
Harikrishnan Sreekumar and Yannik Hüpel, 24th November 2023

HeFDI Code School

Introduction to Software Testing

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 2

Workshop objectives

▪ Familiarize with testing concepts from a research software perspective

▪ How to incorporate testing in our code development routines

▪ Capable of coding basic unit tests, acceptance tests and code quality checks

▪ Know and aim towards test automation

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 3

Agenda

Motivation for testing research software

Role of software testing for sustainable development

Fundamentals of software testing

Major types of software testing

▪ Unit tests and code coverage + Hands-on with PyTest + Break

▪ Acceptance tests + Hands-on with PyTest + Short Break

▪ Code quality tests + Hands-on with PyLint

Test process automation with GitLab CI

Demonstration of the in-house code elPaSo’s test environment

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 4

Information

▪ Workshop slides and codes in Zenodo

▪ Workshop preparation

▪ Live sharing via VS Code

▪ Running locally? – python with numpy, pytest and pylint

▪ We look forward to your questions and experiences – please unmute and interrupt

anytime during the workshop or post in chat

▪ We use python as our standard language

▪ We use the main room for our hands-on session – no break-out rooms

▪ Planned breaks after every hour

▪ More documentation in

https://suresoft.dev/knowledge-hub/software-testing/

https://suresoft.dev/knowledge-hub/software-testing/

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 5

Literature recommendation

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 6

Motivation for testing in science

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 7

Motivation | Software testing? Why?

[https://www.codementor.io]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 8

Motivation | Causes of hidden software bug - An example

Ariane 5 – The Worst Software Bugs in History

Photo source: https:// www.esa.int

Article: https://www.bugsnag.com/blog/bug-day-ariane-5-disaster

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 9

Motivation | Necessity for software testing

▪ First step towards code sustainability

▪ Ensures and documents the correct behaviour of a software

▪ Contributes to the overall software quality

▪ Quickly identifies defects/bugs in a developing code → save time for debugging

“Scientists spend 57% of the time finding and fixing bugs”
[P. Prabhu et al., A Survey of the Practice of Computational Science, 2011]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 10

Motivation | Survey results

▪ 24.14% do not consider testing because of lack of time

▪ 27.59% add tests to old codes

▪ 41.38% miss sufficient knowledge for testing

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 11

Role of software testing for sustainable development

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 12

In Academia

Develops feature A

Develops feature B

Develops feature C

Does feature A still work?

Do features A and B still work?

PhD Researcher 1

PhD Researcher 2

PhD Researcher 3

[FreeDigitalPhotos.net]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 13

Software testing – powerful tool to …

▪ Localize bugs in your large code base

▪ Get immediate feedback on your new code integration

▪ Document stable behaviour of your software

▪ Enhance code credibility

▪ All the above, in large groups – define your standards centrally

▪ Ensure a stable release at all times

▪ Towards sustainable development!

▪ Main component in a continuous integration framework is testing

Reduce

unnecessary

bugs!

[https://browsee.io/blog/]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 14

Fundamentals of software testing

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 15

“Software testing shows the presence of bugs, not their absence”

[https://www.hexacta.com/testing-in-software-more-than-finding-bugs/]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 16

Definition of software testing

“Software testing is a set of activities with the objective of identifying failures in a software or

system and to evaluate its level of quality.”
[B. Homès: Fundamentals of Software Testing. 2012]

“Software testing is the process of executing a program with the intend of finding errors.”
[J. M. Myers et al.: The Art of Software Testing. 2011]

“Software testing is the process of evaluating and verifying that a software product or

application does what it is supposed to do.”
[IBM: What is software testing? https://www.ibm.com/topics/software-testing]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 17

Types of software testing

150+ types of tests and still increasing…

→ But, what are relevant for research software?

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 18

Software testing for research softwares

[N. U. Eisty, et al.: Testing Research Software: A Survey. 2022]

Commonly used testing in research softwares

Workshop focus → Unit testing, acceptance testing, code-quality testing

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 19

Functional and non-functional tests

Functional tests

▪ Focus on the proper functioning of the software and it‘s

components

▪ Example: Correctness/accuracy (unit-, acceptance testing)

Non-functional tests

▪ Focus on the non-functional aspects like performance,

software‘s usability, code quality, stability, testability,

adaptability, portability, etc.

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 20

Manual and automated testing

Manual testing

▪ Oldest methods

▪ Typically done by a QA tester (black-box)

▪ Tests different features of the software

Automated testing

▪ Most efficient – faster and more aspects are tested

▪ Main component of continuous integration and deployment

▪ Typically done by the developer with the help of testing

tools (white-box)

Focus of this

workshop

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 21

Test suite
Executes

SUT for every
test case

Collect actual
results

Compare with
expected

results

Test report
and reporting

Typical automated software testing framework

</>

System under test (SUT)

Software itself or software

components

Test suite: Test cases + Expected results

Benchmarked software‘s expected behaviour

and test specification

Test reports

Test status (Success/Failed) with test

measures

Test harness

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 22

How to incorporate testing in practice?

Software testing life-cycle (STLC)

▪ Testing is always present in a software

development cycle

▪ Sequential/Iterative/Incremental methodology to

achieve a level of quality

▪ Agile model example: Test driven development

(TDD) → Workshop on TDD

Requirement
analysis

Test
planning

Test case
developmentTest environment

setup

Test
execution

Test reporting

STLC

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 23

Unit testing and Hands-on session

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 24

Unit testing

▪ Tests a code at its basic level

▪ Codes are isolated - according to their specific functionalities - into smaller units and

tested for proper operation

“Unit testing is more of an act of design than of verification. It is more of an act of

documentation than of verification.”
[R. C. Martin and M. Martin: Agile Principles, Patterns and Practices in C#. 2006]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 25

How to incorporate unit-testing?

▪ Existing code? Breakdown into very small functions

▪ Writing new code? Easy! Follow a unit-testing methodology from the very start.

→ Test Driven Development (TDD)
Write a

failing test

Make the
test pass

Refactor

TDD

[K. Beck: Test-Driven Development. 2002] [TDD Workshop]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 26

How to write tests? The AAA Pattern

▪ Three A’s: Arrange, Act and Assert

▪ Added advantage is that the tests are easily readable

▪ Arrange : Requirements to test the functions are prepared

▪ Act : Function under test is called and output is collected

▪ Assert : The expected operation of the function is checked

Arrange

Act

Assert

def test_XYZ():

def XYZ():

…

…

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 27

Tools for unit-testing

▪ pytest [https://docs.pytest.org/en/stable/]

▪ unittest [https://docs.python.org/3/library/unittest.html]Python

▪ GoogleTest [https://github.com/google/googletest]C++

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 28

Assertions

▪ Assertions checks whether the outcome meet certain expectations

▪ Boolean expression: true means assertion success and false means assertion fail

▪ Does sanity check – checks if certain assumptions are valid

▪ Great for documentation, debugging and testing

PyTest uses python’s standard assert:

▪ assert 1 == 1 # success

▪ assert “Hello” == “Hallo” # fails

▪ assert 3.14159265359 == pytest.approx(3.14, 1e-3) # success

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 29

Test metrics: Code coverage

▪ Analysis method which determines the amount of code executed by a test suite and which are not.

▪ We aim for the best code coverage with unit testing

▪ Code coverage types:

▪ Functional coverage : how many functions are tested

▪ Branch coverage : how many execution paths are tested

▪ Line/statement coverage : how many lines of code/statements are tested

▪ Coverage tools

▪ coverage [https://coverage.readthedocs.io/en/6.4.2/]Python

▪ GNU gcov + lcov [https://gcc.gnu.org/onlinedocs/gcc/Gcov.html,
https://github.com/linux-test-project/lcov]

▪ Intel codecov + profmerge
C++

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 30

Hands-on | Writing your first unit test

Example project – Matrix Calculator

▪ Perform basic matrix operations: Add, Multiply, Inverse

▪ Can handle different matrix format: Dense

▪ Can handle user-written linear solvers: Jacobi iterative solver

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 31

Hands-on | Writing your first unit test

Example project – Matrix Calculator

|- src

|-- MatrixAlgebra

|--- dense_matrix.py

Matrix Addition

add(A, B)

Matrix-Vector Multiply

matrix_vector_multiply(A, b)

Matrix Inverse

matrix_inverse(A)

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 32

Hands-on | Writing your first unit test

Example project – Matrix Calculator

|- src

|-- MatrixAlgebra

|--- dense_matrix.py

|-- MatrixSolver

|--- jacobi_solver.py

Solve

solve(A, b)

jacobi_solver uses the dense_matrix functionalities

How to start with unit-testing?

→ Demonstration

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 33

Hands-on | Writing your first unit test

Start testing and increase code coverage to 100% | 20 minutes

▪ Write 3 unit tests to test the functions add, matrix_vector_multiply, matrix_inverse

implemented in dense_matrix.py | XX% CC

▪ (Optional) Write additional tests where matrix entries are float values and use pytest.approx |

XX% CC

Matrix Addition

add(A, B)

Matrix-Vector Multiply

matrix_vector_multiply(A, b)

Matrix Inverse

matrix_inverse(A)

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 34

Acceptance testing and Hands-on session

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 35

Why unit testing is not enough…

[https://www.aligneddev.net/]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 36

Acceptance testing

▪ Tests the application as a whole and ensure proper operation

▪ Acceptance testing perform verification

▪ Documentation of stable application state and execution

▪ Black box testing

“If unit testing verifies that the code does exactly what the programmer expects it to do, then acceptance

testing verifies that the code does what the user expects it to do.”

[D. Sale: Testing Python: Applying Unit Testing, TDD, BDD and Acceptance Testing. 2014]

P
ro

g
ra

m
 f
lo

w

Acceptance tested

Unit-tested

Unit-tested

Unit-tested

Unit-tested

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 37

How to incorporate acceptance-testing?

▪ Design specific test cases which executes certain features of the application

▪ Aim for maximum code coverage with the various test cases

▪ Follow an acceptance-testing methodology in your development life-cycle

→ Behavior Driven Development (BDD)

Write a
failing test

Make the
test pass

Refactor

TDD

Write a
feature

test

Refactor

BDD

[D. Sale: Testing Python: Applying Unit Testing, TDD, BDD and Acceptance

Testing. 2014]

We will still use the AAA pattern!

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 38

Tools for acceptance-testing

▪ pytest [https://docs.pytest.org/en/stable/]

▪ robot [https://robotframework.org/]Python

▪ fieldcompare [https://gitlab.com/dglaeser/fieldcompare/]

▪ automate [https://git.rz.tu-bs.de/akustik/elPaSo-AUTOMATE]

▪ Custom made ???
…

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 39

Typical workflow for acceptance testing

Benchmarks

Stable results

Execute

test

cases

Verify

Report

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 40

Hands-on | Writing your first acceptance test

Example project – Matrix Calculator

|- main.py

Case “add”

py main.py --add

Performs addition of supplied matrix data

Case “solve”

py main.py --solve

Performs solving of supplied matrix data

Case “default”

py main.py xyz

Exits with a failure code: exit(-1)

How to start with acceptance-testing?

→ Demonstration

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 41

Hands-on | Writing your first acceptance test

Start testing and increase code coverage to 100% | 10 minutes

▪ Write an acceptance test to check the “solve” case | XX% CC

▪ (Optional) Write an application-death-test to check “default” case | XX% CC

Case “solve”

main(‘--solve’)

Performs solving of supplied matrix data

Assert with reference solution →
loadmat('./data/ref_result_system100x100_solve.mat')[‘result']

Case “default”

main(‘xyz’)

Exits with a failure code: exit(-1)

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 42

Code-quality testing and demonstration

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 43

Code quality testing

[What is code quality, how to measure and improve code quality? (codegrip.tech)]

https://www.codegrip.tech/productivity/what-is-code-quality-how-to-measure-and-improve-it/

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 44

Code quality testing

▪ Quality code consists of those features that cater to the need of customers and

subsequently provide product satisfaction

▪ Quality code is free from deficiencies

▪ Quality code measures how well code can communicate between developers

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 45

Motivation for code quality testing

▪ Poor quality code tends to die early because it might entail substantial technical debt

▪ Quality code makes your software:

▪ More sustainable (minimum changes over time)

▪ Robust (can cope with error usage)

▪ Promotes easy transferability

▪ Increases readability

▪ Decreases technical debt

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 46

How do we conduct code quality checks?

▪ Occurrence of software defects and software quality are related

▪ Code quality gets overlooked in favor of programming speed → Can accumulate to a

huge workload

Linter is a tool that

automatically checks

the quality of the code

fitting to your conventions

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 47

Tools for code-quality checks

PyLint [https://pylint.pycqa.org/en/latest/]

Flake8 [https://flake8.pycqa.org/en/latest/index.html]Python

Clang-Tidy [https://clang.llvm.org/extra/clang-tidy/]C++

SonarQube [https://www.sonarqube.org/]…

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 48

Test process automation

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 49

Test process automation

Testing procedures are repetitive and time consuming

The testing process can easily be conducted by a script running automatically

→ Test process automation

What is test process automation?

▪ Automating the testing procedure

▪ Automating the management and application of test data and results

What Is Automation Testing? (codecademy.com)

https://www.codecademy.com/resources/blog/what-is-automation-testing/

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 50

Test process automation

Testing procedures are repetitive and time consuming

The testing process can easily be conducted by a script running automatically

→ Test process automation

What is test process automation?

▪ Automating the testing procedure

▪ Automating the management and application of test data and results

80% of organizations use

automation testing and it is

projected to increase in the next

years

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 51

Motivation for test automation

▪ Cost

Automated testing will lead to testing without manpower

▪ Speed

More tests can be concluded in the same amount of time

▪ Effectiveness

Usually automated tests find bugs sooner

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 52

What are easily automated tests?

Repetitive tests Time-consuming tests Tests for multiple builds

Tests vulnerable to
human error

Frequently used tests

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 53

How do we automate testing?

Selecting a
testing tool

Defining
scope of

automation

Plan,
design and

develop

Execute the
test

Maintenance

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 54

Test process automation with Gitlab CI

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 55

Motivation | In Academia

Develops feature A

Develops feature B

Develops feature C

Does feature A still work?

Do features A and B still work?

PhD Researcher 1

PhD Researcher 2

PhD Researcher 3

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 56

Motivation | Developing in groups

To prevent complex integration:

“Commit code frequently”
[Duval et al. practices]

“Everyone commits to the mainline everyday”
[Fowler practices]

With CI → Better quality control over new features

and their effect on existing implementation –

through automated build and test routines

Merge conflicts, bugs, defects, broken routines

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 57

What is continuous integration?

“Practice of automating the integration of code changes from multiple contributors

into a single software project.”

[altassian.com]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 58

Workflow | Continuous integration

Local

development

Local compiling

and testing

Yes

No

Tests pass? Commit to main

Fix bugs

CI Server:

Build & Test in production

environment

No

Yes

Tests pass?

On to the next

feature!

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 59

Write tests!

[https://itnext.io/]

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 60

Continuous integration with GitLab

Build Tests

Shared/Specific Runner

(Docker Executor)

CI Pipeline

Push code

Trigger a pipeline
Deploy

.gitlab-ci.yml
Preparation

✓

✓

✓ ✓

✓

For each

job

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 61

Continuous integration with GitLab

Build Tests

Shared/Specific Runner

(Docker Executor)

CI Pipeline

Push code

Trigger a pipeline
Deploy

.gitlab-ci.yml
Preparation

✓

✓

✓ x

✓

For each

job

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 62

Demonstration of elPaSo testing framework

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 63

elPaSo | About

Elementary Parallel Solver (elPaSo)

▪ Performs vibroacoustic analysis in the modal,

static, time and frequency domain

▪ Based on FEM, BEM, SBFEM

▪ Efficient computing strategies - parallel computing,

model order reduction

https://akustik.gitlab-pages.rz.tu-bs.de/elPaSo-Core/

https://git.rz.tu-bs.de/akustik/elPaSo-Core/
Source: InA/TU Braunschweig

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 64

▪ GUI

▪ Pre- and post-processing

routines

▪ Visualizer

elPaSo | Source code

Programming language and SLOC:

121952

22073

3294

C++ Python CMAKE

▪ Numerical methods

▪ Material definitions

▪ Coupling interfaces

▪ Solver routines

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 65

elPaSo | Testing Framework

Vibroacoustic

Benchmark

Repository

Unit Testing

Google Test

361 tests

Performance Testing

elPaSo AUTOMATE Tool

8 tests

Code Quality Checks

Clang-Tidy

Acceptance Testing

elPaSo AUTOMATE Tool

52 tests

11.9%
13,302/

112,110

Unit test

coverage

16.7%

Acceptance test

coverage

18,944/

113,247
- Verification benchmarks

(previous elPaSo versions or ABAQUS)

- Validation benchmarks

(from experiments)

- Performance benchmarks

(Scalability with MPI and OMP threads)

DOI: 10.5281/zenodo.7612531

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 66

elPaSo | Performance Testing on HPC platforms

Performance testing with hybrid MPI+OMP parallelization

[https://github.com/SvenMarcus/hpc-rocket]

Performance Testing HPC Rocket HPC platforms

Work in progress for large-scale problemsCPARDISO solver timings

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 67

elPaSo | How tests are incorporated?

Unit testing

▪ New codes → Test driven development

▪ Legacy codes → Refactoring and make it testable

Acceptance testing

▪ New feature/ new research publication → New benchmark

Features of the elPaSo AUTOMATE Tool

▪ Python tool running elPaSo benchmarks and compare with set reference

▪ Execute tests in a HPC cluster with HPC-Rocket for computationally expensive tests

▪ Issue reporting – python-gitlab for automated issue creation in GITLAB issue board

▪ Detailed technical report (currently generated as PDF, in future also as Gitlab pages)

→ Demonstration

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 68

Tips for software testing

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 69

Test recommendation

Application Class* Recommendations

0 Automated tests are recommmended but not required

>=1 The software should have unit tests that verify the most important features

>=2
The software should have an extensive test suite including unit, integration

and acceptance tests

3
The previous recommendations are mandatory for applications of this

class

[https://suresoft.dev/knowledge-hub/research-software-guidelines/guidelines/]

0 Small scripts only intended for personal use

1 Software intended to be used and extended by others

2 Software with long-term development and maintanability requirements

3 Mission-critical software

*

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 70

Tips for software testing

▪ Choose the best suitable type of testing for your code → Start with unit-testing

▪ Always write tests first before writing production code → Forces the system to be testable

→ TDD Workshop

▪ Designing test codes for legacy codes → Break dependencies and refactor codes to

make them testable

▪ Design clear and simple test cases

▪ Test name should be self-explaining and sufficiently elaborate

▪ Defining a set of domain specific benchmarks

▪ Benchmarks are often computationally expensive → Connect your tests to run on a high-

performance computing cluster (HPC-Rocket, Jacamar CI)

▪ Tests are done in specific environments → Containerization

https://suresoft.dev/knowledge-hub/continuous-integration/containers/

https://suresoft.dev/knowledge-hub/continuous-integration/containers/

24 November 2023 | Harikrishnan Sreekumar, Yannik Hüpel | HeFDI Code School – Software Testing | Page 71

Thank you for your attention

