
Finite Element Method For the Impatient - A
Quick Application

Todd K. Dupont

August 7, 2009

Introduction
The point of these notes is provide an example of using the finite element method
(FEM) to move from a differential model problem to a linear-algebraic one, as
computers are much better at solving the latter. There are actually several nu-
merical methods that also perform a similar transformation (e.g., finite differ-
ences). A distinct feature of FEM is that the arrays within the global matrix
problem, say A ·~u =~b, are assembled from a finite set of Nel elemental subar-
rays: A = ∑e=1 NelAe and ~b = ∑

Nel
e=1

~be. These elemental subarrays are found
through operations on a finite set of area elements, or subdomains Ωe, which in
total constitute the model problem’s total domain Ω. This breaking up of the do-
main generates of finite element mesh, and these meshes can be created for quite
complicated domains, which is often considered a key advantage of finite element
approaches or finite difference treatments.

The steps outlined in the following sections are effectively the same steps that
any finite element application applies.

Model Problem
Find u = u(x,y) on the domain Ω such that

∇
2u− f = 0, {x,y} ∈Ω (1)

u = 0, {x,y} ∈ ∂Ω (2)

1



where ∇2 ≡ ∂2
x + ∂2

y is the Laplacian operator, ∂Ω is the boundary of the domain,
and f = f (x,y) is some sink term.

The model domain for this problem is the Ross Ice Shelf, which is shown, in
the form of a 2-d FEM mesh, in figure 1.

Weighted-Residual, Variational, or Weak Form
Let r(x,y) = ∇2u− f be the residual of Poisson’s equation. We would, of course,
like for r(x,y) = 0. In FEM we move this problem to a weaker form, one where
we insist that the residual be zero in a weighted-average sense, for some arbitrary
weighting function w = w(x,y). More specifically, we would like to find u =
u(x,y) such that u(∂Ω) = 0 andZ

Ω

wrdA =
Z

Ω

{
w∇

2u−w f
}

dA = 0 (3)

for all ”permissible” w; effectively, w needs to be smooth enough to allow an inte-
grable product with r. This problem is less stringent (weak), because the constraint
is integrated, or smoothed, relative to the original problem. The variable w is often
also called a test function.

Note that

w∇
2u = w∇ ·

(
∇

T )
u = ∇ ·

(
w∇

T u
)
− (∇w) ·

(
∇

T u
)

and Z
Ω

∇ ·
(
w∇

T u
)

dA =
Z

∂Ω

w~n ·∇T uds

where~n is the outward normal on the boundary.
Thus we can rewrite the weak form of the problem asZ

∂Ω

w~n ·∇T uds−
Z

Ω

{
(∇w) ·

(
∇

T u
)
+w f

}
dA = 0 (4)

Because we prescribe u on the boundary, we don’t want w to be arbitrary on
the boundary, i.e., we are not ”testing” or applying any constrain derived from
Poisson’s equation on the boundary. Thus w(∂Ω) = 0. This simplifies our weak
form further to finding u(x,y) on Ω such that u(∂Ω) = 0 andZ

Ω

{
(∇w) ·

(
∇

T u
)
+w f

}
dA =

Z
Ω

{
∂xw∂xu+∂yw∂yu+w f

}
= 0 (5)

for arbitrary (but well-behaved) w in Ω, and w(∂Ω) = 0.

2



Descretization - the Galerkin Approximation
To this point u, w and f are continuous functions over Ω. To make the problem
tractable we want to move from trying to find u everywhere within the domain to
finding u at a specific set of points within this domain. This will turn the problem
into into an linear-algebraic problem, something computers are good at solving.

{x,y} ∈Ω → {xi,yi} , i = 1,2, . . .N

where {xi,yi} is the ith point, and N is the number of points, or nodes.
We can denote the value of u (or w, or f ) at the ith node as ui (or wi, or fi).

However, how do these functions vary between nodes? We can approximate this
variation as a weighted sum over some finite set of basis (or interpolation) func-
tions, such that

u(x,y) ≈
N

∑
i=1

φi(x,y)ui =~φ ·~u (6)

w(x,y) ≈
N

∑
i=1

φi(x,y)wi =~φ ·~w (7)

f (x,y) ≈
N

∑
i=1

φi(x,y) fi =~φ ·~f (8)

where~φ =
[

φ1(x,y) φ2(x,y) . . . φN(x,y)
]

is the vector of N linearly-independent
basis functions, and ~u, ~w and ~f contain the N nodal values of u, w, and f , respec-
tively. This approximate form, referred to as a Galerkin approximation, treats the
variable of interest as a piece-wise continuous function, one whose variation be-
tween nodal points is represented as an interpolation given by the N functions φi.
In this case we would like to insist that

φi(x j,y j) =
{

1 i = j
0 i 6= j (9)

which will enforce u(xi,yi) = ui, i.e., the interpolation returns the nodal values at
the nodal points.

We can plug our interpolated approximations for u, w, and f into the integral
found in the weak form of the model problem, yielding a new form of the problem:

3



Find ~u such that ~u(∂xΩ) = 0 and

~wT ·
{Z

Ω

(
∂x~φ

T ·∂x~φ+∂y~φ
T ·∂y~φ

)
dA ·~u+

Z
Ω

~φT ·~φdA ·~f
}

(10)

where ~w is arbitrary, except that ~w(∂Ω) = 0.
We can condense this problem by defining two arrays,

A ≡
Z

Ω

(
∂x~φ

T ·∂x~φ+∂y~φ
T ·∂y~φ

)
dA (11)

~b ≡ −
Z

Ω

~φT ·~φdA ·~f (12)

yielding
~wT

{
A ·~u−~b

}
= 0 (13)

Because the values of wi are arbitrary (away from the boundary), and because
we insist the basis functions are linearly independent, we are forced to satisfy
equation (13) for each of the N cases of

~w =
[

1 0 0 . . . 0
]

(14)
~w =

[
0 1 0 . . . 0

]
(15)

~w =
[

0 0 1 . . . 0
]

(16)
~w =

[
0 0 0 . . . 1

]
(17)

Which means we are really looking for ~u such that ~u(∂Ω) = 0 and

A ·~u =~b (18)

So we’ve recast the differential model problem into a linear algebra problem.

Finding the Arrays A and~b

Say the nodes are organized into a mesh of Nel triangular elements, where a par-
ticular set of three nodes serve as the vertices of a particular triangular area within
the domain. 1

1This is one of the simplest types of meshes used in FEM; meshes can be made of many elements with various
shapes.

4



!600 !400 !200 0 200 400
!1400

!1200

!1000

!800

!600

!400

x (km)

y 
(k

m
)

Finite Element Mesh of Ross Ice Shelf

Figure 1: Ross Ice Shelf Finite Element Mesh

Given our domain Ω is now broken into Nel triangular subdomains we can
break the integrals in the expressions for A and~b, such that

A ≡
Nel

∑
e=1

Z
Ωe

(
∂x~φ

T ·∂x~φ+∂y~φ
T ·∂y~φ

)
dA (19)

~b ≡ −
Nel

∑
e=1

Z
Ωe

~φT ·~φdA ·~f (20)

Only the basis functions interpolating between the points at the vertices of
a particular element Ωe are going to be nonzero within that element. Thus the
integrals in the above expressions actually only act of that subset of three basis
functions . This subset of basis functions that perform the interpolation within a
given element are often called the shape functions of that element.

~φ(Ωe)→~ψe (21)

5



which means the interpolation of (say) u in Ωe can be written as

~ψe ·~ue (22)

where ~u are the values of u at the nodes defining Ωe.
With this notation in hand we can re-write the expressions for A and~b as

A = ∑
e

Z
Ωe

{
∂x~ψ

T
e ·∂x~ψe +∂y~ψ

T
e ·∂y~ψe

}
dA = ∑

e
Ae (23)

~b = −∑
e

Z
Ωe

~ψT
e ·~ψedA ·~fe = ∑

e

~be (24)

where

Ae ≡
Z

Ωe

{
∂x~ψ

T
e ·∂x~ψe +∂y~ψ

T
e ·∂y~ψe

}
dA (25)

~be ≡ −
Z

Ωe

~ψT
e ·~ψedA ·~fe (26)

are the arrays that sum together to form the global arrays A and~b
To actually evaluate the integral expressions above requires that we specify the

functional form of these ~ψe.
The simplest shape functions on a triangular element are linear, such that

~ψe =~αex+~βey+~γe (27)

For the interpolation~ψe ·~ue = ∑
3
i=1 ψi,eui,e to recover ui at the ith nodal position

{xi,e,yi,e} the following condition must be satisfied x1,e y1,e 1
x2,e y2,e 1
x3,e y3,e 1

 ·
 α1,e α2,e α3,e

β1,e β2,e β3,e
γ1,e γ2,e γ3,e

 =

 1 0 0
0 1 0
0 0 1

 (28)

or [
~xe ~ye 1

]
·

 ~αe
~βe
~γe

 = I (29)

where I is the identity matrix.

6



Note that given equation (27) the derivatives in equaiton (25) are constants,
i.e.,

Ae =
Z

Ωe

{
~αT

e ·~αe +~βT
e ·~βe

}
dA = ae

{
~αT

e ·~αe +~βT
e ·~βe

}
(30)

where ae is the area of the eth element.
Similarly, knowing the coefficients in equation (27) allows us to integrate

quadratic integrands that result from the product of two linear functions in equa-
tion (26).

Given the values that fill the subarrays Ae and ~be, it is a simple matter to
assembling the contributions of these into the global arrays A and ~b, at which
point we can solve the global matrix equation (18).

7


