
Notes on Adjoint Methods and Automatic Differentiation

2009 Ice Sheet Modeling Summer School

Portland, Oregon

Patrick Heimbach

August 13, 2009

Contents

1 Introduction 2

2 A simple example 2

2.1 A model and an objective function . 2

2.2 A conventional way for finding the gradient of J0 . 2

2.3 The tangent linear and adjoint model . 3

2.4 Change of control space: same model, but different adjoint 4

2.5 Line-by-line: code generated via automatic differentiation . 6

2.5.1 The tangent linear code (forward-mode AD) . 6

2.5.2 The adjoint code (reverse-mode AD) . 6

3 The 2nd derivative, the Hessian, and posterior error 6

4 The time-varying problem: the harmonic oscillator 6

4.1 Lagrange multipliers vs. chain rule . 6

4.2 An example: the harmonic oscillator . 6

References 6

1

1 Introduction

2 A simple example

2.1 A model and an objective function

Consider the model L which maps the two-dimensional vector x onto the two-dimensional
vector y. The model is given by

y = L(x) =
[

y1

y2

]
=

[
0 a
−b 0

]
·
[

y1

y2

]
=

[
ax2

−bx1

]
(1) {eq:simplemodel}

Now, assume observations [d1 d2]T are available for the two elements [y1 y2]T , and we
can write a misfit or cost function

J0 = J0(y) =
1
σ2

1

(y1 − d1)
2 +

1
σ2

2

(y2 − d2)
2

=
1
σ2

1

(ax2 − d1)
2 +

1
σ2

2

(−bx1 − d2)
2

(2) {eq:simplecost}

where σ1, σ2 can be attributed to standard deviations, such that their squares correspond
to variances σ2

1 σ2
2. In this form, J0 represents a simple least-squares cost function.

We can also view J0 as a composite mapping J0 = J0(y) = J0(L(x)), such that

J0 : x 7−→ y 7−→ J0[y]
x 7−→ L[x] 7−→ J0[L[x]]

(3)

We wish to find the gradient of J0 with respect to the input variable x (note that, alterna-
tively, or in addition, we could also be interested in the gradient of J0 with respect to the
model parameters p = [a b]T). Of course, the example chosen is very simple, and from
eqn. (2) we can readily write down the gradient:

∇xJT
0 =

[
∂J0
∂x1
∂J0
∂x2

]
=

[
− 2b

σ2
2

(−bx1 − d2)
2a
σ2
1

(ax2 − d1)

]
(4) {eq:gradwrtx}

2.2 A conventional way for finding the gradient of J0

Suppose, the function J0(L(x)) was too complicated to write down analytically, and we
needed to compute the gradient numerically. Conventionally, in order to assemble the
complete gradient we would perform two finite difference perturbations for each component
[x1 x2]T , i.e. compute

∂J0

∂xi
=

J0(x + ε ei) − J0(x)
ε

2

for small ε, and for each direction

e1 = [1 0]T , e2 = [0 1]T

This approach has serveral shortcomings:

• If the dimension of x was very large (e.g. 107 instead of just 2) and calculation of J0

expensive, performing 107 perturbation calculations would be prohibitive;

• The accuracy depends on the coice of ε and the finite-differencing scheme used (here
we just used the simplest possible)

2.3 The tangent linear and adjoint model

Consider how perturbations δx in x are mapped to perturbations δy in y = Lx. We define
the linearized model dL via the general expression δy = dL δx, for which we obtain:[

δx1

δx2

]
7−→

[
δy1

δy2

]
=

[
∂y1

∂x1
δx1 + ∂y1

∂x2
δx2

∂y2

∂x1
δx1 + ∂y2

∂x2
δx2

]

=

[
∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

]
·
[

δx1

δx2

]
=

[
0 a
−b 0

]
·
[

δx1

δx2

]
=

[
a δx1

−b δx2

]
(5)

Since L is a linear mapping/model, the model Jacobian dL is identical to L (this is a choice
to simplify our calculation for now).

Now, consider the total variation of J0 with respect to y:

δJ0 =
∂J0

∂y1
δy1 +

∂J0

∂y2
δy2 =

〈∂J0

∂y

T

, δy
〉

(6)

where we have used the notation for general scalar products < . , . >. Again, using eqn.
(2), we obtain for the perturbation in J0 due to the perturbation δx:

δJ0 =
2
σ2

1

(y1 − d1) δy1 +
2
σ2

2

(y2 − d2) δy2

=
[

2
σ2

1

(y1 − d1)
2
σ2

2

(y2 − d2)
]
·
[

δy1

δy2

]
=

[
2
σ2

1

(ax2 − d1)
2
σ2

2

(−bx1 − d2)
]
·
[

0 a
−b 0

]
·
[

δx1

δx2

]
=

[
− 2b

σ2
2

(−bx1 − d2)
2a

σ2
1

(ax2 − d1)
]
·
[

δx1

δx2

]
(7) {eq:deljtlmx}

3

We now see how the gradient is obtained through repeating eqn. (??) and using the formal
definition of the adjoint as follows:

δJ0 =
〈∂J0

∂y

T

, δy
〉

=
〈∂J0

∂y

T

, dL δx
〉

=
〈
dLT ∂J0

∂y

T

, δx
〉

=
〈∂J0

∂x

T

, δx
〉 (8)

or, more concise, and using a unit “perturbation” δJT
0 = 1,

∇xJT
0 =

∂y
∂x

T

· ∂J0

∂y

T

· δJT
0 (9)

We obtain general expressions for the tangent linear model and its dual, the adjoint model:

TLM dJ0 : δx −→ δy = dL · δx −→ δJ0 = ∇yJ0 · δy

ADM d∗J0 : δ∗x = dLT · δ∗y ←− δ∗y = ∇yJ
T
0 ←− δ∗J0 = 1

(10)

In our new notation, we recognize eqn. (??) as tangent linear model (TLM), while the
adjoint model is readily written as:

δ∗x =
[

δ∗x1

δ∗x2

]
=

[
− 2b

σ2
2
(−bx1 − d2)

2a
σ2
1
(ax2 − d1)

]

=
[

0 −b
a 0

]
·

[
2
σ2
1
(ax2 − d1)

2
σ2
2
(−bx1 − d2)

]
· δ∗J0

= dLT · δ∗y · δ∗J0

(11) {eq:deljadmx}

with δ∗J0 = 1 and δ∗x = ∇xJT
0 . The ∗ variables are referred to either as dual variables,

adjoint variables, sensitivities, or Lagrange multipliers.

2.4 Change of control space: same model, but different adjoint

We’ve managed to squeeze a lot of equations out of this simple problem, and we think we’re
done, but not so fast. Imagine, instead of being interested in the sensitivity of J0 with
respect to x (which previously were considered to be uncertain “initial conditions”), we
instead consider x to be uninteresting, and are interested in the sensitivities with respect
to the model parameters p = [a b]T . Everything stays the same, we still use the model L
and are evaluating the cost function J0, but now as a function of p for fixed x. As might be
expected, the gradient ∇pJ0 of J0 with respect to p has quite a different form, compared
to ∇xJ0, eqn. (4). We can derive it directly from eqn. (2):

∇pJ
T
0 =

[
∂J0
∂a
∂J0
∂b

]
=

[
2
σ2
1

(ax2 − d1) x2

− 2
σ2
2

(−bx1 − d2) x1

]
(12) {eq:gradwrtp}

4

A calculation similar to eqn. (7) yields:

δJ0 =
∂J0

∂a
δa +

∂J0

∂b
δb

=
(

∂J0

∂y1

∂y1

∂a
+

∂J0

∂y2

∂y2

∂a

)
δa +

(
∂J0

∂y1

∂y1

∂b
+

∂J0

∂y2

∂y2

∂b

)
δb

=
[

2
σ2
1

(y1 − d1) − 2
σ2
2

(y2 − d2)
]
·
[

δa
δb

]
=

[
2
σ2
1

(ax2 − d1) − 2
σ2
2

(−bx1 − d2)
]
·
[

x2 0
0 −x1

]
·
[

δa
δb

]
(13) {eq:deljtlmp}

from which we can readily deduce the adjoint expression

δ∗p =
[

δ∗a
δ∗b

]
=

[
2
σ2
1
(ax2 − d1)x2

− 2
σ2
2
(−bx1 − d1)x1

]

=
[

x2 0
0 −x1

]
·

[
2
σ2
1
(ax2 − d1)

2
σ2
2
(−bx1 − d2)

]
· δ∗J0

= dL̃T · δ∗y · δ∗J0

(14) {eq:deljadmp}

The mapping relationship corresponding to eqn. (11), but now with p as control, reads:

TLM dJ0 : δp −→ δy(p) = dL̃ · δp −→ δJ0 = ∇yJ0 · δy

ADM d∗J0 : δ∗p = dL̃T · δ∗y ←− δ∗y = ∇yJ
T
0 ←− δ∗J0 = 1

(15)

The bottom line is that the gradient, and thus “the adjoint model” looks quite different for
this control problem. Several lessons have been learnt:

• There isn’t such a thing as “the” adjoint model. Its form depends crucially on the
control problem formulated, i.e. on the set of independent and dependent variables
chosen (an issue not appreciated to this day by a large fraction of the ocean modeling
community).

• One of the crucial strengths of automatic differentiation is the very fact that it can
deal much more flexibly with changes to the formulation of the control problem that
one wishes to solve.

• It isn’t even clear, for a given control problem, which part of eqn. (11), (or, equiv-
alently of eqn. (14)) refers to “the adjoint model”. Mathematicians would refer to
the entire expression dLT · δ∗y · δ∗J0 as the adjoint of the mapping J0(L(x)), whereas
physicists tend to think of L as “the model”, to dL as “the model Jacobian”, and thus
to dLT only as “the adjoint model“. The caveats are evident.

• Note also that in eqn. (10) and (15) the expressions for ∇yJ0 (and their transpose)
remain the same, and it is really dL vs. dL̃ (and their transpose) which change the
overall TLM and ADM.

5

2.5 Line-by-line: code generated via automatic differentiation

2.5.1 The tangent linear code (forward-mode AD)

2.5.2 The adjoint code (reverse-mode AD)

3 The 2nd derivative, the Hessian, and posterior error

4 The time-varying problem: the harmonic oscillator

4.1 Lagrange multipliers vs. chain rule

4.2 An example: the harmonic oscillator

6

	Introduction
	A simple example
	A model and an objective function
	A conventional way for finding the gradient of J0
	The tangent linear and adjoint model
	Change of control space: same model, but different adjoint
	Line-by-line: code generated via automatic differentiation
	The tangent linear code (forward-mode AD)
	The adjoint code (reverse-mode AD)

	The 2nd derivative, the Hessian, and posterior error
	The time-varying problem: the harmonic oscillator
	Lagrange multipliers vs. chain rule
	An example: the harmonic oscillator

	References

