011 on how this is done in XLE).
These may have default values, e.g. a tokenizer which simply splits sentences at
spaces and does not deal with capitalization or punctuation, but large-scale gram-
mars require customized components for the specific language and often the type
of text (e.g. newspaper text, tweets). In addition, to allow for rapid extension to
specific applications whichmay have new vocabulary and unusual constructions,
these configurations allow the grammar writer to specify lexicons and rules that
add to or override those in a standard base grammar (King & Maxwell 2007). For
example, to parse English academic biology papers, special lexicons of biological
terms as well as special c-structure rules for section titles might be added to a
grammar of standard written English.
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1.3 Grammar development tools

To aid the grammar writer in managing a large-scale, broad-coverage LFG gram-
mar, specialized variants of standard software development tools are needed.
These grammar development tools are part of any LFG platform (Section 1.1).
Throughout this chapter we rely on examples from XLE (Crouch et al. 2011),
which is the most broadly adopted LFG grammar development framework and
is used in the ParGram project (Section 3).

1.3.1 Grammar writer interface

Grammar-development tools for the creation of LFG implementations facilitate
the creation of c-structure rules and lexicon entries that are annotated with LFG
functional annotations. Some platforms, e.g. Xerox’s Grammar Writer’s Work-
bench and XLFG, provide special interfaces for rules and lexicon entries. Others,
e.g. XLE, use editors such as Emacs or the Eclipse-based eXLEpse (Rädle et al.
2011). The interfaces provide a way to apply the rules (i.e. the grammar) to a
given input string and to output a c-structure and an f-structure graph in human-
readable andmachine-readable formats. They also generally provide tools to help
debug issues such as why a well-formed input sentence does not receive an anal-
ysis or why the analysis is incorrect.

1.3.2 Macros and templates

Since grammar engineers want to efficiently encode patterns across lexicon en-
tries and grammar rules, some platforms support additional notations. XLE, for
example, supports regular-expression macros that can expand to anything from
a piece of f-annotation to an entire rule as well as f-annotation templates, e.g.
to allow for like-category coordination over any c-structure category. Using a
shared definition of templates across parallel LFG implementations for various
languages and domains considerably facilitates the adherence to the agreed-upon
f-structure conventions (King et al. 2005). For example, using a template num-
ber wherever number on nouns is assigned ensures that the same attribute (e.g.
numb) is used and that it only needs to be changed in one place if later another
name of the attribute is used (e.g. num instead of numb). See Section 2 for dis-
cussion of the role of macros and templates in theoretical LFG.

1.3.3 Feature table and feature space

In a grammar formalism with untyped attribute-value matrices such as LFG, it
is not strictly necessary to declare the valid values for the attributes used in
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f-structures and potential other levels of representation. However, from an engi-
neering standpoint, it is highly desirable to make sure that only valid values are
used; this way, unintended deviations due to typos can be caught easily (Crouch
&King 2008). This need to enforce the adherence to a set of conventions is height-
ened in efforts to develop parallel LFG implementations for various languages
such as ParGram (Section 3). XLE therefore supports feature declarations which
state all the features, i.e. attributes, and their values that are allowed in the gram-
mar. Multiple feature declarations can be combined to check the grammar code
for adherence to them. In ParGram, each grammar combines the common feature
declarationwith a language-specific onewhich adds additional language-specific
features and declares which subset of values are allowed, e.g. for English the dual
value of the num attribute is removed.

1.3.4 Treebanks as test suites

Treebanks, and more specifically f-structure banks (Rosén 2023 [this volume]),
can be used as a form of detailed, LFG-specific test suite for the grammar’s cov-
erage. Creating the treebank highlights missing constructions and vocabulary
in the grammar. The INESS-based Parsebanker (Rosén 2023 [this volume]) pro-
vides infrastructure for rapidly selecting the best parse from an XLE analysis
by making use of c- and f-structure discriminants (Rosén et al. 2007). These dis-
criminants are stored as part of the parsebanking to allow for rapid updating as
the grammar evolves. The grammar is then enhanced to account for these and
the treebank is reparsed with the updated grammar and the new version of the
treebank is inspected. This aids both in improving coverage and in ensuring that
changes to the grammar do not break constructions that were previously covered.
This approach has been used extensively in the development of the Norwegian
(Dyvik et al. 2016), Polish (Patejuk & Przepiórkowski 2012), and Wolof (Dione
2014) grammars.

1.3.5 Version control

Version control is used in software development to track changes to the software
being developed. As with software development more generally, version control
in grammar development allows the grammar writer to compare two versions
of a rule, lexical entry, or any other part of the grammar, to revert to a previous
version if needed, and to view conflicting changes. Version control systems also
record who made a particular change, which makes it easier for multiple people
to work on a grammar simultaneously by highlighting recent changes, especially
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conflicting ones. To our knowledge, eXLEpse (Rädle et al. 2011) is the only LFG-
oriented editor that offers support for a variety of version-control systems. Since
eXLEpse is based on Eclipse, all version-control plugins for Eclipse can be used.
However, although XLE does not provide a version control system, most large
scale grammars use a standard software version control system such as SVN or
Git. In addition, regression testing by providing sentences and analyses known
to be parsable by the grammar help in determining whether new versions of a
grammar function properly (Chatzichrisafis et al. 2007, de Paiva & King 2008).

1.3.6 Documentation

As with any software development project, it is important to document what
each part of the implemented grammar does. This takes the form of comments
in the lexicon and annotated phrase structure rules, including examples of sen-
tences which that part of the grammar can parse. Dipper 2003 designed a self-
documenting grammar system whereby the comments are extracted into proper,
stand-alone documentation and example test suites of constructions covered by
the grammar.

1.4 Modularity and integration of systems

LFG is an inherently modular linguistic theory, with different representations
and components for the lexicon, phrase (constituent) structure, functional struc-
ture, semantics, etc. This is highlighted in implemented systems which introduce
two other types of modularity: modularity for the grammar components, which
correlates with the linguistic modularity, and modularity within those compo-
nents, which enables better grammar engineering practices. LFG implementa-
tions are software systems and hence modularity of the different components is
important for developing, scaling, maintaining and debugging the system. This
section describes how the modularity of the grammar components helps with
grammar implementation.

A core tenet of LFG is that different parts of the grammar require different
types of representations. This is echoed in the implementations where the differ-
ent modules can be created by different people and use different types of tech-
nology. As with theoretical LFG, the c-structure is a tree and the f-structure an
attribute-value matrix, and the two are related via annotated phrase-structure
rules. These phrase-structure rules form one module of the grammar. Similarly,
lexicons comprise word forms, parts-of-speech, and f-annotations. These form
another module. These lexicons can be custom-created for the LFG grammar or
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converted from other lexical resources (Kaplan & Newman 1997, Sheil & Ørsnes
2006, Przepiórkowski et al. 2014, Patejuk & Przepiórkowski 2014). The morpho-
logical component is often implemented as a finite-state transducer (Kaplan et al.
2004, Bögel et al. 2019) but can be of any form.10 For example, the ParGram Chi-
nese grammar uses a combined tokenizer and part-of-speech tagger that was ex-
ternally developed for non-LFG purposes (Fang & King 2007). The importance of
modularity is highlighted by the treatment of semantics: there have been many
implementational approaches to semantic representations based on the LFG f-
structure analyses. These include projecting the semantics as an attribute-value
matrix (Halvorsen 1983, Halvorsen &Kaplan 1995, Asudeh 2006, Dyvik et al. 2016,
2019), implementing Glue Semantics (Dalrymple et al. 1993, Meßmer & Zymla
2018), and using ordered rewrite rules (Crouch & King 2006). Without a modu-
lar system, this exploration of the best way to capture the semantics would be
difficult.

There are three additional reasons to maintain modularity in an implemented
grammar. The first is that large scale grammars often have multiple grammar
writers. By having different files for the lexicon, templates, and annotated phrase
structure rules, the efforts can be divided in such a way that changes can be
easily merged. To further aid this, the lexicons and phrase-structure rules often
comprise multiple files, e.g. the lexicon might be divided into verbs, closed-class
items, and all other entries, and the phrase-structure rules might be divided into
clausal and nominal. The second reason is that debugging, i.e. the process of
finding and fixing errors in the grammar, is simpler in a more modular system.
By having different components and different files within those components, the
structure of the grammar is easier to see and the individual rules easier to locate.
This debugging is further aided by the use of test suites (Chatzichrisafis et al.
2007, de Paiva & King 2008), including ones based on examples in comments
in the grammar rules (Dipper 2003). Even with modularity, the inclusion of OT
marks (Section 1.5) can make debugging more complex since an analysis may
not surface due to competition with another analysis. A third reason is that as
described in Section 1.2 and Section 1.3, in addition to a lexicon and annotated
phrase structure rules, LFG implementations can have tokenizers, morphologies,
templates, feature tables, etc. These are combined via configuration files that
encode the different modules of the system and the way they interact.

10The non-FST morphologies are referred to as library transducers in XLE.
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1.5 Runtime performance

When implemented grammars are used to test linguistic hypotheses and analy-
ses (Section 2), how quickly the grammar provides an analysis for a sentence, i.e.
its latency, is generally not important. However, almost all other uses for imple-
mented grammars (Section 4) have latency considerations. LFG implementations
have provided a number of techniques to improve latency, sometimes at the cost
of accuracy and coverage, e.g. certain analyses may be lost due to early elimina-
tion of possible structures (Kaplan et al. 2004). There are two main issues with
runtime performance of LFG grammars: ambiguity and latency. These consider-
ations hold for both parsing and generation; we focus on parsing here.11

Ambiguity concerns the multiple analyses (i.e. c- and f-structures) that are as-
signed to a given sentence. The ambiguity problem is accentuated when there
is no semantic or pragmatic processing to guide the choice among the different
analyses. The ambiguities fall into three broad categories. First, sentences can
have multiple analyses, all of which are correct and equally plausible out of con-
text, e.g. in I saw her duck either I saw a bird or I saw a person ducking down.
Second, sentences can have correct analyses but even out of context some of
them are highly improbable, e.g. in I saw the child with the telescope there are
two plausible readings where saw is the past tense of the verb see and one im-
plausible one where saw is the present tense of the verb meaning to cut with
a saw, which is only plausible in a bizarre magic show. Third, ambiguities can
arise when the grammar allows ungrammatical analyses, either intentionally as
a fall-back mechanism or unintentionally due to an error in the implementation.
Copperman & Segond 1996 provide one of the first detailed expositions of am-
biguity in LFG grammars, comparing the ambiguity discussed in the theoretical
linguistics literature with that in implemented grammars. King et al. 2004 dis-
cuss ambiguity in LFG grammar writing in detail, focusing on the XLE-based
LFG implementations.

Language contains ambiguities at many levels, from determining word bound-
aries in tokenization, to morphological analysis, to syntactic attachment ambi-
guities, to semantic quantifier scope and beyond. This can result in thousands
of analyses even for short sentences and long processing times to compute each
analysis. There are two main ways to handle this ambiguity efficiently. One is to
handle the ambiguity by “packing” (Maxwell & Kaplan 1989, 1993, Shemtov 1997)
and operating at each level efficiently over the packed representations. Packing
allows operations to apply just once to shared parts of the representation instead

11See Kaplan & Wedekind 2023 [this volume] on the inherent formal and computational proper-
ties of LFG.
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of enumerating all of the possibilities and processing each of them separately. For
example, XLE is designed to maintain packed structures from the tokenization
and morphology to the syntactic c- and f-structures and then into an ordered
rule writing system that can be used to create semantic representations (Crouch
& King 2006). The other way to handle ambiguity is to choose the most likely
analysis at each level. For example, if there are multiple morphological analyses
for a word (e.g. English leaves), the system can choose the most likely one given
the information it has at that time (e.g. the words adjacent to leaves and their po-
tential morphological analyses). This has the downside that the correct analysis
may be lost due to removing information early (Dalrymple 2006).

Optimality Theory (OT) (Kuhn 2023 [this volume]) can be used to allow the
grammar writer to prefer certain analyses and even to control which grammar
rules are active. Frank et al. 1998, 2001 propose an extension of the classical LFG
projection architecture to incorporate a constraint ranking mechanism inspired
by OT. A new projection, the o-projection, specifies violable constraints, which
are used to determine a “winner” among competing, alternative analyses. Many
ambiguities can be filtered from the set of possible analyses for a given sentence
by using this constraint ranking mechanism in the XLE system. For example,
OT marks can be used to prefer verbal analyses over adjectival ones in copu-
lar clauses with passives like They were eaten. XLE further provides a way to cut
down the search space in parsing, allowing for potentially fewer parses to search
through. This is done via a special stoppoint feature, which is part of the Opti-
mality Theory preference mechanism incorporated into XLE (King et al. 2000).
The OT marks can be grouped with certain groups only applying if no parse is
found with the original set of OT marks. That is, XLE will process the input in
multiple passes, using larger and larger versions of the grammar in subsequent
reparsing phases. These groupings are referred to as stoppoints. stoppoints
are useful for eliminating ungrammatical analyses when grammatical analyses
are present and for speeding up the parser by only using expensive and rare con-
structions when no other analysis is available. If a solution can be found with the
smaller, restricted grammar, XLE will terminate with this solution. Otherwise, a
reparsing phase is triggered. This approach can be used to prefer multi-word ex-
pressions, for instance so that XLE will only consider analyses that involve the
individual components of the multi-word expression if there is no valid analysis
involving the multi-word expression. In addition to the OT marks, c-structure
pruning (Cahill et al. 2008) and part-of-speech tagging and named entity recog-
nition (Kaplan & King 2003, Dalrymple 2006, Krasnowska-Kieraś & Patejuk 2015)
can be used to eliminate unlikely c-structures before unification.
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Even with the use of OT marks, a sentence may have many valid parses. How-
ever, downstream applications often expect a single analysis, i.e. a single f-struc-
ture, as input. To use LFG grammars as input to such applications, statistical
methods can be used to choose the most probable analysis (Riezler et al. 2002).
These stochastic models are trained on treebanks or dependency banks of known
correct analyses. As a variant of this, Dalrymple 2006 and Krasnowska-Kieraś &
Patejuk 2015 investigated using a stochastic part-of-speech tagger to trim poten-
tial analyses before constructing the c- and f-structure.

2 Implications for theoretical issues

LFG and HPSG (Pollard & Sag 1994 and, for an implementational perspective,
Bender & Emerson 2019) are in the privileged position of having not only a
community of theoretical linguists but also of grammar engineers, with signif-
icant crossover between the theoretical and grammar-engineering communities.
There are four areas in which grammar engineering interacts with theoretical
linguistics (King 2011, 2016). These include: using grammar engineering to con-
firm linguistic hypotheses; linguistic issues highlighted by grammar engineering;
implementation capabilities guiding theoretical analyses; and insights into archi-
tecture issues. The positive feedback loop between theoretical and implementa-
tional efforts is a domain in which LFG and HPSG have a distinct advantage
compared to many other linguistic theories, given the strong communities and
resources available.

2.1 Confirming linguistic hypotheses

Grammar engineering can be used to confirm linguistic hypotheses (Bierwisch
1963, Müller 1999, Butt, Dipper, et al. 1999, Bender 2008, Bender et al. 2011, King
2011, Fokkens 2014, King 2016, Müller 2015). Encoding the hypothesis in an imple-
mented grammar not only highlights details of the analysis that might be missed
in a pencil-and-paper version but can also bring to light interesting interactions
with other linguistic phenomena, especially when the hypothesized analysis is
encoded in a broad-coverage grammar. Two examples of this type include the
analysis of determiner agreement systems and the prosody-syntax interaction.

King & Dalrymple 2004 provide an LFG analysis of determiner agreement and
noun conjunction, looking particularly at indeterminacy of agreement features.
In order to test the proposed system, they implemented a toy grammar with lexi-
cal entries of each type and enough syntactic structure to encompass determiner,

1097



Martin Forst & Tracy Holloway King

adjective, and verb agreement with conjoined and non-conjoined nouns. As a re-
sult, the authors were able to confirm that their analysis was formally sound and
accounted for the known data. This toy grammar was relatively easy to imple-
ment in XLE because all of the necessary components, e.g. distributive features,
were already available.

Implementing proposals for the prosody-syntax interaction in LFG is more
challenging because not all of the mechanisms that have been proposed in the
literature are available in systems like XLE. Butt & King 1998 used an existing,
non-LFG analysis of Bengali clitics and implemented it in order to test whether
p(rosodic)-structure could be used to capture the generalizations proposed in the
theoretical analysis, focusing on where mismatches between prosodic and syn-
tactic structure occur. A much different interface approach was pursued in Bögel
et al. 2009, which built upon the finite-state transducers used for tokenization
and morphological analysis within the grammars (Section 1.2). Finally, a large-
scale implementation of certain phonology-syntax interactions was completed
for Welsh (Mittendorf & Sadler 2006).

2.2 Implementational devices

Writing large-scale grammars highlights the interaction of different parts of the
grammar and the need to be able to formally state certain types of generaliza-
tions. These needs have led to the creation of formal devices, some of which
have become part of theoretical LFG analyses while others remain implemen-
tational devices. Implementation capabilities that guided theoretical analysis in-
clude the use of complex categories for auxiliary analysis in English and German,
the analysis of Welsh phonology-syntax interactions through the interaction of
morphological analysis via finite-state transducers and the LFG c-structure, and
the introduction of templates and macros.

Complex categories (Crouch et al. 2011) are a formal c-structure device. They
allow for generalizations over c-structure categories by having the category be
composed of a fixed component and a variable, where the variable can pass its
value to other complex categories on the right-hand side of the rule. In this way,
they allow the grammar writer to capture generalizations through notation. This
notation is then automatically compiled into standard c-structure rules. Complex
categories are used to constrain the order and form of auxiliaries and main verbs
in English (e.g. They will have been promoted.) by having each auxiliary state its
meaning and its form (e.g. have is an AUX[perf,base] with perfective meaning
and base form while been is an AUX[pass,perf] with passive meaning and pefec-
tive form) and the VP rules themselves are complex categories that reflect their
head and based on that put requirements on their complement.
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Welsh consonant mutations are a phenomenon whereby the initial consonant
of certain words changes based on its phonological and syntactic environment
(Graver 2023 [this volume]). To capture the joint requirements on the morpho-
phonology and the syntax which trigger mutations, Mittendorf & Sadler 2006
used the finite-state morphology capabilities integrated in XLE to control where
Welsh consonant mutations occur by encoding the boundary conditions in the
morphological tag sequences. The modular nature of LFG combined with the
implementational device of finite-state morphology provided a clean solution to
the different types of triggers for the mutations.

A long standing debate in the linguistic literature, especially for constraint-
based formalisms like HPSG and LFG, is whether a comprehensive and efficient
grammatical theory should include a type hierarchy and what role it should play.
Historically HPSG has had types as foundational to the theory while LFG has not.
However, in grammar engineering, it is important to be able to efficiently capture
generalizations as well as exceptions to those generalizations. The introduction
of templates into the formal devices available to LFG allows for generalizations
and inheritance via notation, without introducing a full type hierarchy into the
formalism (Dalrymple, Kaplan & King 2004, Crouch & King 2008) and as a re-
sult, the concept of templates has become part of theoretical LFG analyses. Sim-
ilar to complex categories, templates and macros allow the grammar writer to
capture generalizations through notation, which is then automatically compiled
into standard LFG c- and f-structure rules.

Two more minor formal devices which are gaining traction in theoretical anal-
yses are instantiation and local variables (a third is the restriction operator dis-
cussed in the next section). Since the beginning, predicates (pred) in LFG have
not been unifiable with one another due to their unique lexical index (Kaplan
& Bresnan 1982). Certain non-pred features also need to be non-unifiable (Dal-
rymple 2001). This can be captured by instantiation, represented by having the
value of the feature be followed by an underscore. For example, instantiating
the form values of English particles blocks their occurring multiple times in a
sentence (e.g. *they threw out the garbage out) (see Figure 2 for an English exam-
ple and Forst et al. 2010). Finally, local variables anchor a functional uncertainty
equation to a particular f-structure and then refer to that f-structure in other an-
notations (Dalrymple 2001, Crouch et al. 2011). This is needed when making a set
of statements about a particular element of a set or a particular type of governing
element. For example Szűcs 2019 uses local variables to state constraints on topic
left dislocation constructions in Hungarian.
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2.3 Architectural issues

Implementing a wide variety of phenomena, as is necessary for broad-coverage
grammars, brings to light architectural issues with the theory. Çetinoǧlu et al.
2009 and Bögel et al. 2019 describe issues with the interaction of the passive and
causative in Turkish and Urdu. These issues are the result of how lexical rules in
LFG interact with complex predicate formation, where the passive is tradition-
ally analyzed as involving a lexical rule while the causative is often analyzed as a
complex predicate. The Urdu and Turkish grammars use the restriction operator
(Kaplan & Wedekind 1993) in the annotated c-structure rules to model complex
predication, including causatives. The restriction operator allows for features of
f-structures to be restricted out, i.e. to cause the grammar to function as if these
features did not exist. This allows complex predicate-argument structures to be
built dynamically (Butt et al. 2003, 2010). In contrast, the passive is handled by
lexical rules which apply to the predication frames in the lexicon. This predicts
that passivization applies before causativization and that it is not possible to pas-
sivize a causative by demoting or suppressing the subject of the causative. How-
ever, this is the reverse of the Urdu and Turkish facts. To solve this problem in
the ParGram grammars of Urdu and Turkish, both the causative and the passive
are handled via restriction in the annotated phrase structure rules. In the the-
oretical literature, this issue had not been highlighted because for Turkish and
Urdu style morphosyntax, the causative was handled in argument-structure, but
the interaction between causativization and passives at the morphology-syntax
interface highlighted that traditional lexical rules do not allow for the right order
of application when causativization is morphological but passivization is part of
the syntax.

To conclude this section, the interaction of grammar engineering and theo-
retical linguistics helps to confirm linguistic hypotheses, to highlight complex
linguistic issues, to posit new formal capabilities, and shed light on architecture
issues. The positive feedback loop between theoretical and implementational ef-
forts is a domain in which LFG and HPSG have a distinct advantage.

3 Grammar resources: ParGram

The systems described above are used to create small- and large-scale LFG gram-
mars. These can be used as input to applications (Section 4) or to explore theoret-
ical hypotheses (Section 2). The Parallel Grammar (ParGram) project is a consor-
tium of LFG researchers implementing grammars for a typologically varied set of
languages in a parallel fashion (Butt, King, et al. 1999, Butt et al. 2002) using the
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XLE LFG parser, generator, and grammar development platform. The parallels
are most notable in the f-structure space, where common features and analy-
ses are used wherever possible, but differ when required by the syntax of the
languages. This parallelism is enabled by LFG theory, by grammar engineering
components such as feature declarations, and by semi-annual meetings between
the grammar writers.12

ParGram began with three languages: English (Riezler et al. 2002), French
(Frank 1996), and German (Dipper 2003, Rohrer & Forst 2006). They developed
aligned f-structure analyses for a tractor manual which existed as an aligned cor-
pus in all three languages. Even with three closely related languages, it was clear
that full f-structure alignment was not possible (Butt, Dipper, et al. 1999) due to
fundamental syntactic differences in the languages. Later, the Fuji Xerox Cor-
porate Research Group and the University of Bergen joined the initiative with
a Japanese (Masuichi et al. 2003) and a Norwegian grammar (Dyvik et al. 2016,
2019) respectively. Other longer-term academic efforts participating in ParGram
concern the development of Urdu (Butt & King 2002, 2007) and Polish (Patejuk
& Przepiórkowski 2012) LFG implementations. Finally, further ParGram efforts
have given rise to computational LFGs for Arabic (Attia 2006, 2012), Chinese
(Fang & King 2007), Danish (Ørsnes 2006), Georgian (Meurer 2009), Hungarian
(Laczkó & Rákosi 2008–2019), Indonesian (Arka et al. 2009, Arka 2012), Korean
(Kim et al. 2003), Malagasy (Dalrymple et al. 2006), Tamil (Sarveswaran & Butt
2019), Tigrinya (Kifle 2011), Turkish (Çetinoǧlu & Oflazer 2018), Welsh (Mitten-
dorf & Sadler 2006), and Wolof (Dione 2014).

The project resulted in the creation of LFG grammars in these multiple lan-
guages and hence a greater understanding of the parallelism (or lack thereof) for
the LFG analyses of particular constructions. Major issues in LFG analysis and
architecture highlighted by the ParGram project included: Copular constructions
and in particular whether there is a copular be predicate and whether the predi-
cated argument has a subject (xcomp-like) or not (predlink) (Dalrymple, Dyvik,
et al. 2004, Attia 2008); how to handle argument-changing relations such as the
passive, causative, benefactives, complex predicates, and interactions thereof, in-
cludingmorphological and syntactic interactions (Bögel et al. 2019; see Section 2);
whether auxiliaries have predicates or just supply tense and aspect features to
the f-structure (Butt et al. 1996, Dyvik 1999); the interaction of tokenization and
morphology with the c- and f-structures, especially around features like Welsh
mutations (Mittendorf & Sadler 2006) and Urdu complex predicates (Bögel et al.

12A similar approach was subsequently adopted by the HPSG DELPH-IN consortium (Bender
et al. 2002).

1101



Martin Forst & Tracy Holloway King

2019). In addition, the ParGram project resulted in improvements to the gram-
mar development platform (Section 1.2, Section 1.3 and Section 1.5) and in best
practices for distributed parallel grammar development.

In addition to the traditional LFG-style ParGram grammars which use an-
notated phrase structure rules to create the c- and f-structure representations,
the ParGram project also includes several automatically induced grammars that
create ParGram compatible f-structures, i.e. f-structures using the same feature
space as the grammars described above, but which are learned from tree and
f-structure banks (Cahill et al. 2002). These grammars are robust in that they
produce f-structures for nearly any sentence, at the cost of producing structures
which sometimes violate core LFG principles such as completeness and coher-
ence. See Section 4 for applications which require such robustness.

An influential initiative that resembles ParGram is the Universal Dependencies
(UD) initiative (McDonald et al. 2013; see also Haug 2023 [this volume]). Like Par-
Gram, it aims at parallel representations across languages, and UD follows LFG
concerning many of the distinctions made at the level of syntactic dependencies
and grammatical functions respectively (de Marneffe et al. 2014). This being said,
surface-oriented dependency structures as used in UD cannot be as parallel as
the more abstract f-structures of ParGram. Korsak 2018 and Przepiórkowski &
Patejuk 2020 discuss the similarities between LFG and UD and investigate map-
ping between LFG f-structures and UD. Another noteworthy difference between
ParGram and UD is that ParGram has been developing reversible XLE grammars
whereas UD focuses solely on parsing.

4 Applications

Some applications integrating natural language processing only require parsing.
For these applications, parsing should be robust to typos and grammatical errors,
unusual constructions, unknown words, etc. In addition, minor issues in parsing
may be unimportant for these applications because systematic errors can be com-
pensated for within the system. Semantic search is an application that requires
only parsing, needs to be robust, and can tolerate certain parsing errors.

Other applications, e.g. sentence condensation, transfer-based machine trans-
lation (MT) and conversational agents, require both parsing and generation. Ap-
plications using generation generally require highly grammatical output since
users are sensitive to malformed natural language such as incorrect subject-verb
agreement. Since corpus-induced grammars do not lend themselves to refine-
ment in order to control generation, hand-crafted grammar implementations
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such as LFG grammars are still the means of choice for the generation of high-
quality text.

Finally, there are applications that require grammaticality judgments. This is
the case of grammar checkers, both general-purpose ones and grammar check-
ers for computer-assisted language learning (CALL). Parsers trained on general-
purpose treebanks cannot be used for this purpose, so these applications are an-
other natural fit for hand-crafted grammar implementations. In our opinion, LFG
suits this purpose particularly well because its terminology is relatively close to
that used in language instruction.

4.1 Applications requiring deep features and robustness

For applications that require mainly natural language understanding, parsing
needs to be robust to unexpected words and constructions. To provide the robust-
ness necessary for these applications, domain-specific grammars can be created
based on a general large-scale grammar (Kim et al. 2003, King & Maxwell 2007).
However, this is often not enough to cover all use cases. LFG grammars can use
morphological guessers to cover unknown vocabulary (Dost & King 2009, Bögel
et al. 2019), can parse fragments of the structure, e.g. provide f-structures for all
the noun phrases even if they cannot be formed into a sentence (Riezler et al.
2003), and can include fall-back rules (mal-rules Schneider & McCoy 1998, Reuer
2003, Khader 2003, Fortmann & Forst 2004, Bender et al. 2004) explicitly account-
ing for certain types of ungrammaticality, e.g. incorrect subject-verb agreement.

Semantic search is one application which benefits from the deep LFG represen-
tations. As a search application, the goal is to find documents which are relevant
to the query and, ideally, to highlight the passage in the document most relevant
to the query. Semantic search moves beyond keyword matching to match the
relationships between entities in the query. It can include queries that are full in-
terrogatives as well as ones that are phrases. The ParGramXLE English grammar
was used in the Powerset Inc. semantic search engine for searching Wikipedia
articles. By using LFG representations for the query and the documents it can dif-
ferentiate betweenwho acquired PeopleSoft andwho did PeopleSoft acquire, where
PeopleSoft is the object in the first question and the subject in the second. By us-
ing a fragment grammar as a backup, longer sentences could be partially parsed,
e.g. the first conjunct of a coordinated sentence could be parsed even if the sec-
ond failed. This combined with the redundancy across the articles made using
an LFG grammar feasible for moving beyond keyword search. The f-structures
were mapped to abstract knowledge representations which went beyond gram-
matical functions to semantic rules, e.g. mapping Oracle acquired PeopleSoft and
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PeopleSoft was acquired by Oracle and even Oracle’s acquisition of PeopleSoft to
the same abstract representation.

A more complex application than semantic search is question answering. Un-
like search, question answering uses a document collection to find the answer
to the query, which is generally in the form of a natural-language question, and
present it to the user. The PARC Bridge system (Bobrow et al. 2007) used the XLE
ParGram English grammar as its base and mapped the query and documents to
an abstract knowledge representation using ordered rewrite rules, deep lexical re-
sources such as WordNet (Fellbaum 1998) and VerbNet (Kipper et al. 2000, Levin
1993), and knowledge resources such as Cyc (Lenat 1995). The queries and doc-
uments were then matched against one another with a graph-based algorithm.
An interesting extension of this was to perform entailment and contradiction de-
tection (ECD) (Bobrow et al. 2007) with a graph-based module that determined
whether one sentence entailed or contradicted (or neither) the other. ECD de-
pended on understanding the roles between the entities as determined by the
LFG grammar as well as detailed lexical knowledge.

Burton 2006 describes a tutorial system which uses the XLE English grammar
for its language-understanding component. The tutorial system is provided by
Acuitus and teaches network administration. The coursework includes a set of
troubleshooting exercises where students find and fix problems. During these ex-
ercises the computer helps the students when they ask for help or based on their
actions. The system asks the student a mix of multiple-choice, short-answer, and
natural-language questions. The idea behind using natural-language interactions
is to encourage students to think beyond what multiple-choice questions provide
and to allow more complex questions and answers. The system converts the f-
structures from the student input to semantic interpretations via the transfer rule
system (Crouch 2006). Both the syntactic parsing and the semantics are adapted
to the domain to provide more accurate and robust results.

Historically, hand-crafted LFG implementations have had a hard time compet-
ing with machine-learned constituency or dependency parsers in terms of ro-
bustness, i.e. providing a parse for all input, and speed for purely understanding-
oriented applications, even though they are often superior in terms of systematic-
ity and detail of analysis and despite the fact that machine-learned parsers often
produce illogical parses for input where LFG grammars would fail to produce a
parse. Because of this speed and perceived robustness, machine-learning-based
dependency parsers have become increasingly popular, as is evident from the
shared tasks of the Conference on Computational Natural Language Learning
(CoNLL) series. Interesting though, the CoNLL tasks now often integrate UD
representations (McDonald et al. 2013), which can be seen as less fine-grained
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f-structures (see Section 3 for more details on UD). The combination of hand-
crafted grammars, fall-back techniques, and statistical parser selection as de-
scribed in this chapter allow LFG and other rule-based grammars to be used in
applications requiring robustness (see also Ivanova et al. 2016).

4.2 Applications requiring grammaticality

Certain applications not only aim to map text to representations more amenable
to the computation of meaning, but they also take abstract meaning representa-
tions, including f-structures, as input and map them to text. Among such appli-
cations are sentence condensation and transfer-based machine translation, both
applications for which LFG implementations have been used because f-structures
are abstract enough to facilitate transformations like the removal of certain ad-
juncts or the transfer from a source to a target language. Furthermore, since
corpus-induced grammars do not lend themselves to refinement in order to con-
trol generation, hand-crafted grammar implementations are still the means of
choice for the generation of high-quality text.

Sentence condensation is a form of summarization (Knight &Marcu 2000, Jing
2000). It takes a long sentence and produces a shorter sentence which preserves
the core meaning of the original sentence. This requires the ability to identify the
core part of the original sentence and to generate a grammatical shorter sentence.
Riezler et al. 2003 and Crouch et al. 2004 used the ParGram XLE grammar to
create a sentence condensation system for English. The LFG f-structure was used
to identify the core meaning, e.g. by removing adjuncts other than negation. A
new f-structure was created which contained only this core meaning. This new
f-structure was then run through the grammar in the generation direction to
generate the shorter, condensed sentence. This sentence was guaranteed to be
grammatical since it met the well-formedness conditions of the grammar. Since
multiple strings (e.g. sentences) can map to the same f-structure, more than one
condensed sentence can often be generated from a single f-structure. This can be
partially controlled by Optimality-Theory marks in the grammar in XLE (Frank
et al. 1998). The choice between the remaining sentences can be done with a
language model (Riezler et al. 2003). A related application is note taking where
longer texts are condensed into legible notes (Kaplan et al. 2005).

Machine translation (MT) involves automatically translating a text from one
language (the source) to another (the target). The resulting translation has to pre-
serve the meaning and to be grammatical. LFG f-structures have been used for
MT (Oepen et al. 2004, Riezler & Maxwell 2006, Avramidis & Kuhn 2009, Gra-
ham et al. 2009, Graham 2012, Graham & van Genabith 2012, Homola & Coler
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2012). The idea is that the f-structure encodes the meaning of the sentence more
abstractly than the surface form of the text and so can be used as the level for
translation. That is, f-structure enables translation by transfer across structures
and not just an interlingua across words (Kaplan et al. 1989). In theory, simply
substituting the pred values in the f-structure could produce an f-structure in the
target language and the LFG grammar can then be used to generate the trans-
lation. In practice, f-structures still encode enough language-specific syntactic
information that additional transfer rules need to be applied before the gener-
ation step. For example, one language may use indefinite singular determiners
(e.g. English a) while the other may not, in which case the determiner would
have to be deleted (in the source language) or inserted (in the target language).
The LOGON MT project (Oepen et al. 2004) provides an interesting approach
with parsing via the LFG Norwegian NorGram grammar, transfer to semantic
MRS (Copestake et al. 2005) and generation via an HPSG English grammar. Al-
though LFG-based MT systems can be brittle since there has to be a successful
parse, transfer, and generation, when a translation is produced it is generally of
high quality both in terms of preserving the meaning and of being grammatically
well-formed.

Consider the English and German sentences in (3) and (4), for which the cor-
responding f-structures are displayed in Figure 2.

(3) Across the city, monuments to prosperity have sprung up.

(4) In
in

der
the

ganzen
whole

Stadt
city

sind
be

Denkmäler
monuments

des
of.the

Wohlstands
prosperity

entstanden.
up.spring

Across the city, monuments to prosperity have sprung up.

Apart from the fact that the German analysis of adjunct NPs in the genitive is not
parallel to other ParGram implementations and that the German finite-state mor-
phology decomposes the wordWohlstand, which gives rise to a mod dependency
under the Subj Adj-Gen, the f-structures are surprisingly parallel. (At first sight,
this is obscured by the fact that in the German f-structure, the sub-f-structures
under Topic and in the Adjunct set are the same.) Even though the English sen-
tence is headed by a particle verb while the German one is not, there is a single
pred value for the head verb on either side; even though the subject of the Eng-
lish sentence precedes the verb while the one of the German sentence follows the
verb, both appear in the respective f-structure under subj; even though the aux-
iliary in the English sentence is have while the German verb entstehen requires
the auxiliary sein (‘to be’) for perfect tenses, the auxiliaries contribute the same
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value for tns-asp perf. As a result, the transfer component can concentrate on
word-to-word translation equivalencies while letting the language-specific gram-
mars take care of well-formedness conditions independent of the language pair
under consideration. An example of a non-trivial translation equivalency is the
one between across the city and in der ganzen Stadt (literally ‘in the entire city’),
as the English phrase might also correspond to durch die Stadt (literally ‘through
the city’) in other contexts (especially in combination with motion verbs).

Figure 2: F-structures for English and German translation equivalents

Certain other applications do not require semantic representations or gram-
matical text output but do require the system to have a notion of grammaticality
as their purpose is to highlight ungrammatical (or otherwise undesired) passages
in text. Such systems can be directed to a general public of people producing texts
or explicitly target second-language learners, sometimes even second-language
learners with a specific first-language background. The latter application, in the
context of Intelligent Computer-Assisted Language Learning (ICALL), has used
LFG implementations, typically augmented with mal-rules (Rypa & Feuerman
1995, Reuer 2003, Khader 2003, Fortmann & Forst 2004). Mal-rules are rules or
rule extensions that cover ungrammatical constructions typically produced by
second-language learners, e.g. NPs where determiners or adjectives do not agree
with the head noun, NPs with countable head nouns in the singular that are
not preceded by a determiner, or sentences with an ungrammatical order of con-
stituents or a violation of subject-verb agreement. As typical mistakes made by
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second-language learners depend significantly on their native language as well
as on other languages they know, mal-rules can be optimized with respect to
their coverage more easily when the linguistic background of the audience is
known. A machine-learning-based approach to ICALL exploiting features pro-
vided by the English ParGram LFG implementation is described by Berend et al.
2013.

A final application we discuss is natural language understanding (NLU) com-
ponents used in car computers or in personal assistants on mobile devices. Those
components often combine grammar-based analysis and deep-learning-based
neural networks or statistical models learned from annotated data. Moreover,
machine-learning-based NLU models depend on large amounts of training data
from the relevant domain. Since such data is hard to collect and costly to an-
notate, much of it is generated by means of grammars. For the most part, the
grammars used to this end are simple, largely context-free grammars. However,
as the semantic representations used for NLU become increasingly sophisticated,
the use of more powerful grammar formalisms such as LFG can be used for the
generation of high-quality grammatical training data.

5 Conclusion

This chapter provided an overview of computational implementations of LFG.
LFG was designed from the outset to be computationally tractable and has a
strong history of broad-coverage implementations for multiple languages, pri-
marily through the ParGram project which is built on the XLE grammar develop-
ment platform. As with theoretical LFG, implemented grammars primarily focus
on c-structure and f-structure, but extensive work has been done on using the re-
sulting f-structures as input to semantics and abstract knowledge representation,
and some work has focused on the integration of morphological and phonolog-
ical information as well as argument structure. The ParGram project is based
on the theoretical LFG hypothesis that languages are more similar at f-structure,
which encodes grammatical functions, than at c-structure. This f-structure simi-
larity can then be exploited in applications such asmachine translation. Other ap-
plications which take advantage of the more abstract f-structures and the ability
of LFG grammars to parse and generate as well as to detect (un)grammaticality
include computer-assisted language learning, question answering, and sentence
condensation. From a theoretical linguistic perspective, implemented grammars
allow the linguist to test analyses and to see interactions between different parts
of the grammar.
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