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Abstract. The “ego network of words” model captures structural prop-
erties in language production associated with cognitive constraints. While
previous research focused on the layer-based structure and its semantic
properties, this paper argues that an essential element, the concept of an
active network, is missing. Drawing inspiration from social ego networks,
where the active part includes relationships regularly nurtured by indi-
viduals, we establish the notion of an active ego network of words. We
demonstrate that without the active network concept, an ego network
becomes vulnerable to the amount of data considered, leading to the
disappearance of the layered structure in larger datasets. To address
this, we define a methodology for extracting the active part of the ego
network of words and validate it using interview transcripts and tweets.
The robustness of our method to varying input data sizes and temporal
stability is demonstrated. In addition, our results are well-aligned with
prior analyses of the ego network of words, where the limitation of the
data collected led automatically (and implicitly) to approximately con-
sider the active part of the network only. Moreover, the validation on
the transcripts dataset (MediaSum) highlights the generalizability of the
model across diverse domains and the ingrained cognitive constraints in
language usage.

Keywords: ego network of words, active network, cognitive constraints,
language production, structural properties

1 Introduction

Human language production is subject to many cognitive processes that unfold
transparently. These processes exploit our cognitive abilities (subject to physio-
logical limits such as the duration and volume of long-term memorization of the
mental lexicon) to their full extent. For example, it is possible to find the word
that best fits the idea that needs to be expressed among thousands of words
in only a few milliseconds [16], thanks to complex processing levels (semantic,
syntactic, and lexical) involved in speech-related cognition [7]. The structure of
the language is influenced by these cognitive strategies. For instance, in most
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of the still existing languages, the most frequent words of a language are both
the shortests [4] and the most quickly retrieved ones in a speech production
task [5,21]. According to Zipf, some of these structural regularities are the result
of a compromise that minimizes the effort spent in communication for both the
sender – who prefers to use frequent words to minimize the word retrieval time –
and the receiver – who prefers less used words to minimize ambiguity. Previous
work has shown the existence of a new set of structural [19] and semantic [20]
invariants in language production using an egocentric model derived from the
social ego network model [3], which in turns originates from the social brain
hypothesis from anthropology [10]. This model organizes a person’s (the ego)
social relationships into concentric circles (between four and five on average)
according to their intensity. Recent work has leveraged large amounts of data
from social networks to show that this model is also relevant for describing online
relationships [12].

In this paper, we adopt a similar approach to study cognitive limitations
in language production. Indeed, an ego-centered model organized in concentric
layers (called “ego network of words”) can be used to describe the way a person
uses his personal vocabulary. Language production, just like the socialization
process, consumes cognitive capacities that are limited, despite the power of the
human brain. These two human activities are closely connected, as postulated
by the “social gossip theory of language evolution” [10] which establishes a
causal link between the sudden increase in the number of active relationships in
humans (from 50 for the closest non-verbal primates to 150 for humans) and the
appearance of language that would have optimized the activity of social grooming.
Moreover, we expected to find traces of cognitive limits in ego networks of words
since we already have evidence of such limits in language production, like the size
of the vocabulary which would be about 42,000 words for a 20-year-old native
English speaker, or the approximate time span of 180 ms to retrieve a word which
is a strong constraint [8].

1.1 Contributions and key results of the paper

The ego network of words is a novel model that captures structural properties in
language production linked to cognitive constraints. Existing works focused on
the layer-based structure and its semantic properties. Here, we argue that the
model is still missing a key element used in the characterization of social ego
network, i.e., the concept of active network. In social ego networks, the active part
of the ego network only included relationships that the ego spent time nurturing,
thus consuming cognitive resources on the ego’s side. The layered structure
of the social ego network only emerged in the active part. Such “meaningful”
relationships were identified with a shoe-leather anthropology approach, based
on a common understanding of how human social interactions work. Specifically,
a relationship was considered meaningful if it entailed at least one interaction per
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year, based on the fact that people close to each other exchange at least birthday
or holiday wishes1.

In previous works on language ego networks, the layered structure seemed to
emerge without applying any preliminary filter in the spirit of the birthday/holiday
wishes. And anyway, finding such a common sense threshold for the ego network
of words would not have been possible. In this paper, we argue that without
the notion of “active” ego network of words, the analysis carried out would not
be robust to the amount of data considered. Specifically, in the paper we show
three key properties in this regard. First, that depending on the size and extent
of collected data, ego network may or may not include (a part of) the inactive
ego network. Second, that appropriate filtering is needed, in order to isolate the
active part of the ego network. Third, that layered structures – the fingerprint of
the human cognitive involvement – emerge only when the inactive part of the ego
network is excluded. Therefore, the paper provides evidence about the complete
structure of the ego network of words, as well as a robust methodology to isolate
and study it.

The first contribution of this paper is the definition of a methodology to extract
the “active” part of the ego network (Section 4). In Section 5.1, we successfully
test this methodology using two types of datasets: interview transcripts and
tweets. MediaSum is a dataset that includes thousands of verbatim transcripts
of spoken interviews from an American public radio and private TV channel
(Section 3.1). The Twitter datasets are extracted from the same users as in [19],
but we downloaded larger timelines, up to 10K tweets (Section 3.2). We also
prove that the method that we use to extract the active ego network is robust to
different amounts of input data (Section 5.3) and that the active size is stable
over time (Section 5.4). The structural results (Section 5.2) of the ego networks
produced in this way substantially confirm the layer ego network of word structure
obtained in previous work [19] but are robust to the size of the input data. The
second contribution of the paper is the validation of the ego network of words
model on a dataset (MediaSum) that is completely different in nature from the
Twitter ones on which it had been applied previously (Section 5.2). The fact that
the structural properties of the word ego networks are confirmed is an important
validation that the model generalizes across different domains and, thus, that
the underlying cognitive constraints are ingrained in our use of language.

The key findings of the article are as follows:

– We introduce the notion of active part of an ego network of words, beyond
which the model would contain words that are not used frequently enough to
denote a cognitive involvement. We show that, beyond the active part, the
word ego network becomes poorly structured (i.e. with a very low number of
concentric circles).

– We define a robust algorithm to extract this active part based on the properties
of the ego’s language production.

1 These considerations hold for Western societies, which were the focus of this anthro-
pological studies.
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– We find that the active size is specific to each ego network and stable over
time. Therefore, each ego appears to have its own limit to the number of words
it can actively use, similarly to what was observed for social ego networks.

– Even if the ego networks are larger than those observed in previous pa-
pers [19,20] (where the concept of active network was not exploited) we
retrieve most of the structural invariants previously observed: first, the num-
ber of circles in the model is approximately the same. Second, third-to-last
and second-to-last circles account for 30% and 60% of the words in the ego
network whatever the number of layers. Third, the scaling ratio between
circles tends towards 2.

– Ego networks based on oral language production (interviews) have the same
structural properties as those obtained from Tweets, thus confirming the
cross-domain generalizability of the ego network model.

2 Related work

2.1 Social ego networks

The social ego network model organizes the interpersonal relationships of a person
(the ego) into concentric circles. This is an empirical model derived from the
work of anthropologist Robin Dunbar on the number of active relationships that
a human can maintain on average over time [10]. To do this, he established a
correlation between the relative size of a part of the brain dedicated to sociability
(the neocortex) and the typical group size in primates, then deduced what the
equivalent number would be for humans. This number, 150, is called Dunbar’s
number. Anthropological studies have shown that this number is a recurrent
occurrence in human organizations, as can be observed in Hutterite communities
where it is the maximum number before the group splits up, in Israeli Kibbutzim
where it is the average number at the foundation time, but also in modern
factories sizes [11]. By analyzing the traces left by online social interactions,
researchers have shown that the number of active online relationships that can be
maintained at the same time is in the same order of magnitude as the Dunbar’s
number [12]. Moreover, for a given person (the ego) it is possible to subdivide
these active relationships (alters) into four concentric circles [14,23], the most
central one containing the most intimate relationships. These circles contain
about 5, 15, 50, 150 alters, and exhibit a consistent scaling ratio of three in
their sizes. This model of concentric circles, called “ego network model” was also
confirmed for online relationships, with approximately the same number of circles
and the same scaling ratio [12] as for offline relations. Thanks to online social
networks, we also know that after an initial moment of growth, the ego network
structure remains stable over time for the majority of the individuals [2,1].

2.2 Structural and semantic properties of ego network of words

Previous papers have shown the relevance of using an ego network of words for
studying language production [19,20]. Using datasets extracted from Twitter,
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ego networks of words were constructed with a methodology similar to that used
to construct social ego networks. However, instead of considering other people as
alters and the frequency of contact with the ego as a proxy for the intensity of the
relationship, words were considered as alters, and their proximity to the ego is
measured by their frequency of use. In this way, each ego’s vocabulary is organized
into concentric layers, the first of which would contain the most frequently used
words while the last would contain the least used words. Even if, unlike social
ego networks, the size of the ego network varies significantly, the number of
layers remains in the same order of magnitude: between five and seven [19]. A
very strong similarity in the relative size of concentric layers between egos with
the same amount of layers was found, regardless of the dataset. Moreover, the
third-to-last and second-to-last layers account for 30% and 60% of the words
in the ego network whatever the number of layers, which means that the total
number of layers depends on the number of internal layers (from the innermost
to the third to last), which is determined by the distribution of the most frequent
words. Finally, it appeared that the scaling ratio is not three as in the case of
the social ego network, but tends towards two consistently when moving towards
the outer layers. A semantic analysis of the rings was also performed, assigning
each one a semantic identity card [20]. This is a distribution of the importance
given to one hundred topics found automatically and common to a whole dataset.
We found that the innermost ring is the most different from the others, as it
generates proportionally more topics. All the important topics of this ring are
also important in the whole ego network and vice versa. That is why this layer
can be seen as the semantic fingerprint of the ego network.

3 The datasets

In this study, we will rely on two types of datasets. The first, MediaSum [24],
compiles years of television and radio interview transcripts. In the second, we
collected up to ten thousand tweets each from four distinct groups of Twitter
users.

3.1 MediaSum

MediaSum contains about 464K interview transcripts, of which 49K are from
NPR (American public radio) and 415K from CNN (cable news channel). These
interviews are extracted from well-known broadcasts, such as “Anderson Cooper
360 degrees” on CNN or “Morning Edition” on NPR. This is a valuable dataset,
as it allows us to study the ego networks of words produced from spoken-language
corpora collected over a long period of time. Indeed, the dataset contains between
10K and 35K interviews per year between 2000 and 2020 (Figure 1). The speakers
are mainly television or radio anchors and recurring guests. Another advantage
is that the topics of the interviews are diverse (eg. politics, international news,
crime), and so are the guests such as the athlete Michael Phelps or the actor
Morgan Freeman. Each interview lasts on average 30 turns (each turn corresponds
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Fig. 1: Number of interview transcripts per year in the MediaSum dataset.

to a speaker’s line of dialogue that we call “utterance”) and involves 6.5 speakers
(4.0 for NPR and 6.8 for CNN). Taking into account its characteristics, this dataset
is particularly interesting for investigating the long-term cognitive limitations
related to the language of various kinds of people.

Cleaning the dataset
Since we want to group all of the dialogue lines for each person across the
entire dataset, we must first clean the names which are manually filled (eg.
“wozniak”, “steve wozniak”, “steve wozniak, founder, apple computer”, “mr. steve
wozniak (co-founder, apple computer)”). After this name-cleaning operation and
a first round of deletion of speakers with too few utterances (mainly due to
inconsistencies in their names like spelling mistakes), we end up with 106,627
speakers. The average number of utterances per speaker is around 124 (Table 1).
In our previous papers [19,20], where we used corpora extracted from Twitter,
we defined a minimum of 500 tweets per user. In a similar way, we keep only
speakers with at least 500 utterances such that the corpora to process have a
minimum size. This criterion results in the suppression of 98.6% of the speakers,
but only 55% of the total number of utterances in the dataset. This relatively
small group of speakers produces almost half of the text corpus, that we will use
to build ego networks of words. The sentences are tokenized, the stop words are
removed and the remaining tokens are lemmatized to group together inflected
versions of the same word. Once we obtain the number of words’ occurrences
for a given speaker, we remove those that appear only once to leave out most
misspelled words. As we can see in Figure 2 and Figure 3, a few speakers have a
very large number of word occurrences and unique words. Unsurprisingly, most
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Before After

Number of speakers 106, 627 1, 513

Number of utterances 13, 228, 854 5, 931, 363

Number of utterances / speaker 124 3, 920

Number of words / speaker − 89, 313

Number of unique words / speaker − 5, 316

Table 1: MediaSum statistics, before and after removing speakers with less than
500 utterances (word stats are only computed for users with > 500 utterances)
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Fig. 2: Word occurrences per speaker
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Fig. 3: Unique words per speaker

of them are anchormen or anchorwomen, like Wolf Blitzer of CNN, who are the
most active speakers in the dataset. The majority of speakers have between 10K
and 100K word occurrences and less than 5K unique words. The average number
of word occurrences among all the speakers is 89,313 and the average number of
unique words is 5,316.

3.2 Twitter

In [19,20], we built ego networks of words based on Twitter timelines with up
to 3.2K tweets (the download limitation of the standard Twitter API) collected
from four sets of users:
working for the New York Times. The NYT itself has created a list of 678 accounts
2.
who tweet about science-related topics. A list of 497 accounts has been created
by Jennifer Frazer3, a science writer at Scientific American.
are sampled among accounts that published on January 16, 2020 (download
time) a tweet or a retweet in English containing the hashtag #MondayMotivation.
This hashtag, which is both popular and neutral, does not refer to a political or
controversial issue. Bot accounts are filtered using the Botometer service [9] which
leverages both structural properties (number of followers, tweeting frequency,

2 https://twitter.com/i/lists/54340435
3 https://twitter.com/i/lists/52528869

https://twitter.com/i/lists/54340435
https://twitter.com/i/lists/52528869
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Dataset # of users Avg. word occ. / users Avg. words/users

NYT journalists 285 87, 698 11, 877

Science Writers 256 138, 050 14, 952

Random users #1 1, 536 48, 021 6, 650

Random users #2 1, 324 57, 177 6, 757

Table 2: Twitter datasets after removing users with less than 500 tweets

etc) and language features to detect non-human behaviors. After this operation,
the dataset contains 5,183 accounts.
are sampled among accounts that issued on February 11th 2020 (download date)
a tweet or a retweet in English, from the United Kingdom. The group contains
2,733 accounts after removing the bots.
We extended the timelines of these four sets of users to up to 10K tweets, by
leveraging the extended download capabilities of the Twitter Academic Research
track. As illustrated by Figure 4, this results in much longer timelines with
respect to those analysed in previous works. These longer timelines are used to
stress-test the ego network of words model. In the same fashion as in [19,20], and
in Section 3.1, we only keep the timelines with at least 500 tweets. The figures
related to the number of word occurrences and unique words are reported in
Table 2. Even if the numbers are lower for both random user datasets compared
to journalists and science writers, all figures are of the same order of magnitude
as for MediaSum.

4 Methodology

4.1 Preliminaries

Before describing our method for building the ego network of words and extracting
its active part, we introduce here the notation used in the section (also summarised
in Table 3). We denote an ego with the letter e, where the ego is the speaker
(MediaSum) or user (Twitter) in our datasets for whom we want to extract the ego
network of words. After the cleaning process discussed in Section 3, for each ego e
we end up with a tuple (i.e., an ordered sequence) of tokens [18], which we denote
with Te. Note that the tokens in Te are generally not unique. In computational
linguistics, the term type denotes the class of all tokens containing the same
character sequence [18]. In other words, the set of types corresponds to the set
of distinct tokens or, slightly simplifying, a type is a word and its occurrences
are tokens. For example, in the sentence a rose is a rose is a rose, there are
eight tokens but only three types. In this paper, for the sake of simplicity, we use
the terms type and word interchangeably. Similarly, tokens may be also called
occurrences. In the following, we denote the tuple of unique words in an ego
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Fig. 4: Collected Twitter timelines containing at least 500 tweets. Each bar
corresponds to a timeline, where the blue part refers to the number of tweets in
the original dataset, and the orange part refers to the number of newly collected
tweets.

network as We. Please note that both Te and We are ordered sequences, where
the order is defined by the appearance in the ego’s timeline in chronological order.
So, if we observe the first n tokens in the ego’s timeline, we will get exactly n
tokens but at most n unique words. We denote with T n

e and Wn
e the tuples of

tokens and unique words, respectively, observed up to n. We call nf the maximum
value of n (corresponding to the overall number of tokens in the observed timeline
for ego e) such that T nf

e = Te and Wnf
e = We, where |Te| = nf and |We| ≤ nf .

In the rest of the section, when there is no risk of ambiguity, we will drop the
subscript e from our notation: in that case, all the variables discussed will be
referring to the same tagged ego e.

4.2 Legacy method for building an ego network of words

Ego networks of words are used to hierarchise the words used by a given person
based on their frequency. In the following, we summarise the model presented
in [20]. Let us focus on a tagged ego e (hence, hereafter we drop the subscript e
in the notation). The ego network of words model is such that each word from
W is assigned to one of τ rings r1, r2, . . . , rτ , knowing that r1 (the innermost
ring) contains the most frequently used words and that rτ (the outermost ring)
contains the least used words. The set of words assigned to the ring ri is called
Wri such that:

W =

τ⋃
i=1

Wri . (1)
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Symbol Description

Te tuple of tokens, i.e., sequence of words ego e has used
We tuple of unique words used by ego e
T n
e Te cut at the n-th token

n length of the tuple T n
e

Wn
e unique words in T n

e

wn
e length of the tuple Wn

e

nf overall number of tokens in the observed timeline for ego e
na active network cut-off
τe optimal number of circles
ri i-th ring of the ego network
li i-th layer of the ego network
We,ri unique words assigned to ring ri

Table 3: Summary of notation used in the paper.

The ego network can also be studied from a cumulative perspective with
concentric layers l1, l2, . . ., lτ , with layer li containing all the rings rj where
j ≤ i. The set of words assigned to layer li is denoted with Wli , so:

Wli =

i⋃
j=1

Wrj . (2)

This implies that the innermost layer l1 is equivalent to r1.

Words in an ego network are characterized by their usage frequency, which
corresponds to their number of occurrences divided by the observation window
(which is the same for all words uttered by the same ego). To find the best natural
grouping of words (i.e., to find τ) we use the Mean Shift [13] algorithm, which
is able, in contrast to Jenks [15] or K-Means [17], to automatically optimize
τ , the number of groups to be found. Clustering on a unidimensional variable
is equivalent to dividing the word frequencies into mutually exclusive intervals.
The Mean Shift algorithm detects clusters that correspond to the local maxima
of an estimated density function of word frequencies. This function is obtained
with the kernel density estimation for which the sensibility is set with a fixed
parameter called the bandwidth. We apply a preliminary log-transformation to
frequencies in order to compress high values and ensure that the same bandwidth
setting allows peak detection for both the high- and low-frequency parts of the
distribution4. The obtained clusters of words correspond to the τ rings of the
newly built ego network of words for ego e, r1 being the cluster containing the
most frequent words and rτ the one containing the least frequent words.

4 Note that applying a log-transformation to word frequencies is common in psycholog-
ical research when studying the associated cognitive processes [6].
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4.3 Motivating the need for an active ego network extraction method

We start by applying the methodology described above to all the words in W for
the egos in our datasets, and we plot the distribution of the number of circles τ in
Figure 5. We can observe that the obtained ego networks of words have a very low
number of circles (the most frequent case is two) compared with the ego networks
of words in previous work (usually between five and seven circles [19,20]), despite
exactly the same workflow being used. Note also that the Twitter datasets used
here are the same as those in [19,20] except for the timeline length considered
(much larger, in this work). As we can observe in Figure 6, ego networks with one
or two circles are the biggest ego networks (i.e. with the largest number of unique
words |W|). This seems to suggest that, when considering larger textual inputs,
the ego network model loses its finer discriminative power. In fact, two-circle ego
networks are considered uninteresting, as they simply separate the most used
words from the least used words.

However, this finding is not unexpected: in the social ego network case, the
theory distinguishes between the full and active ego network, stating that only
the relationships in the active part are actually consuming cognitive resources [3].
The conventional cut-off point, as stated in [10], is for the social relationship to
involve interactions at least once a year, which, in Western societies corresponds
to at least exchanging Christmas/birthday wishes. While this cut-off point could
be obtained with anthropological common sense for social ego networks, it is
difficult to come up with a similar rule of thumb for the ego networks of words,
which are less rooted in everyday experiences. Hence, in this work, we set out
to design a methodology to automatically extract the cut-off point in the ego
networks of words. This methodology should then be applied before building the
ego networks as described in Section 4.2, in order to discard the words that do
not take up cognitive capacity.

4.4 Extracting the active ego network

The idea behind an active ego network is that all the words it contains should
be actively used, even those in the outermost circle. If we let a person speak,
we notice that from a certain point on the frequency of appearance of a new
word decreases rapidly: a specific number of words is sufficient for this person
to express him/herself. This quantity is the maximum number of actively used
words. We can observe this phenomenon in Figure 7, where the number of tokens
n = |T n| vs the corresponding number of unique words wn = |Wn| is plotted for
a single speaker in the Mediasum dataset (we define wn to improve the readability
of the formulas in the following sections). The curve is obtained by scanning the
timeline (or, more exactly, the chronologically ordered tokens remaining after
preprocessing the timeline) from start to end, and counting the new tokens and
the unique words as we go. The catch is that not every new token corresponds to
a new unique word. We will call this curve the saturation curve, which we denote
with s. Using the notation in Section 4.1, s : n 7→ wn.
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Fig. 5: Distribution of the number of circles τ when considering all the words
available in W

In Figure 7 and 8, we present two typical cases observed in our datasets.
Figure 7 serves as a representative example of a broad trend that emerges in
our data for users who have been observed over an extended period. Initially,
there is a swift growth in the number of discovered words as new tokens are
explored, but in the second phase, this growth rate significantly decreases. The
rate at which new words are discovered remains fairly constant in both phases.
Figure 8 is representative of users who were not observed for a sufficient duration
to reach the second phase described in Figure 7. In this example, the total
number of tokens is much lower, comparable to the number of tokens in the
initial phase for users represented in Figure 7. We argue that the active part
of the ego network ends at the cut-off point of the saturation curve, i.e., where
the first regime ends and the second one begins. The saturation curve shows
how many tokens are needed to observe a certain number of unique words. The
number of tokens needed to increase the number of words by one can thus be
seen as the maximum number of tokens an ego can use without including a new
word in his spoken or written expressions. Saturation curves of “mature” ego
networks show two regimes, whereby in the first one words appear “sooner”,
meaning that the user is able to “resist” less before “injecting” a new word. Before
proceeding further, it is important to acknowledge that in general, non-linear
saturation curves may exhibit less regularity than the one depicted in Figure 7,
while the overarching pattern of two distinct major regimes remains consistent.
This might present a challenge for algorithms intended to automatically identify
the transition point between regimes. This is the rationale behind our proposal,



Title Suppressed Due to Excessive Length 13

1 2 3 4 5 6 7 8 9

104

105

106

107

|
|

Full ego network of words
MediaSum
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optimize the space).

outlined in Section 4.4, for a recursive algorithm that only terminates when the
major trends are identified.

Recalling that the saturation curve is defined as s : n 7→ wn, the goal of
this section is to describe a methodology for finding the value of n (which we
call n̂a) where the first phase described above ends and the second one begins.
The number of unique words at the cut-off point na of the curve corresponds
to wna = |Wna |, while wnf = |Wnf | corresponds to the total number of unique
words in the full ego network (nf being the maximum value of n). If our intuition
is confirmed, the well-known layered ego network structure would emerge by
considering only words in the first regime of the saturation curve when computing
the ego network. Indeed, we show this in Section 5.1. Note that sometimes the
textual data for one ego is not large enough for the ego network to reach any
cut-off point (Figure 8). This means that the cognitive capacity for language
production is not fully exploited (in the textual information available in our
datasets), so the ego network of words is not fully formed. In this case, we remove
the egos from the analysis because only mature ego networks are reliable for
extracting structural properties.

Methodology for identifying the cut-off point. We start with a high-level
description of our methodology, illustrated in Figure 9. Let us focus on the
curve s, and assume that it is not linear in [0, |T |] (if it is linear, we can stop
searching for the cut-off, since there is none). Our cut-off point na would split s
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Fig. 7: Non-linear saturation curve.

in two halves: in the first one, s is approximately linear and with a greater slope;
after na the saturation curve enters a regime of reduced growth (in this second
regime, s might be linear or not). We want to find the knee point in s where the
slope change is observed. The search for na is done recursively, continuing to split
the first half until it is effectively linear. At this point, the algorithm stops. The
intuition is that the words and tokens before na correspond to the first regime
described above, where new words are discovered at a higher rate. This recursive
approach allows us to discard minor irregularities in the saturation curve and to
properly detect the major trend of linear growth.

Algorithm 1 summarises our approach. The recursive search is carried out
through the RecursiveCutOff function, which is initially fed all data points
from the saturation curve. If the saturation curve is already linear, then the
algorithm returns nf , the upper bound of n. If the saturation curve is not already
linear, we need to split it into two halves. We do this with the SplitSatura-
tionCurve function, which tests all the possible cut-off points and selects the
one guaranteeing the best (in terms of residual sum of squares) linear fit on
both sides of the cut-off. Then, we focus on the linearity of the first half to
ensure there is no more potential cut-off (we are not directly concerned with the
linearity of the second part, because, as long as we are able to detect a phase
change, the second part will be dropped anyway being it outside of the active
network). What we want to assess is whether the “signal” in the first part of
the saturation curve (before the current cut-off) is mostly linear. To this aim,
we leverage Lasso regression [22] for its ability to operate a variable reduction
on its input features. The features used by Lasso are the polynomial terms of
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the inverse saturation curve (we consider the inverse for ease of explanation).
Specifically, we consider the following: s−1(t) ∼

∑
i=1,...,p βiw

i, with βi being the

coefficient optimized by Lasso and s−1(t) the inverse of the saturation curve. In
other words, we consider the growth of the number of unique words with respect
to the number of tokens, and evaluate whether the dependency is mostly linear,
mostly quadratic, etc. Intuitively, in the first regime of the saturation curve, the
growth is linear because each new token roughly corresponds to a new unique
word. Vice versa, in the second regime, we observe an inflection. Then, with the
LassoMaxVariableReduction function, we denote a Lasso regression where
the λ parameter for regularization is chosen such that only one coefficient of the
regression is set to a non-zero value: the one corresponding to the most significant
polynomial term. If the nonzero coefficient corresponds to the linear term, we
confirm that the saturation curve before the current cut-off point is linear enough
for our purposes, and we stop the search. Once we obtain na, we can use it to
obtain the active ego network. Specifically, the words in the active ego network
of e are Wna

e .

To summarize, the algorithm returns a value called n̂ that corresponds to na

if there is a cut-off point, and to nf if there is not. With this algorithm, we can
separate the egos into two groups: those that have a mature ego network (i.e.,
those for which we have been able to extract a cut-off in the saturation curve)
and those that do not. The number of egos in the first and second groups is
shown in Figure 10 for our datasets. It appears that in all datasets, and especially
in the largest ones (MediaSum and both random datasets), egos with mature ego
networks are the vast majority. In the rest of our analysis, we will retain only
them, so that we can study their structural properties.
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Fig. 9: Steps for detecting the saturation point. 1) Linearity test. 2) If the curve
is not linear, we find the best model fit with two linear parts. 3)
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Fig. 10: Amount of egos with and without a cut-off point.
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5 Results

The goal of this section is to fully validate the methodology proposed in Section 4.
First, in Section 5.1 we show that the layered structure that was not present
when considering the full ego network (Figure 5) emerges again when focusing
on the active ego network, and we revisit its properties in Section 5.2. Then we
evaluate the robustness of the methodology to a varying amount of input data
(Section 5.3). Finally, we show that active ego networks are stable over time
(Section 5.4).

5.1 Optimal circle size for the active ego network

We return to the initial motivation behind this work, namely the disappearance
of the layered structure in the ego network of words within large textual corpora
when failing to accurately identify the active portion of the ego network. This
phenomenon was illustrated in Figure 5. By employing the methodology outlined
in Section 4, we can now effectively isolate5 the active component of the ego
network and ascertain whether the layered structure reemerges. Figure 11 demon-
strates that this is indeed the case. Comparing it with Figure 5, where the circles
were computed on the full ego network, we observe that limiting the size of the
ego network to the maximum number of actively used words shifts the mode from
two circles to four or five circles, for all datasets. This means that the structure of
the ego network fully emerges when the active part is properly isolated, similar to
what happens for social ego networks. And that the methodology from Section 4
is able to properly identify the active part.

5 It is important to note, as mentioned earlier, that we exclude all egos that have
not yet reached their saturation point to ensure that the observed ego networks are
mature and not partially empty.
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Table 4: Distribution of the optimal number of layers at each iteration of our
recursive method on the Mediasum dataset. Each row contains egos with different
numbers of total iterations, respectively 1, 2, and 3.

We now take a step further to demonstrate that the intermediate cut-off
points achieved through the recursive method do not produce structured ego
networks of words. In Table 4, we present the results for the Mediasum dataset
exclusively, though readers interested in the results for other datasets can refer
to Appendix A. This observed trend is consistent across all datasets. Each row
in Table 4 corresponds to egos with the same number of total iterations (one
iteration for the first row, two for the second row, and so on). The emergence of
a structured ego network is indicated by the distribution of the optimal number
of circles, shifting its mode away from the value 2 (which signals a substantial
lack of structure) as the final iteration is reached.

When we consider the results from Figure 11 in conjunction with Table 4,
we not only demonstrate that our proposed method automatically leads to well-
structured ego networks by excluding “inactive” words but also establish that
such well-structured ego networks only emerge at the conclusion of the recursive
steps.

5.2 Revisiting the structural properties of the ego network of words

We can now investigate the properties of the active ego networks of words for
the users in the datasets discussed in Section 3. Recall that egos that have
not reached their cut-off point are excluded from the following analysis. The
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remaining ego networks are reduced to their active size wna obtained with the
method of Section 4.4. From now on, we simplify the notation wna to w.

The analysis in Figure 11 revealed that active ego networks typically consist
of between 4 and 5 circles. It is worth noting that NYT journalists and science
writers tend to have slightly fewer circles compared to random users and speakers
in the MediaSum dataset. Notably, the ego networks of MediaSum speakers
closely align with those of generic Twitter users #2. Interestingly, a similar
optimal range of 4 to 5 circles was also observed in the social domain [12].

We now focus on the size of the ego network layers. For this analysis, we
consider four- and five-layered ego networks, which are the most frequent cases
in the five datasets, as shown in Figure 11, hence providing more samples for
statistical reliability. In Figure 12a, the average layer sizes wli are ranked from
the innermost (l1) to the outermost one (l4 or l5). Recall that the active size
of an ego network, which corresponds to the total number of unique words
before the cut-off, is also the size of the outermost layer. The layers of the
ego networks from specialized Twitter datasets (NYT journalists and science
writers) are on average bigger compared to random users and MediaSum speakers.
Again, MediaSum speakers are quite well aligned with generic users on Twitter.
According to the saturation curve methodology in Section 4.4, it means that
they can handle a larger number of words before saturating their ability to bring
new ones into their active vocabulary. The size of five-layered ego networks is
consistently lower compared to the four-layered ones (∼20% lower independently
of the dataset). However, it seems that words have a similar distribution across
the layers regardless of the dataset. We verify this property in the following.

We define the normalized layer size as the ratio between the layer size and
the ego network size

wli

w . As can be seen in Figure 12b, normalized layer sizes are
very similar across datasets. The penultimate layer lτ−1 consistently accounts for
60% of the ego network size, and the second to last layer lτ−2 accounts for 30%:

wlτ−1

w
≃ 0.6

wlτ−2

w
≃ 0.3

(3)

We can observe the same pattern in the case of six-layered ego networks as well
as for the penultimate layer of three-layered ego networks (Table 5). These values
are very similar to those obtained in our previous paper [19] where the average
ego network size was smaller. This means that the main difference between two
ego networks with different numbers of layers is in the organisation of the inner
layers. Note also that this regularity applies to all datasets, with no remarkable
difference, further supporting the cross-domain generalizability of the ego network
of words model.

The scaling ratio is a metric that describes how the layer size grows from

a layer li−1 to the outer layer li:
wli

wli−1

. As we can see in Figure 13 the ratio

is very similar across the datasets for i ≥ 3. The ratio tends to reach a value
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Dataset # of layers
Layer Rank

1 2 3 4 5 6

NYT

3 layers .16 .55 1
4 layers .05 .32 .61 1
5 layers .01 .11 .33 .62 1
6 layers .00 .03 .15 .34 .63 1

Science Writers

3 layers .25 .58 1
4 layers .06 .33 .62 1
5 layers .01 .14 .33 .63 1
6 layers .01 .03 .15 .34 .63 1

Random #1

3 layers .11 .53 1
4 layers .04 .24 .58 1
5 layers .01 .10 .30 .60 1
6 layers .00 .03 .14 .33 .62 1

Random #2

3 layers .13 .55 1
4 layers .05 .26 .59 1
5 layers .02 .12 .33 .63 1
6 layers .00 .03 .12 .33 .61 1

MediaSum

3 layers .15 .56 1
4 layers .06 .31 .61 1
5 layers .01 .11 .34 .63 1
6 layers .00 .03 .14 .34 .63 1

Table 5: Average ratio between a layer size wli and the active size of the ego
network w , in all datasets.
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Fig. 13: Scaling ratio.

slightly below two toward the outermost layers. These results are the same as
those obtained in the paper [19].

When comparing the current findings with previous research [19,20] that
focused on ego networks of words, we must consider two aspects: first, the current
work is based on more diverse and larger datasets, and second, the previous
work did not specifically focus on the active network segment of the ego network
(because a robust methodology for identifying it did not exist). Despite these
considerations, the observations in the previous work [19,20] surprisingly align
well with the current findings, particularly concerning the number of circles
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(which were found to be between 5 and 7 in [20] vs 4-5 in this work) and the
scaling ratio (approximately the same in [20]). However, when examining the
absolute sizes of individual layers, we notice larger sizes in this work compared
to [20]. To better understand this behavior, we can focus on the Twitter datasets,
which are common to both studies (same users, shorter timelines in [20]). Both the
similarities and differences in the ego networks can be explained by the fact that
the observed timelines in [20] generally cover around or slightly less than the cut-
off point. Consequently, the ego network structure becomes apparent, but some
words are missing to make it fully complete (hence the smaller layers). Vice versa,
the timelines we use in the current study cover much more than the cut-off point,
hence, without a proper methodology to identify the active network, the resulting
structure is meaningless (as shown in Section 4.3). Note that the slightly higher
number of optimal circles in [20] can similarly be explained by an observation
window below the cut-off point. While this may appear counterintuitive, the
number of circles tend to grow as the number of data points decrease. This occurs
because the clustering algorithm may detect spurious groupings when data points
become more scattered.

5.3 Robustness of the methodology

In this section and the subsequent one, our primary focus lies on internally
validating the proposed methodology for identifying the active network. We
start with an analysys of the robustness of the methodology to the amount of
available data. Specifically, the cut-off point of the active ego network should be
a characteristic of each ego and not dependent on the size of the ego data fed to
the algorithm. This implies that our algorithm should consistently determine the
same cut-off point for a given ego, except when there is insufficient data to reach
that point. In this section, we verify that this is the case.

Let us consider a tagged ego e whose saturation curve contains a cut-off point
na. Recall that T n ⊆ T andWn ⊆ W , for any n < nf . WhenRecursiveCutOff
in Algorithm 1 is fed T n and Wn where n < nf , it should return na if n ≥ na

and n otherwise (if n is below the cut-off there is no cut-off to find). As n grows,
then, the corresponding size of the active ego network will grow. When n reaches
na, the active ego network is mature and should not grow anymore. This means
that the active network size ŵn for varying n should follow the ideal behavior :

ŵn =

{
wn when n ∈ [0, na]

wna when n ∈ [na, nf ]
(4)

In Fig 14 we plot the ratio
ŵn

wna
. We expect

ŵn

wna
to grow from zero to one

and then remain stable around one (implying that for any n > na, the calculated
cut-off remains the same, regardless of the increasing size of the data being fed
to the algorithm). Fig 14 confirms that the behavior of the calculated cut-off,
and hence of the resulting size of the active network, is close to the ideal case in
every dataset, despite some noise due to a lower number of ego networks in the
NYT journalists and science writers datasets.
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Fig. 14: The stability of the algorithm is close to the ideal case.

5.4 Temporal stability of the active network size

With the methodology introduced in Section 4, we are able to extract the active
size of an ego network of words with respect to an observed tuple of tokens T .
This size corresponds to the volume of words actively used by the ego and whose
boundary is associated with token tna

(from which the use of new words becomes
rare). However, this count assumes that a word used at the beginning of T is still
part of the active ego network. This raises the question of what would happen if
we had started observing the language production of a speaker/user not from
token t0 but from a generic token tδ. By shifting the start of the analysis from t0
to tδ, we study the dynamic evolution of the size of the active network, which
is important because it allows us to assess whether the cognitive ability to add
words to one’s active vocabulary evolves over time.

To evaluate the temporal evolution of the active network size, we change
the starting index of the sequence of tokens T nf from which we build the
saturation curve. We call that shift δ, the updated tuple of tokens T δ,nf and the
corresponding word tuple Wδ,nf . We build a new saturation curve, from which
we extract an active network size wδ,na (Figure 15). We want to compare wδ,na ,
when δ varies, against the original active size wna . If wδ,na remains comparable
to the second, it means that the active size of the network is stable over time.

Thus, in the following, we study the ratio
wδ,na

wna
. Note that the more we shift δ

the more we run the risk of not observing egos for enough time and, consequently,
of not having mature ego networks (much like the situation in which no cut-off
could be found in Section 4.4). Thus, when shifting with δ we always make sure
that, for each ego, at least na tokens are observed. This means that we operate in
the range δ ∈ [0, δmax], with δmax = nf −na. Note also that, differently from the
previous section, here we never operate below the cut-off point na. In Figure 16,
we choose a δ range from 0 to 5 · 104. That maximum was chosen because it is
the largest value for which at least 25% of the ego network has a δmax higher
than it.

Following the above methodology, in Figure 16 we plot
wδ,na

wna
as a function

of δ. We can observe that the ratio (hence, the size of the active ego network)
remains stable when δ grows, independently of the dataset. This supports our
hypothesis that the size and internal structure of the ego network are bound by
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Fig. 15: The diagram illustrates the temporal analysis procedure of the active
size of an ego network. A temporal change corresponds here to a change in the
index δ of the first word of the sequence used to build the ego network. This
change leads by construction to a different saturation curve from which we will
extract and study the variability of the active part size wδ,na .
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Fig. 16: The shift δ of the token sequence from which the ego networks are built
has almost no influence on the active size wδ,na on. In order to average that

behaviour at the dataset level, we consider the ratio
wδ,na

wna
where the divisor is the

original active size (δ = 0). This ratio is consistently close to one (the maximum
average value is 1.25, reached by the MediaSum dataset for δ = 5× 105). These
aggregated values are reliable since the 95% average confidence interval is only
±0.08

cognitive constraints that are applied at different intensities depending on the
individual, but which are themselves stable over time.
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6 Conclusion

In this work, we investigated the cognitive limitations in human language pro-
duction and presented the ego network of words as a model to capture structural
properties associated with these constraints. The paper introduces the concept
of an “active” part of the ego network, which represents the words actively used
by an individual, and demonstrates that beyond this active part, the structure of
the ego network becomes poorly organized. A robust methodology is proposed
to extract the active part of the ego network, and its effectiveness is validated
using interview transcripts and tweets datasets. Restricting our analysis to the
active part of the ego networks, as commonly done when analyzing ego networks
in the social domain, we have confirmed that the structural properties of the ego
network of words, such as the number of circles and the scaling ratio between
circles, are consistent across different domains. The presented methodology and
findings have implications for various fields, including linguistics, cognitive science,
and social network analysis. Future research can build upon these findings to
explore additional aspects of language production and investigate the relationship
between cognitive limitations and linguistic phenomena.
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Table 6: Distribution of the optimal number of layers at each iteration of our
recursive method on the NYC dataset. Each row contains egos with different
numbers of total iterations, respectively 0, 1, and 2.
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No cut 1st iteration 2nd iteration
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Table 7: Distribution of the optimal number of layers at each iteration of our
recursive method on the Science Writers dataset. Each row contains egos with
different numbers of total iterations, respectively 0, 1, and 2.
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Algorithm 1 Find the cut-off point of the saturation curve

Input: t = {i : ti ∈ T n} and w = {s(ti) : ti ∈ T n}, i.e. the datapoints of the
saturation curve

Output: n̂, i.e. the cut-off point.

1: n̂← RecursiveCutOff(t,w)

2: function RecursiveCutOff(x,y)
3: if IsLinear(x,y) then
4: return last element of x
5: else
6: x̂, ŷ← SplitSaturationCurve(x,y)
7: return RecursiveCutOff(x̂, ŷ)
8: end if
9: end function

10: function SplitSaturationCurve(x,y)
▷ Subsetting notation “[:n]” means from first to n-th element

▷ “[n :]” means from n-th element to last
11: best n ← 1
12: lowest rss ← +∞
13: for n = 1 to max(y)− 1 do

▷ get RSS from standard least-squares regression
14: rss1 ← LinearFit(x[:n], y[:n])
15: rss2 ← LinearFit(x[n+ 1:], y[n+ 1:])
16: if rss1+rss2<lowest rss then
17: lowest rss ← rss1+rss2
18: best n ← n
19: end if
20: end for
21: return x[:best n],y[:best n]
22: end function

23: function IsLinear(x,y)
▷ βi is the Lasso coefficient associated with the polynomial term of degree i

24: β1, . . . , βp ← LassoMaxVariableReduction(x,y)
25: if β1 ̸= 0 then
26: return True
27: else
28: return False
29: end if
30: end function
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No cut 1st iteration 2nd iteration 3rd iteration
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Table 8: Distribution of the optimal number of layers at each iteration of our
recursive method on the Random #1 dataset. Each row contains egos with
different numbers of total iterations, respectively 0, 1, 2, and 3.
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No cut 1st iteration 2nd iteration 3rd iteration
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Table 9: Distribution of the optimal number of layers at each iteration of our
recursive method on the Random #2 dataset. Each row contains egos with
different numbers of total iterations, respectively 0, 1, 2, and 3.
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