
Chapter 22

Formal and computational properties of
LFG
Ronald M. Kaplan
Stanford University

Jürgen Wedekind
University of Copenhagen

This chapter first reviews the basic architectural concepts that underlie the formal
theory of Lexical-Functional Grammar. The LFG formalism provides a simple set
of devices for describing the common properties of all human languages and the
particular properties of individual languages. It postulates two levels of syntactic
representation for a sentence, a constituent structure and a functional structure.
These are related by a piecewise correspondence that permits the abstract func-
tional structure to be described in terms of configurations of constituent structure
phrases. We then survey the mathematical and computational properties of this
simple framework. We demonstrate that the recognition/parsing, realization/gen-
eration, emptiness, and other more specific decision problems are unsolvable for
grammars in the unrestricted LFG formalism. A first set of restrictions guarantees
decidability of recognition, realization, and other problems for grammars that are
still suitable for linguistic description, but the solutions to these problems in the
worst case are computationally impractical. The class of LFG grammars that meet
an additional set of restrictions is equivalent to the class of mildly context-sensitive
grammars, and the recognition and realization problems for grammars in this class
are thus not only decidable but tractable as well.

Ronald M. Kaplan & Jürgen Wedekind. 2023. Formal and computational
properties of LFG. in Mary Dalrymple (ed.), Handbook of Lexical Functional
Grammar, 1035–1082. Berlin: Language Science Press. DOI: 10.5281/zenodo.
10185982

https://doi.org/10.5281/zenodo.10185982
https://doi.org/10.5281/zenodo.10185982

Ronald M. Kaplan & Jürgen Wedekind

1 Introduction

The basic features of the LFG formalism are quite simple and have remained re-
markably stable since they were first introduced by Kaplan & Bresnan (1982).1 An
LFG grammar assigns to each sentence in its language at least one constituent
structure (c-structure) and at least one functional structure (f-structure). The c-
structure is a phrase-structure tree that represents the order of words and their
grouping into phrases. The f-structure is a hierarchical attribute-value matrix
that represents the underlying grammatical relations that are expressed by con-
figurations of c-structure nodes. The c-structure is determined in the traditional
way by the rules of a context-free grammar. The f-structure is a minimal model
for the functional description (f-description) that is constructed from annotations
associated with the categories of rules that license the nodes of the c-structure.
The f-description is obtained by instantiating those annotations on the assump-
tion that there is a piece-wise correspondence 𝜙 between the nodes of the c-
structure and the units of a satisfying f-structure.

This simple correspondence architecture still lies at the core of LFG theory
even as it has been extended and refined to provide more insightful accounts
of long distance dependencies (Kaplan & Zaenen 1989), coordination (Kaplan &
Maxwell 1988), and other syntactic phenomena. In this chapter we focus on the
mathematical and computational properties of the basic formalism. As is well
known, its expressive power goes far beyond the capabilities of the context-free
c-structure grammar. This is because the annotations may associate information
that originates from different (and possibly arbitrarily distant) nodes with the
same f-structure unit. The result is that such a unit must satisfy requirements
that come from words in the string or nodes in the tree that do not stand in
a local mother-daughter relationship. A string with an otherwise well-formed
c-structure is excluded from the language if such context-sensitive f-structure
requirements are inconsistent. We know that some degree of context sensitivity
is needed for recognizing and parsing natural languages (Bresnan et al. 1982, Culy
1985, Shieber 1985), but the basic LFG formalism may allow for more expressive
power than is actually required.

Indeed, Kaplan & Bresnan (1982) used a reduction from the Turing machine
halting problem to show that the recognition/parsing problem is undecidable for

1Jürgen Wedekind passed away just as work on this chapter was coming to an end. Jürgen was
a master of the LFG formalism, with deep insights into its mathematical and computational
properties and how they relate to important principles of linguistic analysis. His early passing
is a great loss to the LFG community. He will also be missed as a close friend and collaborator.
RMK

1036

22 Formal and computational properties of LFG

unrestricted LFG grammars (see also Johnson 1988). This is the computationally
important problem of determining whether or not a given string belongs to the
language of the grammar and is assigned at least one c-structure and correspond-
ing f-structure.Wedekind (2014) proved the undecidability of the realization prob-
lem, also of practical significance. This is the problem of determining whether
the language contains at least one string towhich an arbitrary given f-structure is
assigned. Wedekind’s undecidability proof used a reduction from the emptiness
problem for the intersection of context-free languages. He also used that reduc-
tion to show the undecidability of the emptiness problem for unrestricted LFGs
(Wedekind 1999). This is the problem of determiningwhether or not there are any
strings at all in the language of a given LFG grammar. The emptiness problem
for LFGs was previously shown to be undecidable by reductions from Hilbert’s
Tenth Problem (Roach 1983) and Post’s Correspondence Problem (Nishino 1991).

We revisit these undecidability results in Section 4. We provide alternative
proofs within a single, conceptually simple, framework. In Appendix A we use
this framework to show that other more specific decision problems are also un-
solvable.

We consider in Section 5 some formal conditions that are sufficient to guaran-
tee decidability of the recognition and realization problems. Kaplan & Bresnan
(1982) showed that recognition is decidable if c-structures with non-branching
dominance (NBD) chains and/or unlimited empty nodes are excluded, and they
argued that this is a reasonable restriction for LFG grammars that describe nat-
ural languages. This parsing-oriented limitation does not reduce the complexity
of generation (Wedekind 2014), but an unrelated restriction has been shown to
ensure the decidability of that problem (Wedekind &Kaplan 2012). This raises the
question whether there is a single, linguistically plausible, condition that applies
indifferently to both parsing and generation. We introduce in Section 5 such a
uniform condition, proper anchoring, but we also demonstrate that this particu-
lar condition is not strong enough to guarantee that these problems can be solved
with practical efficiency. In the worst case recognition and generation may take
an amount of time that is exponential in the length of an input sentence or f-
structure.

This leads us to examine in Section 7 a stronger set of restrictions that not
only guarantee decidability of recognition and realization as well as emptiness
but also ensure that those problems can be solved in polynomial time. This fol-
lows from the fact that LFG grammars that meet these additional restrictions are
mildly context-sensitive in their expressive power and thus also have the known
mathematical and computational properties of that class of formal grammars.

1037

Ronald M. Kaplan & Jürgen Wedekind

2 Basic LFG formalism

We show in Figure 1 the c-structure and f-structure that the annotated c-structure
rules in (1) and lexical entries in (2) would assign to the sentence He sees the girl.

(1) S → NP
(↑ subj)= ↓

VP
↑= ↓

(↑ tense)
NP → (Det)

↑= ↓
N

↑= ↓
VP → V

↑= ↓
NP

(↑ obj)= ↓

(2) he N (↑ pred)= ‘pro’
(↑ agr pers)=3
(↑ agr num)=sg

sees V (↑ pred)= ‘see⟨subj obj⟩’
(↑ tense)=pres
(↑ subj agr pers)=3
(↑ subj agr num)=sg

the Det (↑ spec)=def

girl N (↑ pred)= ‘girl’
(↑ agr pers)=3
(↑ agr num)=sg
(↑ spec)

The correspondence function 𝜙 is indicated by the arrows between the c-struc-
ture nodes and the f-structure units and also, redundantly, by the columns of
node identifiers 𝑟𝑜𝑜𝑡, 𝑛1, 𝑛2, ... attached to the f-structure units.We see even in this
simple example that the function 𝜙 is typically many-to-one (heads and coheads
of grammatical constituents are mapped into the same f-structure) but is not
onto (the agr/agreement f-structure units are not the image of any node). The
function 𝜙 may also be partial, if nodes necessary for c-structurewell-formedness
have no f-structure significance.

The phrasal categories of this c-structure obviously meet the node admissi-
bility conditions of the annotated rewriting rules (1). Lexical entries are inter-
preted also as annotated rewriting rules that relate the lexical categories of the
c-structure to the words of the sentence. The entry for the, for example, is inter-
preted as the rule

(3) Det → the
(↑ spec)=def

and the normal node admissibility conditions also license the proper lexical ex-
pansions for the tree.

1038

22 Formal and computational properties of LFG

S𝑟𝑜𝑜𝑡

NP𝑛1

N𝑛3

He

VP𝑛2

V𝑛4

sees

NP𝑛5

Det𝑛6

the

N𝑛7

girl

𝜙

𝑟𝑜𝑜𝑡
𝑛2𝑛4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

subj 𝑛1𝑛3
[
pred ‘pro’

agr [pers 3
num sg]

]

tense pres
pred ‘see⟨subj obj⟩’

obj 𝑛5𝑛6𝑛7

⎡⎢⎢⎢
⎣

pred ‘girl’
spec def

agr [pers 3
num sg]

⎤⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Figure 1: Illustration of the basic LFG architecture: A c-structure 𝑐 and
f-structure 𝑓 related by the correspondence function 𝜙 from the nodes
of 𝑐 to the units of 𝑓 . The f-structure units are indexed by the nodes to
which they correspond.

The description that the f-structure must satisfy is constructed from the anno-
tations associated with the daughter categories of the rules that license particular
nodes in the c-structure. Each side of an equation designates an element of a cor-
responding f-structure, and the equation is satisfied if both sides designate the
same element. The metavariable ↓ in an annotation designator instantiates to the
f-structure corresponding to the node that matches the associated rule category
(𝑛1 for ↓ in the annotation (↑ subj)= ↓ attached to the NP in the S rule), and the
metavariable ↑ denotes the f-structure corresponding to the mother of that node
(the node 𝑟𝑜𝑜𝑡 for that rule). To be precise, if ∗ instantiates to the matching node
and 𝑀(∗) instantiates to its mother, then ↓ and ↑ are abbreviations for 𝜙(∗) and
𝜙(𝑀(∗)) respectively. The metavariable instantiations are easy to read from the
annotated c-structure in Figure 2. This is a phrase-structure tree whose nodes
are labeled with the category-annotation pairs that appear in grammar rules and
lexical entries.

The first NP is identified as 𝑛1 and its mother is 𝑟𝑜𝑜𝑡 , so the annotation
(↑ subj)= ↓ instantiates directly to (𝜙(𝑟𝑜𝑜𝑡) subj)=𝜙(𝑛1). Since a parenthesized
designator denotes the element reached by traversing a path of attributes from
a starting f-structure, the f-structure in Figure 1 satisfies this equation because
𝜙(𝑛1) is the subj of 𝜙(𝑟𝑜𝑜𝑡) under the illustrated 𝜙 correspondence. The full f-
description for this annotated c-structure is the conjunction of instantiated equa-
tions collected from all of its nodes, shown in (4).

1039

Ronald M. Kaplan & Jürgen Wedekind

S𝑟𝑜𝑜𝑡

NP𝑛1(↑ subj)= ↓

N𝑛3↑= ↓

He
(↑ pred)= ‘pro’
(↑ agr pers)=3
(↑ agr num)=sg

VP𝑛2↑= ↓
(↑ tense)

V𝑛4↑= ↓

sees
(↑ pred)= ‘see⟨subj obj⟩’

(↑ tense)=pres
(↑ subj agr pers)=3
(↑ subj agr num)=sg

NP𝑛5(↑ obj)= ↓

Det𝑛6↑= ↓

the
(↑ spec)=def

N𝑛7↑= ↓

girl
(↑ pred)= ‘girl’
(↑ agr pers)=3
(↑ agr num)=sg

(↑ spec)
Figure 2: Annotated c-structure for He sees the girl with the rules in (1)
and lexicon in (2).

(4) (𝜙(𝑟𝑜𝑜𝑡) subj)=𝜙(𝑛1)
𝜙(𝑟𝑜𝑜𝑡)=𝜙(𝑛2)
(𝜙(𝑟𝑜𝑜𝑡) tense)
𝜙(𝑛1)=𝜙(𝑛3)
(𝜙(𝑛3) pred)= ‘pro’
(𝜙(𝑛3) agr pers)=3
(𝜙(𝑛3) agr num)=sg
𝜙(𝑛2)=𝜙(𝑛4)
(𝜙(𝑛4) pred)= ‘see⟨subj obj⟩’
(𝜙(𝑛4) pred)=pres

(𝜙(𝑛4) subj agr pers)=3
(𝜙(𝑛4) subj agr num)=sg
(𝜙(𝑛2)obj)=𝜙(𝑛5)
𝜙(𝑛5)=𝜙(𝑛6)
𝜙(𝑛5)=𝜙(𝑛7)
(𝜙(𝑛6) spec)=def
(𝜙(𝑛7) pred)= ‘girl’
(𝜙(𝑛7) agr pers)=3
(𝜙(𝑛7) agr num)=sg
(𝜙(𝑛7) spec)

We can test each equation separately to verify that the f-structure in Figure 1
meets all the specifications in (4). The equation (𝜙(𝑛4) subj agr num)=sg is sat-
isfied, for example, because 𝜙 maps 𝑛4 to the outermost f-structure, and that
f-structure has a path from subj through agr to num, ending in the atomic
value sg. That value is consistent with the requirement that the equation
(𝜙(𝑛3) agr num)=sg imposes on the f-structure of 𝑛3. In contrast, this gram-
mar would assign no f-structure to the string They sees the girl because the f-
description for its c-structure would require its subject f-structure to have incon-
sistent values for agr num, a violation of the Uniqueness Condition of Kaplan &

1040

22 Formal and computational properties of LFG

Bresnan (1982). The correspondence 𝜙 and the instantiated metavariables ensure
that the properties of the subject NP are consistent with the verb’s agreement
specification even though they do not appear together in a local mother-daughter
configuration.

The f-structure in this configuration alsomeets the additional well-formedness
conditions of LFG theory.We see that it is aminimal model of the f-description in
the sense that at least one equation or combination of equations will no longer be
satisfied if any attribute or value is removed (for example (𝜙(𝑛6) spec)=def fails
without the spec feature of the obj).1 Conversely, a structure with any features
beyond those already present, say if the subj is extended with tense past, is not
minimal, because the f-description is still satisfied when that feature is removed.
The minimal model is unique2 for a given annotated c-structure and contains all
and only the linguistically relevant features that are expressed by the words of a
sentence.

The minimal model is important in LFG theory for another reason. It is the
basis for the distinction between defining annotations and constraining annota-
tions. The defining annotations are the simple equalities between two designators
whose instantiations determine the attributes and values of the minimal model.
That f-structure must then also satisfy the instantiations in the f-description of
any constraining annotations. The grammar in (1) contains two constraining an-
notations, the positive existential constraints (↑ tense) and (↑ spec). The instan-
tiation (𝜙(𝑟𝑜𝑜𝑡) tense) is satisfied because the conjunction of defining equations
in the f-description specify a particular value (pres) for the attribute tense in
the f-structure corresponding to the S node. This constraint excludes strings
whose main verb is a participle instead of a tensed form (e.g. *He seeing the
girl) without depending on participles setting up a uniqueness clash by also
adding a tense feature with an otherwise unnecessary and uninformative value
(e.g. none). Similarly the instantiation (𝜙(𝑛7) spec) excludes singular common
nouns that have no specifier (e.g. *He sees girl). The formalism also allows for con-

1Strictly speaking, a minimal model of the f-description includes not only the attributes and
values of the f-structure but also the association of those elements with the nodes of the c-
structure as instantiated via the 𝜙 correspondence, as depicted in Figure 1. Technically, what
we usually regard as the f-structure is the restriction of such a model to just those attributes
and values.

2As a notational convenience, the LFG formalism allows for primitive annotations to be em-
bedded in disjunctive formulas that then might have several solutions. There is an obvious
transformation of the grammar that converts disjunctions of annotations within a rule to an
equivalent set of alternative rules with annotations that are no longer disjunctive. Theminimal
models are unique for the annotated c-structures assigned by the rules of such a transformed
grammar.

1041

Ronald M. Kaplan & Jürgen Wedekind

straints that test the minimal model for the absence of a feature, e.g. ¬(↑ obj);
for the presence or absence of a specific attribute value, e.g. (↑ voice)=𝑐 passive
or (↑ voice)≠active; for the identity of two f-structures, e.g. (↑ subj)=𝑐 (↑ obj);
and for any value other than a specific one, e.g. (↑ subj num)≠sg. Constraining
annotations help to avoid clutter in the f-structure by assigning syntactic signif-
icance to the presence or absence of unmarked or default features and also by
capturing the difference between constituents that provide values for features
and constituents that check those values. See Kaplan (2019) for a fuller discus-
sion of underspecified values in LFG.

The quoted values of the pred attributes in Figure 1 carry the subcategoriza-
tion restrictions of the predicates they represent, and they characterize the es-
sential interaction between syntax and semantics while staying agnostic about
the details of any particular underlying semantic theory. The semantic form
‘see⟨subj obj⟩’ contains a list of grammatical-function designators that the pred-
icate subcategorizes for. The Completeness Condition requires that all listed func-
tions appear locally in the minimal f-structure, and the Coherence Condition pre-
cludes the local appearance of any governable functions (comp, obl, xcomp...)
not included in the list. The semantic form also indicates that see is the semantic
relation and, by virtue of their order in the list, that subj and obj respectively
map to the first and second arguments of that relation. Semantic forms do not
require special treatment in our formal analysis because they can be interpreted
as succinct abbreviations for collections of other annotations. Thus the positive
and negative constraints (5a-b) express the subcategorization requirements of
‘see⟨subj obj⟩’. The semantic relation and themapping of functions to arguments
can be coded with distinguished attributes rel, arg1, arg2 as in (5c-d).3

(5) a. Completeness: (↑ subj) (↑ obj)
b. Coherence: ¬(↑ comp) ¬(↑ obl) ¬(↑ xcomp) ...
c. Semantic relation: (↑ rel)=see
d. Argument mapping: (↑ arg1)=(↑ subj)

(↑ arg2)=(↑ obj)
e. Instantiation: (↑ pred source)=∗

3Halvorsen & Kaplan (1988) introduced a separate semantic projection, 𝜎 , as an alternative to
distinguished attributes in formulating these essential properties of the syntax-semantics in-
terface. In that more explicit arrangement 𝜎 would be a qualifier on the (5c-d) designators. In
Glue Semantics they are elaborated in collections of linear logic premises (Dalrymple et al.
1993, Dalrymple 1999).

1042

22 Formal and computational properties of LFG

Semantic forms are instantiated in LFG theory to mark the difference between
syntactically-implied semantic coreference (as in constructions of functional con-
trol) and unrelated repetitions of similar expressions. Equation (5e) records as
the value of the additional distinguished attribute source the daughter node at
which a particular pred is introduced. This makes each occurrence unique, and
also supports a precedence order that can be used in regulating long distance
dependencies (see Kaplan 2023 [this volume]).

3 Technical preliminaries

In preparation for the mathematical analysis in the following sections we now
introduce more precise specifications of the LFG derivation machinery.

The annotated c-structure is often described as the result of a special derivation
process for an LFG grammar 𝐺 that treats categories and annotations separately.
But it is helpful for formal reasoning to regard it as a normal derivation of the
annotated c-structure grammar for 𝐺, an ordinary context-free grammar with a
systematically modified set of rules. Suppose 𝑋 :𝐴 is an annotated category in the
right side of a rule in the traditional LFG grammar format. Then for every rule
expanding 𝑋 the annotated grammar contains a version in which the left side is
also decorated with those particular annotations. For example, because NP in (1)
is annotated in S with the subj assignment and in VP with the obj assignment,
the NP rule is replaced by the rules in (6).

(6) NP
(↑ subj)= ↓

→ (Det)
↑= ↓

N
↑= ↓

NP
(↑ obj)= ↓

→ (Det)
↑= ↓

N
↑= ↓

With this reformulation the normal category matching of context-free deriva-
tions allows us to make direct use of all established properties (decidability, clo-
sure, pumping) of context-free grammars and their derivations. The traditional
LFG c-structure in Figure 1 is obviously just the annotation-free projection of the
annotated c-structure in Figure 2.

For every annotated c-structure there is an instantiated f-description that de-
fines a function 𝜙 mapping its nodes to their corresponding minimal-model f-
structure units, if the f-description is satisfiable. There is also a function Yield
that maps its nodes to the substrings of the sentence that they dominate. The set
of 𝐺’s derivations is then characterized by the relation Δ𝐺 defined in (7).

1043

Ronald M. Kaplan & Jürgen Wedekind

(7) Δ𝐺(𝑠, 𝑐, 𝑓) iff 𝑐 is an annotated c-structure of 𝐺, 𝑠 is the terminal string of
𝑐, and 𝑓 is the minimal model for the satisfiable f-description instantiated
from 𝑐.

Note that an annotated c-structure 𝑐 uniquely determines both the string 𝑠 and f-
structure 𝑓 in a derivation triple. Moreover, without further stipulation we know
that the length of the string |𝑠| and the number of units |𝑓 | in the f-structure are
both bounded by (functions of) |𝑐|, the number of nodes in the c-structure. That
is, there are grammar-dependent functions ⃗𝑏𝐺 and 𝑏⃗𝐺 such that

(8) For all (𝑠, 𝑐, 𝑓) ∈ Δ𝐺 , |𝑠| ≤ ⃗𝑏𝐺(|𝑐|) and |𝑓 | ≤ 𝑏⃗𝐺(|𝑐|).
The function ⃗𝑏𝐺 depends on the number of daughters in the longest c-structure
rule and 𝑏⃗𝐺 depends on the most complicated annotated category.

The language, f-structure, parsing, and generating projections of Δ𝐺 are de-
fined in (9).

(9) 𝐿(𝐺) = {𝑠 ∣ Δ𝐺(𝑠, 𝑐, 𝑓) for some 𝑐 and 𝑓 } = the language of 𝐺
𝐹(𝐺) = {𝑓 ∣ Δ𝐺(𝑠, 𝑐, 𝑓) for some 𝑠 and 𝑐} = the f-structures of 𝐺
Par𝐺(𝑠) = {𝑓 ∣ Δ𝐺(𝑠, 𝑐, 𝑓) for some 𝑐} ⊆ 𝐹(𝐺)
Gen𝐺(𝑓) = {𝑠 ∣ Δ𝐺(𝑠, 𝑐, 𝑓) for some 𝑐} ⊆ 𝐿(𝐺)

A parser for an LFG grammar 𝐺 provides for any given string 𝑠 the set of f-
structures (if any) that are related to it by the grammar, and a generator provides
all the strings that the grammar relates to a given f-structure (if any).

These projections allow for succinct statements of the emptiness, recognition,
and realization decision problems (10).

(10) Emptiness: is 𝐿(𝐺) empty? (equivalently, are 𝐹(𝐺) or Δ𝐺 empty?)
Recognition: for any string 𝑠 is Par𝐺(𝑠) empty?
Realization: for any f-structure 𝑓 is Gen𝐺(𝑓) empty?

We show in the next section that the emptiness, recognition, and realization prob-
lems are all undecidable for unrestricted LFG grammars. This implies immedi-
ately that the parsing and generation are also unsolvable. Our demonstrations
involve simple phrase-structure rules with elementary defining annotations as
exemplified in (11).

(11) (↑/↓ subj num)=sg assign an atomic value
(↑ subj)= ↓ assign a function to a daughter f-structure
(↓ obj)=(↑ subj) daughter-mother control
(↑ xcomp subj)=(↑ subj) traditional functional control

1044

22 Formal and computational properties of LFG

Annotations of these types are not exceptional, they are commonly found in lin-
guistic grammars.

4 Undecidable problems

A standard method for showing that a formal problem of interest is undecidable
is the reduction technique. A problem 𝑃 is said to be reducible to problem 𝑃 ′ if
for any instance of 𝑃 an instance of 𝑃 ′ can be constructed such that solving the
instance of 𝑃 ′ will solve the instance of 𝑃 as well. Thus, if 𝑃 reduces to 𝑃 ′ and 𝑃
is undecidable, then 𝑃 ′ must also be undecidable. As noted, this general strategy
has been applied with reductions from different source problems (Turing ma-
chine halting, Hilbert’s Tenth, Post Correspondence, emptiness of context-free
intersection) to address the LFG emptiness, recognition, and realization problems.
Here we present a single reduction-source framework, based on the emptiness
problem of context-free intersection, that recapitulates these previous results.

4.1 The emptiness problem

The emptiness problem for context-free intersection is the problem of determin-
ing whether or not the languages generated by two given context-free gram-
mars 𝐺1 and 𝐺2 have an empty intersection (𝐿(𝐺1) ∩ 𝐿(𝐺2) = ∅). This problem is
known to be undecidable. The reduction of this emptiness problem to questions
of the LFG formalism depends on the ability to construct for every context-free
grammar 𝐺 an LFG grammar whose f-structures contain encodings of all and
only the strings of 𝐿(𝐺). We show in (12) one way in which a string pqr can
be encoded in the attributes and values of an f-structure, as a h(ead)-t(ail) list
representation.

(12)
[
h p

t [h q
t [h r]]

]

Without loss of generality, let 𝐺 be an arbitrary context-free grammar in
Chomsky Normal Form, that is, a context-free grammar with only binary branch-
ing rules of the form𝐴 → 𝐵 𝐶 for nonterminal expansions and unary rules𝐴 → 𝑎
for terminals. The schematic rules in (13) provide a template for an LFG grammar
String(𝐺) that creates head-tail encodings (12) for the strings of 𝐿(𝐺).

1045

Ronald M. Kaplan & Jürgen Wedekind

𝜙S𝑟𝑜𝑜𝑡

PQ𝑛1
(↑ l)= ↓

(↓ b)=(↑ b)

P𝑛3
(↑ l)= ↓

(↓ b)=(↑ b)

p
(↑ b h)=p

(↑ b t)=(↑ e)

Q𝑛4
(↑ r)= ↓

(↓ e)=(↑ e)
(↑ l e)=(↑ r b)

q
(↑ b h)=q

(↑ b t)=(↑ e)

R𝑛2
(↑ r)= ↓

(↓ e)=(↑ e)
(↑ l e)=(↑ r b)

r
(↑ b h)=r

(↑ b t)=(↑ e)

l rb e

l r
b e

b e b e b e

t t t
h h h

p q r

Figure 3: An annotated c-structure and f-structure derived with head-
tail string encoding rules of the form in (13). Thick lines show the string
encoding, thin lines show the construction scaffolding. The 𝜙 corre-
spondence is depicted with dashed lines.

(13) a. 𝐴 → 𝐵
(↑ l)= ↓

(↓ b)=(↑ b)

𝐶
(↑ r)= ↓

(↓ e)=(↑ e)
(↑ l e)=(↑ r b)

b. 𝐴 → 𝑎
(↑ b h)=𝑎

(↑ b t)=(↑ e)

The annotations on the binary rules (13a) transmit the string encodings from
their daughter f-structures to their mother f-structure. The attributes l(eft) and
r(ight) are the scaffolding needed to concatenate the encodings from the daugh-
ters by linking the end of the left-daughter encoding to the beginning of the
right. Rules of the form (13b) create for each terminal the one-element head-tail
encoding of their right side, with b and e attributes marking its beginning and
end. Control equations such as (↓ b)=(↑ b) and (↑ b t)=(↑ e) are the essential
ingredient in this and other string-encoding formulations: Crucially, they allow
terminal-string information to propagate transparently through all intermediate
nodes to the f-structure of the root. Figure 3 shows the annotated c-structure
and a graphical f-structure representation for a derivation containing a head-tail
encoding of a single string.

Now suppose that 𝐺1 and 𝐺2 are arbitrary context-free grammars in Chom-
sky Normal Form and assume without loss of generality that their nonterminals
are disjoint and that the strings of each language end with a marker # distinct
from all other terminals. We construct a new LFG grammar 𝐺 by combining the
rules of String(𝐺1) and String(𝐺2)with root categories S1 and S2 respectively and
introducing a new root category S with start rule (14).

(14) S → S1
(↓ b)=(↑ b)

S2
(↓ b)=(↑ b)

1046

22 Formal and computational properties of LFG

By construction of the string grammars and the b annotations of the start rule,
only the string encodings of the two derived f-structures can interact. Because
the string encodings are compatible only if the derived strings are identical, the
LFG language 𝐿(𝐺) contains all and only strings 𝑠𝑠 for 𝑠 ∈ 𝐿(𝐺1) ∩ 𝐿(𝐺2). The
emptiness of context-free intersection is undecidable so the question whether
𝐿(𝐺) is empty must also be undecidable.

4.2 The recognition problem

We prove that the LFG recognition problem is undecidable by exhibiting one
particular string that belongs to 𝐿(𝐺) only if 𝐿(𝐺1) ∩ 𝐿(𝐺2) ≠ ∅. We modify the
string grammars for 𝐺1 and 𝐺2 by treating each terminal 𝑎 other than # as a
nonterminal category and adding for each of them a trivial rule

(15) 𝑎 → 𝜖
The effect is that only the string # belongs to the language of each of the modified
string grammars, but that single string is assigned all and only the f-structures
that respectively encode the original context-free languages. Againwith the start-
ing rule (14) the concatenation ## belongs to the language of the modified gram-
mar if and only if 𝐿(𝐺1) ∩ 𝐿(𝐺2) ≠ ∅, that is, if and only if Par𝐺(##) is not empty.

Empty nodes are disfavored in some modern versions of LFG, particularly
when long-distance dependencies are characterized by functional uncertainty
rather than traces (Kaplan & Zaenen 1989, Dalrymple et al. 2015). But the unde-
cidability of recognition can also be demonstrated with grammars String(𝐺1) and
String(𝐺2) redefined so as to produce the same head-tail string encodings from
nonbranching dominance chains without the benefit of empty nodes.

For each binary rule 𝐴 → 𝐵 𝐶 the string encoding grammars will now contain
a nonbranching rule of the form (16a). This immediately derives only the left
daughter 𝐵 but pushes the right-daughter category 𝐶 on a simulated stack for
expansion lower in the derivation. Since 𝐵 is the left daughter of𝐴, the encodings
of their terminal strings have a shared b(eginning).

(16) a. 𝐴 → 𝐵
(↓ stk cat)=𝐶

(↓ stk nxt)=(↑ stk)
(↓ b)=(↑ b)

b. 𝐴 → 𝐶
(↑ stk cat)=𝐶

(↑ stk nxt)=(↓ stk)
(↑ b t)=(↓ b)
(↑ b h)=𝑎

c. 𝐴 → #
(↑ b h)=#

Corresponding to each terminal rule𝐴 → 𝑎, for 𝑎 ≠ #, there is a collection of rules
of the form (16b), one for each right-daughter category 𝐶 whose expansion may

1047

Ronald M. Kaplan & Jürgen Wedekind

have been deferred until it reemerges at the top of the stack. The annotations
pop that category from the stack while adding the terminal 𝑎 to the front of the
head-tail encoding of the terminal string under 𝐶 . Finally, for each unary rule
𝐴 → # the string grammar contains a rule of the form (16c) to terminate the NBD
derivations and install # as the final item of every string encoding. Because # is
the distinguished end-of-string marker, these preterminals never appear as left
daughters of binary rules and are thus always the last categories to be removed
from the stack. As before, if NBD string grammars String(𝐺1) and String(𝐺2) are
combined into an LFG grammar 𝐺 with rule (14), then Par𝐺(##) ≠ ∅ if and only
if 𝐿(𝐺1) ∩ 𝐿(𝐺2) ≠ ∅.

The complexity of recognition arises from the fact that, in order to assign f-
structures to the strings of infinite languages, annotated c-structure grammars
must include rules for recursive subderivations (rule sequences that derive a node
labeled with an annotated category 𝐴 from an 𝐴-labeled dominating node), and
such recursive subderivations must be allowed to stack one above another. The
string grammars in our undecidability proofs show that recursive subderivations
can assign to a single string (#) a set of f-structures each encoding one of the
strings of an infinite context-free language. Unlike the f-structures that corre-
spond to the sentences of natural languages, those f-structures are determined
only by the annotations on nonterminal categories without regard to any lexical
information carried by the input string or even its length (there is no function of
|𝑠| that bounds the sizes of 𝑐 and 𝑓 in all derivation triples).

4.3 The realization problem

We turn now to the realization problem. Also using a reduction from the empti-
ness of context-free intersection, Wedekind (2014) proved that realization is un-
decidable for unrestricted LFG grammars if there are cyclic paths in the input
f-structure.4 Whereas the emptiness and recognition demonstrations are based
on head-tail string encodings, Wedekind’s proof is formulated in terms of an
alternative way of encoding the strings of a language, a descending chain of at-
tributes as illustrated in (17).

(17)
[b [p [q [r []]]]
e

]

4Wedekind & Kaplan (2012) established that the realization problem is decidable if the input
f-structure 𝑓 contains no cycles. For an acyclic f-structure the string-set Gen𝐺(𝑓) can be de-
scribed by a context-free grammar, and the emptiness problem for context-free grammars is
decidable.

1048

22 Formal and computational properties of LFG

The beginning of the encoding for string pqr is still accessible as the value of the
b attribute, but now the end is identified by the reentrant value of the top-level e
attribute. Grammars that encode context-free languages in this way are created
by replacing the annotations on the terminal rules (13b) with functional control
annotations as in (18).

(18) 𝐴 → 𝑎
(↑ b 𝑎)=(↑ e)

The scaffolding illustrated in Figure 3 is unchanged but the h attributes at the
bottom are removed and the sequence of t attributes is replaced by the sequence
of terminal-attributes.

The essence of Wedekind’s (2014) proof is then captured by combining
attribute-chain string-encoding grammars for arbitrary context-free grammars
𝐺1 and 𝐺2 into an LFG grammar 𝐺 with start rule (19).

(19) S → S1
(↑ l)= ↓

(↓ b)=(↑ b)
(↓ e)=(↑ e1)

S2
(↑ r)= ↓

(↓ b)=(↑ b)
(↓ e)=(↑ e2)

#
(↑ e1 e1)= ↑

⋀
𝑥 an attribute

(↑ e2 e1)=(↑ e2 e1 𝑥)

In the absence of atomic values there can be no atom-value clashes to exclude
mismatching combinations, and the language 𝐿(𝐺) therefore contains all strings
𝑠1𝑠2# for 𝑠1 ∈ 𝐿(𝐺1) and 𝑠2 ∈ 𝐿(𝐺2). However, strings belonging to the intersec-
tion of 𝐿(𝐺1) and 𝐿(𝐺2) are distinguished by the fact that the end points e1
and e2 of their descending attribute-chain encodings are the same. In that case
(𝜙(𝑟𝑜𝑜𝑡) e1)=(𝜙(𝑟𝑜𝑜𝑡) e2) and the annotations on the terminal # entail by sim-
ple substitutions that (𝜙(𝑟𝑜𝑜𝑡) 𝑥)=𝜙(𝑟𝑜𝑜𝑡) for all attributes 𝑥 . Thus all and only
strings 𝑠𝑠# for 𝑠 ∈ 𝐿(𝐺1) ∩ 𝐿(𝐺2) receive the one-element cyclic f-structure 𝑓 in
(20).

(20)
b

e2
e1

e

l
r

cycles for all terminals

The realization problem is undecidable because Gen𝐺(𝑓) ≠ ∅ if and only if
𝐿(𝐺1) ∩ 𝐿(𝐺2) ≠ ∅. This shares with the recognition proof the property that in-
finitely many annotated c-structures of arbitrary size may have to be inspected

1049

Ronald M. Kaplan & Jürgen Wedekind

to determine whether there is at least one that is related to a single input of a
fixed size (a cyclic f-structure in this case).5

The undecidability results we have demonstrated here, together with other
simple reductions from the emptiness problem of context-free intersection, can
be used to show that other properties of the unrestricted LFG formalism are also
undecidable. The following is a partial list of these undecidable questions.

(21) a. Generation from underspecified f-structures: Is there a sentence that
realizes an f-structure with more features than a given one?
(Wedekind 1999)

b. Ambiguity-preserving generation: Is there a single string that realizes
two different f-structures? (Wedekind & Kaplan 1996)

c. Finite versus infinite ambiguity: Is any string in the language
infinitely ambiguous? (Jaeger et al. 2005)

d. Ranking in Optimality-theoretic LFG: Can an optimal derivation
always be identified? (Kuhn 2003)

e. Economy of Expression: Can the smallest c-structure for a given
f-structure be identified?6

Appendix A includes simple proofs showing that a number of more specific ques-
tions are also undecidable. Additional restrictions are clearly necessary to pro-
vide a linguistic formalism that is mathematically manageable.

5 Conservation and decidability

The recognition and realization problems are undecidable for unrestricted LFG
grammars because there is no finite number of (size-bounded) annotated c-
structures whose inspection is sufficient to determine whether there is a valid
derivation for a given input string/f-structure. As a consequence, there is no sys-
tematic relationship between the length of a string and the sizes of its f-structure
parses or the size of an f-structure and the lengths of its generated strings. More-
over, a grammar can assign infinitely many f-structures to a single string and

5Cyclic f-structures have been proposed in the analysis of complex adjunction and coordination
constructions (Zweigenbaum 1988, Fang & Sells 2007, Haug & Nikitina 2012, Przepiórkowski
& Patejuk 2012) and thus cannot be excluded from the LFG formalism. More to the point, exam-
ple (52b) in the Appendix A shows that it is undecidable whether an arbitrary LFG grammar
produces cyclic f-structures.

6This follows from the fact that realization is undecidable in the general case (as just sketched):
if it cannot be decided whether there are any c-structures at all for an f-structure input, then
the smallest such structure cannot be determined.

1050

22 Formal and computational properties of LFG

infinitely many strings to a single f-structure. These properties seem implausi-
ble for language as a medium of communication.

From a broader perspective, these excesses can be cast in terms of the “gram-
matical mapping problem”, the problem of characterizing in an explanatory and
computable way the relation Γ between the sentences of a language and represen-
tations of their meanings (presumably logical formulas that can be interpreted in
a representation of the world) (Kaplan & Bresnan 1982, Kaplan 1987). If 𝑠 is a sen-
tence of a language and𝑚 represents one of its meanings (that is, (𝑠, 𝑚) ∈ Γ), then
pretheoretically we expect the derivational machinery that translates between 𝑠
and 𝑚 to be information-conserving in the following sense.

(22) Principle of Conservation
For all (𝑠, 𝑚) ∈ Γ, |𝑚| is bounded by |𝑠| and |𝑠| is bounded by |𝑚|.

The size of the meaning representation can be defined in any reasonable way.
The crucial claim is that the derivational machinery does not by itself add or
subtract, in either direction, arbitrary amounts of information. The additional
linguistically appealing property of bidirectional finite ambiguity follows as an
immediate corollary.

(23) Finite Ambiguity
If Γ is conservative, then each sentence expresses only a finite number of
meanings and each meaning is expressed by only a finite number of
sentences.

In LFG-based approaches the grammatical mapping Γ is typically conceptu-
alized as the composition of the grammar-defined syntactic derivations Δ𝐺 and
the semantic derivations Σ that map primarily between syntactic f-structures and
corresponding representations of meaning.7

(24) (𝑠, 𝑚) ∈ Γ𝐺 iff (𝑓 , 𝑚) ∈ Σ and (𝑠, 𝑐, 𝑓) ∈ Δ𝐺 for some c-structure 𝑐.
An end-to-end mapping (𝑠, 𝑚) ∈ Γ𝐺 is conservative if the semantic deriva-
tion (𝑓 , 𝑚) ∈ Σ has grammar-dependent bounds in both directions and is thus
information-conserving, and 𝑠 and 𝑓 of the triple (𝑠, 𝑐, 𝑓) ∈ Δ𝐺 are also co-
bounded (the syntactic derivation is also conservative). Recalling that |𝑠| and |𝑓 |
are both bounded by |𝑐| in any derivation triple (8), it follows that

7This is not to discount the influence of linguistic features that may be formalized in other
projections within the LFG correspondence architecture. The bounding requirements of the
Conservation Principle would also govern mappings that include those other projections.

1051

Ronald M. Kaplan & Jürgen Wedekind

(25) An LFG syntactic derivation (𝑠, 𝑐, 𝑓) ∈ Δ𝐺 is conservative if also |𝑐| is
bounded by both |𝑠| and |𝑓 |.

The syntactic recognition/parsing and realization/generation problems are solv-
able if only conservative derivations are defined to be linguistically relevant, in
accordance with principle (22). In each direction only a finite number of size-
limited annotated c-structures must be enumerated and inspected to determine
whether a derivation belongs to Δ𝐺 .8

With respect to Σ, Glue Semantics (Dalrymple et al. 1993, Dalrymple 1999)
determines a meaning representation 𝑚 for a string by a linear-logic deduction
applied to a collection of premises associated with an f-structure 𝑓 assigned to
that string. The resource-sensitive nature of linear logic suggests that 𝑚 will nat-
urally be bounded by |𝑓 |, but that has not yet been clearly established. It is also
unknown whether or under what additional conditions the f-structures that cor-
respond to a given meaning representation 𝑚 are bounded by |𝑚|.9 With the ex-
pectation that those issues will be resolved in future research, we return here to
our focus on Δ𝐺 , the syntactic component of Γ𝐺 .

Kaplan & Bresnan (1982) were the first to show the undecidability of the recog-
nition problem for unrestricted LFG grammars and the first to address it by
imposing an information-conserving constraint on the derivations in Δ𝐺 . Their
constraint restricts the derivations of the annotated c-structure grammar so as
to limit the distribution of empty nodes and nonbranching dominance chains.10

The effect is to include as NBD-valid c-structures only those where every recur-
sive subderivation contains at least one pair of terminal-dominating sisters. This
specifically excludes the derivations that our demonstrations of recognition un-
decidability rely on. All NBD-valid derivations are conservative in the parsing
direction, since the annotated c-structure is bounded by the length of the string,
and the recognition and parsing problems are therefore solvable.

8However, the emptiness problem remains undecidable even if attention is confined only to
conservative derivations. All derivations for the grammars constructed with rules (13) and (14)
are conservative in the sense of (25). Emptiness requires consideration of all possible string or
f-structure inputs, not just particular ones that are presented for parsing or generation. By the
same token, it is undecidable whether all derivations for a given grammar are conservative.

9Generation from an f-structure not bounded by |𝑚| can be reduced to the undecidable problem
of generating from an arbitrarily underspecified f-structure (Wedekind 1999).

10The NBD constraint in LFG was a specific and early example of a family of what have be-
come known generically as Off-line Parsability conditions. A number of variants of Off-line
Parsability have been proposed for other grammatical frameworks. See Jaeger et al. 2005 for a
survey.

1052

22 Formal and computational properties of LFG

By a symmetrical argument, syntactic derivations will be conservative in the
generation direction if they are restricted so that the size of the annotated c-
structure is bounded as a function of the size of the f-structure. Unfortunately,
the NBD condition is not sufficient to pick out just those information-conserving
derivations and thus to ensure also that the realization and generation problems
are decidable (cf. Wedekind (2014), Wedekind & Kaplan (2020)). The attribute-
chain string-encoding grammars and the combining start rule (19) used in the
undecidability proof for realization are 𝜖-free, and it is only (nonrecursive) ter-
minal rules that do not branch. A condition stronger than the NBD restriction is
needed to guarantee that generation is conservative and thus decidable.

It has also been noted, on the other hand, that the original NBD condition may
be too strong. It disallows recursive nonbranching dominance chains in every
context, even when an errant subderivation is a component of a discontinuous
constituent supported intuitively by an element elsewhere in the string. For ex-
ample, Johnson (1986) observed that it proscribes the straightforward analysis of
the Dutch double infinitive construction as provided by the grammar of Bresnan
et al. (1982) and illustrated in (26).

(26) (dat) hij het boek heeft kunnen lezen
(that) he the book has able read
‘(that) he has been able to read the book’

Recursive applications of the nonbranching VP rule (27) would be required to
match the level of the obj ‘het boek’ with the level of its governing predicate in
the discontinuous, extended-head configuration.11

(27) VP → VP
(↑ xcomp)= ↓

We address these shortcomings of Kaplan and Bresnan’s NBD restriction by in-
troducing an alternativeway of identifying a subclass of conservative derivations
that is better attuned to the natural flow of linguistic information. It takes into

11Johnson’s particular example does not violate the very early refinement of the constraint
wherein functional annotations are also taken into account in determining whether a cate-
gory is recursive. This was introduced soon after the original formulation and later described
by Kaplan & Maxwell (1996) and Dalrymple 2001. But this slightly weaker version would still
disallow the intended analyses of sentences with more intransitive verbs and deeper xcomp
embeddings as in

(dat) hij het boek moet haben kunnen lezen
(that) he the book must have able read
‘(that) he must have been able to read the book’

1053

Ronald M. Kaplan & Jürgen Wedekind

account the architectural correspondence between c-structures and f-structures
to impose a new bound on the size of generation c-structures while relaxing the
bound in the parsing direction. Our new condition makes use of the following
definitions.

Let 𝑐 be an annotated c-structure and let 𝑛 and 𝑛′ be two distinct nodes in
𝑐 with 𝑛 dominating 𝑛′. The subderivation from 𝑛 to 𝑛′, denoted by 𝑐𝑛𝑛′ , is the
derivation that we obtain from 𝑐 by removing from the subderivation rooted by
𝑛 the subtree under 𝑛′. Two subderivations 𝑐𝑛𝑛′ and 𝑐 ̌𝑛̌𝑛′ are said to be stacked if the
bottom node of one dominates the top node of the other. A subderivation 𝑐𝑛𝑛′ is
recursive if 𝑛 and 𝑛′ are both labeled with the same annotated category.

The admissibility of recursive subderivations is then defined in terms of f-
structure and string anchors.

(28) Let 𝑐 be an annotated c-structure with terminal string 𝑠 and f-structure 𝑓 .
We say that a recursive subderivation 𝑐𝑛𝑛′ is
a. f-anchored in 𝑓𝑘 if there is a node ̄𝑛 of 𝑐𝑛𝑛′ such that 𝜙(̄𝑛) = 𝑓𝑘 and
b. s-anchored in 𝑠𝑗 if there is a node ̄𝑛 of 𝑐𝑛𝑛′ such that ̄𝑛 or a node in

𝜙-1∘𝜙(̄𝑛) dominates 𝑠𝑗 .
We refer to 𝑓𝑘 and 𝑠𝑗 as the f- and s-anchors of 𝑐𝑛𝑛′ . The subclass of properly
anchored derivations is then defined as follows.

(29) A derivation (𝑠, 𝑐, 𝑓) ∈ Δ𝐺 is properly anchored iff
a. every recursive subderivation 𝑐𝑛𝑛′ of 𝑐 is f- and s-anchored and
b. the f-anchors of any two recursive subderivations in a stack are

distinct, and so are their s-anchors.

If (𝑠, 𝑐, 𝑓) is a properly anchored derivation, then every recursive subderivation
is anchored in both a functional unit of the f-structure and an element of the
string (29a). Moreover, requirement (29b) ensures that the anchoring for stacked
recursive subderivations is one-to-one. The anchoring of stacked recursive sub-
derivations of such a c-structure is illustrated in Figure 4.

If 𝑁 is the set of annotated nonterminal categories for a grammar 𝐺, any sub-
derivation 𝑐𝑛𝑛′ with a path length equal to |𝑁 | must be recursive. The annotated
c-structures of properly anchored derivations are thus bounded by the respective
sizes of their corresponding strings and f-structures, as stated in the following
lemma.

(30) The depth of the c-structure 𝑐 of all properly anchored derivations
(𝑠, 𝑐, 𝑓) ∈ Δ𝐺 is bounded by |𝑁 |(|𝑠| + 1) and |𝑁 |(|𝑓 | + 1), respectively, for a
string of length |𝑠| and an f-structure of |𝑓 | units.

1054

22 Formal and computational properties of LFG

A

A

B

B

𝑠𝑖 𝑠𝑗𝜖 𝜖

𝑓𝑘

𝑓𝑙

⎡⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⌈

⌊

Figure 4: A c-structure with two stacked subderivations, highlighted
in gray. The subderivations are f- and s-anchored at 𝑓𝑘 , 𝑠𝑖 and 𝑓𝑙 , 𝑠𝑗 ,
respectively, with 𝑘 ≠ 𝑙 and 𝑖 ≠ 𝑗. The upper subderivation is disconti-
nously string-anchored because none of its internal nodes dominates a
terminal (it derives the empty string 𝜖) while the lower subderivation
is continuously string-anchored.

Lemma (30) implies that the properly anchored derivations for an unrestricted
LFG grammar are conservative, and that the recognition and realization problems
are therefore decidable if unanchored derivations are excluded from linguistic
consideration. This is because only a finite number of size-bounded annotated
c-structures need to be inspected in order to solve these problems.

The conditions for proper anchoring include derivations that the NBD condi-
tion does not admit and exclude derivations that NBD classifies as valid. NBD
and proper anchoring, however, do agree on the status of derivations for the
schematic grammars in (31).

(31) a. S → S
(↑ gf)= ↓

a
(↑ pred)= ‘p⟨gf⟩’

S → a
(↑ pred)= ‘a’

NBD-valid
anchored

b. S → S
(↑ gf)= ↓

(↑ pred)= ‘p⟨gf⟩’

S → a
(↑ pred)= ‘a’

NBD-invalid
shared s-anchor

The recursive subderivations for (31a) are branching and they are thus both valid
and properly string-anchored. Each subderivation is also f-anchored to a distinct
unit in its f-structure’s gf hierarchy. If gf is a governable grammatical function,
then the f-structures of all derivations are complete and coherent and correspond
to the lexical meanings carried by the repetitively longer strings. The grammar
(31b) provides the same set of complete and coherent f-structures but associates
all of them to the single one-element string. That string is infinitely ambiguous

1055

Ronald M. Kaplan & Jürgen Wedekind

and there is no bound on the size of the constructional meaning representations
determined by the recursive subderivations. These linguistically implausible sub-
derivations are nonbranching and their string anchors cannot be distinct (29b).
They are appropriately excluded as neither NBD-valid nor properly anchored.

In (32) we show grammars that provide branching derivations for every string
in the set {𝑎𝑛 ∣ 𝑛 > 1}, and every derivation is thus NBD-valid but properly an-
chored only with respect to strings. The recursive subderivations of these gram-
mars are excluded because they do not meet the f-anchoring conditions of (29).

(32) a. S → S a S → a NBD-valid, no f-anchor

b. S → S
↑= ↓

a S → a
(↑ pred)= ‘a’

NBD-valid, shared f-anchor

The subderivations of (32a) have no f-anchors (28a) while the f-anchors for the
subderivations of (32b) are not pairwise distinct (29b). The effect of the proper an-
choring conditions for these configurations is consistent with other exclusionary
proposals, in particular, the Different-Words version of Economy of Expression
(Dalrymple et al. 2015).

As a final point of comparison, we note that the branching requirement of the
NBD condition is essentially a special case of the string-anchor conditions (29)
when recursive subderivations are stacked. The string anchors for valid deriva-
tions must be dominated by nodes contained within each particular subderiva-
tion. In contrast, (28b) admits stacked recursive subderivations whose distinct
anchors may be dominated by nodes elsewhere in the c-structure. The linguis-
tically significant relationship is captured in the composition 𝜙-1∘𝜙. It requires
only that the dominating node is an extended (co-)head of a node in a recur-
sive subderivation, a component of the same discontinuous constituent (Zaenen
& Kaplan 1995, Bresnan et al. 2016). The situation is schematized by the gram-
mar (33).

(33) S → A
↑= ↓

P
↑= ↓

NBD-invalid, anchored

A → A
(↑ gf)= ↓

P → P
(↑ gf)= ↓

p
(↑ pred)= ‘p⟨gf⟩’

A → a
(↑ pred)= ‘a’

P → p
(↑ pred)= ‘p⟨gf⟩’

The highest A and P nodes each dominate a separate stack of recursive subderiva-
tions. The subderivations of the P stack contain their distinct p string anchors,

1056

22 Formal and computational properties of LFG

but the A stack is a nonbranching (invalid) chain over the single terminal. Be-
cause of the parallel gf function assignments, the P nodes serve as extended
heads for the A nodes of the A–P discontinuous constituents, and the p termi-
nals can thus act as distinct s-anchors for the A subderivations.12 The number
of A subderivations in each properly anchored derivation is thus bounded by
the length of the p substring, and only those finitely-many derivations are made
available for further filtering by the Completeness and Coherence subcategoriza-
tion conditions. Derivations of this type are the basis for a natural account of
the discontinuous constituents in Johnson’s (1986) Dutch double infinitive exam-
ples.13

The proper anchoring condition (29) establishes a manageable relationship
between strings and f-structures by virtue of the mediating role that recur-
sive c-structures play in the LFG syntactic architecture. This relationship is
information-conserving in the sense of (22) and (25). It crucially depends on the 𝜙
correspondence and the linguistically motivated notion of extended heads to cor-
relate the depth of c-structure recursion with the sizes of strings and f-structures,
as indicated by Lemma (30). The set of properly anchored derivations for a given
string or f-structure is finitely enumerable. It follows that recognition and real-
ization are decidable for that restricted subset of derivations and so are other
input-specific problems as listed in (21) and in Appendix A. It is possible, for
example, to identify the most economical (properly anchored) derivation for a
given f-structure because there are only a finite number of candidates whose
c-structures must be compared. Proper anchoring, however, is not sufficient to
ensure decidability of the emptiness problem (the demonstration in Section 4.1
involves only properly anchored derivations), and other questions that require
consideration of all possible string and f-structure inputs also remain undecid-
able.

6 Intractability of parsing and generation

The recognition/parsing, realization/generation, and other problems are decid-
able for the conservative, properly-anchored derivations of arbitrary LFG gram-
mars. But the fact that the number of derivations for a given input is finite does

12This arrangement of parallel function assignments gives rise to the so-called “zipper” configu-
ration discussed below and by Maxwell & Kaplan (1996) and Kaplan & Wedekind (2020).

13Note also that the same verbs could be reused as anchors for a different stack of recursive
subderivations, for example, in the hypothetical case that the language allows an elaboration
of this construction with a ditransitive lower verb and a dislocated obl NP. This is because
pairwise distinctness (29b) applies on a per-stack basis.

1057

Ronald M. Kaplan & Jürgen Wedekind

not mean that it is small, and indeed the computational cost of solving these
problems may be very high. We show in this section that recognition and real-
ization are intractable in the worst case, that is, for arbitrary grammars they can-
not be solved in a number of processing steps polynomial in the size of a given
input. Their intractability is demonstrated by the usual technique of reducing
these problems to another problem that is already known to be intractable. The
technique requires that the reduction itself is computable in polynomial time so
that we know that the reduction procedure does not hide the complexity of the
problems of interest.

The 3-SAT problem is the problem in the NP-complete complexity class of-
ten used for polynomial-time reductions that establish the intractability of other
problems. This is the problem of determining the satisfiability of a Boolean for-
mula in conjunctive normal form where each of the conjoined clauses is a dis-
junction of three literals. That is, each formula is a conjunction of the form
𝐶1 ∧ .. ∧ 𝐶𝑛, each clause 𝐶𝑗 is a disjunction of the form 𝑙𝑗1 ∨ 𝑙𝑗2 ∨ 𝑙𝑗3 , and each lit-
eral 𝑙𝑗𝑖 is a propositional variable 𝑝𝑘 or a negated variable ¬𝑝𝑘 . The question is
whether there is at least one way of assigning truth values to the variables that
makes all the clauses be true. The three-clause formula in (34a) is a simple prob-
lem that is satisfiable under several assignments among which is the one in (34b).

(34) a. (𝑝1 ∨ 𝑝2 ∨ 𝑝3) ∧ (¬𝑝1 ∨ ¬𝑝2 ∨ 𝑝3) ∧ (¬𝑝1 ∨ 𝑝2 ∨ ¬𝑝3)
b. 𝑝1=true, 𝑝2=false, 𝑝3=false

We show that the recognition problem is intractable by providing a small LFG
grammar 𝐺 such that the set of f-structures Par𝐺(𝑠) ≠ ∅ if and only if the string
𝑠 is an encoding of a satisfiable Boolean problem in conjunctive normal form.
A formula is presented as a sequence of substrings one corresponding to each
clause. The substring for the 𝑖𝑡ℎ clause begins with the letter c followed by the
string of digits 𝑑1.. 𝑑𝑗 that represents the integer 𝑖. This is followed by substrings
that identify the literals that make up that clause. Every occurrence of a positive
literal 𝑝𝑘 is encoded as the character + followed by the digits representing the
integer 𝑘, and every occurrence of a negative literal ¬𝑝𝑘 is represented as the
character − followed by the digits for 𝑘. According to this scheme the formula
(34a) is presented as the string of characters (35).14

(35) c1 +1+2+3 c2 −1−2+3 c3 −1+2−3

14We would of course see longer digit strings, not just singletons, for problems with ten or more
clauses or variables.

1058

22 Formal and computational properties of LFG

There is a simple information-conserving LFG grammar 𝐺 that maps a string
representing any satisfiable Boolean problem into f-structures that recapitulate
the problem and make explicit the truth-value assignments that solve it. The
linear order of clause and literal substrings is recast into descending chains of
digit attributes in the f-structure. The sequences for the signed propositional
variables of all literals are attached at the bottom of the attribute chain of their
containing clause, and the grouping of literals within clauses is thus maintained.
The lower prob(lem) substructure shown in (36)15 corresponds to the problem
string (35).

(36) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

sol
⎡⎢⎢
⎣

1𝑝 [val true]
2𝑝 [val false]
3𝑝 [val false]

⎤⎥⎥
⎦

prob

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1𝑐
⎡⎢⎢
⎣
+

⎡⎢⎢
⎣

1𝑝 [val true]
2𝑝 [val true]
3𝑝 [val true]

⎤⎥⎥
⎦

⎤⎥⎥
⎦

2𝑐
⎡⎢⎢⎢
⎣

+ [3𝑝 [val true]]

− [1𝑝 [val false]
2𝑝 [val false]]

⎤⎥⎥⎥
⎦

3𝑐
⎡⎢⎢⎢
⎣

+ [2𝑝 [val true]]

− [1𝑝 [val false]
3𝑝 [val false]]

⎤⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The upper sol(ution) substructure corresponds to the truth-value assignment
(34b) that makes all clauses be true.

Let Snum be the root category of a descending attribute-chain grammar for the
regular language Digit+ of arbitrarily long digit sequences, with the scaffolding
attributes b and e giving access to the top and bottom of the descending chains
(as in (17) above). Then the rules in (37) provide a c-structure and an f-structure
for the string encoding of every well-formed and satisfiable Boolean formula. In
particular, the f-structure for one of the derivations for string (35) appears as (36)
when the innocuous scaffolding attributes are not displayed.

(37) a. S → Clause+

(↑ prob)=(↓ b)
(↑ sol)=(↓ sol)

15The clause and propositional variable subscripts 𝑐 and 𝑝 are provided just for readability; they
are not actually part of the formal structure.

1059

Ronald M. Kaplan & Jürgen Wedekind

b. Clause → c Snum
(↑ b)=(↓ b)
(↓ e)=(↑ ce)

Lit∗

(↑ ce)= ↓
Lit

(↑ ce)= ↓
(↑ sol)=(↓ +)
(↑ sol)=(↓ −)

Lit∗

(↑ ce)= ↓

c. Lit → { + Snum
(↑ +)=(↓ b)

(↓ e val)=true

| − Snum
(↑ −)=(↓ b)

(↓ e val)=false

}

The start rule (37a) recognizes the conjunction of arbitrarily many clause con-
stituents.16 Every clause consists of one ormore literals, and every literal consists
of a positive or negative marking followed by the identifier of its propositional
variable. The (↑ prob)=(↓ b) annotation promotes all the clause attribute chains
to the problem substructure. The additional clause-ending scaffolding attribute
ce makes it possible to connect the positive and negative literals to the bottom
of their containing-clause chains. The truth-value assignments in (37c) attach
the value true at the bottom of the variable chains of positive literals and false
at the bottom of negative literals, thereby encoding the truth-value assignments
that make each literal be true. Finally, just one of the true literals is selected to
make the clause true, and the sol annotations incorporate the variable and truth-
assignment of that literal (whether it happens to be positive or negative) into the
global solution.

A derivation in 𝐺 will succeed only if the literals chosen locally and indepen-
dently for each clause result in sol truth-value assignments that are globally con-
sistent. If a problem is unsatisfiable, then the f-description for every c-structure
derivation will be inconsistent. Thus for a string 𝑠 encoding an arbitrary Boolean
problem, the set Par𝐺(𝑠) ≠ ∅ if and only if that problem is satisfiable for at least
one consistent set of truth-value assignments.17

With this abstract formal grammar it is easy to see the potential source of
computational complexity for LFG recognition. For each literal of every clause,
rule (37b) produces an alternative annotated c-structure that makes a different
contribution to sol. The number of properly anchored derivations that must be
inspected for global consistency thus grows in theworst case as an exponential in

16For succinctness and clarity we use LFG’s traditional Kleene + and * notations to specify repeat-
ing category sequences rather than their right-recursive equivalents. For example, the single
rule (37a) is equivalent to the two rules S → Clause

(↑ prob)=(↓ b)
(↑ sol)=(↓ sol)

and S → Clause
(↑ prob)=(↓ b)
(↑ sol)=(↓ sol)

S
↑= ↓

.

17Berwick (1982) provided the first NP-completeness proof for the LFG recognition problem and
Stanley Peters (p.c. 1982) offered a different argument. The demonstration here uses far less
of the LFG machinery than those earlier proofs and generalizes to problems with arbitrary
numbers of clauses and variables.

1060

22 Formal and computational properties of LFG

the number of clauses. For example, there will be 3𝑛 derivations to consider in the
case of a 3-SAT problemwith 𝑛 clauses each of which has three literals. Linguistic
grammars will also have this exponential complexity profile if their fixed number
of rules describe morphosyntactic agreement dependencies that range over the
full length of the input string. We can also see, schematically, a configuration
that is sufficient to guarantee tractability while still allowing for input strings of
arbitrary length. Suppose there is a constant 𝑘 that limits the number of clauses
that a single S can expand to, as in (38), but with a new starting category S′ that
allows for the concatenation of an arbitrary number of 𝑘-limited S’s.

(38) S′ → S+ S → Clause≤ 𝑘

(↑ prob)=(↓ b)
(↑ sol)=(↓ sol)

Crucially, there are no annotations on S′ to link the f-structures of the S nodes,
and thus there can be no interaction among the truth assignments of the em-
bedded clauses. The worst case complexity for a string of 𝑛 3-literal clauses is
proportional to 𝑛

𝑘 ⋅ 3𝑘 . This is exponential in the grammar-dependent constant 𝑘
but polynomial in the length of the input. This foreshadows the tractability of
𝑘-bounded LFG grammars that we discuss in the next section.

For recognition the Boolean problem string and f-structure are organized so
that the signed propositional variables are grouped within clauses, and the gram-
mar checks for consistency of variable truth values in the global sol structure.
For the reduction of the LFG realization problem to Boolean satisfiability, the
string and corresponding f-structure are transposed so that a Boolean problem
is presented with its clauses grouped within its propositional variables. We again
provide a small LFG grammar 𝐺′ now with the property that the string set
Gen𝐺′(𝑓) ≠ ∅ if and only 𝑓 is the encoding of a satisfiable Boolean problem.18

The transposed string presentation and equivalent f-structure for problem (34a)
are shown in (39).

(39) a. p1 +1−2−3 p2 +1−2+3 p3 +1+2−3

18See Wedekind & Kaplan (2021) for a fuller discussion of the technical issues particularly con-
cerning the realization problem.

1061

Ronald M. Kaplan & Jürgen Wedekind

b. ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1𝑝
⎡⎢⎢
⎣

+ [1𝑐]
− [2𝑐3𝑐]

⎤⎥⎥
⎦

2𝑝
⎡⎢⎢
⎣

+ [1𝑐3𝑐]
− [2𝑐]

⎤⎥⎥
⎦

3𝑝
⎡⎢⎢
⎣

+ [1𝑐2𝑐]
− [3𝑐]

⎤⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The string indicates that variable 1 occurs in a positive literal in the first clause
but in negative literals in the second and third clauses. The linear order of vari-
ables and clauses in the string is reflected in the f-structure’s descending attribute
chains. The clause identifiers are grouped according to the signed propositional
variables of the literals that they contain.

The LFG grammar 𝐺′ in (40) establishes the relationship between the equiv-
alent string and f-structure expressions of any well-formed Boolean formula,
whether satisfiable or not.

(40) a. S → Var+
(↑ prob)=(↓ b)
(↑ sol)=(↓ sol)

b. Var → p Snum
(↑ b)=(↓ b)
(↓ e)=(↑ ve)

{ + Snum
(↑ ve +)=(↓ b)

| − Snum
(↑ ve −)=(↓ b)

}+

A sentence consists of a sequence of proposition-variable substrings each of
which begins with a variable identifier followed by any number of digit sub-
strings representing the clauses in which that variable appears. Each clause is
prefixed with + and − to indicate whether the variable appears in a positive or
negative literal. The annotations promote the variable’s descending digit-chain
to the top and attach the clause identifiers under the + or − attributes at the
bottom of each variable chain, according to whether the clause is positively or
negatively marked. This produces the f-structure displayed in (39b) (again with
omission of the scaffolding attributes b/e and now ve). If 𝑓 is an input f-structure
for realization that expresses an arbitrary Boolean problem in this way, then the
set Gen𝐺′(𝑓) includes a string of the form (39a).

Both the input f-structure and the grammar must be elaborated so that LFG
realization distinguishes between satisfiable and unsatisfiable Boolean problems.

1062

22 Formal and computational properties of LFG

Along with the encoding of a particular problem the f-structure must specify the
necessary and sufficient conditions for a solution, namely, that every clause is
true under at least one consistent assignment of truth values to the variables. The
input f-structure represents this requirement by attaching a value true at the
bottom of every clause identifier in the top-level sol substructure and wherever
the clause appears in the problem encoding under prob. F-structure (41) is the
elaboration of (39b) with this additional information.

(41) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

sol
⎡⎢⎢
⎣

1𝑐 [val true]
2𝑐 [val true]
3𝑐 [val true]

⎤⎥⎥
⎦

prob

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1𝑝

⎡⎢⎢⎢
⎣

+ [1𝑐 [val true]]

− [2𝑐 [val true]
3𝑐 [val true]]

⎤⎥⎥⎥
⎦

2𝑝

⎡⎢⎢⎢
⎣

+ [1𝑐 [val true]
3𝑐 [val true]]

− [2𝑐 [val true]]

⎤⎥⎥⎥
⎦

3𝑝

⎡⎢⎢⎢
⎣

+ [1𝑐 [val true]
2𝑐 [val true]]

− [3𝑐 [val true]]

⎤⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

In this depiction the dotted line shows that the clause identifiers and their truth
values in the solution are equated to all of their occurrences in the problem-
statement substructure.

F-structure (41) is correctly assigned to the satisfiable problem string (39a) if
the single Var expansion rule above is replaced by the alternatives in (42).

(42) a. Var → p Snum
(↑ b)=(↓ b)
(↓ e)=(↑ ve)

{ + Snum
(↑ ve +)=(↓ b)
(↑ sol)=(↓ b)

(↓ e val)=true

| − Snum
(↑ ve −)=(↓ b)
(↑ sol)=(↓ b)

}+

b. Var → p Snum
(↑ b)=(↓ b)
(↓ e)=(↑ ve)

{ + Snum
(↑ ve +)=(↓ b)
(↑ sol)=(↓ b)

| − Snum
(↑ ve −)=(↓ b)
(↑ sol)=(↓ b)

(↓ e val)=true

}+

The sol annotations in both versions lift all the clause identifiers, whether pos-
itive or negative, to the top-level. The rules differ in that (42a) also attaches the

1063

Ronald M. Kaplan & Jürgen Wedekind

value true only at the bottom of every positive-clause chain while (42b) attaches
true only to the bottom of every negative clause. Thus for every variable there
is a choice in every derivation between the two expansions, corresponding to a
guess of consistent truth-value assignments for every variable.

If a problem is satisfiable, then each clause will be assigned true under at
least one variable, that value will be carried with the clause identifier into the
sol structure, and it will propagate by equality to all of the other (positive or
negative) occurrences of that clause. The result will be an f-structure configured
as in (41), and the string corresponding to the problem substructure will be a
realization of that f-structure.

Grammar 𝐺′ will also derive annotated c-structures and f-structures for a
string that represents an unsatisfiable problem, but each of those f-structures
will be missing a required truth value for at least one of the clauses. For the triv-
ially unsatisfiable problem 𝑝1 ∧ ¬𝑝1 the input 𝑓 for realization is the f-structure
(43a) and (43b) is its corresponding string expression.

(43) a. ⎡⎢⎢⎢⎢⎢⎢
⎣

sol [1𝑐 [val true]
2𝑐 [val true]]

prob [1𝑝 [
+ [1𝑐 [val true]]
− [2𝑐 [val true]]

]]

⎤⎥⎥⎥⎥⎥⎥
⎦

b. p1 +1−2

With just one variable there is only one choice between the alternative Var expan-
sion rules, giving rise to two derivations. Assigning true to the positive literal
produces f-structure (44a) and (44b) results if the negative literal is selected. Nei-
ther of these is complete for all the attributes and values of (43a) and thus string
(43b) (and any other string that corresponds to the problem substructure) does
not belong to Gen𝐺′(𝑓).
(44) a. ⎡⎢⎢⎢⎢⎢⎢

⎣

sol [1𝑐 [val true]
2𝑐

]

prob [1𝑝 [
+ [1𝑐 [val true]]
− [2𝑐]

]]

⎤⎥⎥⎥⎥⎥⎥
⎦

b. ⎡⎢⎢⎢⎢⎢
⎣

sol [1𝑐2𝑐 [val true]]

prob [1𝑝 [
+ [1𝑐]
− [2𝑐 [val true]]

]]

⎤⎥⎥⎥⎥⎥
⎦

Any Boolean satisfiability problem can thus be reduced to the realization prob-
lem for the simple LFG grammar 𝐺′ if the problem is translated to an input f-
structure that encodes the problem and the requirement of truth for all clauses.
A derivation for 𝐺′ will map a string to that f-structure if and only if the Boolean
problem is satisfiable. As for recognition, realization is intractable because the

1064

22 Formal and computational properties of LFG

number of derivations whose f-structures must be compared to the input is expo-
nential in the size of the problem, in this case the number of variables it contains.

7 𝑘-bounded LFG grammars and tractability

These intractability results for the conservative, properly anchored derivations
of arbitrary grammars raise the question whether there are other formal restric-
tions that will guarantee that the computationally important problems of recog-
nition and realization can be solved in polynomial time. Seki et al. 1993 first estab-
lished the connection between amuchmore restricted subclass of LFG grammars
and Linear Context-Free Rewriting Systems (LCFRS), formal systems that can de-
scribe only mildly context-sensitive dependencies and for which the recognition
problem is tractable (Kallmeyer 2010). The Seki et al. finite-copying grammars
permit rules with the very limited functional annotations in (45a) provided that
all their derivations also satisfy the bounding condition (45b).

(45) a. Each category on the right-side of a rule can be annotated with at
most one function assignment of the form (↑ f)= ↓ and any number
of atom-value assignments only of the form (↑ a)=v.

b. There is a constant 𝑘 such that no more than 𝑘 nodes map to the
same f-structure element 𝑓 in any derivation. That is, |𝜙-1(𝑓)| ≤ 𝑘 for
every 𝑓 .19

Structure sharing in finite-copying grammars can only be achieved through in-
stantiated function-assigning annotations. This specific type of structure sharing
is occasionally referred to as “zipper” unification. That is, if two distinct nodes
𝑛1 and 𝑛2 map to the same f-structure in a derivation, then there must always be
a node 𝑛̂ dominating these nodes such that the sequences of function-assigning
annotations on the paths from 𝑛̂ to 𝑛1 and 𝑛2, respectively, must be identical, that
is, form a “zipper”.

The bounding condition (45b) limits the number of non-local dependencies
that can arise through structure sharing and thus proscribes c-structure recur-
sions that give rise to zippers of size greater than the constant 𝑘. Indeed, Seki
et al. have shown that the recognition problem is NP-complete for grammars

19This condition can also be expressed in terms of an extended-head formulation: |𝜙-1∘𝜙(𝑛)| ≤ 𝑘
for every c-structure node 𝑛. The parameter 𝑘 may also be regarded as a formal characterization
of the linguistic notion degree of discontinuity (Chomsky 1953).

1065

Ronald M. Kaplan & Jürgen Wedekind

𝜙 𝜙𝑓 𝑓

𝐻

S

S

S

S

a

S

a

S

S

a

S

a

S

S

S

a

S

a

S

S

a

S

a

S

A

A

A

a a a

A

A

A

a a a

A

A

A

a a a

|𝜙−1(𝑓)| = 2𝐻 |𝜙−1(𝑓)| = 3
a. C-structure for grammar (46a) b. C-structure for grammar (46b)

Figure 5: Zipper nodes in depth-balanced c-structures

that meet the notational restrictions (45a) but do not satisfy the bounding condi-
tion (45b). Thus the bounding condition is crucial for tractable performance even
with the severe notational restrictions of the finite-copying formalism.

Grammars with these limited annotations are expressive enough to specify the
kinds of derivations depicted in Figure 5. The derivation on the left is produced
by the simple recursive rules in (46a) while the one on the right is derived with
the grammar (46b).

(46) a. S → S
(↑ l)= ↓

S
(↑ l)= ↓

S → a
(↑ l)=#

b. S → A
(↑ l)= ↓

A
(↑ l)= ↓

A
(↑ l)= ↓

A → A
(↑ l)= ↓

a A → a
(↑ l)=#

These grammars both meet the finite-copying notational restrictions (45a), and
the derivations of both grammars have nodes that share structure in the zipper
configurations indicated by the dotted lines. But the difference in these structure-
sharing configurations corresponds to a difference in computational complexity.
For all derivations of grammar (46a) the number of nodes in the set 𝜙-1(𝑓) is an
exponential in the height 𝐻 of those nodes, as indicated in Figure 5a. In contrast,
for all derivations of grammar (46b) the number of nodes in a structure-sharing
set is bounded by a constant (3 in this case) that is independent of their height
(Figure 5b). Grammar (46b) but not (46a) meets the finite-boundedness property

1066

22 Formal and computational properties of LFG

(45b), and this is a decidable property for all derivations of such notationally re-
stricted grammars. Note that the string and f-structure sizes are correlated in the
derivations of both grammars. They are thus not distinguished by the conditions
of proper anchoring.

The restrictions (45a) are obviously too severe for linguistic description. The
notation disallows, for example, the trivial ↑= ↓ annotations that mark the heads
and coheads in the functional domain of a predicate, the (↑ xcomp subj)=(↑ obj)
equations of functional control, and all other ways of relating the f-structures of
different nodes. They also exclude multi-attribute value specifications, such as
(↑ subj num)=sg, that encode agreement requirements, and any direct specifi-
cation of feature values on daughter nodes, as in (↓ case)=nom.

Wedekind & Kaplan 2020 take the Seki et al. 1993 finite-copying grammars
as the starting point for developing a subclass of LFG grammars that are more
suitable for linguistic description but are similarly limited in their expressive
power. The 𝑘-bounded LFG grammars of Wedekind and Kaplan allow the richer
set of annotations in (47).

(47) Basic annotations
↑= ↓ (co)head identifier
(↑ f)= ↓ function assignment
(↑/↓ a b c ⋯)=v general atom-value assignments

Reentrancies
(↑ f)=(↑ h) local-topic link
(↓ g)=(↑ h) daughter-mother control
(↓ g)=(↓ h) daughter sharing
(↓ g)= ↑ promotion
(↑ f)= ↑ mother cycle
(↓ g)= ↓ daughter cycle
(↑ f g)=(↑ h) functional control

The annotations in this enlarged set include those that are commonly used in
natural language grammars and that remain compatible with theoretical con-
ventions such as the Principle of Functional Locality (Kaplan & Bresnan 1982).
In 𝑘-bounded grammars these more flexible annotations are accompanied with
additional conditions that also limit the number of non-local dependences that
can arise through structure sharing. The 𝑘-bounded LFG grammars thus enjoy
the same mathematical and computational properties that Seki et. al identified:
They characterize only mildly context sensitive languages for which recognition
is tractable. The additional conditions that a 𝑘-bounded grammar 𝐺 must meet
are listed in (48).

1067

Ronald M. Kaplan & Jürgen Wedekind

(48) a. Each right-side category is annotated with at most one function
assignment (↑ f)= ↓, and (co)head identifiers ↑= ↓ and function
assignments always appear in complementary distribution (to keep
separate the properties of heads and their complements).

b. The functional domains of 𝐺 (the collections of ↑= ↓-annotated nodes
that map to the same f-structure) are bounded by a grammar-
dependent constant ℎ (so 𝐺 can be converted to an equivalent
grammar 𝐺\↑= ↓ that is free of ↑= ↓ annotations).

c. The derivations of the grammar formed by removing all reentrancies
from 𝐺\↑= ↓ are bounded by a grammar-dependent constant 𝑘, as in
(45b). (Wedekind & Kaplan 2020 call this the reentrancy-free kernel of
𝐺.)

d. Reentrancies are nonconstructive.

Nonconstructivity is an implicit property of derivations in broad coverage LFG
grammars that has been mentioned (but not well formalize) in the LFG literature
as a requirement for functional uncertainty and off-path constraints (Crouch et al.
2011, Zaenen & Kaplan 1995) (Dalrymple et al. 1995: page 133). The reentrancies
of a grammar are nonconstructive if they cannot extend the 𝜙 mapping from c-
structure nodes to f-structure units beyond the correspondences established by
simple function assignments (the zipper-forming annotations of finite-copying
grammars).

The difference between constructive and nonconstructive reentrancies is illus-
trated in Figure 6. On the left side the reentrancies are constructive because they
cause the nodes 𝑛2 and 𝑛5 to map to the same f-structure element. If reentran-
cies are nonconstructive, as in the derivation on the right side, they do not intro-
duce node-to-f-structure mappings that are not entailed by function assignments
alone, and thus they do not affect the bounds that function assignments establish
on the 𝜙-1 node classes. Nonconstructive reentrancies only propagate the limited
atom-value information that the grammar attaches to individual nodes and not
the unregulated amount of information that might be associated recursively with
entire subtrees.

Wedekind & Kaplan 2020 have shown that the nonconstructivity condition
(48d) is decidable if the 𝜙-1 node classes of a grammar are 𝑘-bounded and if any
two-attribute functional control annotations can be reduced to shorter ones (e.g.
shrinking (↑ xcomp subj)=(↑ obj) to (↓ subj)=(↑ obj) when conjoined with
(↑ xcomp)= ↓). While it is undecidable in general whether every functional con-
trol annotation can be shortened (see example (52c) in Appendix A), they can

1068

22 Formal and computational properties of LFG

S𝑛1

NP𝑛2(↑ obj)= ↓
VP𝑛3(↑ obj)=(↓ subj)

VP𝑛4(↑ subj)=(↓ subj)

X𝑛5(↑ subj)= ↓

S𝑛1

NP𝑛2(↑ obj)= ↓
VP𝑛3(↑ obj)=(↓ subj)

VP𝑛4(↑ subj)=(↓ subj)

X𝑛5(↑ subj agr)=v

Constructive Nonconstructive

𝜙(𝑛2) = 𝜙(𝑛5) (𝜙(𝑛2) obj agr)=v

Figure 6: Constructive and nonconstructive reentrancies.

always be reduced to daughter-mother controls in derivations that meet the re-
quirements of the Coherence Condition. Wedekind & Kaplan 2020 provide a for-
mal specification of nonconstructivity, this expected consequence of Coherence,
and other technical requirements that are sufficient to decide whether an arbi-
trary LFG grammar belongs to the 𝑘-bounded subclass and therefore describes
only mildly context-sensitive languages.

Wedekind & Kaplan 2020 also prove that for any LFG grammar 𝐺 with the
properties defined in (47) and (48) there is a linear context free rewriting sys-
tem that accepts all and only the strings in 𝐿(𝐺) and allows recovery of the f-
structures that 𝐺 assigns to each such string. The tractability of LCFRS recogni-
tion thus establishes for 𝑘-bounded LFG grammars that recognition of individual
input strings can be accomplished in time polynomial in their length. Here we
sketch a simpler demonstration that is framed entirely within the LFG formalism.
This is based on a line of argument that Lang 1994 and others have developed for
the recognition problem of context-free grammars.

On this approach to context-free recognition the solution is partitioned into
two phases. Given an input string 𝑠 and an arbitrary context-free grammar 𝐺
with |𝐺| rules, the first step is to specialize 𝐺 to a context-free grammar 𝐺𝑠 with
the property that 𝑠 ∈ 𝐿(𝐺) if and only if 𝐿(𝐺𝑠) ≠ ∅. The second step then is to
determine whether or not the language 𝐿(𝐺𝑠) is empty. In the context-free case
the procedure for specializing 𝐺 to 𝑠 and the size of the resulting grammar are
both polynomial in the length of the input, and for context-free grammars the
emptiness problem is bounded by a polynomial in grammar size. It follows on

1069

Ronald M. Kaplan & Jürgen Wedekind

this particular argument (among many others) that context-free recognition is
bounded by a polynomial in |𝑠|.

This two-part strategy immediately carries over to LFG recognition. The spe-
cialization of an arbitrary LFG grammar 𝐺 to a given input 𝑠 can be extracted
from the chart data structures provided by any number of context-free parsing
algorithms modified to keep track of the annotations of matching c-structure cat-
egories (equivalently, to operate unmodified on left-side annotated rules as in (6)
above). This is a polynomial process that results in an annotated LFG grammar
𝐺𝑠 of size also polynomial in |𝑠| that assigns to 𝑠 all and only the f-structures that
𝐺 assigns to 𝑠. In particular, Par𝐺(𝑠) = ∅ if and only if Par𝐺𝑠 (𝑠) = ∅, and this is
equivalent to the question whether 𝐿(𝐺𝑠) = ∅.

We noted above that the emptiness problem for arbitrary LFG grammars re-
mains undecidable even if only properly anchored derivations are taken into ac-
count. However, if𝐺 belongs to the subclass of 𝑘-bounded grammars then so does
𝐺𝑠 , and the emptiness problem for arbitrary 𝑘-bounded grammars is not only de-
cidable but solvable with worst-case complexity that is polynomial in grammar
size. A proof of this property is outlined in Appendix B. Thus, following the
context-free argument, for any input string 𝑠 and 𝑘-bounded LFG grammar 𝐺, in
time polynomial in |𝑠| it can be determined whether 𝑠 ∈ 𝐿(𝐺).

Wedekind&Kaplan 2012 applied a similar two-phase strategy to prove that the
realization problem is decidable for an arbitrary LFG grammar 𝐺 and an arbitrary
acyclic input f-structure 𝑓 (see also Kaplan &Wedekind (2000)). They specialized
𝐺 to a grammar 𝐺𝑓 with the property that the string-set Gen𝐺(𝑓) = ∅ if and
only if 𝐿(𝐺𝑓) = ∅. The grammar 𝐺𝑓 is context-free and its emptiness is therefore
decidable. In the general case the specialization phase is not tractable and the
resulting 𝐺𝑓 may be exponentially larger than 𝐺. If 𝐺 is 𝑘-bounded, however, the
consistency and completeness of all LFG derivations for any 𝑓 , even cyclic ones,
can be simulated with an annotation-free polynomial expansion of the categories
and rules of 𝐺.

Thus the recognition and realization problems for 𝑘-bounded grammars can
be solved in polynomial time: for arbitrary inputs it can be determined whether
the sets Par𝐺(𝑠) and Gen𝐺(𝑓) are empty. But the 𝑘-bounded restrictions are not
sufficient to guarantee that those sets contain only a finite number of elements.
The context-free grammar 𝐺𝑓 , for example, can describe a language with arbi-
trarily long strings, if 𝐺 allows for unlimited morphological markers in subtrees
with nodes that are not in the domain of the 𝜙 projection. And the f-structures for
a given string can also be arbitrarily large, if the grammar permits stacked recur-
sive subderivations. If useless rules are removed from 𝐺𝑓 and if annotations are
carried along in the grammar 𝐺∗𝑠 as described in Appendix B, then the generation

1070

22 Formal and computational properties of LFG

algorithm for context free grammars can be used to enumerate the elements of
Gen𝐺(𝑓) and Par𝐺(𝑠), one after the other and each in linear time. But obviously
the generation and parsing enumerations will never terminate in the face of in-
finite ambiguity. The derivations for a 𝑘-bounded grammar are not necessarily
conservative in the sense of (25), even though the emptiness tests for recognition
and realization have tractable solutions.

The proper-anchoring/conservation and 𝑘-bounded restrictions target differ-
ent sources of mathematical and computational complexity. Proper anchoring
limits the height of recursive subderivations in a stack but imposes no constraint
on the number of stacks in a single derivation. The 𝑘-bounded restrictions limit
the degree of discontinuity but say nothing to relate the sizes of strings and f-
structures. The combination of constraints provides for conservative, finitely-
ambiguous, derivations with tractable recognition and realization. We have sug-
gested above that conservation is a plausible pretheoretic property of natural
communication, and we have also argued that the 𝑘-bounded patterns of infor-
mation flow are compatible with other linguistic principles (Kaplan & Wedekind
2019, Wedekind & Kaplan 2020). The 𝑘-bounded restrictions (47-48) and the
proper anchoring condition (29) are different ways of moderating the excessive
mathematical and computational power of the basic LFG formalism while pre-
serving in different ways its suitability for linguistic description.

8 Summary

Lexical-Functional Grammar is equipped with a simple architecture that for-
malizes a piecewise correspondence between structures of different types, the
phrase-structure trees of the constituent structure and the attribute-value ma-
trices of the functional structure. We have shown that f-structure encodings of
the strings of arbitrary context-free grammars can be produced by straightfor-
ward application of the formalism’s most primitive annotations. From that it fol-
lows that recognition/parsing, realization/generation, and other mathematical
and computational questions are easily proved to be undecidable.

One source of this excessive power, at least for the recognition and realization
problems, is the fact that an unrestricted grammar may establish no systematic
relationship between the sizes of input strings and the sizes of corresponding
f-structures. This is inconsistent with the Principle of Conservation (22) that
we suggest is a pretheoretic property of language as a medium of communica-
tion: the derivational machinery that maps in both directions between strings
and their f-structures does not add or subtract arbitrary amounts of information.

1071

Ronald M. Kaplan & Jürgen Wedekind

Problems that relate to specific inputs, including recognition/parsing and real-
ization/generation, become decidable if unconservative derivations are excluded
from consideration.

The annotated c-structure is the generative component of the LFG formalism
and serves as the intermediary between strings and f-structures. Thus we have
proposed a condition on recursive c-structure subderivations that ensures that
strings and f-structures stand in a conservative relationship. A derivation is prop-
erly anchored if each recursive subderivation is anchored in elements of both the
string and f-structure and recursive subderivations in a stack do not share the
same anchors. For parsing this condition improves on the original prohibition of
derivations with nonbranching dominance chains but applies to the generation
problem as well.

The proper anchoring condition is strong enough to ensure decidability but
we show that it is not strong enough to guarantee tractability. Tractability for
recognition and realization is the computationally important property of the 𝑘-
bounded LFG grammars and derivations. These grammars are in the class of
mildly context-sensitive grammars, even though their derivations are not nec-
essarily conservative. The subclass of LFG grammars and derivations that meet
the conditions of both proper anchoring and 𝑘-boundedness has attractive math-
ematical and computational properties and may serve as a better foundation for
a formal theory of natural language syntax.

Appendix A: Other undecidable questions

In Section 4 we used the descending attribute-chain string encoding (17) for arbi-
trary Chomsky Normal Form context-free grammars to prove the undecidability
of the realization problem. We apply that same encoding here to show that sev-
eralmore specific properties are undecidable for unrestricted LFG grammars. The
start rule (49) follows the pattern laid out earlier in (19). It denotes the ends of
the 𝑆1 and 𝑆2 substrings as 𝐸1 and 𝐸2 respectively and includes a place-holder 𝑃
for grammatical fragments that we will use to encode other decision problems.
As noted before, there are no atomic values and therefore no atom-value clashes
in the attribute-chain string encodings, and the set of derivations can only be
filtered by properties spelled out in 𝑃 .
(49) S → S1

(↑ l)= ↓
(↓ b)=(↑ b)
(↓ e)=(↑ e1)

S2
(↑ r)= ↓

(↓ b)=(↑ b)
(↓ e)=(↑ e2)

𝑃

1072

22 Formal and computational properties of LFG

If any realization of 𝑃 expresses a particular property that is satisfied only if
𝐹(𝐺) contains f-structures with equal E1 and E2 values, then that property must
be undecidable.

As a first example, the alternative annotations on the terminal # in (50) shows
that it is undecidable whether a minimal model satisfies either defining or con-
straining equalities between two f-structure units.

(50) S → S1
(↑ l)= ↓

(↓ b)=(↑ b)
(↓ e)=(↑ e1)

S2
(↑ r)= ↓

(↓ b)=(↑ b)
(↓ e)=(↑ e2)

#

{
(↑ e1)=(↑ e2)
(↑ e1)=𝑐 (↑ e2)
(↑ e1)≠(↑ e2)

}

The function assignments on X and Y in (51) show that it is in general undecidable
whether there are derivations with nodes that 𝜙 maps to the same f-structure.

(51) S → S1
(↑ l)= ↓

(↓ b)=(↑ b)
(↓ e)=(↑ e1)

S2
(↑ r)= ↓

(↓ b)=(↑ b)
(↓ e)=(↑ e2)

X
(↑ e1)= ↓

(↑ e1)=(↑ e2)

Y
(↑ e2)= ↓

It follows from this that any other property that depends on nodes mapping to
the same f-structure is also undecidable.

Thus, expanding the nonterminals X and Y with the rules (52a) shows that
the satisfiability of existential constraints or constraints between atomic values
is undecidable and, as a consequence, that Completeness and Coherence are also
undecidable. The annotations (52b) establish that it is undecidable whether an
arbitrary LFG grammar gives rise to cyclic f-structures, and (52c) shows that
functional control annotations cannot decidably be reduced to combinations of
function assignments and daughter-mother controls.

(52) a. X → 𝑥
(↑ f)=v

Y → 𝑦
⎧⎪
⎨⎪⎩

(↑ f)
¬(↑ f)

(↑ f)=𝑐 v
(↑ f)≠v

⎫⎪
⎬⎪⎭

b. X → 𝑥
(↑ f g)=(↑ h)

Y → 𝑦
(↑ f)=(↑ h)

c. X → 𝑥
(↑ f g)=(↑ h)

Y → 𝑦
(↑ f)= ↓

1073

Ronald M. Kaplan & Jürgen Wedekind

Appendix B: Emptiness of 𝑘-bounded LFG grammars

We sketch here the proof that the complexity of the emptiness problem for an
arbitrary 𝑘-bounded LFG grammar 𝐺 is polynomial in |𝐺|, the size of its rule
set. The argument makes use of the three grammar transformations listed in (53).
Each of these can be carried out in polynomial time, as indicated below, and each
guarantees that 𝐺 and the transformed grammar 𝐺′ are co-empty, that is, that the
set of derivations Δ𝐺 = ∅ if and only Δ𝐺′ = ∅.

(53) a. ↑= ↓ removal: For any 𝑘-bounded LFG grammar 𝐺 there is a
co-empty ↑= ↓-free 𝑘-bounded grammar 𝐺\↑= ↓.

b. Zipper removal: For any ↑= ↓-free 𝑘-bound LFG grammar 𝐺 there is a
co-empty 1-bounded (zipper-free) LFG grammar 𝐺𝑧 .20

c. Annotation removal: For any 1-bounded LFG grammar 𝐺 there is a
co-empty annotation-free grammar 𝐺𝑎 , and 𝐺𝑎 is context-free.

Applying these transformations in sequence to an arbitrary 𝑘-bounded LFG
grammar 𝐺 results in a co-empty context free grammar 𝐺∗= 𝐺\↑= ↓,𝑧,𝑎 whose size
|𝐺∗| is a polynomial function of |𝐺|. The string-set 𝐿(𝐺) = ∅ if and only if the
context free language 𝐿(𝐺∗) = ∅, and this can be determined by the well-known
emptiness algorithm for context free grammars, which is polynomial in the size
of the grammar.

For (53a), the ↑= ↓ annotations in an arbitrary 𝑘-bounded grammar 𝐺 are elim-
inated by replacing each ↑= ↓-annotated category in one rule with the right-side
of each of the rules that expand that category. Let 𝑅 be the smallest set that in-
cludes the rules of 𝐺 and is closed under the convention (54). In this template 𝛿 ,
𝜃 , and 𝜓 are strings of annotated categories, and 𝛼 may be a set of annotations
with ↑ substituted for ↓.
(54) If 𝑅 contains rules of the form

A → 𝛿 B↑= ↓𝛼
𝜃 and B → 𝜓

then 𝑅 also contains the rule A → 𝛿 𝜓𝛼 𝜃

The ↑= ↓-free grammar 𝐺\↑= ↓ is constructed by removing from 𝑅 any rules with
↑= ↓ annotations. Note that a replacement sequence can never be longer than the

20Unlike the transformations that are often used in proofs of other formal-language properties,
zipper removal does not preserve the language 𝐿(𝐺): the grammars 𝐺 and 𝐺′ generally are not
weakly equivalent.

1074

22 Formal and computational properties of LFG

limit on the number of nodes in a functional domain, the parameter ℎ of condition
(48b). As a consequence, the growth of the grammar is bounded by a polynomial
in |𝐺|. Moreover, the resulting grammar 𝐺\↑= ↓ accepts exactly the same strings
as 𝐺 and assigns them the same f-structures, although with c-structures that are
not as deep.

For (53b), the rules of a zipper-free 1-bounded grammar are created from sets of
up to 𝑘 rules of a ↑= ↓-free 𝑘-bounded grammar 𝐺. The zipper daughters, occur-
rences of right-side categories with the same function assignments, are replaced
with a single new daughter labeled by the concatenation (notated with ⋅) of the la-
bels of the zipper daughters and annotated with the union of the zipper-daughter
annotations. Let 𝑅 now be the smallest set that includes the rules of a ↑= ↓-free
grammar 𝐺 and is closed under the following:

(55) a. If A1 → 𝛿1, ..., A𝑗 → 𝛿𝑗 (1 ≤ 𝑗 ≤ 𝑘) are rules in 𝑅,
then 𝑅 also contains the rule A1 ⋅ ... ⋅ A𝑗 → 𝛿1 ... 𝛿𝑗

b. If 𝑅 contains a rule of the form
A → 𝛿 B1(↑ f)= ↓𝛼1

𝜃 B2(↑ f)= ↓𝛼2
𝜓

then 𝑅 also contains the rule A → B1 ⋅ B2(↑ f)= ↓𝛼1 𝛼2
𝛿 𝜃 𝜓

The zipper-free grammar 𝐺𝑧 is then created by removing from 𝑅 any rule with
multiple assignments for the same function or with annotations that are locally
unsatisfiable. Local (within-rule) satisfiability of a rule with 𝑛 daughters is tested
by instantiating all metavariables with distinct constants 𝑏0, 𝑏1, ..., 𝑏𝑛 that stand
for a putative mother node and its daughters. 𝑏0 is substitute for ↑ in all annota-
tions and 𝑏𝑖 is substituted for ↓ in the annotations of the 𝑖𝑡ℎ daughter. The local
f-description thus created is then solved using standard deductive-closure tech-
niques.

The size of a zipper-free grammar 𝐺𝑧 is exponential in 𝑘 but polynomial in
|𝐺|, because there are at most |𝐺|𝑘 rule combinations that must be considered.
For every derivation in 𝐺 of a string 𝑠 with discontinuous subtrees for a particu-
lar grammatical function there is a corresponding derivation in 𝐺𝑧 that assigns
the same f-structure to a string 𝑠𝑧 . The two strings contain the same words but
not necessarily in the same order: the words are permuted so that the words of
discontinuous subtrees for 𝑠 are contiguous in 𝑠𝑧 .

1075

Ronald M. Kaplan & Jürgen Wedekind

The annotation-removal transformation (53c) is based on the fact that atomic
values in a 1-bounded grammar can only propagate between mothers and daugh-
ters within a single subtree. This is because, by definition, there are no nodes 𝑛
and 𝑛′ in separate subtrees with 𝜙(𝑛) = 𝜙(𝑛′). Atomic values in sister subtrees
may have different values for a particular feature, but that can only result in
an overall unsatisfiable f-description if annotation chains relative to a common
mother put them in contact. Chains of atom-value annotations carried by the
categories of a 1-bounded LFG derivation can be simulated by an elaborated set
of refined c-structure categories in a corresponding annotation-free derivation.
An annotation-free derivation is context-free and will fail if and only if the f-
description for the 1-bounded LFG derivation is unsatisfiable.

The ↑= ↓-free and zipper-free rules in (56) provide the derivation (57a) for the
sentence He walks.

(56) S → NP
(↑ subj)= ↓

(↓ case)=nom

walks
(↑ pred)= ‘walk⟨subj⟩’

(↑ tense)=pres
(↑ subj num)=sg

NP → he
(↑ pred)= ‘pro’
(↑ gend)=m
(↑ num)=sg

(↑ case)=nom

The f-description is satisfiable because the case assigned to the subject NP
matches the case of he, and the subject’s number, entailed by the combination
(↑ subj)= ↓ and (↑ subj num)=sg, also matches the number of he. The connec-
tion between the S and NP feature annotations is simulated by the refined NP
category in (57b).

(57) a. S𝑟𝑜𝑜𝑡

NP𝑛1

he𝑛3

walks𝑛2

𝑟𝑜𝑜𝑡

⎡⎢⎢⎢⎢⎢
⎣

subj
𝑛1

⎡⎢⎢⎢
⎣

pred ‘pro’
gend m
num sg
case nom

⎤⎥⎥⎥
⎦

pred ‘walk⟨subj⟩’
tense pres

⎤⎥⎥⎥⎥⎥
⎦

b. S’
∅

S

[(∗ pred)= ‘walk⟨subj⟩’
(∗ tense)=pres]

NP

⎡⎢⎢⎢
⎣

(∗ pred)= ‘pro’
(∗ gend)=m
(∗ num)=sg
(∗ case)=nom

⎤⎥⎥⎥
⎦

he
∅

walks
∅

Starting from a new category S’, tree (57b) is the context free derivation provided
by the category-refined, annotation-free rules in (58).

1076

22 Formal and computational properties of LFG

(58) S’
∅

→ S
[(∗ pred)= ‘walk⟨subj⟩’
(∗ tense)=pres]

S
[(∗ pred)= ‘walk⟨subj⟩’
(∗ tense)=pres]

→ NP
⎡⎢⎢⎢
⎣

(∗ pred)= ‘pro’
(∗ gend)=m
(∗ num)=sg
(∗ case)=nom

⎤⎥⎥⎥
⎦

walks
∅

NP
⎡⎢⎢⎢
⎣

(∗ pred)= ‘pro’
(∗ gend)=m
(∗ num)=sg
(∗ case)=nom

⎤⎥⎥⎥
⎦

→ he
∅

Note that the c-structure derivation for the string Him walks would have an
unsatisfiable f-description. The corresponding category mismatch excludes a
derivation with refined categories.

For an arbitrary 1-bounded grammar𝐺 the co-empty annotation-free grammar
𝐺𝑎 produces derivation trees whose nodes are labeled with refined categories of
this form. A refined category is a pair 𝑐:𝑚 consisting of a c-structure category
label 𝑐 of 𝐺 together with a refinement matrix 𝑚 of atom-value feature specifiers
(∗ p q r ...)=v. The feature specifiers simulate in a 𝐺𝑎 derivation the possible
interactions of atomic values in the f-description of a corresponding 𝐺 derivation,
as illustrated. Importantly, Wedekind & Kaplan 2020 show that a finite set of
specifiers is sufficient to simulate all possible atom-value interactions. These are
the specifiers containing no more than 𝓁 of 𝐺’s attributes, where 𝓁 is the number
of attributes in the longest atom-value assignment in 𝐺.

Let 𝑁 be the smallest set of refined categories and let 𝑅 be the smallest set of
refined rules, rules with refined-category labels, that are closed under the follow-
ing conditions (see Wedekind & Kaplan 2020 for additional technical details).

(59) a. If S is the start symbol of 𝐺 and 𝑆′ is a category distinct from other 𝐺
categories, 𝑁 contains S:∅ and S’:∅ and 𝑅 contains S’:∅ → S:∅.

b. If 𝑡𝑒𝑟𝑚 is a terminal symbol of 𝐺, 𝑁 contains 𝑡𝑒𝑟𝑚:∅.
c. If 𝑟 is a refinement of a rule 𝐴0 → 𝐴1𝛼1

... 𝐴𝑛𝛼𝑛
of 𝐺 with a sequence of

refined categories 𝐴0:𝑚0, ..., 𝐴𝑛:𝑚𝑛 in 𝑁 , then 𝑅 contains 𝑟 and 𝑁
contains the refined categories of 𝑟 .

The refinement of a rule𝐴0 → 𝐴1𝛼1
...𝐴𝑛𝛼𝑛

of 𝐺 with a sequence of refined categories

𝐴0:𝑚0, ..., 𝐴𝑛:𝑚𝑛 is produced by instantiating the ↑ and ↓ metavariables with dis-
tinct mother-daughter constants 𝑏0, 𝑏1, ..., 𝑏𝑛, as above, but also including in the
local f-description atom-value equations instantiated from the feature-specifier
matrices. The additional equations are created by substituting 𝑏𝑖 for all of the as-
terisks in each 𝑚𝑖. A refined rule 𝑟 is constructed if this augmented f-description

1077

Ronald M. Kaplan & Jürgen Wedekind

is satisfiable. Each category 𝐴𝑖 in the original 𝐺 rule (including the mother cat-
egory) is replaced by a refined category 𝐴𝑖:𝑚′𝑖 where the feature specifiers of
𝑚′𝑖 are formed by substituting * for 𝑏𝑖 in each length-limited atom-value equa-
tion (𝑏𝑖 p q r...)=v that the f-description entails. The newly refined categories
are added to 𝑁 .

The annotation-free grammar 𝐺𝑎 is then constructed in the following way.
S’:∅ is its starting category, its terminals categories are of the form term:∅ for
each terminal term of 𝐺, and its context-free rules are constructed from the re-
fined rules in 𝑅 by using standard context-free algorithms to eliminate useless
rules, those that cannot participate in successful derivations, and then removing
their functional annotations. The context-free derivations in 𝐺𝑎 correspond to all
and only the c-structures of 𝐺 with satisfiable f-descriptions. Because the feature
specifiers in a refined category are limited in length by the grammar parameter 𝓁,
|𝐺𝑎 | is only polynomially larger than |𝐺| and its emptiness can be determined in
polynomial time. We also note that if the annotations are not removed from the
useful rules of 𝑅, the set of f-structures for a grammar with those still-annotated
rules will be exactly the f-structures of 𝐺.

Acknowledgments

This chapter has benefited from helpful comments and suggestions from John
Maxwell, Mary Dalrymple, and three anonymous reviewers.

References

Berwick, Robert C. 1982. Computational complexity and Lexical-Functional
Grammar. American Journal of Computational Linguistics 8(3–4). 97–109. DOI:
10.3115/981923.981926.

Bresnan, Joan, Ash Asudeh, Ida Toivonen & Stephen Wechsler. 2016. Lexical-
Functional Syntax. 2nd edn. (Blackwell Textbooks in Linguistics 16). Malden,
MA: Wiley-Blackwell.

Bresnan, Joan, Ronald M. Kaplan, Stanley Peters & Annie Zaenen. 1982. Cross-
serial dependencies in Dutch. Linguistic Inquiry 13(4). 613–635. https://www.
jstor.org/stable/4178298. Reprinted in Savitch, Bach, Marsh & Safran-Naveh
(1987: 286-319).

Chomsky, Noam. 1953. Systems of syntactic analysis. Journal of Symbolic Logic
18(3). 242–256. DOI: 10.2307/2267409.

1078

https://doi.org/10.3115/981923.981926
https://www.jstor.org/stable/4178298
https://www.jstor.org/stable/4178298
https://doi.org/10.2307/2267409

22 Formal and computational properties of LFG

Crouch, Richard,MaryDalrymple, RonaldM. Kaplan, TracyHollowayKing, John
T. III Maxwell & Paula S. Newman. 2011. XLE Documentation. Xerox Palo Alto
Research Center. Palo Alto, CA. https : / / ling . sprachwiss .uni - konstanz .de /
pages/xle/doc/xle_toc.html.

Culy, Christopher D. 1985. The complexity of the vocabulary of Bambara. Lin-
guistics and Philosophy 8. 345–351.

Dalrymple, Mary (ed.). 1999. Semantics and syntax in Lexical Functional Grammar:
The resource logic approach (Language, Speech, and Communication). Cam-
bridge, MA: The MIT Press. DOI: 10.7551/mitpress/6169.001.0001.

Dalrymple, Mary. 2001. Lexical Functional Grammar (Syntax and Semantics 34).
New York: Academic Press. DOI: 10.1163/9781849500104.

Dalrymple, Mary, Ronald M. Kaplan & Tracy Holloway King. 2015. Economy of
Expression as a principle of syntax. Journal of Language Modelling 3(2). 377–
412. DOI: 10.15398/jlm.v3i2.82.

Dalrymple, Mary, Ronald M. Kaplan, John T. III Maxwell & Annie Zaenen (eds.).
1995. Formal issues in Lexical-Functional Grammar. Stanford: CSLI Publica-
tions.

Dalrymple, Mary, John Lamping & Vijay Saraswat. 1993. LFG semantics via con-
straints. In Proceedings of the 6th conference of the European chapter of the ACL
(EACL 1993), 97–105. Association for Computational Linguistics. DOI: 10.3115/
976744.976757.

Fang, Ji & Peter Sells. 2007. A formal analysis of the verb copy construction in Chi-
nese. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’07
conference, 198–213. Stanford: CSLI Publications.

Halvorsen, Per-Kristian & Ronald M. Kaplan. 1988. Projections and semantic de-
scription in Lexical-Functional Grammar. In Proceedings of the International
Conference on Fifth Generation Computer Systems, 1116–1122. Tokyo. Reprinted
in Dalrymple, Kaplan, Maxwell & Zaenen (1995: 279–292).

Haug, Dag & Tatiana Nikitina. 2012. The many cases of non-finite subjects: The
challenge of “dominant” participles. In Miriam Butt & Tracy Holloway King
(eds.), Proceedings of the LFG ’12 conference, 292–311. Stanford: CSLI Publica-
tions.

Jaeger, Efrat, Nissim Francez & Shuly Wintner. 2005. Unification grammars and
off-line parsability. Journal of Logic, Language and Information 14(2). 199–234.
DOI: 10.1007/s10849-005-4511-1.

Johnson, Mark. 1986. The LFG treatment of discontinuity and the double infini-
tive construction in Dutch. In Proceedings of the 5th West Coast Conference on
Formal Linguistics, 102–118. Stanford: CSLI Publications.

1079

https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://doi.org/10.7551/mitpress/6169.001.0001
https://doi.org/10.1163/9781849500104
https://doi.org/10.15398/jlm.v3i2.82
https://doi.org/10.3115/976744.976757
https://doi.org/10.3115/976744.976757
https://doi.org/10.1007/s10849-005-4511-1

Ronald M. Kaplan & Jürgen Wedekind

Johnson, Mark. 1988. Attribute-value logic and the theory of grammar. Stanford:
CSLI Publications.

Kallmeyer, Laura. 2010. On mildly context-sensitive non-linear rewriting. Re-
search on Language and Computation 8. 341–363. DOI: 10 . 1007 / s11168 - 011 -
9081-6.

Kaplan, Ronald M. 1987. Three seductions of computational psycholinguistics. In
Peter Whitelock, Mary McGee Wood, Harold L. Somers, Rod Johnson & Paul
Bennett (eds.), Linguistic theory and computer applications, 149–188. London:
Academic Press. Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen (1995:
339–367).

Kaplan, Ronald M. 2019. Formal aspects of underspecified features. In Cleo Con-
doravdi & Tracy Holloway King (eds.), Tokens of meaning: Papers in honor of
Lauri Karttunen, 349–369. Stanford: CSLI Publications.

Kaplan, Ronald M. 2023. Unbounded dependencies. In Mary Dalrymple (ed.),
Handbook of Lexical Functional Grammar, 425–481. Berlin: Language Science
Press. DOI: 10.5281/zenodo.10185954.

Kaplan, Ronald M. & Joan Bresnan. 1982. Lexical-Functional Grammar: A formal
system for grammatical representation. In Joan Bresnan (ed.), The mental rep-
resentation of grammatical relations, 173–281. Cambridge, MA: The MIT Press.
Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen (1995: 29–130).

Kaplan, Ronald M. & John T. III Maxwell. 1988. Constituent coordination in
Lexical-Functional Grammar. In COLING ’88: Proceedings of the 12th Confer-
ence on Computational Linguistics, 303–305. Budapest. DOI: 10 . 3115 / 991635 .
991696. Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen (1995: 199–210).

Kaplan, RonaldM. & John T. III Maxwell. 1996. LFG GrammarWriter’s Workbench.
Xerox Palo Alto Research Center. Palo Alto, CA. https://www.researchgate.
net / profile / John _ Maxwell5 / publication / 2760068 _ Grammar _ Writer’s _
Workbench/links/0c96052405e97928e9000000.pdf.

Kaplan, Ronald M. & Jürgen Wedekind. 2000. LFG generation produces context-
free languages. In COLING 2000 volume 1: The 18th International Conference on
Computational Linguistics, 425–431. DOI: 10.3115/990820.990882.

Kaplan, Ronald M. & Jürgen Wedekind. 2019. Tractability and discontinuity. In
Miriam Butt, Tracy Holloway King & Ida Toivonen (eds.), Proceedings of the
LFG ’19 Conference, 130–148. Stanford: CSLI Publications.

Kaplan, Ronald M. & Jürgen Wedekind. 2020. Zipper-driven parsing for LFG
grammars. In Miriam Butt & Ida Toivonen (eds.), Proceedings of the LFG ’20
conference, 169–189. Stanford: CSLI Publications.

1080

https://doi.org/10.1007/s11168-011-9081-6
https://doi.org/10.1007/s11168-011-9081-6
https://doi.org/10.5281/zenodo.10185954
https://doi.org/10.3115/991635.991696
https://doi.org/10.3115/991635.991696
https://www.researchgate.net/profile/John_Maxwell5/publication/2760068_Grammar_Writer's_Workbench/links/0c96052405e97928e9000000.pdf
https://www.researchgate.net/profile/John_Maxwell5/publication/2760068_Grammar_Writer's_Workbench/links/0c96052405e97928e9000000.pdf
https://www.researchgate.net/profile/John_Maxwell5/publication/2760068_Grammar_Writer's_Workbench/links/0c96052405e97928e9000000.pdf
https://doi.org/10.3115/990820.990882

22 Formal and computational properties of LFG

Kaplan, Ronald M. & Annie Zaenen. 1989. Long-distance dependencies, con-
stituent structure, and functional uncertainty. In Mark Baltin & Anthony
Kroch (eds.), Alternative conceptions of phrase structure, 17–42. Chicago: Uni-
versity of Chicago Press. Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen
(1995: 137–165).

Kuhn, Jonas. 2003. Optimality-Theoretic Syntax – A declarative approach. Stan-
ford: CSLI Publications.

Lang, Bernard. 1994. Recognition can be harder than parsing. Computational In-
telligence 10(4). 486–494. DOI: 10.1111/j.1467-8640.1994.tb00011.x.

Maxwell, John T. III & Ronald M. Kaplan. 1996. Unification-based parsers that
automatically take advantage of context freeness. In Miriam Butt & Tracy Hol-
loway King (eds.), Proceedings of the LFG ’96 conference, 1–31. Stanford: CSLI
Publications.

Nishino, Tetsuro. 1991. Mathematical analysis of Lexical-Functional Grammars
—complexity, parsability, and learnability. Language Research 27(1). 867–915.

Przepiórkowski, Adam & Agnieszka Patejuk. 2012. The puzzle of case agreement
between numeral phrases and predicative adjectives in Polish. In Miriam Butt
& Tracy Holloway King (eds.), Proceedings of the LFG ’12 conference, 490–502.
Stanford: CSLI Publications.

Roach, Kelly. 1983. LFG languages over a one-letter alphabet. Unpublished
manuscript, Xerox Palo Alto Research Center.

Savitch, Walter J., Emmon W. Bach, William Marsh & Gila Safran-Naveh (eds.).
1987. The formal complexity of natural language (Studies in Linguistics and Phi-
losophy). Dordrecht: Springer. DOI: 10.1007/978-94-009-3401-6.

Seki, Hiroyuki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando & Tadao Kasami.
1993. Parallel multiple context-free grammars, finite-state translation systems,
and polynomial-time recognizable subclasses of Lexical-Functional Grammars.
In Proceedings of the 31st annual meeting of the Association for Computational
Linguistics, 130–139. Columbus, OH: Association for Computational Linguis-
tics. DOI: 10.3115/981574.981592.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy 8(3). 333–343. DOI: 10 . 1007 /978 - 94 - 009 -
3401-6_12.

Wedekind, Jürgen. 1999. Semantic-driven generation with LFG- and PATR-style
grammar. Computational Linguistics 25(2). 277–281. https://www.aclweb.org/
anthology/J99-2006.

Wedekind, Jürgen. 2014. On the universal generation problem for unification
grammars. Computational Linguistics 40(3). 533–538. DOI: 10 . 1162 / coli _ a _
00191.

1081

https://doi.org/10.1111/j.1467-8640.1994.tb00011.x
https://doi.org/10.1007/978-94-009-3401-6
https://doi.org/10.3115/981574.981592
https://doi.org/10.1007/978-94-009-3401-6_12
https://doi.org/10.1007/978-94-009-3401-6_12
https://www.aclweb.org/anthology/J99-2006
https://www.aclweb.org/anthology/J99-2006
https://doi.org/10.1162/coli_a_00191
https://doi.org/10.1162/coli_a_00191

Ronald M. Kaplan & Jürgen Wedekind

Wedekind, Jürgen & Ronald M. Kaplan. 1996. Ambiguity-preserving generation
with LFG- and PATR-style grammars. Computational Linguistics 22(4). 555–
558. https://www.aclweb.org/anthology/J96-4005.

Wedekind, Jürgen&RonaldM. Kaplan. 2012. LFG generation by grammar special-
ization. Computational Linguistics 38(4). 867–915. DOI: 10.1162/coli_a_00113.

Wedekind, Jürgen & Ronald M. Kaplan. 2020. Tractable Lexical-Functional Gram-
mar. Computational Linguistics 46(2). 515–569. DOI: 10.1162/coli_a_00384.

Wedekind, Jürgen & Ronald M. Kaplan. 2021. LFG generation from acyclic f-
structures is NP-hard. Computational Linguistics. DOI: 10.1162/coli_a_00419.

Zaenen, Annie & Ronald M. Kaplan. 1995. Formal devices for linguistic general-
izations: West Germanic word order in LFG. In Jennifer S. Cole, Georgia M.
Green & Jerry L. Morgan (eds.), Linguistics and computation, 3–27. Stanford:
CSLI Publications. Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen (1995:
215–240).

Zweigenbaum, Pierre. 1988. Attributive adjectives, adjuncts and cyclic f-structures
in Lexical-Functional Grammar. DIAM Rapport Interne RI-58a. Paris: Departe-
ment Intelligence Artificielle et Medecine.

1082

https://www.aclweb.org/anthology/J96-4005
https://doi.org/10.1162/coli_a_00113
https://doi.org/10.1162/coli_a_00384
https://doi.org/10.1162/coli_a_00419

