
Chapter 2

Core concepts of LFG
Oleg Belyaev
Lomonosov Moscow State University, Institute of Linguistics of the Russian
Academy of Sciences, and Pushkin State Russian Language Institute

This chapter provides an in-depth coverage of the main features of the LFG frame-
work, focusing mainly on its syntactic representations: c- and f-structure. The
makeup of each level is discussed in detail. For c-structure, I describe the version
of X′ theory used in LFG and the status of lexical integrity as a core principle
of the framework. I discuss the notion of f-structure as a function/set of feature-
value pairs that is used in the majority of LFG work; attribute value types and
well-formedness conditions on f-structure (Uniqueness, Completeness and Coher-
ence) are covered as well. I also describe the metalanguage for defining f-structures
and the mapping from c- to f-structures, and note some linguistically relevant
consequences of how this mapping is organized. Three proposed extensions of
the standard architecture are also discussed: templates (constructions), minimal
c-structure, and lexical sharing.

1 Introduction

This chapter provides a detailed survey of the main syntactic levels of LFG, con-
stituent structure (c-structure) and functional structure (f-structure). It comple-
ments themore general introduction in Belyaev 2023b [this volume]. In Section 2,
I describe the c-structure model used in standard LFG, its understanding of con-
stituency, and the role of X′ theory. In Section 3, the notion of f-structure is
discussed, including the metalanguage used for describing f-structures and con-
straints on possible f-structure. In Section 4, I discuss the mapping from c- to
f-structure. Finally, in Section 5 I describe recently proposed modifications to
the basic architecture of LFG that have not yet been universally accepted, but
which may shape the development of this framework in the future.

Oleg Belyaev. 2023. Core concepts of LFG. in Mary Dalrymple (ed.), Hand-
book of Lexical Functional Grammar, 23–96. Berlin: Language Science Press.
DOI: 10.5281/zenodo.10185936

https://doi.org/10.5281/zenodo.10185936


Oleg Belyaev

2 C-structure

The nature of constituent structure (c-structure) in LFG and its main properties
are summarized in Belyaev 2023b [this volume]. Briefly, c-structure is a phrase
structure tree; constraints on possible trees are usually described via context-free
rules as in (1). Other metalanguages are sometimes used as well.

(1) S ⟶ NP VP

An important feature of c-structure in LFG is that empty nodes are not usually
employed. This is not a limitation imposed by the framework itself, but a the-
oretical decision. It is formally possible to define grammars with null terminal
nodes in LFG: this is implemented in XLE (Crouch et al. 2011) and was used to
capture long-distance dependencies in early versions of LFG (Kaplan & Bresnan
1982). However, since Kaplan & Zaenen (1989b) it has become a universal prac-
tice to capture long-distance dependencies through functional uncertainty at f-
structure, and the use of empty categories at c-structure has become unnecessary
(see Kaplan 2023 [this volume]). For more information on the formal features of
c-structure in LFG, see Andrews 2023 [this volume].

Without additional theoretical restrictions, context-free grammars allow far
more possible phrase structure trees than actually attested in natural languages.
In this section, I will focus on two main constraints on c-structure in LFG: X-Bar
Theory and lexical integrity.

2.1 X′ Theory

Every theory of constituency based on phrase structure grammar faces what Ev-
erett (2015), in his review of Adger (2013), called “Lyons’ Problem”. Lyons (1968)
famously asked what guarantees that NPs are headed by Ns, VPs are headed by
Vs, etc., such that rules like VP → … V … or NP → … N … are allowed, but rules
like NP → … V … are not.

Indeed, from the point of view of context-free rules, VP and V are atomic sym-
bols that are not related to each other; labeling one of the daughters of NP as
N is merely a convention, and nothing in the formalism excludes a hypothetical
language with constituent structures like in (2) – “monsters” in Bresnan et al.’s
(2016) terms.

24



2 Core concepts of LFG

(2) S

NP

N

John

I

had

V

seen

VP

Det

a

AdvP

N

mouse

Intuitively, there are many things that are wrong with this structure: an I head
cannot be the daughter of NP; the VP cannot be headed by, or even immediately
dominate, a Det; an AdvP cannot be headed by a noun.1 The principle that pro-
hibits this is called endocentricity; roughly stated, it means that the external
distribution of a phrase (e.g. NP) is determined by the category of one and only
one of its daughters, the head. Disallowing non-endocentric structures requires
a theory of constituent structure labels that limits the range of available con-
figurations. To this end, X-bar (X′) theory has been proposed in mainstream
generative grammar (Chomsky 1970, Jackendoff 1977).

X′ theory enforces endocentricity by introducing the notion of projection and
“bar level” and requiring that each non-maximal projection (X0 and X′; X″, or
XP, is usually assumed to be the maximum level of projection) be dominated by
a node belonging to the same category, with the bar level either incremented by
one or unchanged. The sisters of c-structure heads (complements, specifiers and
adjuncts) have to be maximal projections or non-projecting words (on which see
below).

One variant of X′ theory has been adopted in LFG from the very early days and
continues to be used in most LFG work. An in-depth exposition of X′ theory as
it is used in LFG, with certain additional theoretical innovations, can be found in
Bresnan et al. (2016). Themost important features of X′ theory as it is practiced in
LFG are as follows. First, as in the original formulation, X′ theoretical constraints
are viewed as constraints on phrase structure rules; the later GB view of a kind
of universal “X′ schema” has not gained acceptance in LFG, primarily because

1Curiously, each of the features of this illustration ad absurdum has a counterpart in real lan-
guages: noun phrases do sometimes mark the tense of their clauses, verbs do mark the defi-
niteness of their arguments, and bare nouns (although probably not nouns like ‘mouse’) are
used adverbially. But there is broad consensus in theoretical lingustics that such phenomena
are more exceptions than rules and should not be modeled by allowing the theory of phrase
structure to license such configurations.

25



Oleg Belyaev

the architecture of the framework is fundamentally based on language-specific
rules and does not allow such schemas.

Second, X′ theory in LFG allows for the following positions: complement (3a),
specifier (3b), X′ adjunct (3c) and XP adjunct (3d).2

(3) a. X′

X0 YP

b. XP

YP X′

c. X′

YP X′

d. XP

YP XP

As in all versions of X′ theory, only maximal projections may appear in these
positions.

There is some disagreement concerning the possibility of X′ adjunction:While
most authors accept both kinds of adjunction, Toivonen (2003) only allows XP-
adjunction (and head adjunction, see below) because in her theory only con-
stituents of the same bar level may be adjoined.

The LFG literature also generally allows for multiple complements and spec-
ifiers dominated by the same mother node; thus, a sequence of several phrases
instead of YP is possible in (3a–c); multiple adjuncts in one position are also
usually allowed, even though this creates redundancy since this structure could
always be replaced by multiple binary adjunction.

Third, LFG uses the following functional projections: DP for NPs, IP and CP
for VPs. Some work also uses additional phrases, such as KP/CaseP for clitic case
markers (Broadwell 2008). The number of functional positions is limited com-
pared to mainstream theories, and this is not merely a stipulation: LFG requires
all constituency in a given language to be empirically motivated in a way that
is more narrow than in frameworks that represent the bulk of syntactic infor-
mation in phrase structure (such as transformational frameworks). Specifically,
heads may only be stipulated if there is actual lexical material that can occupy
them; therefore, even the existence of projections such as CP or IP cannot be au-
tomatically assumed for all languages. More abstract projections such as TopicP
or ForceP are not usually introduced because there are few suitable candidates
for the status of heads of these phrases, and little distributional evidence to argue
that their specifiers are distinct structural positions.

It turns out, in fact, that the set of functional projections listed above is fully ad-
equate for the overwhelming majority of languages. Moreover, some categories,
like DP, are not viewed as universal; authors, such as Sells (1994) for Japanese and

2The order of constituents is only an illustration; X′ theory itself does not impose any specific
order.

26



2 Core concepts of LFG

Korean, even limit the number of projections to one (X′) instead of the standard
two.

Fourth, LFG admits non-projecting words, i.e. lexical items that do not project
X′ and XP levels and hence cannot have complements or specifiers; their max-
imum projection level is 0. The category of non-projecting words is marked as
X0. Toivonen (2003) develops a detailed theory of non-projecting words. Being
maximal projections, they can appear at any non-head X′ theoretic positions (i.e.
specifier, complement, or adjunct), but the only dependents that they may have
are X0 adjuncts, which must themselves be non-projecting. Thus, an additional
type of adjunction – head adjunction – is introduced into X′ theory, illustrated in
(4), where X0 can also be X̂, but, crucially, Ŷ cannot be Y0, as that would violate
the principle that only maximal projections can appear in non-head positions.

(4) X0

Ŷ X0

The theory of non-projecting words presented in Toivonen (2003) further re-
quires that only same-level projections are adjoined; this effectively prohibits
adjoining non-projecting words at X′ or XP level, as well as any adjunction at X′
level in languages where XP is the maximal projection (because only maximal
projections can be adjuncts, as stated above). However, these more restrictive
principles are not accepted by all authors who use non-projecting words in their
analyses: for example, Spencer (2005) analyzes case markers in Hindi as P̂ nodes
adjoined to NP. X′ adjunction also remains quite common in LFG analyses.

Sadler & Arnold (1994) use non-projecting words to account for the behaviour
of English prenominal adjectives, which cannot have phrasal complements if
they are prenominal; consider the contrast between (5a) and (5b), while (5c) is
ungrammatical.

(5) a. a proud man
b. a man [proud of himself]
c. * a [proud of himself] man

Sadler andArnold argue that this contrast is due to the fact that prenominal adjec-
tives in English are non-projecting words with the category Â that are adjoined
to N0, while postnominal adjectives form AP and can therefore have comple-
ments. Thus the structure of (5a) is (6a), while the structure of (5b) is (6b).

27



Oleg Belyaev

(6) a. NP

Det

a

N′

N0

Â

proud

N0

man

b. NP

Det

a

N′

N′

N0

man

AP

A

proud

PP

of himself

Finally, X′ theoretic principles are not viewed as fully universal in LFG. The
most prominent exception is the exocentric category S.3 This category does not
have a “head” in the normal sense: it can be “headed” by a verb, but also by an
adjective or another nonverbal predicate; this is why the term S is used instead
of, for example, VP. The category S is most extensively used in nonconfigura-
tional languages (see Andrews 2023 [this volume]), but this is not its exclusive
role. Many languages have a fairly configurational structure overall but allow
predicates of various categories to be embedded under a general “predicative
marker”, which sits in the I or C node. For example, Kroeger (1993: 119) proposes
the phrase structure in (7) for Tagalog. The spec position can be optionally oc-
cupied by fronted constituents of several types (such as topics); the I node is
occupied by an auxiliary or the finite verb; the predicate XP can be a VP in ver-
bal sentences, but can also be AP or NP if the predicate is nonverbal. Hence, the
structure is indeed non-endocentric, and the use of the label S is justified.

3Bresnan et al. (2016: 112ff.) present the category S and non-projecting words as effectively the
only exceptions from standard principles of X′ theory. This, however, is a theoretical idealiza-
tion insofar as it applies to actual LFG analyses, which routinely make us of ad hoc categories
such as CL, CCL (for “clitic”, “clitic cluster”) in Bögel et al. (2010) and Lowe (2011). Such minor
innovations do not seem to influence the overall theory in any meaningful way, since they
deal with exceptional cases such as second-position clitics or language-specific, idiosyncratic
linear order distributions. It is also conceivable that many of them could be converted to anal-
yses that conform to X′ theoretic principles; for example, CCL could be treated as a phrase
consisting of multiple D̂ head adjunction (if the clitics are pronominal).

28



2 Core concepts of LFG

(7) IP

SPEC I′

I S

XP
(PRED)

NP
(SUBJ)

Since c-structure is not the only level of representation in LFG and models
only a subset of syntactic phenomena (word order, embedding), X′ theory does
not domuch by itself to limit the range of possible languages. Unlike frameworks
such as GB, for which the theory was originally devised, X′ positions are not
inherently or uniquely associated with specific syntactic or semantic functions
– as a result, X′ theory, understood purely in terms of c-structure, is little else
than a system of labeling nodes which allows us to generalize endocentricity at
constituent structure level. In order to make it more meaningful, it should be
augmented by a set of principles that determine the mapping of X′ positions to
f-structure – such a system has been developed in LFG, and will be described in
Section 4.3.

2.2 Lexical Integrity

As its name implies, Lexical Functional Grammar was originally conceived as a
lexicalist framework, a term that has several meanings. In the most general sense,
lexicalism implies that the features of individual syntactic elements (morphemes
and wordforms) as well as their subcategorization frames are determined in the
lexicon, and cannot be modified in the syntax (such as by promoting the direct
object in a passive construction). Lexicalism in this sense requires no additional
stipulation and is enforced by the LFG architecture itself: there are no transfor-
mations or other means to change the c-structure or f-structure features; syntax
can only mutiply define lexical features, but cannot override them.4

4Kaplan & Wedekind (1993) introduced the restriction operator: 𝑓 \A denotes the f-structure 𝑓
with the attribute a and its value removed. As suggested by an anonymous reviewer, this
violates lexical integrity in the weak sense, because here the syntax effectively accesses an
f-structure constructed otherwise (possibly by means of morphology) to retrieve some of its
information. This operator is not widely employed but was used in several LFG analyses, no-
tably in Asudeh (2012) and Falk (2010).

29



Oleg Belyaev

LFG is also lexicalist in another sense: it subscribes to the idea that the build-
ing blocks of syntax are not roots or affixes, but individual words that are con-
structed from different blocks and according to different rules than syntactic
constituents.5 Thus, the distinction between morphology and syntax in LFG is
viewed as fundamental, which is against the views of many recent approaches,
both formal (Bruening 2018) and typological (Haspelmath 2011).

This understanding of lexicalism is more formally termed lexical integrity
and has been given two formulations in LFG (8)–(9).

(8) Words are built out of different structural elements and by different
principles of composition than syntactic phrases. (Bresnan & Mchombo
1995: 181)

(9) Morphologically complete words are leaves of the c[onstituent]-structure
tree and each leaf corresponds to one and only one
c[onstituent]-structure node. (Bresnan et al. 2016: 92)

The definition in (8) is rather broad and can be compatible with several differ-
ent understandings of the morphology–syntax interface, as long as the border
between the two levels in maintained in some way. The second definition (9) is
more specific and is only compatible with one view of the interaction between
morphology and syntax. For example, lexical sharing, which allows one word to
correspond to two X0 nodes (discussed in Section 5.2.2), is compatible with (8)
but not with (9).

Interestingly, despite the rather strict definition in (9), much work in LFG uses
the concept of “sublexical nodes”, like in the rule for Greenlandic nouns in (10),
from Bresnan et al. (2016: 368). This is formally incompatible with (9) because
the preterminal nodes correspond to morphemes, not morphologically complete
nodes.

(10) N → Nstem Naff

In practice, such analyses are rather harmless because in their predictions they
are equivalent to analyses that strictly adhere to (9): since all morphology is sub-
lexical, the position of individual affixes cannot have any syntactic relevance,
as opposed to approaches like Distributed Morphology (Halle & Marantz 1993),
where morphological features often occupy higher-level functional projections

5These two understandings of lexicalism are sometimes conflated, but they are actually indepen-
dent: A framework may be lexicalist in the former sense, but consider the distinction between
words and syntactic phrases to be ephemeral.

30



2 Core concepts of LFG

that can scope over syntactic phrases. However, the use of sublexical represen-
tations does raise the issue of how the individual contribution of morphemes to
f-structure should be represented – standard LFG does not provide such a way,
because words are viewed as complete, unsegmented bundles of morphosyntac-
tic information. These issues are discussed in detail in Asudeh & Siddiqi 2023
[this volume].

3 F-structure

3.1 The notion of f-structure

As described in Belyaev 2023b [this volume], c-structure in LFG is complemented
by an additional level of representation called f-structure. F-structure is an
attribute-value structure that includes information on valency, grammatical func-
tions, and the features of clauses and their syntactic arguments. An f-structure
for the English sentence John has seen David is given in (11).

(11) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘see〈(𝑓 subj)(𝑓 obj)〉’
tense prs
aspect perf

subj [
pred ‘John’
pers 3
num sg

]
𝑔

obj [
pred ‘David’
pers 3
num sg

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦𝑓

F-structure is usually thought of as a set of attribute-value pairs, or a function
that maps attribute names to their values. This understanding of f-structure has
important implications for the architecture of LFG. Specifically, it implies that
f-structures are solely and uniquely defined by their set of attribute-value pairs;
there is no type system as in Carpenter (1992) or HPSG (Pollard & Sag 1994).
Therefore, there is no such thing as two different f-structures having the same
set of attributes and values; the notion of an empty f-structure is also problem-
atic, because all empty structures are equivalent to each other.6 This notion of

6Observe that the standard LFG notation does not even have away to specify empty f-structures,
on the tacit assumption that every non-vacuous f-structure would have at least one feature.
However, the notion could be useful e.g. for expletive arguments that are not specified for any
morphosyntactic features such as pers or case but simply appear to satisfy Completeness.

31



Oleg Belyaev

identity is somewhat mitigated by the uniqueness of pred values (Section 3.3.4),
which ensures that any two independently introduced, semantically interpreted
f-structures are formally distinct, even if they have the same lexical predicate
and the same set of morphosyntactic features. However, not all f-structures have
pred values; thus, for instance, all expletive subjects of the same form are de-
scribed by the same f-structure, regardless of the clauses in which they occur.
For example, all bundles of agreement features (agr) with the same set of values
are identical to each other. One agr bundle may be required to be identical to
another via agreement sharing (Haug & Nikitina 2015) in the f-description (us-
ing an equation such as (↑ agr)=(↑ subj agr)), but it will also be identical to all
other such bundles elsewhere in the same sentence, if they occur. Counterintu-
itive though such results may seem, it is not clear whether they can lead to any
undesirable effects in practice. The notion of identity of f-structures is important
for understanding the concept of structure sharing (Section 3.3.3).

3.2 The metalanguage

3.2.1 Defining equations

The standard notation for describing f-structures are defining equations.These
utilize the idea that f-structures are functions. For example, the value of the at-
tribute tense of f-structure 𝑓 in (11) can be defined by the equation (𝑓 tense)=prs.
It is possible to use nested function applications; thus, since (𝑓 subj)=𝑔, ((𝑓 subj)
pers) is equivalent to (𝑔 pers) and has the value 3. By convention, function appli-
cation is left associative, thus the parentheses can be omitted and the equation
written as (𝑓 subj pers)=3.
Defining equations are grouped into f-descriptions. An f-description describes

theminimal f-structure that satisfies all the equations included in the description.
The default relation between equations forming an f-description is conjunction,
but disjunction is also possible; for example, { (↑ subj pers)=1 | (↑ subj pers)=2 }
means that the subject is defined as being either 1st or 2nd person.7 For more
examples and discussion of defining equations, see Belyaev 2023b [this volume].

3.2.2 Constraining equations

The f-structure equations described above are all evaluated to construct the min-
imal complete and coherent f-structure that satisfies all of them together (if such

7Disjunction can be represented by either a vertical line ( | ) or a logical disjunction sign (∨);
both notations are found in the literature.

32



2 Core concepts of LFG

an f-structure exists). In this sense, they are “constructive”, or defining: infor-
mally, a defining equation introduces a feature value, regardless of whether it is
the only such equation or the same value is defined elsewhere.

But sometimes it is necessary to check the value of a feature without actually
assigning it. For example, a matrix verb might require its complement to have
a specific mood value, such as subjunctive. A defining equation like (↑ comp
mood)=sbjv also licenses a complement that is not marked for mood, i.e. does
not have a lexically defined mood feature (e.g., it is non-finite), which probably
leads to an incorrect prediction (unless additional constraints block the use of
such forms in this context).

Defining equations also provide no way to capture purely negative require-
ments, i.e. to ensure that a feature does not have a specific value. Clearly, this is
not equivalent to the disjunction of other possible values of the feature, since,
first, absence of the feature also satisfies the negative condition; second, the dis-
junction would freely assign any feature value except for the disallowed one,
which is definitely not what a negative constraint should do.

The need for such constraints is accounted for in LFG by allowing a special
class of equations, constraining equations. These equations are special in that
they do not participate in constructing the f-structure of the sentence. In contrast,
they are only evaluated once the minimal f-structure satisfying all defining equa-
tions has been constructed. Then, violation of a constraining equation leads to
ungrammaticality.

The simplest type of constraining equations involve equality relations; these
are annotated in the same way as defining equations, but with a subscript c, e.g.:
(𝑓 𝑎) =𝑐 x. To illustrate how constraining equations work, consider the following
f-descriptions and their corresponding f-structures:

(12) a. (𝑓 a) = x
(𝑓 b) = y →
(𝑓 a) =𝑐 x

[a x
b y]𝑓

(constraining equation satisfied)

b. (𝑓 b) = y ↛
(𝑓 a) =𝑐 x

[b y]𝑓 (constraining equation not satisfied)

In (12a), the constraining equation is satisfied because the feature value is defined
elsewhere. By contrast, in (12b) the constraining equation is not satisfied because
a has no value, and a value cannot be assigned by a constraining equation.

Note that constraining equations serve as a good illustration of the LFG prin-
ciple of separation between description and the object being described. Just as
multiple feature definitions are not represented in the f-structure, there is also no

33



Oleg Belyaev

trace of constraining equations having been “checked” in (12a). The only thing
a constraining equation does is to put constraints on permissible structures; it
does not contribute to the structures themselves.

The other two types of constraining equations are existential and negative
constraints. Existential equations check that a feature has any value rather than
testing for a specific value. They are written as simple function applications: (𝑓 𝑎)
means that the f-structure 𝑓 must have the feature 𝑎 with any value; the absence
of an equality statement indicates that we are dealing with an existential con-
straint. Negative constraints check that a feature does not have a given value
((𝑓 𝑎) ≠ 𝑥 ; this is compatible with the feature having no value) or has no value
(¬(𝑓 𝑎); this is called a negative existential constraint).

Constraining equations are also implicitly introduced by conditional state-
ments of the form 𝑋 ⇒ 𝑌 . These are, by definition (Bresnan et al. 2016: 61, Dal-
rymple et al. 2019: 168), equivalent to a disjunction: ¬𝐴 ∨ (𝐴𝑐 ∧ 𝐵).

Off-path constraints are conceptually similar to conditional statements in
that they are used to restrict function application to apply only to f-structures
satisfying additional conditions on their features. For example,

(𝑓 a
(→b) =𝑐 𝑦

c) = 𝑥

means that the value 𝑥 is only assigned to the feature c of the f-structure (𝑓 a) if
(𝑓 a) has an attribute b with the value 𝑦 . If only constraining equations are used
in such statements (as assumed in some of the literature), they could all in prin-
ciple be rewritten as conditional statements (provided that local names are used:
see Section 3.2.5), but the notation is more cumbersome. This is indeed assumed
in some LFG literature, and perhaps most prominently in the XLE implementa-
tion (Crouch et al. 2011), where defining equations cannot be used in off-path
constraints (see Patejuk & Przepiórkowski 2014: 7 for a discussion). However, in
spite of their name, the theoretical literature (Bresnan et al. 2016: 65, fn. 26, Dal-
rymple et al. 2019: 230) unanimously suggests that off-path constraints can be
constructive, and this feature is used in some LFG analyses.8 Off-path constraints
are especially important for Functional Uncertainty expressions (Section 3.2.3),
where a path may be a regular expression with many elements and the direct use
of conditional statements is impractical.

It is clear from the discussion above that while the concept of constraining
equations appears rather simple, it actually introduces some additional complex-
ity into the system. Instead of just evaluating an f-description that consists of a

8I am thankful to an anonymous reviewer for drawing my attention to this fact.

34



2 Core concepts of LFG

set of defining equations, the resolution of a valid f-structure for a sentence must
proceed through two steps: (a) evaluation of defining equations; (b) evaluation of
constraining equations. The notion of constraining equations has also raised con-
cerns about the metatheoretical status of LFG grammars; in particular, Pullum
(2013) and Blackburn & Gardent (1995) have argued that constraining equations
introduce a degree of procedurality into the framework, which is incompatible
with the notion of model-theoretic syntax. However, the specific implications of
this procedurality have never been systematically studied. It is clear that many,
perhapsmost, grammars that use constraining equations could be rewrittenwith-
out them, but with more notational complexity: for example, by requiring every
f-structure to have certain attributes, introducing “empty” attribute values (i.e.
treating “no value” as one of the values for atomic features), and so on. Thus the
issue might, in the end, be more of notation rather than substance, as suggested,
in fact, in the conclusion to Blackburn & Gardent (1995).

3.2.3 Functional uncertainty

The basic LFG architecture outlined in the preceding sections is adequate to han-
dle most phenomena that are relevant to the local structure of clauses and noun
phrases, such as argument selection and realization, modification, and word or-
der. However, it is missing a component that could handle unbounded dependen-
cies of any kind, i.e. those dependencies between elements of a sentence that are
not tied to any specific structural position. For example, consider the behaviour
of “cyclic” extraction from complement clauses. This process is in principle un-
bounded: an interrogative might be extracted from the matrix clause (13a), from
the complement clause (13b), from the complement of the complement (13c), etc.

(13) a. Who does John like _?
b. Who does John think Mary likes _?
c. Who does John believe David thinks Mary likes _?

For (13a), one might write an f-structure equation annotating the extracted NP
node such as (↑ obj)=↓, and augment it with a disjunction for each other avail-
able grammatical function – which, by itself, is not very elegant, but seems to ad-
equately account for the facts. To capture (13b), another set of equations must be
added to the disjunction, this timewith comp before obj: (↑ comp obj)=↓, etc. This
already seems like a rather artificial solution, but when (13c) is considered, yet
another disjunction is required: (↑ comp comp obj)=↓, etc. Clearly, the sequence
of comp’s can be arbitrarily large (if memory constraints and other extralinguis-
tic considerations are not taken into account), and any grammatical framework

35



Oleg Belyaev

must account for such boundless iteration. LFG, in its basic form described above,
clearly cannot do so.

Intuitively, what is required is to allow generalizing over sets of functional
equations, specifically, introducing disjunction to allow selecting different GFs,
and arbitrary iteration of comp. This is achieved by the notion of functional
uncertainty, introduced to LFG in Kaplan & Zaenen (1989b). In a nutshell, func-
tional uncertainty extends the LFG notion of function application by allowing
function names – 𝑥 in a statement like (𝑓 𝑥) – to be regular expressions. Thus,
a single f-structure equation may correspond to a (possibly infinite) set of state-
ments. More formally, functional uncertainty defines function application as in
(14).

(14) (𝑓 𝛼) = 𝑣 holds if and only if 𝑓 is an f-structure, 𝛼 is a set of strings, and
for some 𝑠 in the set of strings 𝛼 , (𝑓 𝑠) = 𝑣 .

Thus, the distribution in (13) can be captured by a single equation, such as in the
following rule for extracted interrogatives:

(15) CP ⟶ NP
(↑ dis) = ↓

(↑ comp* {obj | obj𝜃 | obl𝜃 }) = ↓

C′

↑=↓

The disjunction in the NP annotation is typically abbreviated as gf, which stands
for “any grammatical function” – but which GFs exactly can appear in a given po-
sition is construction-specific; for example, adjuncts may or may not be included
in the list of gfs. In general, so-called “island constraints” are typically captured
in LFG as constraints on paths in functional uncertainty equations (Kaplan&Zae-
nen 1989b). This correctly predicts that what counts as an “island” varies across
languages and across different constructions within the same language.

3.2.4 Inside-out function application and functional uncertainty

Standard function application in LFG is “outside-in”: an expression (𝑓 𝑎) refers
to a feature that belongs to the f-structure 𝑓 or at any deeper level of embedding.
This presupposes a “top-down” style of describing and constraining f-structures.
However, it may sometimes be useful to describe constraints on the external
distribution of an f-structure: for instance, limit the range of attributes it may
occupy, or define some features of “sister” f-structures, i.e. f-structures that oc-
cupy different attributes in the containing f-structure (e.g., subj constraining at-
tributes of obj). For this, LFG uses an additional mechanism called inside-out

36



2 Core concepts of LFG

expressions. Inside-out expressions use the same parenthetical notation as ordi-
nary LFG notation, but the f-structure now acts as an argument rather than as a
function. Formally, inside-out expressions are defined as follows:

(16) (𝑎 𝑓 ) = 𝑔 holds if and only if 𝑔 is an f-structure, 𝑎 is a symbol, and the
pair ⟨𝑎, 𝑓 ⟩ ∈ 𝑔.

Informally, this definition means that (𝑎 𝑓 ) refers to an f-structure 𝑔 (or set of
f-structures) whose attribute 𝑎 has 𝑓 as its value. For example, in (17), (a 𝑔) = 𝑓
holds because (𝑓 a) = 𝑔 is satisfied.

(17) [a [b x]𝑔 ]𝑓

Functional uncertainty can also be extended to cover inside-out expressions
by replacing 𝑎 in the definition above by a regular expression 𝛼 . The formal def-
inition is as follows:

(18) (𝛼 𝑓 ) ≡ 𝑔 if and only if 𝑔 is an f-structure, 𝛼 is a set of strings, and for
some 𝑠 in the set of strings 𝛼 , (𝑠 𝑓 ) = 𝑔.

Inside-out function application is by its nature a rather limited formal device
compared to “outside-in” function application. It is mainly used either to con-
strain the grammatical functions that an f-structure may occupy, or to constrain
the features of a higher-level f-structure. Importantly, it cannot actually be used
as the main mechanism of constructing f-structures. For example, one may for-
mulate a defining equation such as ((a 𝑓 ) a) = 𝑓 to force 𝑓 to appear in gram-
matical function a. But this definition will produce an “orphaned” f-structure
which can only be integrated with other f-structures by additional “outside-in”
statements, which, in turn, make such an inside-out statement redundant.

Which grammatical phenomena is inside-out functional uncertainty used to
model? Perhaps the simplest is the restriction of certain grammatical forms to
certain syntactic positions. For example, if nominative marking in a given lan-
guage is always associated with the grammatical function subj, one may avoid
referring to a feature case, instead adding (subj ↑) to the lexical entries of all
nominative nouns. This correctly ensures that nominative nouns are only used
in those positions which the grammar defines as being associated with subjects.

Another phenomenon where inside-out function application plays a role is
agreement on modifiers. For example, Russian adjectives agree in gender and
number with their heads. In standard LFG terms, this means that they are lexi-
cally annotated to co-define (together with the head noun) the features case and

37



Oleg Belyaev

num of the f-structures whose adjunct position they occupy. An adjective like
krasnaja ‘red’ (fem. sg.) might have the following lexical entry:9

(19) krasnaja Adj (↑ pred) = ‘red’
((adj ∈ ↑) num) = sg
((adj ∈ ↑) gend) = fem

A somewhat more exotic phenomenon that inside-out functional uncertainty
succeeds at capturing is “case stacking” in Australian languages, where NP-inter-
nal dependents are marked not only with the case that indicates their position
within this NP, but also for the case that indicates the position of this NP at a
higher level. Nordlinger (1998) develops a theory called Constructive Case10 to
account for this behaviour; “stacked” cases are treated as denoting the case values
of the f-structures that contain the noun as their complement, via the mechanism
of inside-out functional uncertainty.

3.2.5 Local names

F-structures in annotated rules are typically referred to relative to the nodes in
the phrase structure rule, i.e. using paths that begin in the metavariables ↑ or
↓. This is sufficient if these paths are uniquely and unambiguously resolved; the
relevant reference may just be repeated in all equations that use it. But in some
cases functional annotations do not uniquely identify f-structures that should be
referred to. This most frequently occurs when functional uncertainty is involved
(described in Section 3.2.3), i.e. when paths are regular expressions that can re-
solve to different f-structures. Another example is when the same set of rules can
apply to different f-structures, either in free variation or subject to additional con-
ditions. Consider a hypothetical language where verbal agreement morphology
can alternatively define the person and number features of the subject or direct
object.11 In this case, it is of course possible to introduce disjunction of two sets
of equations, as in (20), but this clearly misses the crucial generalization that the
same features are defined in both disjuncts.

9The set membership symbol ∈ may be used in inside-out statements just as well as it can be
used in outside-in statements. (a ∈ 𝑓 ) = 𝑔 entails that (𝑔 a ∈) = 𝑓 , which is notationally
equivalent to 𝑓 ∈ (𝑔 a). See Section 3.3.3.

10“Constructive” is, in fact, somewhat of a misnomer: as shown above, inside-out statements
cannot actually “construct” anything, but can only test for feature values of f-structures that
have already been constructed.

11This example is actually not so hypothetical: such an analysis of Dargwa is proposed in Belyaev
(2013), where person-number agreement can be associated with either subject or object, and
the choice is then “filtered” using a set of OT constraints.

38



2 Core concepts of LFG

(20) { (↑ subj pers) = 1
(↑ subj num) = sg
| (↑ obj pers) = 1
(↑ obj num) = sg }

A more economical way to formulate this constraint is to introduce a temporary
label for the f-structure involved – a local name – and then refer to this name in
the two equations assigning person and number features. Normal names in LFG,
by convention, are written with an initial % and assigned using the standard
equation operators, as in (21):

(21) { %agr = (↑ subj) | %agr = (↑ obj) }
(%agr pers) = 1
(%agr num) = sg

While local names are not very frequent in LFG analyses, their use is essential
for some phenomena where there is a need to consistently refer to an f-structure
whose identity is not uniquely deducible from its path (set members, functional
uncertainty, etc.).

3.2.6 F-precedence

The basic architecture of LFG is devised to be modular, such that different linguis-
tic phenomena are accounted for at separate levels. In the interaction between c-
and f-structure, c-structure is exclusively concerned with linear order and hier-
archical embedding, while f-structures do not reflect linear order or constituent
structure in any way. Therefore, linear order is relevant for most morphosyntac-
tic constraints only in a limited way, insofar as it distinguishes between differ-
ent c- to f-structure mappings (such as, for example, in English, where Spec,IP
is mapped to subject and precedes the verb and Comp,VP). Without extensions
to the standard LFG notation, there is no way to state a constraint like “the verb
agrees in person and number with whatever NP stands to its left”, because agree-
ment features are the domain of f-structure, and functional equations can only
refer to f-structure functions, not linear or constituent-based positions.

However, in certain cases linear order does seem to play a role in determin-
ing constraints on syntactic relations. A well-known example is the availabil-
ity of discourse anaphora between adverbial clauses and main clauses: If the
antecedent precedes the pronoun, coreference is possible regardless of which
clauses the two are located in (22), while cataphora (backwards anaphora) is only
possible if the cataphor stands in the subordinate clause (23).

39



Oleg Belyaev

(22) a. [ When Johni came ], I saw himi.
b. I saw Johni [ when hei came ].

(23) a. [ When hei came ], I saw Johni.
b. * I saw himi [ when Johni came ].

Such behaviour has been generalized since Langacker (1969) as “precede-and-
command”.12 Coindexation is possible if at least one of the following is true: the
antecedent c-commands13 the pronoun; the antecedent precedes the pronoun.

Similar constraints operate in other languages. For example, Mohanan (1982)
argues that in Malayalam, pronouns must follow their antecedents. In LFG, such
constraints can be captured using the relation of f-precedence (Kaplan & Zae-
nen 1989a), which is a way of introducing linear order constraints in f-structure
using the inverse projection 𝜙−1, which maps f-structures to the corresponding
c-structure nodes.

(24) 𝑓 f-precedes 𝑔 (𝑓 <𝑓 𝑔) if and only if for all 𝑛1 ∈ 𝜙−1(𝑓 ) and for all
𝑛2 ∈ 𝜑−1(𝑔), 𝑛1 c-precedes 𝑛2.

The formal definition in (24)14 essentially means that an f-structure 𝑓1 f-precedes
𝑓2 iff all c-structure constituents that map to 𝑓1 linearly precede the constituents
that map to 𝑓2. Given this definition, anaphoric constraints such as precede-and-
command may be formulated as the requirement that the pronoun’s antecedent
f-precede the pronun.

Note that f-precedence is a rather straightforward relation if an f-structure
corresponds to a single constituent. In more complex situations, such as when
discontinuous constituents are involved, or one of the elements does not have a
c-structure exponent, its application is not so intuitive. In particular, in the lat-
ter case, null elements f-precede and are f-preceded by all other elements in the
sentence, because one of the sets 𝑛1, 𝑛2 is empty. This property of f-precedence
is used to analyze the behaviour of null anaphora in languages like Malayalam
(Mohanan 1982) or Japanese (Kameyama 1985), where null pronouns behave dif-
ferently from full pronouns. For such languages, the definition in (24), combined

12The relevance of linear order has been hotly contested in the literature on anaphora, especially
in mainstream transformational grammar; for a recent take on precede-and-command, see
Bruening (2014). This is not relevant for our discussion, though, as within LFG no one ever
argued against linear-order constraints on anaphora.

13In LFG, c-command is replaced by outranking on the grammatical function hierarchy: see
Rákosi 2023 [this volume].

14C-precedence requires that all daughter nodes of a node precede all daughter nodes of another
node – essentially a linear precedence relation for c-structure constituents.

40



2 Core concepts of LFG

with the generalization in the preceding paragraph, correctly predicts that linear
order does not influence the anaphoric requirements of null pronouns (Dalrym-
ple et al. 2019: 257).

An alternative definition of f-precedence, that leads to a different treatment of
null pronouns, is proposed in Bresnan et al. (2016: 213):

(25) 𝑓 f-precedes 𝑔 if and only if the rightmost node in 𝜙−1(𝑓 ) precedes the
rightmost node in 𝜙−1(𝑔).

Under this definition, null pronouns in fact do not f-precede and are not f-prece-
ded by any constituent, because their inverse projections lack a rightmost node.
To capture the data of Japanese or Malayalam using this definition, a different,
negative formulation of the precedence binding constraint should be used: “The
domain of a binder excludes any pronominal that f-precedes it” (Bresnan et al.
2016: 213, emphasis mine), i.e. the pronoun must not f-precede its antecedent.
For more information on f-precedence and linear order constraints on anaphora
in general, see Rákosi 2023 [this volume].

Thus, the use of inverse projection does allow a degree of influence of linear
order on syntactic constraints, in a limited way (as intended): linear order may
serve as an additional constraint on relations formulated in f-structure terms, but
does not serve as the only or as the main factor determining these relations.

3.3 Attribute value types

3.3.1 General remarks

The system of attribute values in the core LFG architecture is very straightfor-
ward. There are only three types of values: atomic values, semantic forms and
other f-structures (of which sets are a special instance).

The simplicity of this system follows from the fact that, as mentioned above,
LFG has no type system for f-structures. This means that the list of potential at-
tributes and their values for any given f-structure is defined only by annotated
phrase structure rules and lexical entries. Thus, there is nothing in the formal
architecture or in any part of an LFG grammar that would prohibit a “clausal”
f-structure to have the feature case or a “nominal” f-structure to have the fea-
ture tense; such constraints are only implicit in the way these f-structures are
constructed and mapped from c-structure nodes.

Similarly, the attributes themselves are not by default associated with any spe-
cific value type: LFG grammars by themselves contain no stipulation of possible
attributes and the values they may take. Only grammatical function values are

41



Oleg Belyaev

required to be f-structures, and pred values to be semantic forms due to Com-
pleteness and Coherence (see Section 3.4). Nothing prevents the value for case
or pers to be an f-structure rather than an atomic value; in fact, the former option
has been used in analyses such as Dalrymple & Kaplan (2000).

This simplicity of the type system may be viewed as an advantage, as it sim-
plifies the LFG metalanguage without introducing unnecessary redundancy (see
Asudeh & Toivonen 2006: 412ff. for a criticism of the Minimalist feature system).
There are few problems that a more complex type system would solve, as the
architecture of a well-defined grammar typically prevents f-structures from be-
ing assigned incorrect attribute values. Still, sometimes it is necessary to check
that an f-structure belongs to a given type – for example, whether it is nom-
inal or clausal. LFG provides several ways to do so: one might directly check
the category of the corresponding c-structure node using an inverse projection
(Section 4.1), or check for certain characteristic attributes (such as case for nomi-
nals or tense for finite clauses) using constraining equations. The latter method,
however, is error-prone, as the grammar writer has to ensure that all relevant
f-structures have these attributes. This issue can be partly remedied using tem-
plates (Asudeh et al. 2013), but templates are an optional, purely notational de-
vice; care must be taken that templates are used consistently.

Another solution has been implemented in XLE, which allows the grammar
writer to optionally use feature declarations to describe the restrictions on
feature values (Crouch & King 2008). This is a robust system which, if employed
properly, can provide grammars with a higher degree of generalization while
also decreasing the number of accidental errors in feature descriptions. Unfortu-
nately, it is virtually unknown in the LFG theoretical literature, being meant as
an engineering solution rather than a theoretical proposal and limited to com-
putational work that uses XLE (see Forst & King 2023 [this volume] for more
detail).

3.3.2 Atomic values

The simplest type of attribute value is an atomic value: essentially a token that
represents a given value of a grammatical feature (e.g. acc for the feature case,
present for the feature tense, etc.). There is no single agreed-upon set of “stan-
dard” features and the valid values they might take: in principle, it is the task
of the grammar writer or analyst to determine the set of features required to
describe a particular language.

In current LFG practice, there is, however, a set of informal conventions on
the general inventory of atomic features. These fall into two types. The first type

42



2 Core concepts of LFG

are morphosyntactic features of the same kind as those standardly used in typol-
ogy and descriptive grammars: features such as case, tense, asp, pers, etc. An
overview of the use of features in syntactic and morphological description can
be found in Corbett (2012).

The second type are more technical features that are specific to the LFG under-
standing of specific syntactic phenomena. For example, Dalrymple (2001: 396ff.)
uses the feature ldd (for long-distance dependency) to mark whether an f-struc-
ture is available for extraction. If (𝑓 ldd) = −, the f-structure 𝑓 cannot be in the
path that specifies a long-distance dependency. This feature is checked by an off-
path constraint (see Section 3.2.2). These and similar constraints are discussed in
more detail in Kaplan 2023 [this volume].

Similarly, features such as prontype or nuclear are used in Dalrymple (1993),
Bresnan et al. (2016) to distinguish between different kinds of pronouns to ac-
count for the differences in binding constraints. See Rákosi 2023 [this volume]
for more detail.

In spite of the theoretical significance and cross-linguistic ubiquity of such fea-
tures as ldd and prontype, it is generally assumed that they are also not univer-
sal and not part of an innate grammatical blueprint (although, to my knowledge,
this question has never been explicitly discussed in the literature). Thus, while
Bresnan et al.’s (2016) approach to anaphora relies on grammar-wide constraints
and distinguishes pronouns via their features, Dalrymple (1993) rather assumes
that all binding constraints are lexically specified by the pronouns themselves.
The latter point of view is supported by the cross-linguistic diversity of binding
domains. It might be that both approaches are valid, but the efficiency of each
depends on the language in question. Hence, like in many other domains, LFG as
a framework is agnostic as to whether cross-linguistic similarities are due to in-
nate, universal constraints or are a result of independent, functionally motivated
convergence of grammars in the course of their evolution. Particular analyses
can strike a balance between these two factors that explain cross-linguistic sim-
ilarities.

3.3.3 F-structure

As seen in (11), f-structures can themselves serve as attribute values. F-structures
are predominantly values of grammatical functions such as subj, obj, etc., and
discourse functions such as dis (or topic and focus in earlier approaches; see
Belyaev 2023a [this volume]). F-structures are sometimes also used to represent
“compound” attribute values; for example, agreement features are sometimes rep-

43



Oleg Belyaev

resented as the “bundle” agr in (26), and pred values can be viewed as composite
(Section 3.3.4).

(26)
[
pred ‘house’

agr [pers 3
num sg]

]

Just as different atomic-valued attributes can have identical values, one f-struc-
ture can also serve as a value for several attributes. This phenomenon is called
structure sharing and is the closest LFG counterpart to the notion of “move-
ment” in transformational frameworks; it is discussed in more detail in Belyaev
2023b [this volume]. This configuration can be visually represented in two ways:
either the f-structure is fully spelt out in every occurence (27a), or only once –
then the other occurences are connected by lines (27b) or coindexed (27c).

(27) a.
⎡⎢⎢⎢
⎣

attr1 [a1 v1
a2 v2]

attr2 [a1 v1
a2 v2]

⎤⎥⎥⎥
⎦

b. [attr1 [a1 v1
a2 v2]

attr2
]

c. [attr1 [a1 v1
a2 v2]𝑓

attr2 𝑓
]

Some grammatical phenomena, in particular coordination, adjunction and fea-
ture indeterminacy, are represented in LFG via set-valued attributes, as in (28).

(28)

𝑓 :
⎡⎢⎢⎢
⎣

a

⎧⎪
⎨⎪
⎩

[distr1 l
distr2 m]

[distr1 l
distr2 n]

⎫⎪
⎬⎪
⎭

⎤⎥⎥⎥
⎦

At first sight, this may appear to violate the notion of f-structure as a function,
and the consequent Uniqueness constraint (Section 3.4.1). However, sets in LFG
are not multiple values of a single attribute; they are rather viewed as a special
kind of f-structure – a hybrid object that has both attributes that pertain to it
as a whole and attributes whose value is determined based on the values of the

44



2 Core concepts of LFG

set members. This is based on the distinction between distributive and non-
distributive features.15 The value of a distributive feature for a set is determined
as follows:

(29) If 𝑎 is a distributive feature and 𝑠 is a set of f-structures, then (𝑠 𝑎) = 𝑣
holds if and only if (𝑓 𝑎) = 𝑣 for all f-structures 𝑓 that are members of the
set 𝑠. (Bresnan et al. 1985, Dalrymple & Kaplan 2000)

A distributive feature for a set is only defined as having a value if it has this value
in all f-structures in the set. Thus, for (28), the equation (𝑓 a distr1) = l is true;
conversely, no equation invoking the feature distr2 (such as (𝑓 a distr2) = m
or (𝑓 a distr2) = n) can be satisfied, since the set elements differ in the value of
this feature. Crucially, there is no requirement that distributive features be the
same for all elements of a set unless they have been invoked; the structure in (28)
is valid as long as the grammar does not assign any value to (𝑓 a distr2).

While distributive features are resolved on the basis of their values for indi-
vidual members of a set, non-distributive features apply to sets as a whole:

(30) If 𝑎 is a non-distributive feature, then (𝑓 𝑎) = 𝑣 holds if and only if the pair
⟨𝑎, 𝑣⟩ ∈ 𝑓 . (Bresnan et al. 1985, Dalrymple & Kaplan 2000)

In (3.3.3), the value of the attribute a illustrates a set with a non-distributive
feature.

(31)

𝑓 :[a [
ndistr n

{[ndistr l]
[ndistr m]}

]]

This notation, standard in LFGwork, is meant to represent that, while the feature
ndistr has the values l and m for the individual set members, it has the value n
for the whole set. The equation (𝑓 a ndistr) = n is therefore satisfied regardless
of the set members’ values of ndistr.

Distributive and non-distributive features in LFG are used to model different
ways in which feature values are resolved and checked in coordination and sim-
ilar structures. For example, number is typically viewed as non-distributive, be-
cause a coordinate NP triggers plural agreement regardless of the number fea-
tures of its conjuncts. In contrast, case is usually distributive: when a case value
is assigned to a coordinate phrase, it must be borne by all its conjuncts. The is-
sue of sets and distributivity with respect to coordination is dealt with in Patejuk
2023 [this volume].

15This distinction is normally understood as being grammar-wide, or even universal; some au-
thors have recently proposed treating distributivity as a property of feature application, not
features as such; the most recent such account seems to be Przepiórkowski & Patejuk (2012),
and similar ideas are explored in Belyaev et al. (2015) and Andrews (2018).

45



Oleg Belyaev

3.3.4 Semantic forms

A semantic form is a special type of attribute value that is exclusively assigned
to the attribute pred. Semantic forms consist of the predicate name followed by
the list of its syntactic arguments; arguments that are assigned thematic roles
are written in angled brackets, while arguments that are not thematic (such as
expletive subjects or “raised” subjects and objects) are written outside angled
brackets. For example, the pred value for a transitive verb like ‘see’ will be ‘see
〈subj obj〉’. A verb like ‘rain’, which has no thematic arguments but an expletive
subject, will have the pred value ‘rain〈〉subj’. Finally, an “object raising” verb
like ‘believe’ will have the pred value ‘believe〈subj〉obj’: its subject is assigned
a semantic role, while its object is not.

In the preceding paragraph, arguments were represented as mere lists of gram-
matical function names. This convention, which is followed in much LFG work
(see e.g. Dalrymple 2001, Dalrymple et al. 2019), is but a simplification: argu-
ments inside pred values are usually understood as direct references to the cor-
responding attribute values. Thus, in the left-hand side of (32), the pred value
is represented as ‘see〈(𝑓 subj) (𝑓 obj)〉’. As observed in Kuhn (2003: 63), pred
values as used in typical LFG representations can be viewed as shorthands for
complex structures such as in the right-hand side of (32);16 fn is an abbrevia-
tion for functor; sfid stands for “semantic form identifier”, on which see be-
low. Similar structures are used in implemented parsers like the Xerox Grammar
Writer’s Workbench (Kaplan & Maxwell 1996) and the Xerox Linguistic Environ-
ment (XLE, Crouch et al. 2011; see Forst & King 2023 [this volume]).

(32)

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘see〈(𝑓 subj)(𝑓 obj)〉

subj [
pred ‘John’
num sg
pers 3

]

obj [
pred ‘David’
num sg
pers 3

]

⎤⎥⎥⎥⎥⎥⎥⎥
⎦𝑓

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

pred
⎡⎢⎢⎢
⎣

fn see
argument1
argument2
sfid 𝑖

⎤⎥⎥⎥
⎦

subj
⎡⎢⎢⎢
⎣

pred [fn John
sfid 𝑗 ]

num sg
pers 3

⎤⎥⎥⎥
⎦

obj
⎡⎢⎢⎢
⎣

pred [fn David
sfid 𝑘 ]

num sg
pers 3

⎤⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

16I follow the representation used by Kuhn (2003), which does not distinguish between thematic
and non-thematic arguments. In XLE, this is implemented by distinguishing between the at-
tributes arg1, arg2, … for thematic arguments and notarg1, notarg2, …. for non-thematic
arguments.

46



2 Core concepts of LFG

If semantic forms were just a bundle of a functor and one or more argument
slots, there would be no need to treat them as a special argument value type.
What distinguishes them from any other value is their uniqueness: each introduc-
tion of a pred value is treated as unique. That is, whenever an expression like
(𝑓 pred)=‘fn’ introduces a new semantic form, it is assigned a unique identifier,
even if it is lexically identical to another predicate. Thus the equivalence in (33):
each pred assignment is viewed as also introducing an invisible “index” to distin-
guish between individual pred values. Thus, if atomic values can be introduced
multiple times, pred values cannot; different grammatical or discourse functions
can have the same pred value only through structure sharing,17 when the whole
f-structure is constrained to be identical. In XLE and other implemented versions
of LFG, this uniqueness effect is achieved by including a special feature sfid in
the pred, that is assigned a unique value each time a pred is introduced in the
f-description.18

The uniqueness of pred values is needed to prevent multiple introduction of
arguments and will be discussed in Section 3.4.1.

(33) { (𝑓 pred) = ‘apple’
(𝑓 pred) = ‘apple’

} ≡ { (𝑓 pred) = ‘apple1’
(𝑓 pred) = ‘apple2’

}

In current LFG research, pred values mainly serve only to specify argument
lists to satisfy Completeness and Coherence, and to provide unique “labels” for
f-structures that have preds. Even this limited functionality is contested in the
literature, with some authors proposing to abandon f-structures in favour of a
purely semantic approach, see Section 3.4.4. Originally, however, preds were
thought to have a more central role, providing a kind of link from syntax to se-
mantics (Kaplan & Bresnan 1982). It is important to observe that preds are no

17Or, as an anonymous reviewer observes, through sharing of the PRED value itself, as e.g. in
the analysis of adjective coordination in Belyaev et al. (2015).

18XLE extends standard LFG by allowing any atomic value to be unique – an instantiated symbol
notated via a subscript following its name: val_. Thus in XLE, semantic forms do not seem
to require any special machinery as such. However, an anonymous reviewer observes that if
the left-hand side of (32) is indeed the abbreviation of its right-hand side, it should be possible
to manipulate argument structure in the syntax via equations such as (↑ pred argument3)=↓.
XLE seems to circumvent this by tacitly introducing a negative existential constraint that pre-
vents any additional attributes from appearing in pred except the ones included at its intro-
duction. This includes both argument features and any other feature names: both the XLE
version of the above statement and (↑ pred foo)=bar lead to an existential constraint viola-
tion. It is also impossible to “construct” a semantic form using a set of separate statements for
the individual features; thus even XLE does technically treat semantic forms as a special value
type.

47



Oleg Belyaev

longer viewed in these terms in the LFG literature; the functor names are only
arbitrary labels, and all semantic derivation is separate from syntax, being done
through Glue Semantics, described in Asudeh 2023 [this volume].19

3.4 Well-formedness conditions

There are three conditions that any f-structure must satisfy in order to be treated
as valid: Uniqueness (also known as Consistency), Completeness, and Coherence.
Any f-structure that violates these conditions cannot be part of a valid analysis
of any sentence, regardless of the rules of a particular grammar.

3.4.1 Uniqueness

3.4.1.1 Definition

Uniqueness (Consistency) is the requirement that every attribute in an f-struc-
ture must have a single value. Thus, the two equations in (34) do not describe
any valid f-structure.

(34) Ill-formed f-structure:

(𝑓 a) = l
(𝑓 a) = m [a l

m
]

𝑓
It should be noted that Uniqueness is not, in fact, a constraint that needs to be
stipulated separately: it follows from the notion of f-structure as a function, since
a function maps arguments to single values (thus defining a one-to-one or many-
to-one, but not a one-to-many or many-to-many correspondence).

3.4.1.2 Multiple specification of a value

Uniqueness does not in any way imply that multiple specification of an attribute
value is ruled out. When the same value is assigned to an attribute two or more
times, the resulting f-structure is valid, as seen in (35).

(35) (𝑓 a1 a2) = l
(𝑓 a1 a2) = l
(𝑔 a2) = l
(𝑔 a3) = m
(𝑓 a1) = 𝑔

[a1 [a2 l
a3 m]

𝑔
]

𝑓

19A kind of hybrid approach is proposed in Andrews (2008), which introduces a variant of Glue
Semantics where meaning is at least in part derived from f-structure feature values; in this
approach, pred features do play a prominent role in semantic composition.

48



2 Core concepts of LFG

In (35), the attribute (𝑔 a2) is assigned its value three times and referred to in two
different ways, but this “history” of its origin is not displayed in the resulting f-
structure and is not recoverable from it in any way. This is an illustration of the
LFG distinction between a description and the object that it describes, a crucial
feature of LFG that separates it from most other frameworks, where syntactic
constraints are usually encoded in the structure itself in one way or another.

Turning to a linguistically meaningful example, this distinction between de-
scription and object is manifest in the standard LFG approach to agreement (see
Haug 2023 [this volume] for more detail). Agreement targets do not normally
have a “copy” of their controller’s features; they only lexically specify the same
features that are separately specified by the controller. If there is a conflict, the
resulting f-structure is invalid. If there is no conflict, the agreement features are
displayed in the f-structure once and there is nothing in the f-structure indicating
that agreement feature checking has taken place. Compare the Italian examples
(49) and (50) below, which map to the same f-structure even though the person-
number features are described in two positions in (49) but defined once in (50).

3.4.1.3 Uniqueness and pred values

One place where multiple specification is virtually prohibited is pred features,
whose values are special objects called semantic forms. As described above in
Section 3.3.4, each assignment of a pred value is treated as a unique object; it is
thus impossible to assign a pred value more than once, even if the value to be
assigned has the same functor name.

The reason why pred values are treated in this way is to ensure that each
argument position, and each predicative element in general, is instantiated by
exactly one lexical head. Since there is no one-to-one correspondence between c-
structure positions and f-structure functions, this cannot, in the general case, be
ensured by phrase structure rules alone. Even in a configurational language like
English, a displaced constitutent is not directly linked to its “original” (normal,
unmarked) position at c-structure; consequently, the c- to f-structure correspon-
dence allows introducing it twice, as in (36).20

20For the sake of exposition, I assume that the topicalized direct object appears as an IP adjunct
– this carries no theoretical significance.

49



Oleg Belyaev

(36) Ill-formed f-structure for *John, Mary saw John:

IP

NP
(↑ topic) = ↓
(↑ obj) = ↓

N
↑=↓

John
(↑ pred) = ‘John’

(↑ num) = sg
(↑ pers) = 3

IP
↑=↓

NP
(↑ subj) = ↓

N
↑=↓

Mary
(↑ pred) = ‘Mary’

(↑ num) = sg
(↑ pers) = 3

I′
↑=↓

VP
↑=↓

V
↑=↓

saw
(↑ pred) = ‘see〈(↑ subj)(↑ obj)〉’

(↑ tense) = pst

NP
(↑ obj) = ↓

N
↑=↓

John
(↑ pred) = ‘John’

(↑ num) = sg
(↑ pers) = 3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

topic
pred ‘see〈subj obj〉’
tense pst

subj [
pred ‘Mary’
num sg
pers 3

]

obj

⎡⎢⎢⎢
⎣

pred
‘John1’
‘John2’

num sg
pers 3

⎤⎥⎥⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

What ensures the ungrammaticality of (36) is precisely the uniqueness of pred
values. This effect is even more pronounced in non-configurational languages,
where no c-structure position is tied to any grammatical function, and any num-
ber of NPsmay be freely mapped to any grammatical function; see Andrews 2023
[this volume] for detail.

3.4.2 Completeness

The Completeness condition requires every grammatical function governed by
the pred value of a given f-structure to exist in this f-structure. In other words, all
arguments of a predicate must be “filled” by f-structures. This disallows examples
such as (37).

50



2 Core concepts of LFG

(37) Ill-formed f-structure for *Mary saw:

IP
↑=↓

NP
(↑ subj) = ↓

N
↑=↓

Mary
(↑ pred) = ‘Mary’

(↑ num) = sg
(↑ pers) = 3

I′
↑=↓

VP
↑=↓

V
↑=↓

saw
(↑ pred) = ‘see〈(↑ subj)(↑ obj)〉’

(↑ tense) = pst

⎡⎢⎢⎢⎢
⎣

pred ‘see〈subj obj〉’
tense pst

subj [
pred ‘Mary’
num sg
pers 3

]

⎤⎥⎥⎥⎥
⎦

C-structure rules cannot be conditioned by argument structure; hence, Com-
pleteness violation is the only reason why this sentence is ungrammatical. The
c- to f-structure correspondence is otherwise entirely valid.

It is important to understand that completeness only refers to f-structure and
has nothing to do with whether arguments are expressed overtly or covertly.
Since LFG avoids empty nodes, covert subjects in pro-drop languages do not
correspond to any c-structure NP or DP, but Completeness still has to be satisfied
at f-structure. This is normally done via equations introducing the pronominal
pred of the subject in the verb’s lexical entry: see (48) below.

An additional Completeness constraint has to do with the parameter of seman-
tic argumenthood. It states that semantic arguments (i.e. those whose names
stand within angled brackets in the pred) have to themselves contain a pred.
Conversely, non-arguments (those whose names stand outside angled brackets)
are required not to contain a pred, unless these f-structures are arguments or ad-
juncts elsewhere (such as, for example, in raising constructions). This is meant
to exclude, respectively, expletive arguments in positions where semantic roles
are assigned (38), and meaningful NPs in expletive positions (39).

51



Oleg Belyaev

(38) *I saw there.

(39) *The sky rained.

3.4.3 Coherence

The Coherence condition is the converse of Completeness: no governable func-
tions (i.e. f-structure functions representing grammatical functions such as subj,
obj, etc., see Belyaev 2023a [this volume]) may appear in an f-structure without
being listed in a pred value. This ensures that no “orphaned” arguments appear
in an f-structure, disallowing examples such as (40).

(40) Ill-formed f-structure for *Mary came John:

IP
↑=↓

NP
(↑ subj) = ↓

N
↑=↓

Mary
(↑ pred) = ‘Mary’

(↑ num) = sg
(↑ pers) = 3

I′
↑=↓

VP
↑=↓

V
↑=↓

came
(↑ pred) = ‘come〈(↑ subj)〉’

(↑ tense) = pst

NP
(↑ obj) = ↓

N
↑=↓

John
(↑ pred) = ‘John’

(↑ num) = sg
(↑ pers) = 3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pred ‘come〈subj〉’
tense pst

subj [
pred ‘Mary’
num sg
pers 3

]

obj [
pred ‘John’
num sg
pers 3

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, again, the c- to f-structure correspondence itself is valid, but the resulting
f-structure is incoherent.

52



2 Core concepts of LFG

The coherence condition only applies to argumental grammatical functions
and does not say anything about adjuncts or discourse functions. Where these
elements may appear is constrained by a separate condition called Extended
Coherence (Bresnan et al. 2016: 63). Extended Coherence requires that the f-
structure where adjuncts appear have a pred value. This ensures that no adjuncts
appear in pred-less f-structures. Discourse / overlay functions (dis in more re-
cent approaches, topic and focus in earlier work) are required to be linked to a
grammatical function in some way: either functionally (via structure sharing) or
anaphorically. For more information on the differences between various types
of grammatical functions, see Belyaev 2023a [this volume].

3.4.4 Redundancy of PRED?

The description of Completeness and Coherence in this chapter follows the tradi-
tional LFG model, which had little to say about semantics; therefore, all valency
restrictions had to be modeled at f-structure. Since at least the papers in Dal-
rymple et al. (1993), Glue Semantics (see Asudeh 2023 [this volume]) has been
gaining acceptance in LFG as the model of the syntax-semantics interface. Glue
Semantics is resource-sensitive, which automatically ensures both Completeness
and Coherence: Completeness, because all premises of the meaning constructor
introducing the main predicate have to be saturated; Coherence, because no un-
used resources have to be left. The role of uniqueness of pred for ensuring lack
of multiple argument introduction / duplicate heads (Section 3.4.1) also follows
fromGlue semantics due to the fact that any resource can only be consumed once.
Therefore, many authors, among others Kuhn (2001), Asudeh & Giorgolo (2012),
Asudeh et al. (2014), have argued that pred features in their original form are no
longer necessary in LFG. At least argument lists can, for the most part, be safely
dispensed with.21 Many authors, therefore, continue to use pred values but only
include the name of the functor, not arguments in angled brackets; the remaining
role of pred values is only to provide an index for the f-structure, guaranteeing
its uniqueness (that may be relevant for purely syntactic purposes that are not
handled in semantics), and to provide information on the lexical content of its
head.

21Non-thematic arguments like it in it rained might still be relevant insofar as they are not
selected by any semantic predicate. However, these arguments may be forced to appear using
existential constraining statements.

53



Oleg Belyaev

4 The c- to f-structure mapping

4.1 Annotated c-structure rules

The metalanguage discussed in the preceding section can describe individual f-
structures, but cannot, by itself, generate or evaluate natural language expres-
sions. F-descriptions must come from somewhere. The only generative compo-
nent in LFG is c-structure; therefore, phrase structure rules must be coupled with
some mechanism that specifies how the nodes in the c-structure tree are mapped
to f-structures – the projection function 𝜙. In LFG, this is normally done using
annotated phrase structure rules where nodes at the right-hand side are
supplemented by f-descriptions that reference the c- to f-structure mapping. This
referencing is done by introducing two additional notational symbols:

(41) the current c-structure node: ∗
the immediately dominating c-structure node: ∗̂

These are normally not used directly in LFG grammars; instead, two metavari-
ables ↓ and ↑ are used, which signify the following:

(42) ↓ = 𝜙(∗) (the f-structure corresponding to the current
c-structure node)

↑ = 𝜙(∗̂) (the f-structure corresponding to the immediately
dominating c-structure node)

This notation allows formulating rules of the type:

(43) VP ⟶ V
↑=↓

NP
(↑ obj)=↓

In (43), the annotation for V stands for “this node (V)maps to the same f-structure
as the dominating node (VP)”, while the annotation for NP stands for “this node
(NP) maps to the obj attribute of the f-structure of the dominating node (VP)”.
The mapping that this rule defines is illustrated in (44). The nodes VP and V map
to the same f-structure labeled as 𝑓 , while NP maps to the f-structure labeled as
𝑔 – the direct object of the clause.

(44)
VP

V NP

[obj [ ]𝑔 ]𝑓

54



2 Core concepts of LFG

The LFG metalanguage also allows for a notation for the inverse projection
𝜙−1, that maps f-structures to the c-structure node(s) that map to them. This
mapping is one-to-many and thus, unlike the direct projection, not a function.
For example, in (44), 𝜙−1(𝑓 ) refers to two nodes: VP and V. The inverse projection
is, by design, seldom used and, in fact, rarely required; but it is indispensable for
certain construction which place selective requirements on the categorial status
of their elements, such as the verb wax in examples like wax poetical, which is
only compatible with an AP complement (the construction is discussed in Pollard
& Sag 1994; for an LFG implementation, see Dalrymple et al. 2019: 6.10.3).

4.2 Some consequences of the mapping

4.2.1 Locality

The annotated rule format described in the preceding section is not merely a
question of notation; it defines a rather rigid constraint on the way c-structure
nodes can be mapped to f-structure. Namely, the mapping is strictly local: it can
refer only to the nodes that are involved in a given phrase structure rule. It is
not possible to freely traverse the tree and refer to, say, the node dominating
the mother node, the child node of the current node, or the root node. LFG as-
sumes that no linguistically meaningful generalizations can be captured using
such “long-distance” references. For the majority of cases, this is clearly true,
and consequently, there have been no serious attempts to extend the LFG meta-
language in this direction.22

However, the strict locality of c-structure to f-structure mapping does create
problems for the analysis of certain idiomatic combinations – multi-word ex-
pressions (MWEs), as they are called in the literature. Such MWEs often span
whole syntactic phrases, and the lexical constraints involved cannot be captured
locally. One solution that has been proposed in LFG is to replaced the context-
free c-structure by a variant of Tree-AdjoiningGrammar (TAG), see Findlay (2017,
2019); this proposal is described in some detail in Findlay 2023 [this volume].

Within the local domain of c-structure rules, the mapping to f-structure is fur-
ther constrained in that it is only possible to refer to the immediately dominating
and current nodes, but not to any of the sister nodes. Unlike the locality con-
straint, this has been challenged in some LFG literature. For example, Dalrymple

22As observed by an anonymous reviewer, if ↑ and ↓ are only abbreviations of 𝜙(∗̂) and 𝜙(∗), it is
possible to also use 𝜙( ̂∗̂) and so on,making annotated rules potentially non-local. Asmentioned
above, low-level “designators” like ∗ are not normally used in LFG analyses: grammars are
expected to operate only with ↑ and ↓.

55



Oleg Belyaev

(2001: 120), Dalrymple et al. (2019: 222–223), developing the ideas of Nordlin-
ger (1998), extend this notation by defining the metavariables <∗ and ∗> for “left
sister of the current node” and “right sister of the current node”, respectively;
the corresponding f-structures are 𝜙(<∗) and 𝜙(∗>). Similarly, XLE defines the
metavariables LS* and RS* for the same concepts.

The status of such innovations in the general LFG framework is uncertain.
On the one hand, the analyses that introduce such notational conventions make
convincing cases that they are necessary for analyzing certain phenomena, or at
least vastly simplify such analyses. On the other hand, it is telling – and usually
implied – that their use is somewhat exceptional and limited to a handful of spe-
cific phenomena. The fact that phrase structure nodes and lexical items do not
refer to the information contributed by their left or right sisters in the vast major-
ity of cases seems to be an important cross-linguistic generalization – one that
is lost if this possibility is introduced in the formalism. If such formal devices are
necessary, additional theoretical stipulations should supposedly constrain their
use, but in practice, this possibility is almost never explored.

4.2.2 Monotonicity

As Bresnan et al. (2016: 73ff.) observe, the limitations of the metalanguage de-
scribed above (even if additional designations like <∗ and ∗> are included) lead
to several important consequences for grammatical architecture. Specifically, the
locality of the c- to f-structure mapping leads to the monotonicity of information
flow in the syntax: the f-structure of a larger fragment is always more specific
than the f-structure of a smaller fragment.

Let us first consider what “being more specific” means for an f-structure. By
definition, f-structures are sets of feature-value pairs. It is clear, then, that 𝑔 in
(45) is more specific than 𝑓 , as it has exactly the same features and values as 𝑓
and one additional feature.

(45)
[a x
b y]𝑓

[
a x
b y
c z

]
𝑔

Now consider a more complex case. In (46), 𝑓 and 𝑔 have the same features,
but intuitively, 𝑔 is more specific than 𝑓 because the f-structure value of a in 𝑔
is more specific than the value of a in 𝑓 .
(46)

[a [c z]
b y

]
𝑓

[a [c z
d m]

b y
]

𝑔

56



2 Core concepts of LFG

Thus, specificity can be defined recursively: 𝑔 is at least as specific as 𝑓 if for
every attribute 𝑎 in 𝑓 , (𝑔 𝑎) = (𝑓 𝑎) or (𝑔 𝑎) is at least as specific as (𝑓 𝑎) (Bresnan
et al. 2016: 74). This relation is essentially equivalent to subsumption (Dalrymple
et al. 2019: 240), and can be notated accordingly: 𝑔 ⊒ 𝑓 or 𝑓 ⊑ 𝑔 means that 𝑔 is
at least as specific as 𝑓 , or 𝑓 subsumes 𝑔.

Now recall that every f-description can in principle correspond to infinitely
many f-structures that satisfy it. Let us, then, define 𝜙(𝑑) to be the smallest f-
structure 𝜙 that satisfies 𝑑 ; this gives the mapping 𝜙 from the set of functional
descriptions𝐷 to the set of f-structures 𝐹 . This mapping is monotonic: the larger
the f-description 𝑑 , the more specific the corresponding f-structure 𝑓 . In other
words, 𝜙 ∶ 𝐷 → 𝐹 has the property that if 𝑑 ⊆ 𝑑′ and both 𝑑 and 𝑑′ have
f-structure solutions, then 𝜙(𝑑) ⊑ 𝜙(𝑑′).

This property of the mapping between f-descriptions and the corresponding
f-structures follows from the nature of the f-structure equations: New equations
can only specify additional information about the f-structure or check existing
information; they cannot, as it were, “delete” existing feature values or otherwise
make the structure less specific.

4.2.3 Fragmentability

Another feature of syntax in the LFG architecture that follows, in part, from
monotonicity is fragmentability of language (Bresnan et al. 2016: 79–82). Re-
call that f-descriptions in annotated c-structure rules can only refer to the f-
structures of the nodes involved in the rule (the node at the left side of the rule
– the dominating node – and its daughters). This means that, the larger the tree,
the longer its f-description; due to monotonicity, the f-structure of a larger tree
fragment is, then, always more specific than the f-structure of any of its subtrees.
Therefore, a valid f-structure can be constructed for any tree fragment dominat-
ing an arbitrary sequence of terminal nodes (a substring of a complete sentence),
and this f-structure will not be overridden by any additional information that is
contained in the complete sentence (unless it renders the f-structure ill-formed,
in which case the sentence is ungrammatical).

Note that this property of the c- to f-structure correspondence does not de-
pend on whether the tree fragment corresponds to a sequence of terminal nodes
in a complete sentence; it may even not be a constituent. Any sentence frag-
ment is “self-contained” in the sense that its content is not modified by additional
nodes in the tree.23 Consider the c- and f-structures in (47). Here, the combina-

23Note, however, that a tree fragment may be ambiguous between two or more interpretations;
this ambiguity may be resolved by further material in the tree.

57



Oleg Belyaev

tion “thinks that”, which is not even a constituent in a fully formed sentence,
contributes the argument structure of the matrix clause, the person and num-
ber features of the subject, and the complement type. It can be extended both
upwards (with the addition of a subject) and downwards (with the addition of
a complement clause), with f-structure information increasing monotonically in
both cases.

(47)
…

VP

V
↑=↓

thinks
(↑ pred) = ‘think〈subj comp〉’

(↑ subj pers) = 3
(↑ subj num) = sg

(↑ comp ctype) ==𝑐 that

CP
(↑ comp)=↓

C
↑=↓

that
(↑ ctype) = that

…

⎡⎢⎢⎢⎢
⎣

pred ‘think〈subj comp〉’
tense prs

subj [pers 3
num sg]

comp [ctype that]

⎤⎥⎥⎥⎥
⎦

Within the non-transformational architecture of LFG, the properties of mono-
tonicity and fragmentability may seem trivial. But this is not so for transforma-
tional frameworks, where elements may be extracted from within constituents,
thus violating the principle of fragmentability: sentence fragments may become
modified during derivation, losing some of the information they initially con-
tain. Fragmentability captures the fact that sentence fragments frequently occur
in natural discourse and are parsed without effort by native speakers.

4.2.4 Non-configurationality

Another consequence of the mapping between c- and f-structure is non-con-
figurationality of language. This property means that information in the f-
structure does not necessarily correspond to specific positions in the tree. Thus,
features of a single constituent may be “collected” from several nodes or assigned
several times in different positions. This is usually related to the interaction be-
tween syntactic and morphological encoding.

58



2 Core concepts of LFG

For example, in Italian, a pro-drop language, a third person singular verb form
might be defined as in (48) – with the optional assignment of a pred feature to
the subject (the standard analysis of pro-drop in LFG). If there is a subject NP
in Spec,IP, this annotation is not selected, as it would lead to a pred conflict. If,
however, there is no overt subject, this annotation must be used, because other-
wise the resulting f-structure would violate Coherence: subj would have no pred
value. Both options can be seen in (49) and (50).

(48) dorme V (↑ pred) = ‘sleep〈subj〉’
(↑ tense) = prs
(↑ subj) = ↓

((↓ pred) = ‘pro’)
(↓ pers) = 3
(↓ num) = sg

(49) IP

NP
(↑ subj) = ↓

N
↑= ↓

Marco
(↑ pred) = ‘Marco’

(↑ pers) = 3
(↑ num) = sg

I′
↑= ↓

I
↑= ↓

dorme
(↑ pred) = ‘sleep〈subj〉’

(↑ tense) = prs
(↑ subj) = ↓

(↓ pred) = ‘pro’
(↓ pers) = 3
(↓ num) = sg

⎡⎢⎢⎢
⎣

pred ‘sleep〈subj〉’

subj [
pred ‘Marco’
pers 3
num sg

]
⎤⎥⎥⎥
⎦

59



Oleg Belyaev

(50) IP

I′
↑= ↓

I
↑= ↓

dorme
(↑ pred) = ‘sleep〈subj〉’

(↑ tense) = prs
(↑ subj) = ↓

(↓ pred) = ‘pro’
(↓ pers) = 3
(↓ num) = sg

⎡⎢⎢⎢
⎣

pred ‘sleep〈subj〉’

subj [
pred ‘pro’
pers 3
num sg

]
⎤⎥⎥⎥
⎦

Thus, in Italian, the pers and num features of the subject are always assigned
at the I node, and they may also be assigned at the N head, if it is present. The
pred feature, in contrast, can be supplied either at the I node (if no overt head is
present) or at the N node. This means that even in languages with relatively rigid
word order and clausal phrase structure such as Italian (and English, although ex-
amples are less illustrative; see Bresnan et al. 2016), there is no universal mapping
between c-structure positions and f-structure features.

“Non-configurationality” is usually understood in a more narrow sense, de-
scribing languages with no evidence for a hierarchical clause structure, such as
Warlpiri (Hale 1983, Austin & Bresnan 1996). In (51), fromAustin & Bresnan (1996:
229), two NPs, one having a head and the other only specifying an adjunct, map
to the same f-structure function subj. Thus information that is split at f-structure
is collected together at f-structure.

60



2 Core concepts of LFG

(51)

IP

NP
(↑ foc)=↓
(↑ subj)=↓

kurdu-jarra-rlu
child-dual-erg

I′
↑=↓

I
↑=↓

ka-pala
pres-3dusubj

S
↑=↓

NP
(↑ obj)=↓

maliki
dog.abs

V
↑=↓

wajilipi-nyi
chase-npast

NP
(↑ subj)=↓

wita-jarra-rlu
small-dual-erg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘chase〈subj obj〉’
tense npast
aspect pres.imperf
foc

subj
⎡⎢⎢⎢
⎣

pred ‘child’
num dual
case erg
adj {[pred ‘small’]}

⎤⎥⎥⎥
⎦

obj [
pred ‘dog’
num sg
case abs

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

These, of course, are only more radical manifestations of the phenomenon
illustrated above. In Italian, the features of certain grammatical functions can be
defined in different positions, but these positions, at least, are generally fixed,
such that the overt subject, if present, occupies the Spec,IP postion, the full NP
direct object occupies Comp,VP, and the verb provides the agreement and pred
features of the subject. In radically non-configurational languages, in contrast,
there is no association between c-structure positions and grammatical functions
at all: any NP daughter of the S node can bemapped to any grammatical function,
and any category, not only the verb, can function as the predicate of the clause.
Non-configurational syntax and its challenges are described in more detail in
Andrews 2023 [this volume].

61



Oleg Belyaev

4.2.5 Equality, unification, and non-compositionality

As seen in Belyaev 2023b [this volume] and elsewhere above, statements speci-
fying the equality of one f-structure to another – most prominently, ↑=↓ – play
a key role in the LFG c- to f-structure mapping and syntactic analyses. These
kinds of statements allow mapping more than one c-structure node to the same
f-structure and permit structure sharing and the checking of compatibility of f-
structure features. Equality in LFG is very similar in its effects to unification
found in many other non-transformational formalisms – such that LFG itself is
included in the class of unification-based grammars in Shieber (1986).

However, as Kaplan (1989: 8ff.) points out, there is a crucial difference be-
tween LFG grammars and most unification-based frameworks (GPSG, HPSG,
etc.): namely, the distinction between linguistic representations and the descrip-
tions of said representations. The clearest case of this distinction are constraining
equations, which impose additional constraints on admissible f-structures which,
if not violated, do not show up anywhere in the f-structure. Defining equations
behave similarly: the same feature may be defined several times in the tree, but
the f-structure will contain no trace of its “pedigree”: only the resulting feature
value will be included.

Another way in which LFG grammars are different from unification grammars
is their non-compositionality. Even if a c-structure node is annotated with the
“unificational” statement ↑=↓, the f-structure it maps to in the complete sentence
may contain additional values that are introduced higher in the tree. Thus, in
(52) the VP node maps to an f-structure that includes a subj feature that is not
introduced anywhere in the VP subtree.

62



2 Core concepts of LFG

(52)

IP

NP
(↑ subj) = ↓

N
↑=↓

John
(↑ pred)=‘John’

(↑ pers) = 3
(↑ num) = sg

I′
↑=↓

VP
↑=↓

V
↑=↓

came
(↑ pred) = ‘come〈(↑ subj)〉’

(↑ tense) = pst

⎡⎢⎢⎢⎢⎢
⎣

pred ‘come〈(𝑓 subj)〉’
tense past

subj [
pred ‘John’
pers 3
num sg

]
𝑔

⎤⎥⎥⎥⎥⎥
⎦𝑓

In a single-tier unificational model like GPSG or HPSG, where the counterpart to
f-structure information directly occupies phrase structure nodes together with
categorial information, the flow of information would be different: The content
of a dominating node would be a function of the content of its children, hence,
information contained in VP would be a subset of the information contained in
IP. In LFG, as discussed above, f-descriptions do indeed increase monotonically,
and a fragment associated with a node like VP does indeed contain a subset of the
information contained in a larger constituent. However, in the full structure, this
is not the case: every node mapped to a given f-structure maps to all the infor-
mation contained in this f-structure, even to the information that is introduced
only higher above.

4.3 Regularities in the c- to f-structure correspondence

In Section 2.1, I briefly described X′ theory in the way that it is used in most
LFG work. However, given that c-structure plays a limited role in LFG compared
to the frameworks for which X′ theory was originally devised, in this form it
amounts to little more than a system for labelling nodes. In order to give signif-
icance to the notion of being a head, a specifier, a complement, or an adjunct,

63



Oleg Belyaev

X′ theory must be augmented by f-structure mapping principles.24 A set of such
principles is broadly accepted in LFG, although some details vary. For a more de-
tailed exposition of X′ theory, see Dalrymple et al. (2019), Bresnan et al. (2016).

4.3.1 Heads

Headedness is a key concept of X′ theory; all projecting nodes, i.e. preterminal
nodes (X0) and intermediate projections (X′), are heads. We saw in all exam-
ples above that all projections of a single X′ category are mapped to the same f-
structure, and this is for good reason: X-bar theory aims to model endocentricity,
and so heads map to a “matrix” f-structure while specifiers, adjuncts, and comple-
ments (with the exception of functional categories) map to its dependents. Thus,
heads are always annotated as ↑=↓. This principle was first proposed in Bres-
nan (1982a) and further developed in Zaenen (1983), where it is called the Head
Convention. Additionally, XP is also annotated as ↑=↓ when other categories are
adjoined to it.

This principle of head annotation allows us to formalize endocentricity as
the requirement that every lexical category have a head (Bresnan et al. 2016), or,
more correctly, an extended head (see below), because some phrases can have a
lexically instantiated functional head but no lexically instantiated lexical head.

4.3.2 Complements

Complements are annotated differently depending on whether they are attached
to functional or lexical heads. In essence, functional projections are little more
than extensions of lexical projections, and generally map to the same f-structure:
for example, CP, IP and VP map to the same clausal structure, while DP and NP
map to the same nominal structure. Thus, complements of functional projections
are f-structure co-heads, annotated as ↑=↓ (53). The heads of functional cate-
gories are known as extended heads of lexical categories; a formal definition
of extended head can be found in Bresnan et al. (2016: 136).

(53) F′

F
↑=↓

XP
↑=↓

24It is by no means implied that these principles dictate the only annotations that can be asso-
ciated with a given node: additional annotations are not only possible, but sometimes even
required to produce a valid f-structure (for example, dis must usually be associated with a
grammatical function).

64



2 Core concepts of LFG

Complements of lexical projections are assigned to various functions of their
heads’ f-structures. Most typically these are, more specifically, grammatical func-
tions, i.e. those functions that are governed by predicates and have no additional
discourse significance (54); the label gf stands for “grammatical function” and in-
cludes such notions as subject (subj), direct object (obj), secondary object (objθ)
and oblique (oblθ). In Bresnan et al. (2016), this is formulated as a strict require-
ment that the complement may be any grammatical function except subj (which,
in their model, is both a grammatical and a discourse function, see Belyaev 2023a
[this volume]). However, this restricted understanding of lexical complements is
not universally accepted. For example, Laczkó (2014) analyzes postverbal sub-
jects in Hungarian as occupying the same position as postverbal direct objects,
i.e. VP complements.

(54) X′

X
↑=↓

YP
(↑ gf)=↓

Complements of lexical heads may also behave in the same way as comple-
ments of functional projections, i.e. be annotated as ↑=↓. This possibility should
be allowed for to handle cases where the same f-structure extends overmore than
two projections, e.g. in certain English auxiliary constructions (55), see Bresnan
et al. (2016: 111).

(55) IP

NP

N

John

I′

I

has

VP

V
↑=↓

been

VP
↑=↓

V

walking

⎡⎢⎢⎢
⎣

pred ‘walk〈subj〉’
tense prs
aspect perf.prog
subj [pred ‘John’]

⎤⎥⎥⎥
⎦

65



Oleg Belyaev

The higher VP in this case thus operates as a kind of intermediate functional pro-
jection. An alternative solution would be to introduce an additional functional
projection for English, but this does not seem justified as the forms used in these
positions are identical to V complements of simpler auxiliary constructions. At
the same time, the X′ model itself is obviously too simplistic to describe the
full system of constraints on the English system of verbal periphrasis. This re-
quires reference to morphological features of c-structure nodes; see Forst & King
2023: Section 2.2 [this volume] for a discussion of complex c-structure categories
which can encode such information.

4.3.3 Specifiers

Specifiers are similar to complements in that they are mapped to f-structure po-
sitions in the f-structure of their heads. In the literature on LFG, there are two
views on exactly what functions specifiers can be mapped to. The traditional
approach as described in Dalrymple (2001), Bresnan et al. (2016) is that speci-
fiers map to discourse functions (DF), which consist of topic, focus and subj
(which is unique in being simultaneously a grammatical function and a discourse
function). However, a trend in much LFG work (King 1997, Butt & King 1997, Dal-
rymple & Nikolaeva 2011) is to eliminate information structure functions from
syntax, instead relegating them to a separate projection, i-structure. Thus Dal-
rymple et al. (2019) instead propose that specifiers must be either syntactically
prominent or prominent in information-structure terms. Syntactic prominence
means that the f-structure of the specifier is either the subject, or it bears the
overlay function dis (which replaces the earlier topic and focus and handles
long-distance dependencies). Discourse prominence means that the specifier oc-
cupies the discourse functions topic or focus at i-structure.25 This question is
discussed in more detail in Kaplan 2023 [this volume].

According to this approach, then, specifiers can be given annotations as in
either (56a) or (56b):

(56) a. XP

YP
(↑ {subj | dis})=↓

X′
↑=↓

b. XP

YP
(↓𝜎 df) = {topic | focus}

(↑ gf) = ↓

X′
↑=↓

25In contemporary LFG, discourse functions are usually modeled not in f-structure but in a sep-
arate projection: see Kaplan 2023 [this volume] for more information. The notation in (56)
follows the model of information structure in Dalrymple & Nikolaeva (2011).

66



2 Core concepts of LFG

4.3.4 Adjunction

Unlike specifiers and complements, adjuncts may be freely iterated.26 Naturally,
then, they tend to be associatedwith the only grammatical function that is always
set-valued,27 adj (or xadj), see (57). As new adjuncts are added to the tree, they
get added to the adjunct set, thereby not violating uniqueness.

(57) a. XP

YP
↓ ∈ (↑ adj)

XP
↑=↓

b. X′

YP
↓ ∈ (↑ adj)

X′
↑=↓

C-structure adjuncts do not always map to f-structure adjuncts, however. Ex-
traposed focused or topicalized material is often adjoined at c-structure, espe-
cially at XP level; it is then associated with an information structure function
like topic or focus, a grammatical function, and the overlay function dis.

Some analyses also use adjunction as the main mechanism of introducing
grammatical functions, not only adjuncts, into the f-structure, without them hav-
ing any special information structure role. A prominent example is the analysis
of Japanese and Korean in Sells (1994, 1995). Building on the ideas of Fukui (1986),
Sells proposes that the maximal projection in Japanese and Korean is X′, and that
the main sentence-building operation is the adjunction of verbal arguments and
adjuncts to V′, and nominal dependents to N′. Adjunction of this sort can be de-
scribed in LFG notation by rules such as (58), where gf is any grammatical func-
tion. Unlike flat structures of non-configurational languages, the resulting struc-
tures like (59), from Korean, are binary-branching, but the use of unrestricted
adjunction of this kind ensures that the order of constituents is free.

26As noted in Section 2.1, some versions of LFG X′ theory allow multiple complements or spec-
ifiers. However, this is not the same as adjunct iterations, because, if multiple complements
or specifiers are used in a grammar, these receive different annotations, thereby not causing
a conflict. In contrast, multiple application of the same adjunct rule will lead to a uniqueness
violation if it selects the same grammatical function.

27Due to the possibility of coordination, all grammatical functions can be set-valued. However,
this requires the use of a special syntactic configuration at c-structure, whereas adjuncts are
set-valued “by definition”.

67



Oleg Belyaev

(58) X′ ⟶ Y′

(↑ gf)=↓
X′

↑=↓
(Sells 1994: 354)

(59)

V′

N′
(↑ subj)=↓

Swuni-ka
Sooni-nom

V′
↑=↓

N′
(↑ obj)=↓

yenge-lul
English-acc

V′
↑=↓

N′
(↑ oblloc)=↓

mikwuk-eyse
America-in

V′
↑=↓

Adv0
↓ ∈(↑ adj)

cal
well

V0
↓ ∈(↑ adj)

Neg0
↑=↓

mos
cannot

V0
↑=↓

paywu-ess-ta
learn-past-decl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘learn〈subj obj oblloc〉’

subj [pred ‘Sooni’
case nom ]

obj [pred ‘English’
case acc ]

oblloc [pred ‘America’
case loc ]

adj {
[pred ‘well’]
[pred ‘cannot’
adjtype neg ]}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

‘Sooni did not learn English well in America.’ (Sells 1994: 355)

4.3.5 The category S

As discussed above, the category S, being by definition exocentric, does not have
a head in the X′-theoretic sense. This does not mean, however, that it has no head
in the sense of c- to f-structure mapping, i.e. no node that is annotated as ↑=↓.
In fact, S usually includes at least one such node that represents the predicate;
for example, in (7), representing the clause structure of Tagalog, the predicative
XP is annotated as ↑=↓, which causes the f-structure of the clause to be unified
with the f-structure of the predicate, regardless of what its c-structure category
may be.28 Moreover, unlike X′-theoretic structures, a nonconfigurational S node
can have more than one head: for example, a V node representing the lexical verb

28The actual developed analysis can be somewhat more complex, as there are several views on
nonverbal predication in LFG, and the (non-)identity of its structure to that of verbal predica-
tions.

68



2 Core concepts of LFG

and an Aux node representing an auxiliary that contributes tense, agreement and
other grammatical information.

It is remarkable that S is the only systematic exception from the X′ schema29

that is admitted in mainstream LFG, at least in theory. While the use of S for
both nonconfigurational and “partially non-endocentric” languages like Tagalog
or Irish is universally accepted as a valid and theoretically solid decision, there
has been no discussion of exocentric NPs or other categories in the literature.
Whether this represents a lack of empirical evidence for such structures in lan-
guages of the world, or is simply the result of a lack of focus and a kind of pre-
determined conviction, is not clear.

4.3.6 Optionality of c-structure positions

Now that X′ theory is supplemented by f-structure well-formedness constraints
and annotation principles, we can introduce an additional feature of LFG c-struc-
tures: economy of expression, which amounts to optionality of most nodes,
because the relevant grammatical constraints are for the most part captured at
f-structure. This broad principle is formulated in the most radical way in Bresnan
et al. (2016: 90), who state that all nodes (including nonbranching intermediate
X′ projection nodes, heads, complements and specifiers) are optional:

(60) Economy of expression:
All syntactic phrase structure nodes are optional and are not used unless
required by independent principles (completeness, coherence, semantic
expressivity). (Bresnan et al. 2016: 90)

Note that this is a theoretical principle whose formal implementation is a sep-
arate issue, partly discussed in Section 5.2.1. For example, in the standard phrase
stucture rule formalism, the notions of complement and specifier crucially de-
pend on the presence of intermediate X′ nodes, even if these are redundant in
the sense of unary branching. Thus, as Dalrymple et al. (2015) observe in their de-
tailed discussion of economy of expression, this principle leads to a proliferation
of rules, such as in (61).

(61) X′ elision (Dalrymple et al. 2015: 384)
If an LFG grammar 𝐺𝒢 contains an annotated rule of the form

29It is also the only consistent exception from endocentricity, although, as an anonymous re-
viewer observes, the X′ theory elaborated in Bresnan et al. (2016) only requires endocentricity
for lexical, not functional, projections (p. 137), thereby allowing, among other things, the stan-
dard treatment of mixed categories (Bresnan et al. 2016: 311ff.).

69



Oleg Belyaev

XP ⟶ 𝛼 X′

↑=↓
𝛽

it also contains a rule of the form
XP ⟶ 𝛼 X

↑=↓
𝛽

In general, Dalrymple et al. (2015) conclude that economy of expression is plausi-
ble as an informal principle that emerges through the interaction of other, more
basic principles, and that grammars, in general, tend to obey; but it is not plausi-
ble as a formal principle to be incorporated into the theory of grammar, because
it not only introduces additional complexity into the framework, but also fails to
account for cases of genuine non-optionality (such as, for example, in configur-
ational languages where certain nodes are obligatory regardless of independent
principles).

Still, the degree of optionality commonly allowed in LFG grammars is rather
large and certainly greater than what is assumed by most other phrase-structure-
based frameworks. I will now go through each of the X′ theoretic categories and
show why they can be optional (except adjuncts, because these are optional by
definition, by virtue of the rules that introduce them).

4.3.6.1 Complements and specifiers

Complements and specifiers not only can but must, as a rule, be optional because
the c-structure does not contain any valency information and there is no way to
verify at c-structure if, for example, the verb has a direct object. Thus, the rule in
(43), repeated in (62), will hold for all English sentences, but the NP complement
will only be licensed in transitive clauses.

(62) VP ⟶ V
↑=↓ ( NP

(↑ obj)=↓)

If the verb is transitive (i.e. its pred feature has obj in the list of arguments),
omitting the complement will result in a violation of Completeness (unless the
object is introduced in another position). By contrast, if the verb is intransitive,
introducing the object here will lead to a Coherence violation, because the gram-
matical function obj will not be selected by any argument.

Optionality of complement and specifier positions, and c-structure positions
where arguments are introduced in general, is also required because the material
that they “canonically” contain may be displaced elsewhere, for example, to a
position designated for wh-movement or information structure function. In this

70



2 Core concepts of LFG

case, only one position must be filled, otherwise conflict of pred values will lead
to a Uniqueness violation. Thus (43) may produce a single V node even in a
transitive clause, provided that the direct object is introduced in another position
(such as wh-movement Whom did you see? or topicalization John, I saw.).

4.3.6.2 Heads

Similarly, c-structure heads can be optional in LFG because of Completeness
and Coherence. pred features are almost always30 introduced by head nodes,
i.e. nodes carrying the unificational annotation ↑=↓. Therefore, a structure lack-
ing a head (without its pred features introduced elsewhere) will be pred-less and
will not be able to include any grammatical functions, because that would violate
Coherence.

Headless XPs are quite widespread at clause level; their role is to account for
variation in head positions in configurational languages. For example, in English
lexical verbs always appear in V, but the I head can be filled or not depending
on whether the verb form is periphrastic or synthetic. In German and other V2
languages, the distribution is more complex: the V head is only occupied if the
verb form is periphrastic, and the auxiliary, or the finite verb in synthetic forms,
stands in the I node in subordinate clauses (63) and in the C node in main clauses
(64). Examples are from Bresnan et al. (2016: 448–450).

30It is technically possible to introduce a pred feature in a different position. For example, the
annotation of a complement or specifier might include an additional annotation like (↑ obj
pred)=’pro’. I am not aware of any analyses utilizing this possibility; “external” pred assign-
ment normally only happens in verbal heads assigning pred features to pro-dropped subjects
and in similar such structures. However, Mary Dalrymple (p.c.) points out that such anno-
tations seem to be required in asyndetic relative clauses like The man John saw, where the
pronominal obj in the relative clause has to be introduced by a phrase structure rule since
there is no lexical material that could plausibly contribute its content.

71



Oleg Belyaev

(63)

CP

C
↑=↓

daß
that

IP
↑=↓

NP
(↑ subj)=↓

Karl

I′
↑=↓

VP
↑=↓

DP
(↑ obj)=↓

das Buch
the book

I
↑=↓

kaufte
bought

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘buy〈subj obj〉’
comptype that
tense past
mood decl
subj [pred ‘Karl’]
obj [pred ‘book’

def + ]

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

‘that Karl bought the book’

72



2 Core concepts of LFG

(64)
CP

DP
(↑ topic)=↓

Karl

C′
↑=↓

C
↑=↓

hat
has

IP
↑=↓

VP
↑=↓

DP
(↑ obj)=↓

das Buch
the book

V
↑=↓

gekauft
bought

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘buy〈subj obj〉’
tense pst
mood decl
topic
subj [pred ‘Karl’]
obj [pred ‘book’

def + ]

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

‘Karl has bought the book.’

This analysis corresponds quite closely to the standard view of German word
order in GB / Minimalism, such as Vikner (1995). The key difference is that there
is no verb movement in LFG; verbs and auxiliaries are always “base-generated”
in C, I, or V depending on clause types and the verb form. The correct word order
is ensured by feature licensing; multiple occurences of a verb form or verbless
sentences are excluded at f-structure through Uniqueness and Coherence.

Another type of headless XP occurs in languages which allow freely discontin-
uous constituents, like the example from Warlpiri in (51) above. Non-configura-
tional languages like Warlpiri allow freely assigning any grammatical function
to Spec,IP (which is additionally interpreted as a focus) and to any NP children of
S. Hence, two or more NPs might be mapped to the same grammatical function;
if there is no pred clash or case mismatch, the resulting sentences will be gram-
matical and these multiple NPs will be mapped to the same f-structure. For more
information on non-configurational languages, see Andrews 2023 [this volume].

Finally, headless constituents appear in certain instances of incorporation, such
as in West Greenlandic (65), where an incorporated noun head can have non-
incorporated dependents (here, agreeing in instrumental case with the incorpo-
rated argument).

73



Oleg Belyaev

(65) Greenlandic (Bresnan et al. 2016: 446)

S

NP
(↑ obl)=↓

N
(↑ adj)=↓

(↑ case) = (↓ case)
(↑ num) = (↓ num)

ataatsinik
one.ins

V
↑=↓

Nstem
(↑ obl)=↓

qamuteq
sled

Vsuff
↑=↓

arpoq
have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

pred ‘have〈subj obj〉’
mood indic

subj
⎡⎢⎢⎢
⎣

pred ‘pro’
num sg
pers 3
case abs

⎤⎥⎥⎥
⎦

obl

⎡⎢⎢⎢⎢⎢⎢
⎣

pred ‘sled’
case ins
num pl

adj [
pred ‘one’
case ins
num pl

]

⎤⎥⎥⎥⎥⎥⎥
⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

‘I have one sled.’

5 Extensions of the core architecture

The core architecture of LFG has remained remarkably stable since the frame-
work was first introduced in Bresnan (1982a); the only major innovations are
the introduction of various additional projections, briefly described in Belyaev
2023b: Section 5 [this volume], and functional uncertainty (earlier LFG used
traces to model long-distance dependencies). Nevertheless, there have been pro-
posals to alter and extend the core architecture, mainly from three directions: to
adopt a view of c-structure different from context-free grammar; to introduce
construction-based approaches to LFG using templates; to eliminate pred val-
ues, fully relegating their work to semantics. None of these approaches have
been adopted by mainstream LFG practitioners, with the exception of templates,
which have gained some acceptance. Nevertheless, these proposals may repre-
sent venues in which LFG could develop in the future.

5.1 Constructions and LFG: Templates

In many ways, LFG is close in spirit to other non-transformational frameworks
such as HPSG (Pollard & Sag 1994) or various versions of construction grammar
(see Hoffmann & Trousdale 2013). All these frameworks, unlike mainstream gen-
erative grammar, are not committed to cross-linguistically universal structures

74



2 Core concepts of LFG

and instead define syntactic rules on a language-by-language basis. However,
LFG is crucially different from these other approaches in lacking any concept
comparable to the notion of construction. The basic building blocks of syntax
are phrase structure rules and lexical entries (which formally are a subtype of
phrase structure rules); there is a general set of principles governing the map-
ping from phrase structure positions to f-structure. It is, of course, possible to
define separate phrase structure rules and lexical entries to handle specific phe-
nomena and constructions, but these will not be formally related to other rules
– there is no hierarchy of phrase structure rules that would allow defining, for
example, an exceptional subtype of a specifier rule. In general, most theoretical
principles in LFG (such as the principles of c- to f-structure mapping described
above) are formulated in such a way as to define a structure that obtains by de-
fault, but which can be overriden in individual languages. This is at odds with
the main tenets of construction-based approaches, where no general or universal
principles or structures are usually assumed, and each construction hierarchy is
language-specific.

Furthermore, while it is possible to define rules that are specific to individual
constructions or lexical items, it is impossible to directly define a construction
that spans more than the scope of one phrase structure rule (e.g., a specific com-
bination of a specifier, head and complement). Of course, the same effect may
be achieved by using combinations of defining and constraining equations, as
in analyses of idioms; for an example, see Falk (2001: 77). But such analyses do
not treat idioms or constructions as theoretical objects in their own right; the
collocation is only enforced by the combination of equations acting at different
levels.

These “limitations” related to the c-structure to f-structure correspondence
are not necessarily disadvantages of the LFG system: they are the result of a
conscious design decision that influences the way LFG analyses are structured; in
most cases, it is possible to account for “construction-based” phenomena in LFG,
but the description will be different than in Construction Grammar and related
frameworks. However, there are certainly genuine cases of construction-specific
phenomena, such as so-calledmulti-word expressions (MWEs); these are difficult
to describe in standard LFG. A possible, but radical, solution is the replacement
of context-free grammar by Tree-Adjoining Grammar (TAG) at c-structure, as
described in Findlay 2023 [this volume].

Another reason why some counterpart to the notion of construction might
be useful in LFG is that f-structure equations associated with rules and lexical
items are not generalized in any way. Thus, nouns may have annotations such
as (↑ num)=sg and (↑ num)=pl, and verbs, (↑ tense)=pst, but nothing in the

75



Oleg Belyaev

grammar requires nouns and verbs to introduce these equations, and there is no
place where such generalizations are stated explicitly – in effect, they are only
the result of consistency on the part of the grammar writer.31 This limitation,
again, cannot be overcome using a kind of type inheritance system common to
construction-based approaches, because that would require a “hierarchy” of f-
descriptions. But f-descriptions are only sets of expressions, not objects that can
be manipulated or inherit information from each other.

A possible compromise between the description-based approach of LFG and
constructions, explored in Asudeh et al. (2013), is based on the use of templates
– bundles of grammatical descriptions extensively used in computational LFG,
such as in XLE, but also in some theoretical work (Dalrymple et al. 2004, Asudeh
2012). Templates are basically symbols that serve as shorthands for f-descriptions
that are substituted for the template call wherever it is invoked in an f-description.
For example, the combination of third person and singular number agreement,
highly relevant for English grammar, can be abbreviated as the template 3sg (66).
This template can then be called as in (67). Furthermore, just like an f-description,
a template can be negated; thus, as Asudeh et al. (2013: 19) propose, English un-
marked present-tense forms can be naturally captured as in (68a), which resolves
to (68b).32

(66) 3sg ≡33 (↑ subj pers)=3
(↑ subj num)=sg

(67) laughs V (↑ pred) = ‘laugh〈subj〉’
@3sg

(68) a. laugh V (↑ pred) = ‘laugh〈subj〉’
¬@3sg

b. laugh V (↑ pred) = ‘laugh〈subj〉’
{ (↑ subj pers) ≠ 3
| (↑ subj num) ≠ sg }

31Note that in LFG, this issue is distinct from the issue of permissible f-structure attributes and
values discussed in Section 3.3. The two are, of course, related, and would have been the same
issue in other frameworks, but not in LFG, where, as discussed above, structures are distinct
from the descriptions that license them. An LFG grammar may not generalize over structures
directly (unless feature declarations are used), but it may well generalize over descriptions.

32Note that such negation tacitly changes the equation type from defining to constraining, be-
cause negative statements can only be constraining. This change is not formally problematic,
but care should be taken to ensure that other parts of grammar, which may depend on these
defining equations, are not compromised.

33Asudeh et al. (2013) use ∶= for template assignment, which is a standard assignment operator
in some programming languages (e.g. Pascal), also used in computer science.

76



2 Core concepts of LFG

Templates can also be parametric, with parameters supplied in parentheses,
as in programming languages. When a template is called, all mentions of each
parameter are replaced by the string given in the parentheses. Note that this
is done via simple string substitution,34 and the parameters can be any kind of
symbol; often, a reference to an f-structure, but not necessarily. For example,
Asudeh et al. (2013) define the following template for intransitive verbs:

(69) intrans(p) ≡ (↑ pred) = ‘p〈subj〉’

(70) laughs V @intrans(laugh)
@3sg

Templates by themselves are not theoretical objects: they are a simple mech-
anism for reusing common parts of f-descriptions. Nevertheless, if used consis-
tently, they can serve as a powerful mechanism for capturing generalizations in
grammatical structure. In particular, a kind of hierarchy of templates can be de-
fined if the use of a template in a lexical item, phrase structure rule, or in another
template is viewed as inheritance from that template. For example, both laugh
and laughs inherit from the 3sg template:35

(71) 3sg

laugh laughs

Asudeh et al. (2013) use this template system to develop a detailed analysis of
the traversal / result construction (Smithy drank his way through university, Jack-
endoff 1992, Goldberg 1995) in English, Swedish, and Dutch. Since this seminal
work, templates have been widely used in LFG literature, although their adop-
tion is not universal. Importantly, an advantage of the template-based approach
to constructions is that they only introduce a purely notational convention; they

34For this reason, if the parameter is an f-structure reference, it may be ambiguous within a
template if it includes Functional Uncertainty. To ensure that the same f-structure is referred
to in all expressions, the template should first assign the parameter to a local name.

35This may seem counterintuitive, given that laugh is not a third person singular form. However,
inheritance in this approach is purely a matter of calling a template in the f-description: it does
not matter in what context it is called (under negation, in disjunction, etc.). This graph captures
the intuition that the English unmarked Present Simple form is defined with reference to the
third person singular features (as opposed to, e.g., being a disjunction of all alternative person-
number combinations). Note that “inheritance” here is purely a matter of visualization and
metagrammatical analysis; it has no special status in the formalism itself.

77



Oleg Belyaev

do not change the architecture of LFG in any way. Thus template-based analyses
are fully compatible with non-template-based ones.

This simplicity can also be perceived as a disadvantage, in that constructions
are not “first class citizens” of the theory: the template mechanism is uncon-
strained, and its use is fully optional. However, this follows the overall spirit
of LFG: As seen above, the core architecture and metalanguage are relatively
unconstrained and certainly more expressive than is needed for the purposes
of describing natural languages. Constraints on possible languages are meant
to be captured by theoretical generalizations (such as the regularities of c- to f-
structure mapping described in Section 4.3) that are not part of the formal frame-
work itself. Likewise, templates only serve as a useful mechanism of generalizing
over f-descriptions; what these templates should look like and how consistently
they should be used are theoretical decisions that should be viewed as additional
constraints on LFG grammars, not part of the formal architecture itself.

5.2 Modifications of c-structure

Compared to developments in other frameworks, such as Minimalism (cf. Adger
2013), there have been few advances in the development of constituent structure
in LFG. Apart from the introduction of non-projecting words in Toivonen (2003),
the version of X′ theory used in most LFG work is the same as the original ver-
sion developed in transformational grammar. However, there have been several
alternative approaches to c-structure proposed in the literature, some relatively
minor while others quite radical. In this section, I will describe two approaches
– minimal c-structure (Lovestrand & Lowe 2017) and lexical sharing (Wescoat
2002). Another modification (Findlay 2017, 2019), which replaces context-free
grammar with tree-adjoining grammar (TAG) while preserving core features of
the LFG formalism, is described in Findlay 2023 [this volume]. Several catego-
rial grammar-based approaches have been proposed (Oehrle 1999, Muskens 2001,
Kokkonidis 2007), but have not gained much traction, possibly because they are
no longer compatible with standard LFG and have to be regarded as separate,
though related, frameworks.

5.2.1 Minimal c-structure

Lovestrand & Lowe (2017) propose a modification of X′ theory to account for two
shortcomings that they perceive in its standard LFG version. First, X′ categories
and projection levels are stipulated by the theory but not actually represented
as discrete features; in formal terms, c-structure node labels are just monolithic

78



2 Core concepts of LFG

symbols, even though they are given a theoretical interpretation. Second, con-
sistent application of X′ theoretic principles leads to many redundant nodes, e.g.
unary branching X′ nodes have to be used if an XP has a complement but no
specifier or adjuncts. This redundancy is sometimes eliminated by appealing to
economy of expression, either by “pruning” the superfluous nodes (Bresnan et al.
2016) or by introducing additional rules into the grammar (such as XP → X ZP
in addition to XP → X′ YP and X′ → X ZP). However, both solutions introduce
additional complexity into LFG and could be avoided. Third, some analyses work
with fewer than two levels of X′ structure: for example, Bresnan et al. (2016: 130)
take Welsh IP to lack a specifier, dominating only I and S. Sells (1994, 1995) sim-
ilarly assumes that all phases in Japanese and Korean have X′ as their maximal
projection. This kind of “deficiency” is not formalized in traditional X′ theory.

An earlier attempt to refine X′ theory in LFG is Marcotte (2014), which, how-
ever, has been criticized in Lovestrand & Lowe (2017) for failing to account for
some common syntactic structures, such as adjunction and non-projectingwords.
Lovestrand and Lowe propose, following Kaplan (1989), that additional categorial
features are projected in a separate feature structure (l-structure) via the function
𝜆. L-structure contains the features l (for level) and p (for projection) that repre-
sent the “current” bar level of the node and the maximal level that this particular
phrase has in the sentence. C-structure itself only contains syntactic category
information; thus X, X′, and XP are all represented as X. Lovestrand and Lowe
then define a set of templates and rule schemas that describe all the positions
allowed by X′ theory. For example, the template ext in (72a) is a conjunction of
the tem1lates lpm (72b) and lp (72c), which mean that the annotated node is a
maximal projection (lp) that is a daughter of a maximal projection (lpm). This
applies to specifiers and adjuncts. The template headx (73a) is used on all X′
theoretic heads and consists of the templates ldown (73b) and pud (73c), which
mean that, first, the bar-level of the annotated node is lower than the level of the
mother by 1; (b) the maximal projection level is inherited from the head to the
overall structure. These templates allow us to define the specifier rule template
in (74).36

(72) templates for specifier
a. ext ≡ @lpm ∧ @lp
b. lpm ≡ (∗̂λ l) = (∗̂λ p)
c. lp ≡ (*λ l) = (*λ p)

36For clarity, conjunction is explicitly represented as ∧ in (72a) and (73a).

79



Oleg Belyaev

(73) templates for head
a. headx ≡ @ldown ∧ @pud
b. ldown ≡ {(*λ l) = 0 ∧ (∗̂λ l) = 1 | (*λ l) = 1 ∧ (∗̂λ l) = 2 }
c. pud ≡ (∗̂λ p) = (*λ p)

(74) specifier rule
X ⟶ Y

@ext
X

@headx

The application of this approach leads to c-structures notated as in (75), where
the superscript numbers are shorthand for l/p feature values of the node.

(75)
I1/1

N1/1

D0/0

the

N0/1

A0/

small

N0/1

dog

V1/1

V0/1

eats

N0/0

biscuits

In this example, prenominal A in English is treated as a non-projecting cate-
gory, hence it lacks the p feature altogether.37 It is seen from this example that the
“maximal” projection level (p) is inherited bottom-up and represents the highest
projection that the phrase has in this specific sentence. For example, the specifier
noun phrase the small dog has a specifier, hence its dominating node has the cat-
egory N1/1, while the complement biscuits has no modifiers, and its head is only
N0/0. Thus the system results in minimal c-structures solely by using standard
LFGmechanisms of templates and projections, without employing additional for-
mal devices such as Economy of Expression.

37While Lovestrand and Lowe assume no DP in English, D is not treated as a non-projecting
word: in their theory, ’s possessors can attach to D as internal arguments (complements).

80



2 Core concepts of LFG

5.2.2 Lexical sharing

The principle of lexical integrity, and the general idea that there is a definite
boundary between morphology and syntax, has long been criticized in the gen-
erative literature (perhaps the most recent such attempt is Bruening 2018) and,
recently, in typological approaches (see Haspelmath 2011). Not all of the objec-
tions to lexicalism are necessarily applicable to LFG, but one persistent problem
is the putative existence of syntactic structure where one lexical item (either com-
pletely idiosyncratic or derived in the morphology) occupies two or more syn-
tactic heads. One example are preposition-determiner contractions in languages
like French and German (Wescoat 2007): Items like French au [o] ‘to the (mascu-
line)’ (← à + le) are clearly idiosyncratic, historically motivated mergers of the
preposition and the article (compare à le faire ‘to do it’, where le, identical in form
to the masculine singular definite article, is the object proclitic of faire ‘do’, and
thus does not trigger merger), but syntactically, they obey all the constraints that
are independently imposed on prepositions and determiners in the language.

To account for such phenomena, Wescoat (2002) proposed lexical sharing:
a modification of the LFG architecture to allow a single word (supplied by the
lexicon) to occupy more than one c-structure node. In Wescoat’s system, lexical
items are no longer part of c-structure; category nodes like N, V, I (preterminals in
the standard system) are now terminal nodes that are mapped, via the projection
function 𝜆, to morphological words that comprise an ordered list at a separate
level of representation, l-structure.38 In the simplest andmost common case, each
terminal c-structure node corresponds to exactly one word:

38It is unfortunate that the same name of the level and the projection function were indepen-
dently used in Lovestrand & Lowe’s (2017) proposal of minimal c-structure, which creates
confusion. However, as will be shown below, Wescoat’s approach can be integrated into the
contemporary LFG architecture without stipulating an additional level.

81



Oleg Belyaev

(76) PP

P

à
to

DP

D

la
the.f

NP

N

fille
girl

Lexical sharing occurswhen two ormore terminal c-structure nodes aremapped
to one morphological word:

(77) PP

P

au
to+the.m

DP

D NP

N

garçon
boy

To avoid excessive reorderings, Wescoat puts a constraint on the correspondence
between c-structure and l-structure which he calls the order preservation axiom:
For all 𝑛1 and 𝑛2 in the set of terminal nodes, if 𝜆(𝑛1) precedes 𝜆(𝑛2), then 𝑛1
precedes 𝑛2. This means that words cannot be reordered. It also follows from this
axiom that only adjacent nodes may be shared. Thus lexical sharing is, in fact,
rather constrained and does not seem to introduce much additional complexity
into the system.

Lexical entries in lexical sharing analyses are defined as in (78), with each node
having a separate f-description. The syntactic analysis then proceeds according

82



2 Core concepts of LFG

to the standard f-structure rules defined by the grammar; lexical sharing config-
urations are licensed if a word is defined as coinstantiating adjacent nodes.

(78) au ⟵ P
(↓ pcase)=to

⇓=↓

D
(↓ spec)=def
(↓ gend) =𝑐 m
(↓ num) =𝑐 sg

This correctly predicts the scope difference between the preposition and defi-
nite article in examples like (79). The order preservation axiom also predicts that
structures like (80a) and (80b) are ungrammatical, because the shared nodes are
not adjacent; the only possible word order is (81).

(79) PP

P

au
to+the.m

DP

DP

D NP

N

travailleur
worker(m)

Conj

et
and

DP

D

sa
his.f

NP

N

famille
family(f)

‘to the worker and his family’

83



Oleg Belyaev

(80) Ill-formed c-structures:

a. PP

P

au
to+the.m

QP

Q

tout
all[m]

DP

D NP

N

personnel
staff(m)

b. PP

P QP

Q

tout
all[m]

DP

D

au
to+the.m

NP

N

personnel
staff(m)

(81) á
to

tout
all[m]

le
the.m

personnel
staff

‘to all the staff’

Note that Wescoat assumes that the correspondence function 𝜙 should have l-
structure in its domain, hence the use of ↓ in annotations, instead of ↑ in standard
LFG analyses. This assumption alsomotivates the symbol ⇓; this stands for the ab-
breviation 𝜙(𝜆(↓)), i.e. “the f-structure of the lexical exponent of the current node”
– this is needed to determine which of the co-instantiated f-structures the word
itself maps to. However, this is not actually required, and Lowe (2016), in his anal-
ysis of the English “Saxon genitive” ’s, proposed a modification of lexical sharing
that dispenses with both these additional notations and integrates the proposal
into modern mainstream LFG. Lowe observes that Wescoat’s “l-structure” in fact
serves the exact same function as the s-string – the set of morphosyntactic words
that map to terminal c-structure nodes – in the LFG projection architecture, in-
cluding the recent proposal of Dalrymple & Mycock (2011). Ordinarily, the s-
string in LFG maps to terminal tree nodes that are occupied by morphosyntactic
words; lexical sharing can be implemented by assuming that the c-structure tree
terminates in category labels (preterminals), to which elements of the s-string
are mapped. The replacement of l-structure by the s-string means that the sym-
bol ⇓ and all the related machinery is no longer needed, because s-structure does

84



2 Core concepts of LFG

not map to f-structure.39 For the same reason, lexical entries use ↑, as in normal
LFG, instead of ↓.40 In Lowe’s version of lexical sharing, the entry in (78) will
look as follows:

(82) au: P D
P (↑ pcase) = to
D (↑ spec) = def

(↑ gend) =𝑐 m
(↑ num) =𝑐 sg

While lexical sharing has been used to analyze several phenomena, including
auxiliary reduction (Wescoat 2005), preposition-determiner contractions (Wes-
coat 2007), suspended affixation (Broadwell 2008, Belyaev 2014, 2021), endoclitics
(Wescoat 2009), and morphologically bound complementation (Panova 2020), it
has not been adopted as part of mainstream LFG, mainly, it seems, due to its ap-
parent violation of lexical integrity and the potential to vastly increase the num-
ber of possible analyses. Indeed, if unconstrained, lexical sharing can be used to
produce structures where every morphological category has its separate func-
tional projection that is shared with the lexical head, reminiscent of Distributed
Morphology (DM, Halle &Marantz 1993). However, as both Broadwell (2008) and
Lowe (2016) observe, lexical sharing can be constrained to be used only when
there is independent syntactic evidence in favour of a separate lexical head. Un-
der this interpretation, lexical sharing analyses present an advantage over non-
lexicalist analyses in that functional heads like CaseP or NumP are only stipu-
lated as needed; for example, in Broadwell’s (2008) analysis of suspended affix-
ation, there is an empirical difference between languages where case is realized
by a coinstantiated head (these allow suspended affixation) and languages where
it is purely morphological (these do not); this opposition is lost in non-lexicalist
approaches, where other, arguably less intuitively plausible mechanisms have
to be used, such as a constraint on coordinating sub-CaseP constituents, feature
deletion (Kharytonava 2012), or morphological ellipsis (Erschler 2012).

Furthermore, as mentioned in Section 2.2, lexical sharing does not really vio-
late lexical integrity as formulated in Bresnan & Mchombo (1995), see (8), i.e. as

39This seems rather harmless, because lexical sharing entries overwhelmingly just use ⇓=↓
on one of the nodes, which doesn’t seem to influence anything. However, Wescoat (2007)
does use constraints on the l-structure to f-structure mapping to model certain limitations on
preposition-determiner contractions in German.

40In fact, while standard LFG allows using ↓ in lexical entries, this model does not. This means
that analyses that make use of ↓ in lexical entries, such as the Italian example in (48), have
to be reformulated to use ↑. In most cases, this should not influence anything, although the
definition and application of f-precedence might require some modification.

85



Oleg Belyaev

the general principle that words are built from different blocks and according
to different rules than syntactic units. Indeed, syntax does not have any access
to internal word structure in lexical sharing analyses, and coinstantiated nodes
map to words as complete units, not to morphemes, disembodied features, or
anything similar.41 This gives lexical sharing analyses a distinct flavour that sep-
arates them from both mainstream LFG analyses and from truly non-lexicalist
analyses that situate morphemes or features in functional projections (which
have also been proposed in LFG: see Melchin et al. 2020 for a DM-like approach
to LFG morphology). Notably, it still allows an independent morphological mod-
ule (usually described in LFG in terms of a lexicalist realizational framework like
PFM, see Belyaev (2021) and Asudeh & Siddiqi 2023 [this volume]) to do its work.

6 Conclusion

In this article, I have tried to summarize the state of the art of the core syntactic
representations of LFG – the c- and f-structures. While the understanding of var-
ious phenomena has considerably changed in almost all areas of grammar (for
example, in semantics and information structure: see Asudeh 2023 [this volume]
and Zaenen 2023 [this volume]), the formal underpinnings of LFG have remained
remarkably stable over the years. The only fundamental innovation to the origi-
nal c- and f-structure architecture of Kaplan & Bresnan (1982) is the introduction
of functional uncertainty in Kaplan & Zaenen (1989b). Since then, new levels of
projection were introduced, and the architecture extended in various ways, but
the core mechanisms of c- and f-structure – notation, featurehood, even the basic
set of GFs – have remained constant. This serves as an impressive testimony of
the versatility of the architecture proposed in Kaplan & Bresnan (1982), and its
remarkable suitability to describing natural languages.

The architecture of LFG is both similar to that of other constraint-based frame-
works and very different from them in various ways. The main difference is the
parallel architecture of LFG, and the related emphasis on the distinction between
descriptions (a set of syntactic constraints) and the structures that are licensed by

41In fact, from a certain perspective this might be viewed as a disadvantage of lexical sharing
analyses in that they fail to capture the fact that coinstantiated material usually corresponds
to a well-defined, segmental, agglutinatively attached element of the wordform. For example,
Ossetic affixal case features are realized on the Case head, while stem-based ones are real-
ized on N (Belyaev 2014, 2021). I am not aware of any analyses where coinstantiated heads
encode features that are realized by stem change, suppletion, or apophony. This fact might be
explained diachronically, however, since lexical sharing usually reflects an ongoing process of
(de)grammaticalization.

86



2 Core concepts of LFG

these descriptions. While constructions and lexical entries are structures in most
other frameworks, in LFG they are sets of statements that describe a range of
possible structures. This architectural feature enables LFG to make use of mech-
anisms such as functional uncertainty and inside-out application, which are un-
available in other frameworks.

While the empirical coverage of LFG work is impressive, and a number of
important developments are now taking place in several theoretical directions,
not all areas of syntax have been researched to the same extent. The focus on
f-structure and the view of GFs as theoretical primitives has prompted a lot of
fruitful and insightful work on subjects and other core grammatical relations.
Functional uncertainty and structure sharing have also proved to be efficient
mechanisms for describing long-distance dependencies. The notion of sets and
feature distributivity allow for elegant analyses of coordination – an area tra-
ditionally underrepresented in mainstream syntactic frameworks. In contrast, c-
structure has seen much less attention,42 although here important developments
are also taking place. The notion of lexical integrity, assumed as a stipulation
early in the history of LFG, has not been extensively discussed and refined, in
spite of numerous challenges. These challenges will have to be dealt with if LFG
is to compete with other frameworks for the originally envisaged role of “a the-
oretically justified representation of the native speaker’s linguistic knowledge”
(Kaplan & Bresnan 1982).

Acknowledgements

I am grateful to two anonymous reviewers, whose comments made a significant
contribution to the final form of this chapter, and to Mary Dalrymple for her
attentive reading and insightful comments. This research has been supported
by the Interdisciplinary Scientific and Educational School of Moscow University
“Preservation of the World Cultural and Historical Heritage”.

42The reason for this might be that the range of phenomena handled by c-structure is much less
than those handled by f-structure, as c-structure only directly models word order and embed-
ding. However, as an anonymous reviewer observes, c-structure in LFG is analogous to Merge
in Minimalism, being the main generative component that connects different projections to-
gether while also providing codescription for the semantics. This role can hardly be described
as minor, but the existing model handles this purpose rather adequately.

87



Oleg Belyaev

References

Adger, David. 2013. A syntax of substance (Linguistic Inquiry Monographs 64).
Cambridge, MA: The MIT Press. DOI: 10 .7551/mitpress/9780262018616 .001 .
0001.

Andrews, Avery D. 2008. The role of pred in LFG+Glue. In Miriam Butt & Tracy
Holloway King (eds.), Proceedings of the LFG ’08 conference, 46–67. Stanford:
CSLI Publications.

Andrews, Avery D. 2018. Sets, heads and spreading in LFG. Journal of Language
Modelling 6(1). 131–174. DOI: 10.15398/jlm.v6i1.175.

Andrews, Avery D. 2023. Clause structure and configurationality. In Mary Dal-
rymple (ed.), Handbook of Lexical Functional Grammar, 375–424. Berlin: Lan-
guage Science Press. DOI: 10.5281/zenodo.10185952.

Asudeh, Ash. 2012. The logic of pronominal resumption (Oxford Studies in The-
oretical Linguistics). Oxford: Oxford University Press. DOI: 10 . 1093 /acprof :
oso/9780199206421.001.0001.

Asudeh, Ash. 2023. Glue semantics. InMary Dalrymple (ed.),Handbook of Lexical
Functional Grammar, 651–697. Berlin: Language Science Press. DOI: 10.5281/
zenodo.10185964.

Asudeh, Ash, Mary Dalrymple & Ida Toivonen. 2013. Constructions with Lexical
Integrity. Journal of Language Modelling 1(1). 1–54. DOI: 10.15398/jlm.v1i1.56.

Asudeh, Ash & Gianluca Giorgolo. 2012. Flexible composition for optional and
derived arguments. In Miriam Butt & Tracy Holloway King (eds.), Proceedings
of the LFG ’12 conference, 64–84. Stanford: CSLI Publications.

Asudeh, Ash, Gianluca Giorgolo & Ida Toivonen. 2014. Meaning and valency. In
Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’14 confer-
ence, 68–88. Stanford: CSLI Publications.

Asudeh, Ash & Daniel Siddiqi. 2023. Morphology in LFG. In Mary Dalrymple
(ed.), Handbook of Lexical Functional Grammar, 855–901. Berlin: Language Sci-
ence Press. DOI: 10.5281/zenodo.10185976.

Asudeh, Ash & Ida Toivonen. 2006. Symptomatic imperfections. Journal of Lin-
guistics 42. 395–422.

Austin, Peter K. & Joan Bresnan. 1996. Non-configurationality in Australian abo-
riginal languages. Natural Language & Linguistic Theory 14(2). 215–268. DOI:
10.1007/bf00133684.

Belyaev, Oleg. 2013. Optimal agreement at m-structure. In Miriam Butt & Tracy
Holloway King (eds.), Proceedings of the LFG ’13 conference, 90–110. Stanford:
CSLI Publications.

88

https://doi.org/10.7551/mitpress/9780262018616.001.0001
https://doi.org/10.7551/mitpress/9780262018616.001.0001
https://doi.org/10.15398/jlm.v6i1.175
https://doi.org/10.5281/zenodo.10185952
https://doi.org/10.1093/acprof:oso/9780199206421.001.0001
https://doi.org/10.1093/acprof:oso/9780199206421.001.0001
https://doi.org/10.5281/zenodo.10185964
https://doi.org/10.5281/zenodo.10185964
https://doi.org/10.15398/jlm.v1i1.56
https://doi.org/10.5281/zenodo.10185976
https://doi.org/10.1007/bf00133684


2 Core concepts of LFG

Belyaev, Oleg. 2014. Osetinskij kak jazyk s dvuxpadežnoj sistemoj: gruppovaja
fleksija i drugie paradoksy padežnogo markirovanija [Ossetic as a two-case
language: Suspended affixation and other case marking paradoxes]. Voprosy
jazykoznanija 6. 31–65.

Belyaev, Oleg. 2021. Paradigm structure influences syntactic behaviour: Ossetic
case inflection. In I Wayan Arka, Ash Asudeh & Tracy Holloway King (eds.),
Modular design of grammar: Linguistics on the edge, 251–281. Oxford: Oxford
University Press. DOI: 10.1093/oso/9780192844842.003.0016.

Belyaev, Oleg. 2023a. Grammatical functions in LFG. In Mary Dalrymple (ed.),
Handbook of Lexical Functional Grammar, 97–161. Berlin: Language Science
Press. DOI: 10.5281/zenodo.10185938.

Belyaev, Oleg. 2023b. Introduction to LFG. In Mary Dalrymple (ed.), Handbook
of Lexical Functional Grammar, 3–22. Berlin: Language Science Press. DOI: 10.
5281/zenodo.10185934.

Belyaev, Oleg, Mary Dalrymple & John J. Lowe. 2015. Number mismatches in
coordination. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the
LFG ’15 conference, 26–46. Stanford: CSLI Publications.

Blackburn, Patrick & Claire Gardent. 1995. A specification language for Lexical-
Functional Grammars. In Proceedings of the 7th conference of the European chap-
ter of the ACL (EACL 1995), 39–44. Association for Computational Linguistics.
DOI: 10.3115/976973.976980.

Bögel, Tina, Miriam Butt, Ronald M. Kaplan, Tracy Holloway King & John T. III
Maxwell. 2010. Second position and the prosody-syntax interface. In Miriam
Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’10 conference, 106–
126. Stanford: CSLI Publications. http://csli-publications.stanford.edu/LFG/15/
papers/lfg10boegeletal.pdf.

Bresnan, Joan. 1982a. Control and complementation. Linguistic Inquiry 13(3).
Reprinted in Bresnan 1982b, 343–434.

Bresnan, Joan (ed.). 1982b. The mental representation of grammatical relations.
Cambridge, MA: The MIT Press.

Bresnan, Joan, Ash Asudeh, Ida Toivonen & Stephen Wechsler. 2016. Lexical-
Functional Syntax. 2nd edn. (Blackwell Textbooks in Linguistics 16). Malden,
MA: Wiley-Blackwell.

Bresnan, Joan, Ronald M. Kaplan & Peter Peterson. 1985. Coordination and the
flow of information through phrase structure. Unpublished manuscript, Xerox
PARC.

Bresnan, Joan & SamA. Mchombo. 1995. The lexical integrity principle: Evidence
from Bantu.Natural Language & Linguistic Theory 13(2). 181–254. DOI: 10.1007/
bf00992782.

89

https://doi.org/10.1093/oso/9780192844842.003.0016
https://doi.org/10.5281/zenodo.10185938
https://doi.org/10.5281/zenodo.10185934
https://doi.org/10.5281/zenodo.10185934
https://doi.org/10.3115/976973.976980
http://csli-publications.stanford.edu/LFG/15/papers/lfg10boegeletal.pdf
http://csli-publications.stanford.edu/LFG/15/papers/lfg10boegeletal.pdf
https://doi.org/10.1007/bf00992782
https://doi.org/10.1007/bf00992782


Oleg Belyaev

Broadwell, George Aaron. 2008. Turkish suspended affixation is lexical sharing.
In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’08 con-
ference, 198–213. Stanford: CSLI Publications.

Bruening, Benjamin. 2014. Precede-and-command revisited. Language 90(2).
342–388. DOI: 10.1353/lan.2014.0037.

Bruening, Benjamin. 2018. The lexicalist hypothesis: Bothwrong and superfluous.
Language 94(1). 1–42. DOI: 10.1353/lan.2018.0000.

Butt, Miriam & Tracy Holloway King. 1997. Null elements in discourse structure.
Unpublished manuscript intended for publication in the Proceedings of the
NULLS Seminar. http://ling.uni-konstanz.de/pages/home/butt/main/papers/
nulls97.pdf.

Carpenter, Robert L. 1992. The logic of typed feature structures. Cambridge, UK:
Cambridge University Press. DOI: 10.1017/cbo9780511530098.

Chomsky, Noam. 1970. Remarks on nominalization. In Roderick A. Jacobs & Peter
S. Rosenbaum (eds.), Readings in English transformational grammar, 184–221.
Waltham, MA: Ginn.

Corbett, Greville G. 2012. Features. Cambridge, UK: Cambridge University Press.
DOI: 10.1017/cbo9781139206983.

Crouch, Richard,MaryDalrymple, RonaldM. Kaplan, TracyHollowayKing, John
T. III Maxwell & Paula S. Newman. 2011. XLE Documentation. Xerox Palo Alto
Research Center. Palo Alto, CA. https : / / ling . sprachwiss .uni - konstanz .de /
pages/xle/doc/xle_toc.html.

Crouch, Richard & Tracy Holloway King. 2008. Type-checking in formally non-
typed systems. In Proceedings of the ACL workshop on Software Engineering,
Testing, and Quality Assurance for Natural Language Processing, 3–4. Associa-
tion for Computational Linguistics. DOI: 10.3115/1622110.1622112.

Dalrymple, Mary. 1993. The syntax of anaphoric binding. Stanford: CSLI Publica-
tions.

Dalrymple, Mary. 2001. Lexical Functional Grammar (Syntax and Semantics 34).
New York: Academic Press. DOI: 10.1163/9781849500104.

Dalrymple, Mary & Ronald M. Kaplan. 2000. Feature indeterminacy and feature
resolution. Language 76. 759–798. DOI: 10.2307/417199.

Dalrymple, Mary, Ronald M. Kaplan & Tracy Holloway King. 2004. Linguistic
generalizations over descriptions. In Miriam Butt & Tracy Holloway King
(eds.), Proceedings of the LFG ’04 conference, 199–208. Stanford: CSLI Publica-
tions.

Dalrymple, Mary, Ronald M. Kaplan & Tracy Holloway King. 2015. Economy of
Expression as a principle of syntax. Journal of Language Modelling 3(2). 377–
412. DOI: 10.15398/jlm.v3i2.82.

90

https://doi.org/10.1353/lan.2014.0037
https://doi.org/10.1353/lan.2018.0000
http://ling.uni-konstanz.de/pages/home/butt/main/papers/nulls97.pdf
http://ling.uni-konstanz.de/pages/home/butt/main/papers/nulls97.pdf
https://doi.org/10.1017/cbo9780511530098
https://doi.org/10.1017/cbo9781139206983
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://doi.org/10.3115/1622110.1622112
https://doi.org/10.1163/9781849500104
https://doi.org/10.2307/417199
https://doi.org/10.15398/jlm.v3i2.82


2 Core concepts of LFG

Dalrymple, Mary, Ronald M. Kaplan, John T. III Maxwell & Annie Zaenen (eds.).
1995. Formal issues in Lexical-Functional Grammar. Stanford: CSLI Publica-
tions.

Dalrymple, Mary, John Lamping & Vijay Saraswat. 1993. LFG semantics via con-
straints. In Proceedings of the 6th conference of the European chapter of the ACL
(EACL 1993), 97–105. Association for Computational Linguistics. DOI: 10.3115/
976744.976757.

Dalrymple, Mary, John J. Lowe& LouiseMycock. 2019. The Oxford reference guide
to Lexical Functional Grammar. Oxford: Oxford University Press. DOI: 10.1093/
oso/9780198733300.001.0001.

Dalrymple, Mary & Louise Mycock. 2011. The prosody-semantics interface. In
Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’11 confer-
ence, 173–193. Stanford: CSLI Publications.

Dalrymple, Mary & Irina Nikolaeva. 2011.Objects and information structure (Cam-
bridge Studies in Linguistics). Cambridge, UK: Cambridge University Press.
DOI: 10.1017/cbo9780511993473.

Erschler, David. 2012. Suspended affixation in Ossetic and the structure of the
syntax-morphology interface. Acta Linguistica Hungarica. DOI: 10.1556/aling.
59.2012.1-2.7.

Everett, Dan. 2015. Review of A Syntax of Substance by David Adger. American
Anthropologist 117(2). 414–449. DOI: 10.1111/aman.12251.

Falk, Yehuda N. 2001. Lexical-Functional Grammar: An introduction to parallel
constraint-based syntax. Stanford: CSLI Publications.

Falk, Yehuda N. 2010. An unmediated analysis of relative clauses. In Miriam Butt
& Tracy Holloway King (eds.), Proceedings of the LFG ’10 conference, 207–227.
Stanford: CSLI Publications.

Findlay, Jamie Y. 2017. Multiword expressions and lexicalism. In Miriam Butt &
Tracy Holloway King (eds.), Proceedings of the LFG ’17 conference, 200–229.
Stanford: CSLI Publications.

Findlay, Jamie Y. 2019. Multiword expressions and the lexicon. Oxford: University
of Oxford. (D.Phil. Thesis).

Findlay, Jamie Y. 2023. LFG and Tree-Adjoining Grammar. In Mary Dalrymple
(ed.), Handbook of Lexical Functional Grammar, 2069–2125. Berlin: Language
Science Press. DOI: 10.5281/zenodo.10186054.

Forst, Martin & TracyHolloway King. 2023. Computational implementations and
applications. In Mary Dalrymple (ed.), Handbook of Lexical Functional Gram-
mar, 1083–1123. Berlin: Language Science Press. DOI: 10.5281/zenodo.10185986.

Fukui, Naoki. 1986.A theory of category projection and its applications. Cambridge,
MA: Massachusetts Institute of Technology. (Doctoral dissertation).

91

https://doi.org/10.3115/976744.976757
https://doi.org/10.3115/976744.976757
https://doi.org/10.1093/oso/9780198733300.001.0001
https://doi.org/10.1093/oso/9780198733300.001.0001
https://doi.org/10.1017/cbo9780511993473
https://doi.org/10.1556/aling.59.2012.1-2.7
https://doi.org/10.1556/aling.59.2012.1-2.7
https://doi.org/10.1111/aman.12251
https://doi.org/10.5281/zenodo.10186054
https://doi.org/10.5281/zenodo.10185986


Oleg Belyaev

Goldberg, Adele E. 1995. Constructions: A Construction Grammar approach to ar-
gument structure. Chicago: University of Chicago Press.

Hale, Ken. 1983.Warlpiri and the grammar of non-configurational languages.Nat-
ural Language & Linguistic Theory 1. 5–47. DOI: 10.1007/bf00210374.

Halle, Morris & Alec Marantz. 1993. Distributed morphology and the pieces of
inflection. In Kenneth Hale & Samuel Jay Keyser (eds.), The view from Building
20: Essays in linguistics in honor of Sylvain Bromberger, 111–176. Cambridge,
MA: The MIT Press.

Haspelmath, Martin. 2011. The indeterminacy of word segmentation and the na-
ture of morphology and syntax. Folia Linguistica 45(1). 31–80. DOI: 10.1515/flin-
2017-1005.

Haug, Dag. 2023. Agreement. In Mary Dalrymple (ed.), Handbook of Lexical Func-
tional Grammar, 193–218. Berlin: Language Science Press. DOI: 10.5281/zenodo.
10185942.

Haug, Dag & Tatiana Nikitina. 2015. Feature sharing in agreement. Natural Lan-
guage & Linguistic Theory 34. 865–910. DOI: 10.1007/s11049-015-9321-9.

Hoffmann, Thomas&Graeme Trousdale (eds.). 2013. The Oxford handbook of Con-
struction Grammar. Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/
9780195396683.001.0001.

Jackendoff, Ray. 1977. X̄ syntax: A study of phrase structure (Linguistic Inquiry
Monographs 2). Cambridge, MA: The MIT Press.

Jackendoff, Ray. 1992. Babe Ruth homered his way into the hearts of America. In
Tim Stowell & EricWehrli (eds.), Syntax and the lexicon (Syntax and Semantics
26), 155–178. San Diego, CA: Academic Press. DOI: 10.1163/9789004373181.

Kameyama, Megumi. 1985. Zero anaphora: The case of Japanese. Stanford: Stan-
ford University. (Doctoral dissertation).

Kaplan, Ronald M. 1989. The formal architecture of Lexical-Functional Grammar.
Journal of Information Science and Engineering 5. 305–322. Revised version pub-
lished as Kaplan (1995).

Kaplan, Ronald M. 1995. The formal architecture of Lexical-Functional Grammar.
In Mary Dalrymple, Ronald M. Kaplan, John T. III Maxwell & Annie Zaenen
(eds.), Formal issues in Lexical-Functional Grammar, 7–27. Stanford: CSLI Pub-
lications. Earlier version published as Kaplan (1989).

Kaplan, Ronald M. 2023. Unbounded dependencies. In Mary Dalrymple (ed.),
Handbook of Lexical Functional Grammar, 425–481. Berlin: Language Science
Press. DOI: 10.5281/zenodo.10185954.

Kaplan, Ronald M. & Joan Bresnan. 1982. Lexical-Functional Grammar: A formal
system for grammatical representation. In Joan Bresnan (ed.), The mental rep-

92

https://doi.org/10.1007/bf00210374
https://doi.org/10.1515/flin-2017-1005
https://doi.org/10.1515/flin-2017-1005
https://doi.org/10.5281/zenodo.10185942
https://doi.org/10.5281/zenodo.10185942
https://doi.org/10.1007/s11049-015-9321-9
https://doi.org/10.1093/oxfordhb/9780195396683.001.0001
https://doi.org/10.1093/oxfordhb/9780195396683.001.0001
https://doi.org/10.1163/9789004373181
https://doi.org/10.5281/zenodo.10185954


2 Core concepts of LFG

resentation of grammatical relations, 173–281. Cambridge, MA: The MIT Press.
Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen (1995: 29–130).

Kaplan, RonaldM. & John T. III Maxwell. 1996. LFG GrammarWriter’s Workbench.
Xerox Palo Alto Research Center. Palo Alto, CA. https://www.researchgate.
net / profile / John _ Maxwell5 / publication / 2760068 _ Grammar _ Writer’s _
Workbench/links/0c96052405e97928e9000000.pdf.

Kaplan, Ronald M. & Jürgen Wedekind. 1993. Restriction and correspondence-
based translation. In Proceedings of the 6th conference of the European chapter
of the ACL (EACL 1993), 193–202. Association for Computational Linguistics.
DOI: 10.3115/976744.976768.

Kaplan, Ronald M. & Annie Zaenen. 1989a. Functional precedence and con-
stituent structure. In Chu-Ren Huang & Keh-Jiann Chen (eds.), Proceedings
of ROCLING II, 19–40. Taipei.

Kaplan, Ronald M. & Annie Zaenen. 1989b. Long-distance dependencies, con-
stituent structure, and functional uncertainty. In Mark Baltin & Anthony
Kroch (eds.), Alternative conceptions of phrase structure, 17–42. Chicago: Uni-
versity of Chicago Press. Reprinted in Dalrymple, Kaplan, Maxwell & Zaenen
(1995: 137–165).

Kharytonava, Volha (Olga). 2012. Taming affixes in Turkish: With or without
residue? In Thomas Stolz, Hitomi Otsuka, Aina Urdze & Johan van der Auwera
(eds.), Irregularity in morphology (and beyond) (Studia Typologica 11), 167–185.
Berlin: De Gruyter.

King, Tracy Holloway. 1997. Focus domains and information structure. In Miriam
Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’97 conference, 2–13.
Stanford: CSLI Publications. http://csli-publications.stanford.edu/LFG/LFG2-
1997/lfg97king.pdf.

Kokkonidis, Miltiadis. 2007. Towards a more lexical and functional type-logical
theory of grammar. In Miriam Butt & Tracy Holloway King (eds.), Proceedings
of the LFG ’07 conference, 271–292. Stanford: CSLI Publications.

Kroeger, Paul R. 1993. Phrase structure and grammatical relations in Tagalog. Stan-
ford: CSLI Publications.

Kuhn, Jonas. 2001. Resource sensitivity in the syntax-semantics interface: Evi-
dence from the German split NP construction. In W. Detmar Meurers & Ti-
bor Kiss (eds.), Constraint-based approaches to Germanic syntax (Studies in
Constraint-Based Lexicalism), 177–216. Stanford: CSLI Publications.

Kuhn, Jonas. 2003. Optimality-Theoretic Syntax – A declarative approach. Stan-
ford: CSLI Publications.

93

https://www.researchgate.net/profile/John_Maxwell5/publication/2760068_Grammar_Writer's_Workbench/links/0c96052405e97928e9000000.pdf
https://www.researchgate.net/profile/John_Maxwell5/publication/2760068_Grammar_Writer's_Workbench/links/0c96052405e97928e9000000.pdf
https://www.researchgate.net/profile/John_Maxwell5/publication/2760068_Grammar_Writer's_Workbench/links/0c96052405e97928e9000000.pdf
https://doi.org/10.3115/976744.976768
http://csli-publications.stanford.edu/LFG/LFG2-1997/lfg97king.pdf
http://csli-publications.stanford.edu/LFG/LFG2-1997/lfg97king.pdf


Oleg Belyaev

Laczkó, Tibor. 2014. An LFG analysis of verbal modifiers in Hungarian. In Miriam
Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’14 conference, 346–
366. Stanford: CSLI Publications.

Langacker, Ronald W. 1969. On pronominalization and the chain of command. In
David A. Reibel & Sanford A. Schane (eds.), Modern studies in English, 160–186.
Englewood Cliffs, NJ: Prentice-Hall.

Lovestrand, Joseph & John J. Lowe. 2017. Minimal c-structure: Rethinking pro-
jection in phrase structure. In Miriam Butt & Tracy Holloway King (eds.), Pro-
ceedings of the LFG ’17 conference, 285–305. Stanford: CSLI Publications.

Lowe, John J. 2011. Ṛgvedic clitics and ‘prosodic’ movement. In Miriam Butt &
Tracy Holloway King (eds.), Proceedings of the LFG ’11 conference, 360–380.
Stanford: CSLI Publications.

Lowe, John J. 2016. English possessive ’s: Clitic and affix. Natural Language &
Linguistic Theory 34. 157–195. DOI: 10.1007/s11049-015-9300-1.

Lyons, John. 1968. Introduction to theoretical linguistics. Cambridge, UK: Cam-
bridge University Press. DOI: 10.1017/cbo9781139165570.

Marcotte, Jean-Philippe. 2014. Syntactic categories in the correspondence ar-
chitecture. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the
LFG ’14 conference, 408–428. Stanford: CSLI Publications.

Melchin, Paul B., Ash Asudeh & Daniel Siddiqi. 2020. Ojibwe agreement in
Lexical-Realizational Functional Grammar. In Miriam Butt & Ida Toivonen
(eds.), Proceedings of the LFG ’20 conference, 268–288. Stanford: CSLI Publica-
tions. https://csli-publications.stanford.edu/LFG/LFG-2020/lfg2020-mas.pdf.

Mohanan, K. P. 1982. Grammatical relations and clause structure in Malayalam.
In Joan Bresnan (ed.), The mental representation of grammatical relations, 504–
589. Cambridge, MA: The MIT Press.

Muskens, Reinhard. 2001. Categorial Grammar and Lexical-Functional Grammar.
In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’01 con-
ference, 259–279. Stanford: CSLI Publications.

Nordlinger, Rachel. 1998. Constructive case: Evidence from Australian languages.
Stanford: CSLI Publications.

Oehrle, Richard T. 1999. LFG as labeled deduction. In Mary Dalrymple (ed.), Se-
mantics and syntax in Lexical Functional Grammar: The resource logic approach
(Language, Speech, and Communication), 319–357. Cambridge, MA: The MIT
Press.

Panova, Anastasia. 2020. A case of morphologically bound complementation in
Abaza: An LFG analysis. In Miriam Butt & Ida Toivonen (eds.), Proceedings of
the LFG ’20 conference, 289–306. Stanford: CSLI Publications.

94

https://doi.org/10.1007/s11049-015-9300-1
https://doi.org/10.1017/cbo9781139165570
https://csli-publications.stanford.edu/LFG/LFG-2020/lfg2020-mas.pdf


2 Core concepts of LFG

Patejuk, Agnieszka. 2023. Coordination. In Mary Dalrymple (ed.), Handbook of
Lexical Functional Grammar, 309–374. Berlin: Language Science Press. DOI:
10.5281/zenodo.10185948.

Patejuk, Agnieszka & Adam Przepiórkowski. 2014. Control into selected con-
juncts. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’14
conference, 448–460. Stanford: CSLI Publications.

Pollard, Carl & Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.
Chicago: University of Chicago Press & CSLI Publications.

Przepiórkowski, Adam & Agnieszka Patejuk. 2012. On case assignment and the
coordination of unlikes: The limits of distributive features. In Miriam Butt &
Tracy Holloway King (eds.), Proceedings of the LFG ’12 conference, 479–489.
Stanford: CSLI Publications.

Pullum, Geoffrey K. 2013. The central question in comparative syntactic metathe-
ory. Mind & Language 28(4). 492–521. DOI: 10.1111/mila.12029.

Rákosi, György. 2023. Anaphora. In Mary Dalrymple (ed.), Handbook of Lexical
Functional Grammar, 165–192. Berlin: Language Science Press. DOI: 10.5281/
zenodo.10185940.

Sadler, Louisa & Doug Arnold. 1994. Prenominal adjectives and the phrasal/
lexical distinction. Journal of Linguistics 30(1). 187–226. DOI: 10 . 1017 /
s0022226700016224.

Sells, Peter. 1994. Sub-phrasal syntax in Korean. Language Research 30(2). 351–
386.

Sells, Peter. 1995. Korean and Japanese morphology from a lexical perspective.
Linguistic Inquiry 26(2). 277–325.

Shieber, Stuart M. 1986. An introduction to unification-based approaches to gram-
mar (CSLI Lecture Notes 4). Stanford: CSLI Publications.

Spencer, Andrew. 2005. Case in Hindi. In Miriam Butt & Tracy Holloway King
(eds.), Proceedings of the LFG ’05 conference, 429–446. Stanford: CSLI Publica-
tions.

Toivonen, Ida. 2003. The phrase structure of non-projecting words: A case study
of Swedish particles (Studies in Natural Language and Linguistic Theory 58).
Dordrecht: Kluwer Academic Publishers.

Vikner, Sten. 1995. Verb movement and expletive subjects in the Germanic lan-
guages. Oxford: Oxford University Press.

Wescoat, Michael T. 2002. On lexical sharing. Stanford: Stanford University. (Doc-
toral dissertation).

Wescoat,Michael T. 2005. English nonsyllabic auxiliary contractions: An analysis
in LFG with lexical sharing. In Miriam Butt & Tracy Holloway King (eds.),
Proceedings of the LFG ’05 conference, 468–486. Stanford: CSLI Publications.

95

https://doi.org/10.5281/zenodo.10185948
https://doi.org/10.1111/mila.12029
https://doi.org/10.5281/zenodo.10185940
https://doi.org/10.5281/zenodo.10185940
https://doi.org/10.1017/s0022226700016224
https://doi.org/10.1017/s0022226700016224


Oleg Belyaev

Wescoat, Michael T. 2007. Preposition-determiner contractions: An analysis in
Optimality-Theoretic Lexical-Functional Grammar with lexical sharing. In
Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’07 con-
ference, 439–459. Stanford: CSLI Publications.

Wescoat, Michael T. 2009. Udi person markers and lexical integrity. In Miriam
Butt & Tracy Holloway King (eds.), Proceedings of the LFG ’09 conference, 604–
622. Stanford: CSLI Publications.

Zaenen, Annie. 1983. On syntactic binding. Linguistic Inquiry 14(3). 469–504.
Zaenen, Annie. 2023. Information structure. In Mary Dalrymple (ed.), Handbook

of Lexical Functional Grammar, 823–853. Berlin: Language Science Press. DOI:
10.5281/zenodo.10185972.

96

https://doi.org/10.5281/zenodo.10185972

