
Railana Santana Lago
Advisor: Ivan Machado

Towards automated refactoring
of smelly test code

WEPGCOMP 2023

https://wepgcomp.github.io/

2

Título Towards automated refactoring of smelly test code

Nome Railana Santana Lago

Curso Doutorado

Orientador(es) Ivan Machado

Ingresso OUT/2020

Qualificação 2024.1

Defesa A definir

Bolsista? Sim

Ficha do trabalho

Context

3

● Software testing
○ Improve the quality of production code

● Test code is considered second-class code
● Production code quality vs. test code quality
● Test code is susceptible to design antipatterns

○ Test smells 1: symptoms and indications of design problems in the test code that
impair understanding, readability and consequently the maintenance of the test.

● Refactoring test smells has not been a priority for engineers 2 and is not trivial 3

1 Van Deursen, Arie, et al. "Refactoring test code." Proceedings of the 2nd international conference on extreme programming and flexible processes in software engineering (XP2001), 2001.
2 Junior, N. S., Rocha, L., Martins, L. A., & Machado, I. (2020). A survey on test practitioners' awareness of test smells.
3 SHRIVASTAVA, D. P., & JAIN, R. Improve The Test Case Design of Object Oriented Software by Refactoring. 2010. International Journal of Computer Science and Information Security (IJCSIS)

Context

4

● Variety of types of test smells1

● Each test smell has its particularities and each type affects the test code in a different
way
○ Sleep test 2: May slow down test execution.
○ Conditional Test Logic 2: Increases test complexity.

● Several approaches to fix test smells have been proposed in the literature
○ Existing approaches seek to progressively fix test smells
○ Refactoring individual test smell instances
○ One test smells at a time, until multiple changes are applied to the test code

and the code is completely refactored.

1 Garousi, V., & Küçük, B. (2018). Smells in software test code: A survey of knowledge in industry and academia. Journal of systems and software, 138, 52-81.
3 Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W., Ouni, A., & Palomba, F. (2020, November). Tsdetect: An open source test smells detection tool. In Proceedings of the 28th ACM joint meeting
on european software engineering conference and symposium on the foundations of software engineering (pp. 1650-1654).

Problem and Motivation

5

● A single smell instance x Multiple test smell instances 1
● Multiple test smell instances (test smells co-occurrence) 2

○ Some test smells types tend to co-exist with others
● Frequent co-occurrence of different design problems in tests3

○ All test smells co-occur with the Assertion Roulette test smell;
○ Mystery Guest and Resource Optimism;
○ Mystery Guest and Indirect pairs Testing;
○ Indirect Testing and Test Code Duplication test smells.

1 M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical study of the impact of two antipatterns, blob and spaghetti code, on program comprehension,” in 2011
15th European Conference on Software Maintenance and Reengineering, 2011, pp. 181–190.
2 D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli, “On the relation of test smells to software code quality,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2018, pp. 1–12.
3 F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia, “On the diffusion of test smells in automatically generated test code: An empirical study,” in Proceedings
of the 9th International Workshop on Search-Based Software Testing, ser. SBST ’16. ACM, 2016, p. 5–14.

Problem and Motivation

6

● As test smells rarely appear in isolation in tests, it is necessary to investigate different
strategies to refactor test code with multiple test smells quickly and safely.

● Refactoring guidelines capable of removing more than one test smell instance can
reduce the amount of code changes and speed up the refactoring process.

● Trivial examples:
○ Assertion Roulette and Duplicate Assert - Add Assertion Explanation or extract asserts.
○ Mystery Guest and Resource Optimism - Inline Resource refactoring, removing external

dependency.
○ Empty Test is also an Unknown Test - Add a test.

Problem: Current research only investigates and proposes
approaches to refactoring individual instances of test smells.

Objective

7

The objective of this study is to investigate how multiple instances of test smells usually
interact to each other in open source projects and how these multiple instances can be
refactored.

● OE1) Survey and synthesize evidence available in the literature on test code
refactoring.

● OE2) Identify and empirically evaluate how co-occurrences of test smells affect the
quality of test code.
○ OE2.1) Characterize the effects of the occurrence of test smells on the quality of the test

code.
● OE3) Find test refactorings that occur simultaneously.
● OE4) Propose and evaluate an approach to refactoring tests with multiple test smells.

Search strategy

8

OE1) Survey and
synthesize evidence

available in the
literature on test code

refactoring.

OE2) Identify and
empirically evaluate

how co-occurrences of
test smells affect the
quality of test code.

OE2.1) Characterize the
effects of the

occurrence of test
smells on the quality of

the test code.

OE3) Find test
refactorings that occur

simultaneously.

OE4) Propose and
evaluate an approach

to refactoring tests with
multiple test smells.

Systematic literature
review

O
bj

ec
tiv

e
St

ra
te

gy

Exploratory longitudinal
study with open source

projects

 Build guidelines for
refactoring multiple test

smells

Preparation of the
refactoring catalog

Implementation of tool
with guidelines

Empirical evaluation of
tool with practitioners

Systematic literature review

9

Research Questions (RQ):

RQ1) What are the existing activities for test
code refactoring?

RQ2) What types of test code issues can be
resolved using refactoring?

RQ3) What automated tools are available for
test code refactoring?

RQ4) What empirical methods were employed
in primary studies?

Search string

software AND (test OR testing) AND (refactoring OR refactor)

Steps

Systematic literature review

10

Results

● We identified 190 test code problems, 211 refactorings, and 26 tools
● The majority of the studies presented generic refactorings suitable for both production

and test code
● Few studies focused exclusively on test code design
● Some anti-patterns had many refactoring strategies, while others lacked a clear

strategy
● Existing tools have not evolved significantly since their inception,

and many refactoring strategies have not been evaluated.
● Our study highlights the need for more studies on recommending refactorings for test

code and investigating the effectiveness and effects of each refactoring approach.

Exploratory study - Pilot

11

● Apache Maven Dependency Plugin (AMDP)1 project
● We detected test smells in AMDP project with RAIDE (20 test smells types)
● We selected two versions of AMDP project
● We manually classified the test smells in two versions:

○ Added, Unchanged, Reallocated, and Removed
● We identified (and them analyzed) 21 test smells (removed)
● A wrong refactoring attempt may unintentionally move a test smell

or insert new ones
● Three methods yield the largest amount of simultaneous test smells changes
● If test smells can be reallocated together, then it is possible that they also can be

refactored through simultaneous changes.

1https://maven.apache.org/plugins/maven-dependency-plugin/

12

Exploratory longitudinal study

Script to read test smell reports from
two versions of a project and classify
them.

RAIDE detects new test smells

Article submitted to the
ACM CSUR journal.

13

OE1) Survey and
synthesize evidence

available in the
literature on test code

refactoring.

OE2) Identify and
empirically evaluate

how co-occurrences of
test smells affect the
quality of test code.

OE2.1) Characterize the
effects of the

occurrence of test
smells on the quality of

the test code.

OE3) Find test
refactorings that occur

simultaneously.

OE4) Propose and
evaluate an approach

to refactoring tests with
multiple test smells.

Systematic literature
review

Exploratory longitudinal
study with open source

projects

 Build guidelines for
refactoring multiple test

smells

Preparation of the
refactoring catalog

Implementation of tool
with guidelines

Empirical evaluation of
tool with practitioners

Status

14

OE1) Survey and
synthesize evidence

available in the
literature on test code

refactoring.

OE2) Identify and
empirically evaluate

how co-occurrences of
test smells affect the
quality of test code.

OE2.1) Characterize the
effects of the

occurrence of test
smells on the quality of

the test code.

OE3) Find test
refactorings that occur

simultaneously.

OE4) Propose and
evaluate an approach

to refactoring tests with
multiple test smells.

Systematic literature
review

Exploratory longitudinal
study with open source

projects

 Build guidelines for
refactoring multiple test

smells

Preparation of the
refactoring catalog

Implementation of tool
with guidelines

Empirical evaluation of
tool with practitioners

Status 1. Pilot Study
2. RAIDE
3. SCRIPT
4. Design and planning
5. Execution
6. Analysis

15

OE1) Survey and
synthesize evidence

available in the
literature on test code

refactoring.

OE2) Identify and
empirically evaluate

how co-occurrences of
test smells affect the
quality of test code.

OE2.1) Characterize the
effects of the

occurrence of test
smells on the quality of

the test code.

OE3) Find test
refactorings that occur

simultaneously.

OE4) Propose and
evaluate an approach

to refactoring tests with
multiple test smells.

Systematic literature
review

Exploratory longitudinal
study with open source

projects

 Build guidelines for
refactoring multiple test

smells

Preparation of the
refactoring catalog

Implementation of tool
with guidelines

Empirical evaluation of
tool with practitioners

Status

Pending

Pending

Pending

In progress

Thank you!

16

Questions?
railana.santana@ufba.br

