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On Orthogonal Parts of a Solution to a Cauchy BVP
over Sobolev Spaces
Dejenie Alemayehu Lakew1* and Nar Rawal1**

Abstract
Let Ω be a smooth and bounded doamin in Rn. Considering three BVPs.
(I) First order: Let f ∈ L 2 (Ω) ,g ∈W

1
2 ,2 (Ω). Then the first order Cauchy BVP :{

Du = f in Ω

u = g on ∂Ω

has a solution u given as W 1,2 (Ω) ∋ u = [ug]⊎ [u f ] where [ug] to be the part of the solution that is evolved from
the trace value g of u, and [u f ] to be the part of the solution that is evolved from the value f of the differential
equation over the domain Ω.

(II) Second order: Let f ∈ L 2 (Ω) ,g1 ∈W
3
2 ,2 (∂Ω) ,g2 ∈W

1
2 ,2 (∂Ω).

Then the BVP:{
−D2u = f in Ω

τu = g on ∂Ω

where τu =
(
u|∂Ω,Du|∂Ω

)
= (g1,g2) has a solution u ∈W 2,2 (Ω) with u = [u](g1,g2)⊎ [u] f and

(III) Higher order: Let f ∈ L 2 (Ω) ,g j ∈W k− j+ 1
2 (∂Ω) , j = 1, ...,k−1. Then{

Dku = f in Ω

τu = g on ∂Ω

where τu =
(
u|∂Ω,Du|∂Ω, ...,Dk−1u|∂Ω

)
= (g1,g2, ...,gk−1), for k ≥ 3, has a solution u ∈ W k,2 (Ω) given as

u = [u](g1,g2,...,gk−1)⊎ [u] f .

The symbol ⊎ represents an orthogonal sum of functions that are from orthogonal sum ⊕ of function subspaces
of a Sobolev space with inner product.

Keywords
Dirac Operator, Orthogonal Sum, Cauchy Problem, Sobolev Space.

1Department of Mathematics, Hampton University, Hampton VA 23668, Hampton, Virginia, U.S.A.
*Corresponding author: dejenie.lakew@hamptonu.edu
**Corresponding author: nar.rawal@hamptonu.edu

dejenie.lakew@hamptonu.edu
nar.rawal@hamptonu.edu


Contents

1 Preliminaries 1

2 Orthogonality 1

3 Orthogonal Decompositions 3

4 Main Results 4

References 9

1. Preliminaries
Question! How are solutions to boundary value problems in
an inner product Sobolev space that is orthogonally decom-
posable behave? What part of the solution falls in to which
part of the summands that are closed subspaces of the space?
This is an interesting question to study. In this article was
investigated such decompositions for first, second and higher
order PDEs in a Sobolev space. In fact solutions in this case
appear to evolve from the trace values on the boundary and
the values of differential equations in the interior of the do-
main to become orthogonal components. In [1],[4],[6],[7] was
successfully developed decomposition results of Hilbert and
Sobolev spaces in general. Was developed properties of the
inner product that are defined and that of functions in the re-
spective spaces. In [1] there is seen how norm is enlarged and
space is expanding when the regularity exponent increases.

In this paper, I will investigate and show, a solution of a
partial differential equation in Ω with a boundary value over
∂Ω over function spaces: W k,2 (Ω) is actually an orthogonal
sum of those parts of the solution that evolve from values
of the derivative of the solution to a certain specific order in
the interior of Ω and from trace value of the solution on the
boundary ∂Ω of the domain.

That is, for f ∈ L2 (Ω), the BVP:{
Dα u = f in Ω

u = g on ∂Ω
(1.1)

of order α for 1 < |α| ≤ d with d a positive integer, has a
solution u in a certain Sobolev space W k,2(Ω) of an inner
product ⟨., .⟩W k,2(Ω). Besides, the solution u be an orthogonal
sum of its parts, i.e.,

u = [u] f ⊎ [u]g (1.2)

so that
(i)

〈
[u] f , [u]g

〉
W k,2(Ω)

= 0

(ii) ∥u∥2
W k,2(Ω)

= ∥ [u] f ∥2
W k,2(Ω)

+∥ [u]g ∥2
W k,2(Ω)

where [u] f is the part of the solution that evolves from f
and [u]g is the part that evolves from g.

Was also investigate the maximum principle for the solu-
tion of the first order BVP when f is monogenic or Clifford
analytic function over the domain.

2. Orthogonality

Let d be a positive integer and Ω be a smooth and bounded
domain in Rd with a non empty boundary ∂Ω. Let α ∈ N ,
1 < p < ∞.

Definition 1 (Weak Derivative) For a function f , it is say g
is the weak or generalized α th order derivative of f over Ω

written as

g = Dα f

if

∫
Ω

f (x)Dα
ψ(x)dΩx =(−1)α

∫
Ω

g(x)ψ(x)dΩx,∀ψ ∈C∞
0 (Ω) .

Clearly a function that is a derivative in the ordinary sense
of a function is a weak derivative but not the converse. That
is a weakly differentiable function may not be differentiable
in ordinary sense.

Example 1 Consider the function

f (x) =
{

0 0 ≤ x ≤ 1
x−1 1 ≤ x ≤ 2 .

Then f is continuous on [0,1] but not differentiable in the
regular sense as the derivative

g(x) =
{

0 0 < x < 1
1 1 < x < 2

is discontinuous at x = 1. However g is the first order
weakly or generalized derivative of f on [0,1] since

∫
[0,2]

f (x)φ ′(x)dx =
∫
[1,2]

xφ
′(x)dx−

∫
[1,2]

φ
′(x)dx

= xφ (x) |21 −
∫
[1,2]

φ(x)dx−φ (2)+φ (1)

= −
∫
[1,2]

φ(x)dx

= −
∫
[0,2]

g(x)φ(x)dx

= −
∫
[0,2]

f ′(x)φ(x)dx

∀φ ∈C∞
0 ([0,2]).

Definition 2 For 1 < p < ∞, k ∈ N∪{0}, the Sobolev space
W k,p (Ω) is defined as the set of all functions f in Lp (Ω)
such that the α th order weak derivative Dα f ∈ Lp (Ω) for
0 ≤ |α| ≤ k.
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As I mentioned in the preliminary, these function spaces
are ideal spaces to search for solutions to problems of reality
unlike regular function spaces such as Ck, where continuity to
an order is required.

The particular Sobolev space (or Hilbert space of higher
regularity) W k,2 (Ω) where p = 2, and k ≥ 1 is an inner prod-
uct space with inner product

⟨ f , g⟩W k,2(Ω) =
∫

Ω

(
∑

∫
0≤|α|≤k

Dα f (x)Dα g(x)
)

dΩx (2.1)

with norm given by

∥ f∥W k,2(Ω) =
(
⟨ f , f ⟩W k,2(Ω)

) 1
2

Therefore there is a distance or metric defined in terms of this
norm given by

ρW k,2(Ω) ( f , g) := ∥ f −g∥W k,2(Ω). (2.2)

When p = 2 and k = 0, there is the usual Hilbert space

W 0,2 (Ω) = L2 (Ω)

with inner product

⟨ f , g⟩W 0,2(Ω) = ⟨ f , g⟩L2(Ω) =
∫

Ω

f (x)g(x)dΩx (2.3)

.

Definition 3 It is say two functions f , g ∈W k,2 (Ω) orthogo-
nal with respect to the inner product defined by 2.1 if

⟨ f , g⟩W k,2(Ω) = 0. (2.4)

For more orthogonal functions see [2].

Theorem 1 For two orthogonal functions f and g of W k,2(Ω)
if h = f ⊎g then

∥h∥2
W k,2(Ω)

= ∥ f∥2
W k,2(Ω)

+∥g∥2
W k,2(Ω)

.

Proof. 1 Clearly

∥h∥W k,2(Ω) =
(
⟨h, h⟩W k,2(Ω)

) 1
2

=
(
⟨ f ⊎g, f ⊎g⟩W k,2(Ω)

) 1
2

=
(
⟨ f , f ⟩W k,2(Ω)+ ⟨g, g⟩W k,2(Ω)

) 1
2

=
(
∥ f∥2

W 1,2(Ω)+∥g∥2
W 1,2(Ω)

) 1
2

since ⟨ f ,g⟩W k,2(Ω) = 0.

=⇒ ∥h∥2
W k,2(Ω)

= ∥ f∥2
W 1,2(Ω)+∥g∥2

W 1,2(Ω).

As indicated above, the interest of the talk is partly on
the Sobolev space

W 1,2 (Ω) = { f ∈ L2 (Ω) : D f ∈ L2 (Ω)}

with inner product

⟨ f , g⟩W 1,2(Ω) =
∫

Ω

( f (x)g(x)+D f (x)Dg(x))dΩx. (2.5)

there is few preliminary results on norm and orientation
for single and pairs of functions.

Theorem 2 For a function f , if D f = f , then

∥ f∥W 1,2(Ω) =
√

2∥ f∥L(Ω)

in particular

∥ex∥W 1,2(Ω) =
√

2∥ex∥L(Ω).

Can be also discuss about angles in inner product spaces,
from the fact that

⟨ f , g⟩W 1,2(Ω) = ∥ f∥W 1,2(Ω)∥g∥W 1,2(Ω) cosθ .

Theorem 3 For 0 < α < β < 1, there is

ρW 1,2(Ω) ( f , α f )> ρW 1,2(Ω) ( f , β f ) .

Proof. 2

ρW 1,2(Ω) ( f , α f ) =

= ∥ f −α f∥W 1,2(Ω)

= (⟨ f −α f , f −α f ⟩)
1
2

=(∫
Ω

( f (x)−α f (x))2 +
(

D( f (x)−α f (x))2
)

dΩx

) 1
2

=

√
(1−α)2

(∫
Ω

(
f (x)2 +D f (x)2

)
dΩx

) 1
2

= (1−α)∥ f∥W 1,2(Ω)

> (1−β )∥ f∥W 1,2(Ω) = ρW 1,2(Ω) ( f , β f )

since 0 < α < β < 1 =⇒ 1−α > 1−β > 0.

Corollary 1 The following are valid,
(i) lim

ε↓0
ρW 1,2(Ω) ( f , ε f ) = ∥ f∥W 1,2(Ω)

(ii) lim
ε−→1

ρW 1,2(Ω) ( f , ε f ) = 0

(iii) ρW 1,2(Ω) ( f , −α f )< ρW 1,2(Ω) ( f , −β f )
for 0 < α < β < 1.
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Proposition 1 For 1 < α < β , and f ∈W 1,2 (Ω), there is

ρW 1,2(Ω) ( f , α f ) ≤ ρW 1,2(Ω) ( f , β f ) .

Proof. 3

ρW 1,2(Ω) ( f , α f ) = ∥ f −α f∥W 1,2(Ω)

= | 1−α | ∥ f∥W 1,2(Ω)

≤ | 1−β | ∥ f∥W 1,2(Ω)

= ρW 1,2(Ω) ( f ,β f )

Theorem 4 For α ̸= 0, if θ = θ⟨( f , g) and θ ∗ = θ⟨( f , αg),
then

either θ = θ
∗ or θ

∗ = π −θ . I.e., θ +θ
∗ = π

where θ and θ ∗ are angles between the indicated pair of
functions.

Proof. 4 Starting from the inner product,

⟨ f , g⟩W 1,2(Ω) = ∥ f∥W 1,2(Ω)∥g∥W 1,2(Ω) cosθ

=⇒ θ = cos−1

(
⟨ f , g⟩W 1,2(Ω)

∥ f∥W 1,2(Ω)∥g∥W 1,2(Ω)

)

and

⟨ f , αg⟩W 1,2(Ω) = | α | ∥ f∥W 1,2(Ω)∥g∥W 1,2(Ω) cosθ
∗

which implies

θ
∗ = cos−1

(
⟨ f , αg⟩W 1,2(Ω)

| α | ∥ f∥W 1,2(Ω)∥g∥W 1,2(Ω)

)

= cos−1

(
α ⟨ f , g⟩W 1,2(Ω)

| α | ∥ f∥W 1,2(Ω)∥g∥W 1,2(Ω)

)

= cos−1
(

α

| α |
cosθ

)
.

Now there is two cases to consider:
(i) For

α > 0 =⇒ α

| α |
= 1

there is

cos−1 (cosθ) = θ =⇒ θ
∗ = θ .

(ii) For

α < 0 =⇒ α

| α |
=−1

there is

cos−1(−cosθ) = π −θ

=⇒ θ
∗+θ = π

and hence the angles are supplementary.
These conclude the proof.

3. Orthogonal Decompositions
Looking at how function spaces orthogonally decomposed
so that any function in the space is an orthogonal sum of
component functions from the orthogonal parts of the space.
The spaces was consider are the Sobolev spaces W k−1,2 (Ω),
the space for p = 2 and k ∈ N. Was stablish the following
results along with several properties in [1] and [4].

Theorem 5 [4] The space L2 (Ω) has an orthogonal decom-
position

L2 (Ω) = A1,2 (Ω)⊕D
(

W 1,2
0 (Ω)

)
(3.1)

where

A1,2 (Ω) = KerD∩L2 (Ω)

and

W 1,2
0 (Ω) = { f ∈W 1,2 (Ω) :

(
f|∂Ω,D f|∂Ω

)
= (0,0)}

so that

∀ f ∈ L2 (Ω) ,∃g ∈ A1,2 (Ω) and h ∈ D
(

W 1,2
0 (Ω)

)
such that

f = g⊎h.

Theorem 6 [1] The Sobolev space W 1,2 (Ω) has an orthogo-
nal decomposition

W 1,2 (Ω) = A2,2 (Ω)⊕D2
(

W 3,2
0 (Ω)

)
(3.2)

where

A2,2 (Ω) = KerD2 ∩W 1,2 (Ω)

and

W 3,2
0 (Ω)= { f ∈W 3,2 (Ω) :

(
f|∂Ω, D f|∂Ω, D2 f|∂Ω

)
=(0, 0, 0)}

so that

∀ f ∈W 1,2 (Ω) ,∃g ∈ A2,2 (Ω) and h ∈ D2
(

W 3,2
0 (Ω)

)
such that

f = g⊎h.

These decompositions enable us to give the following
main results of our research.
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4. Main Results
In this section was consider first and second order boundary
value problems and see how the solutions are simply the
orthogonal sums of parts that evolve from boundary values
of the solution and interior values of the derivative of the
solution to the given order. Starting with the first order Cauchy
problem.

Theorem 7 Let f ∈L2 (Ω) and g ∈W
1
2 ,2 (Ω). The first order

Cauchy problem{
Du = f in Ω

u = g on ∂Ω
(4.1)

has a solution u ∈W 1,2 (Ω) such that

u = [u] f ⊎ [u]g

where [u] f is the part of the solution that evolves from f and
[u]g is the part of the solution that evolves from g with the
following properties

(i)〈
[u] f , [u]g

〉
W 1,2(Ω)

= 0

(ii)

∥ u ∥2
W 1,2(Ω)= ∥ [u] f ∥

2
W 1,2(Ω) + ∥ [u]g ∥

2
W 1,2(Ω)

(iii)〈
u, [u] f

〉
W 1,2(Ω)

= ∥ [u] f ∥
2
W 1,2(Ω)

(iv)〈
u, [u]g

〉
W 1,2(Ω)

= ∥ [u]g ∥
2
W 1,2(Ω)

Proof. 5 For two functions f , g∈C1 (Ω), integration by parts
provide ∫

Ω

f (x− y)Dg(y)dΩy =

=
∫

∂Ω

f (x− y)υ (y)g(y)d∂Ωy+

−
∫

Ω

Dy f (x− y)g(y)dΩy.

Then by taking f = Γ and g = u, there is

∫
Ω

Γ(x− y)Du(y)dΩy =

=
∫

∂Ω

Γ(x− y)υ (y)u(y)d∂Ωy −
∫

Ω

DyΓ(x− y)u(y)dΩy

where Γ is the fundamental solution to the Dirac operator
D.

But

DyΓ(x− y) = δ (x− y)

the Kronecker delta function and thus,

∫
Ω

Γ(x− y)Du(y)dΩy =

=
∫

∂Ω

Γ(x− y)υ (y)u(y)d∂Ωy −
∫

Ω

δ (x− y)u(y)dΩy

=
∫

∂Ω

Γ(x− y)υ (y)u(y)d∂Ωy −u(x)

i.e.,

u(x)=
∫

∂Ω

Γ(x− y)υ (y)u(y)d∂Ωy−
∫

Ω

Γ(x− y)Du(y)dΩy

(4.2)

which provides the integral representation of the solution u to
the BVP given by

u(x)=
∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy+

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
.

Seeing that this sum is in fact an orthogonal sum ⊎.
Because the solution

u ∈W 1,2 (Ω) = A1,2 (Ω)⊕D
(

W 3,2
0 (Ω)

)
has a unique decomposition as sum of components from the
two sub spaces, A1,2 (Ω) and D

(
W 3,2

0 (Ω)
)

. But the first
integral∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy

is a monogenic function over Ω and hence an element of

KerD∩L2 (Ω) = A1,2 (Ω) .

Needing to verify that the second integral

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
∈ D

(
W 1,2

0 (Ω)
)
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as well. That is, there is a function ξ ∈W 3,2
0 (Ω) so that

−
∫

Ω

Γ(x− y) f (y)dΩy = Dξ (x) with ξ|∂Ω = 0.

Clearly from the fact that

u(x)=
∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy+

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
and u|∂Ω = g there is

τu|∂Ω =

= τ

(∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy+

+

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
|∂Ω

= τ

(∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy

)
|∂Ω

+

τ

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
|∂Ω

τu|∂Ω = g

=⇒ τ

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
|∂Ω

= 0.

Thus ξ|∂Ω = 0. In an analogous manner of the integral
representation of the solution u, get it now the integral repre-
sentation of ξ as

ξ (x) = −
∫

Ω

Γ(x− z)
∫

Ω

Γ(z− y) f (y)dΩydΩz

= −
∫

Ω

∫
Ω

Γ(x− z)Γ(z− y) f (y)dΩydΩz ∈W 1,2
0 (Ω) .

Therefore, there is a

ξ (x) =−
∫

Ω

∫
Ω

Γ(x− z)Γ(z− y) f (y)dΩydΩz ∈W 1,2
0 (Ω)

so that

Dxξ (x) = Dx

(
−
∫

Ω

∫
Ω

Γ(x− z)Γ(z− y) f (y)dΩydΩz

)
= −

∫
Ω

Γ(x− y) f (y)dΩy.

Hence

u(x) =∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy⊎(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
= [u]g ⊎ [u] f

u(x) = [u]g ⊎ [u] f

with

[u]g =
∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy and

[u] f =−
∫

Ω

Γ(x− y) f (y)dΩy.

(i) Then since W 1,2 (Ω) is a space with inner product of
an orthogonal decomposition there is

〈∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy, −
∫

Ω

Γ(x− y) f (y)dΩy

〉
W 1,2(Ω)

= 0.

(ii) Again from the fact that the sum is an orthogonal sum,
the components obey the parallelogram law

∥ u ∥2
W 1,2(Ω)= ∥

∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy ∥2
W 1,2(Ω) +

+ ∥
∫

Ω

Γ(x− y) f (y)dΩy ∥2
W 1,2(Ω)

= ∥ [u]g ∥2
W 1,2(Ω)

+ ∥ [u] f ∥2
W 1,2(Ω)

.

(iii) follows from the fact that

〈
u, [u] f

〉
W 1,2(Ω)

=

=

〈∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy+

+

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
, −

∫
Ω

Γ(x− y) f (y)dΩy⟩W 1,2(Ω)
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=

〈
−
∫

Ω

Γ(x− y) f (y)dΩy, −
∫

Ω

Γ(x− y) f (y)dΩy

〉
W 1,2(Ω)

= ∥ −
∫

Ω

Γ(x− y) f (y)dΩy ∥2
W 1,2(Ω)

〈
u, [u] f

〉
W 1,2(Ω)

= ∥ −
∫

Ω

Γ(x− y) f (y)dΩy ∥2
W 1,2(Ω)

and likewise (iv) follows from

〈
u, [u]g

〉
W 1,2(Ω)=

=

〈∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy,

∫
∂Ω

Γ(x− y)υ (y)g(y)d∂ΩyW 1,2(Ω) ⟩

= ∥
∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy ∥2
W 1,2(Ω)

The next result is for second order BVP.

Theorem 8 Let f ∈ L2 (Ω) and g1 ∈W
3
2 ,2 (∂Ω),

g2 ∈W
1
2 ,2 (∂Ω), then the second order BVP{

−D2u = f in Ω

u = (g1, g2) on ∂Ω
(4.3)

with

g1 = τu|∂Ω and g2 = τDu|∂Ω

has a solution u ∈W 2,2 (Ω) given by

u(x) =
∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy

−
∫

Ω

∫
∂Ω

Γ(x− z)Γ(z− y)υ (z)g2 (z)d∂ΩzdΩy +

+
∫

Ω

∫
Ω

Γ(x− z)Γ(z− y) f (z)dΩzdΩy

with the following properties
(i)

u(x) = (
∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy+

−
∫

Ω

∫
∂Ω

Γ(x− z)Γ(z− y)υ (z)g2 (z)d∂ΩzdΩy )

⊎
(∫

Ω

∫
Ω

Γ(x− z)Γ(z− y) f (z)dΩzdΩy

)

= [u]g1,g2
⊎ [u] f

u(x) = [u]g1,g2
⊎ [u] f .

(ii)

∥ u ∥2
W 1,2(Ω)

=

= ∥ (
∫

∂Ω
Γ(x− y)υ (y)g1 (y)d∂Ωy +

−
∫

Ω

∫
∂Ω

Γ(x− z)Γ(z− y)υ (z)g2 (z)d∂ΩzdΩy ∥2
W 1,2(Ω)

+ ∥
∫

Ω

∫
Ω

Γ(x− z)Γ(z− y) f (z)dΩzdΩy ∥2
W 1,2(Ω)

=∥ [u]g1,g2
∥2

W 1,2(Ω) + ∥ [u] f ∥
2
W 1,2(Ω)

Proof. 6 Clearly since the input function f ∈ L2 (Ω), which
is the weekly second order derivative of the solution u, there
is u to be in W 2,2 (Ω). This is because the Dirac operator D is
a regularity exponent diminishing operator, between Sobolev
spaces.

The repeated application of the integral representation
given in ( 4.2 ) will be used. Let v(x) = Du(x), then there is a
first order BVP

{
−Dv = f in Ω

v = g2 on ∂Ω

whose solution is given by

v(x)=
∫

∂Ω

Γ(x− y)υ (y)g2(y)d∂Ωy+

(
−
∫

Ω

Γ(x− y) f (y)dΩy

)
.

But Du = v and hence there is again a first order BVP

{
−Du = f in Ω

u = g1 on ∂Ω

with a solution

u(x) =

=
∫

∂Ω

Γ(x− y)υ (y)u(y)d∂Ωy −
∫

Ω

Γ(x− y)Du(y)dΩy

=
∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy +

−
∫

Ω

Γ(x− y)

 ∫
∂Ω

Γ(y− z)υ (z)g2(z)d∂Ωz

+(−
∫

Ω
Γ(y− z) f (z)dΩz)

dΩy

=
∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy +

−
∫

Ω

∫
∂Ω

Γ(x− y)Γ(y− z)υ (z)g2(z)d∂ΩzdΩy +

+
∫

Ω

∫
Ω

Γ(x− y)Γ(y− z) f (z)dΩzdΩy
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It need to show that this sum is again an orthogonal sum
from the orthogonal decomposition

W 1,2 (Ω) = A2,2 (Ω)⊕D2
(

W 3,2
0 (Ω)

)
proven in [1]. Clearly∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy+

−
∫

Ω

∫
∂Ω

Γ(x− y)Γ(y− z)υ (z)g2(z)d∂ΩzdΩy

is annihilated by D2 since

D2
(∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy+

−
∫

Ω

∫
∂Ω

Γ(x− y)Γ(y− z)υ (z)g2(z)d∂ΩzdΩy

= D2
(∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy

)
+

−D2
(∫

Ω

∫
∂Ω

Γ(x− y)Γ(y− z)υ (z)g2(z)d∂ΩzdΩy

)

=−D
(∫

∂Ω

Γ(y− z)υ (z)g2(z)d∂ΩzdΩy

)
= 0.

Thus

∫
∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy+

−
∫

Ω

∫
∂Ω

Γ(x− y)Γ(y− z)υ (z)g2(z)d∂ΩzdΩy ∈ A2,2 (Ω) .

Next, it need to show that ∃ξ ∈W 3,2
0 (Ω) such that∫

Ω

∫
Ω

Γ(x− y)Γ(y− z) f (z)dΩzdΩy = D2
ξ (x) .

Clearly

ξ (x)|∂Ω
=
(

ξ (x)|∂Ω
,Dξ (x)|∂Ω

)
= (0,0) .

By applying the result of integration by parts above twice and
the fact that

ξ|∂Ω = 0

there is ξ (x) =

= {
∫

Ω

∫
Ω

∫
Ω

∫
Ω

Γ(x− y)Γ(y− z)Γ(z−w)Γ(w−q)

f (q)dΩqdΩwdΩzdΩy ∈W 3,2
0 (Ω)}.

Setting

[u]g1,g2
=
∫

∂Ω

Γ(x− y)υ (y)g1 (y)d∂Ωy+

−
∫

Ω

∫
∂Ω

Γ(x− y)Γ(y− z)υ (z)g2(z)d∂ΩzdΩy

and

[u] f =
∫

Ω

∫
Ω

Γ(x− y)Γ(y− z) f (z)dΩzdΩy

there is

u = [u]g1,g2
⊎ [u] f

which proves (i).

(ii) follows from the fact that

u = [u]g1,g2
⊎ [u] f .

Theorem 9 For the BVP given in Theorem 7, if the input
function f is monogenic or Clifford analytic over Ω, then the
following holds

(i)

u(x) =
1

∥ B(x,ρ) ∥

∫
B(x,ρ)

u(y)dΩy,∀x ∈ Ω and ρ > 0

(ii)

x∈Ω
| u(x) | ≤ sup

x∈∂Ω

| g(x) | .

Proof. 7 The input function f is monogenic and hence u is
harmonic, since

∆u =−D2u =−D( f ) = 0.

But then harmonic functions satisfy the mean value theorem
and that proves (i).

The proof of the second result follows from the maximum
principle for harmonic functions over a domain Ω. Clearly
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the solution function to the BVP is harmonic and its integral
representation is given by

u(x)=
∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy−
∫

Ω

Γ(x− y) f (y)∂Ωy

and this function satisfies the maximum principle. That is
u attains its extreme values on the boundary of the domain.
This follows from

τu(x)
∂Ω

= τ(
∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy +

−
∫

Ω

Γ(x− y) f (y)dΩy)∂Ω

= τ

(∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy

)
∂Ω

+

−τ

(∫
Ω

Γ(x− y) f (y)dΩy

)
∂Ω

τu(x)
∂Ω

= τ

(∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy

)
∂Ω

since

τ

(∫
Ω

Γ(x− y) f (y)dΩy

)
∂Ω

= 0.

Again τ∂Ω is a trace operator that acts as a left inverse
operator of the boundary integral operator

∫
∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy

in such a way that

τ∂Ω ◦
(∫

∂Ω

Γ(x− y)υ (y)g(y)d∂Ωy

)
= g.

Therefore

τu(x)
∂Ω

= g(x) .

Hence

x∈Ω
| u(x) | ≤ sup

x∈∂Ω

| g(x) | .

Corollary 2 If Ω is compactly embedded in Rn, then for the
solution u of the BVP of Theorem 7, ∃x0,x1 ∈ ∂Ω:

(i)

| u(x) | ≤ | g(x1) | ∀x ∈ Ω

(ii)

| g(x0) | ≤ | u(x) | ∀x ∈ Ω.

Corollary 3 If f is monogenic over Ω, then the the Cauchy
problem{

Du = f in Ω

u = 0 on ∂Ω

has a solution u ≡ 0 and further more f ≡ 0.

Proof. 8 Because f is monogenic over Ω, there is that u is
harmonic over Ω since

∆u =−D2u =−D f = 0.

Then the maximum value principles guarantees that | u(x) |
has maximum values on the boundary of the domain. But the
boundary value of u is zero and hence follows that u ≡ 0 over
Ω which then implies f ≡ 0.

Remark 1 These results can be extended to higher order
boundary value problems which is our next focus.

Theorem 10 The Sobolev Space W (k−1),2 (Ω) (for k ≥ 1) has
an orthogonal decomposition given by

W (k−1),2 (Ω) = Ak,2 (Ω)⊕Dk
(

W (2k−1),2
0 (Ω)

)
(4.4)

where Dk is the kth order Dirac operator and

Ak,2 (Ω) = KerDk ∩W (k−1),2 (Ω) .

From this fundamental theorem, there is a higher order
BVP whose solution has orthogonal components.

Theorem 11 (Higher order BVP) Let

f ∈2 (Ω), g j ∈W k− j− 1
2 (∂Ω) for j = 0,1,2,3, ...k−1 and

k = 1,2,3, .... Then the kth-order BVP{
Dku = f in Ω

τu = g on ∂Ω
(4.5)

with
g = (g0

(
= u|∂Ω

)
, g1

(
= Du|∂Ω

)
, g2

(
= D2u|∂Ω

)
, ...,

..., g j
(
= D ju|∂Ω

)
..., gk−1

(
= Dk−1u|∂Ω

)
)

has a solution u ∈ W (k−1),2 (Ω) given as an orthogonal
sum

u = [u](g0, g1, g2, g3,..., gk−1)
⊎ [u] f

where

[u](g0, g1, g2, g3,..., gk−1)
=∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j) and [u] f = ζ

k
Ω f .

That is
(i) 〈

∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j) , ζ

k
Ω f
〉

W (k−1),2(Ω)

= 0
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.

(ii) ∥ u ∥2
W (k−1),2(Ω)

=

∥ ∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j) ∥2

W (k−1),2(Ω)
+

+ ∥ ζ k
Ω

f ∥2
W (k−1),2(Ω)

.

(iii) 〈
u, ∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j)

〉
W (k−1),2(Ω)

=

=∥ ∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j) ∥2

W (k−1),2(Ω)

.
(iv)

〈
u, ζ k

Ω
f
〉

W (k−1),2(Ω)
= ∥ ζ k

Ω
f ∥2

W (k−1),2(Ω)

where ζ∂Ω, ζΩ are integral transform operators given by

ζ∂Ωη (x) =
∫

∂Ω

Γ(x− y)υ (y)η (y)d∂Ωy

and

ζΩη (x) =
∫

Ω

Γ(x− y)η (y)dΩy.

Proof. 9 Clearly since f is in 2 (Ω), the solution u is in
W (k−1),2 (Ω). This is because the Dirac operator D is a regu-
larity diminishing operator by 1 and so its kth order reduces
a regularity of u by k and to be in 2 (Ω). Using induction on
k. For k = 1,2 there is the Dirac operator D and D2, the case
of a first and second order Cauchy problems, which there is
shown in Theorems [7] and [8]. Now

Dku = f on Ω with u|∂Ω = (g0, g1, g2, ..., gk−1)

=⇒ u = ζ∂Ω (g0)+ζΩ (ζ∂Ω (g1))+ζΩζΩ (ζ∂Ω (g2))+
ζΩζΩζΩ (ζ∂Ω (g3))+ ...

+ ζΩ...ζΩ︸ ︷︷ ︸
(k−1)-compositions

(ζ∂Ω (gk−1))+ ζΩ...ζΩ︸ ︷︷ ︸
k- compositions

( f ) .

That is

u = ∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j)+ζ

k
Ω f .

But the function

η =∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j) ∈ KerDk ∩W k,2 (Ω) = Ak,2 (Ω)

since

Dk
η (x) = Dk

(
∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j)

)
= D(ζ∂Ωg j) = 0

and DζΩg = g and also ζ∂Ωg is monogenic and hence
annihilated by D. Now what is left is to show that

ζ
k
Ω f ∈ Dk

(
W (2k−1),2

0 (Ω)
)

that is there is to find an h ∈W (2k−1),2
0 (Ω) such that

ζ
k
Ω f = Dkh with h|∂Ω = 0.

But this is achieved by considering h = ζ 2k
Ω

f .
Clearly

h = ζ
2k
Ω f ∈W (2k−1),2

0 (Ω)

and

Dkh = Dk
ζ

2k
Ω f = ζ

k
Ω f .

From the fact that(
Dk
(

W (2k−1),2
0 (Ω)

))⊥
= Ak,2 (Ω)

Then proveding the claim that the solution is the orthogo-
nal sum of functions that evolve from the boundary values g j,
and value f of the differential operator inside the domain

u = ∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j)⊎ζ

k
Ω f

= [u](g1,g2,...,gk−1)
⊎ [u] f

as required.

Corollary 4 The solution u to 4.5 satisfies the following or-
thogonality properties

(i) 〈
u, [u](g0, g1, g2,..., gk−1)

〉
W (k−1),2(Ω)

=

= ∥ [u](g0, g1, g2,..., gk−1)
∥2

W (k−1),2(Ω)

= ∥ ∑

∫ k−1

j=0
ζ

j
Ω
(ζ∂Ωg j) ∥2

W (k−1),2(Ω)
.

(ii)〈
u, [u] f

〉
W (k−1),2(Ω)

= ∥ [u](g0, g1, g2,..., gk−1)
∥2

W (k−1),2(Ω)

= ∥ ζ
k
Ω f ∥2

W (k−1),2(Ω)
.

Corollary 5 The higher order Cauchy problem 4.5, with g ≡
0, i.e., g j = 0,∀ j = 0, ...,k−1, has a solution u given by

u = ζ
k
Ω f

and hence

u = 0⊎ζ
k
Ω f .



On Orthogonal Parts of a Solution to a Cauchy BVP over Sobolev Spaces — 10/10

References
[1] Dejenie A. Lakew, On Transcendental Discrete Initial

Value Problems, Parana J. Sci. Educ., Vol. 8, No. 6 (9-12)
Aug. 8, 2022.

[2] Dejenie A. Lakew, On Some Discrete Differential Equa-
tions, Dejenie A. Lakew, Parana J. Sci. Educ., Vol. 7, No.
9 (1-6) Nov. 12, 2021

[3] Dejenie A. Lakew, On Orthogonal Decomposition of a
Sobolev Space, Adv. Oper. Theory, Vol. 2 (2017) No. 4,
419-427.

[4] Dejenie A. Lakew, On Orthogonal Decomposition of the
Hilbert Space 2 (Ω), Int. J. Math. Comp. Sci. 10(2015),
No. 1, 27-37.

[5] Dejenie A. Lakew, New Proofs on Properties of
Orthogonal Decomposition of a Hilbert Space,
arXiv:1510.07944v1.

[6] Dejenie A. Lakew, John Ryan, The Intrinsic π- Opera-
tor on Domain Manifolds in C(n+1), Compl. Anal. Oper.
Theory, Vol. 4, No. 2 (2010) 271-280.

[7] Dejenie A. Lakew, John Ryan, Clifford Analytic Complete
Function Systems for Unbounded Domains, Math. Meth.
Appl. Sci., Vol. 25, No. 16-18 (2002) 1527-1739.

[8] Robert McOwen, Partial Differential Equations, Methods
and Applications, Prentice Hall, 1996.

[9] Lawrence Evans, Partial Differential Equations, Ameri-
can Mathematical Society, 1998.

[10] F. Brackx, R. Delanghe and F. Sommen, Clifford Anal-
ysis, Research Notes in Mathematics, No. 76, Pitman,
London 1982.

[11] Di. Nezza et al, Hitchhiker’s guide to the fractional
Sobolev Spaces, Bull. Sci. Math (2012).

[12] S. G. Mikhlin, S. Prossdrof, Singular Integral Operators,
Aca. Verl. Berlin (1980).

[13] K. Gurlebeck, U. Kahler, J. Ryan and W. Sproessig, Clif-
ford Analysis over unbounded domain, Adv. Appl. Math.
19 (1997) 216-239.


	Preliminaries
	Orthogonality
	Orthogonal Decompositions
	Main Results
	References

