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ABSTRACT

A simple l4-dimensional continental ice sheet model is presented. The model is based on
Nye's (1959) proposal to express the vertical mean horizontal ice-velocity as u = BtJ', where
T, is the basal shear stress and B and m are constants. Essentially, the spread of ice is governed
by a nonlinear diffusion equation for the ice thickness. The diffusivity increases with both
ice thickness and surface slope. In one direction (y) a typical scale is prescribed that governs
the lateral ice-mass discharge, whereas in the other direction (x) the ice-sheet evolution is
computed explicitly on a grid with a spacing of 70 km.

A series of experiments has been carried out with various boundary conditions and
parameterizations of the annual mass balance. It appears that the boundedness of continents
and bedrock elevations creates a strongly nonlinear response of ice sheets to climatic variations.
The behaviour of Northern Hemisphere ice sheets as computed with the numerical model is
compared to that predicted by a perfect-plasticity model. 1t is found that those models give
qualitatively the same results.

Including bedrock sinking in a simple way reveals that this causes Northern Hemisphere
ice sheets to disappear spontaneously within 15,000 years, after about 50,000 years of growth

(initiated by a cold period).

1. Introduction

A growing interest exists in the behaviour of
large continental ice sheets. They play an important
role in the climate system through their interaction
with the atmosphere. Although ice sheet and glacier
modelling has reached some degree of sophistica-
tion, existing models have been used primarily in
studies of the present day ice sheets of Greenland
and Antarctica, and of glacier surges (see Budd
and Radok (1971) for a review). With regard to
climate studies, use has been made of perfectly
plastic ice sheets, e.g. Weertman (1961, 1976),
Birchfield (1977) and Pollard (1978). In those
studies, the dependence of the mass balance on
height is incorporated and appears to provide a
strong positive feedback in ice-sheet growth.
Recently, Andrews and Mahaffy (1976) and
Qerlemans (1980a) have studied the possibility of
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rapid growth of the Laurentide and Scandinavian
ice sheets, respectively. They used simple vertically
integrated models.

In this study some basic experiments carried out
with a simplified version of the model described in
Oerlemans (1980a) will be discussed. This simplifi-
cation serves to reduce computational times and is
suitable for the type of experiments to be discussed
here. The emphasis will be on ice-sheet behaviour
under various boundary conditions. 1t is not the
intention to study the mechanics of ice flow, but to
investigate the large scale behaviour of ice sheets
that is immediately relevant from the viewpoint of
dynamical climatology.

2. Description of the model

The ice-sheet model to be used will be described
briefly. Fer further background on ice-flow
mechanics and the problems involved, the reader is
referred to Paterson (1969) and Budd and Radok
(1971).
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The model is based on Nye’s (1959) proposal to
combine the effects of internal deformation within
the ice and sliding at the bottom by using a simple
flow law of the type

u=Bry. (1)

In (1). u is the vertical mean (= from the bottom to
the top of the ice sheet) velocity and 7, is the shear
stress at the bottom. In principle, the constant B
depends on the temperature distribution in the ice.
The value of m is more constant, although it
depends slightly on the relative contribution of
basal sliding to the vertical mean velocity. Current
values of m are between 2 and 3.

In the present model the temperature distribution
in the ice is not computed, so the only possibility
of using (1) is to keep B and m at constant values.
This implies for example that ice-sheet surges
cannot occur in the model. Throughout this study
it is also assumed that ice density is constant,
which means that mass flow and volume flow are
equivalent concepts.

For large ice sheets longitudinal stresses are
generally small, which suggests to generalize (1) for
the two-dimensional case. Since the basal shear
stress is proportional to HVH* where H is the
ice thickness and H* the elevation of the ice surface
above sea level, the vertically integrated mass-flow
vector M becomes

MxAHm+liVH*-VH*\””‘”/Z VH*. (2)

The constant A is just an optimum value of B for
the two-dimensional case. Due to the nonlinear
character of ice flow, these constants need not be
equal.

The evolution of the ice sheet is described by the
conservation of ice mass, which reads

oH
—=V.-M+G. (3)
ot

Here, G denotes the (annual mean) mass balance.
Equations (2) and (3). together with the condition
that H > 0, completely describe the model.

A more transparent formulation of the model is
obtained by the consideration that the transport
of ice mass. from accumulation to ablation
regions, is essentially a diffusive process, with a
positive but variable diffusivity. Writing
oH
—=V.DVH*+ G (4)

ol

the diffusivity D is found to be

(aH* * (aH*

1 o+ |-
ox ) ( ay )
So the spread of ice is described by a nonlinear
diffusion equation, and the diffusivity increases
with the slope of the ice surface and in particular
with the ice thickness. The latter implies that D
tends to be larger in the higher parts of the sheet,
which causes the ice-sheet edge to be steep
compared to what a linear (= constant D) diffusion
equation would give. In general. ice sheets show a
tendency to reduce variations in D by having larger
surface slopes if the thickness is smaller. At this
point it is interesting to recall that for a perfectly
plastic ice sheet the product HdH/dx is constant
(e.g. Paterson, 1969).

The model described above is two-dimensional
and has been used in a study of the Scandinavian
ice sheet (Oerlemans, 1980a). In order to reduce
computational times, this model is now simplified.

The coordinate axes are chosen in such a way
that the ice sheet evolution is most pronounced
along the x-axis. For the American and Eurasian
continental ice sheets, this will be the north-south
direction. In the lateral direction, i.e. along the
v-axis, the spatial scale of the ice sheet is pre-
scribed, it is denoted by Y (see Fig. ). If the
x-axis is placed over the highest part of the sheet,
and if variations of the bedrock height are not too
pronounced in the p-direction, the approximations
OH*/dv ~ 0 and 8*H*/8y? ~ H/Y? may be used.
Inserting this in (4) and (5) yields for the simplified
model:

(m-—1/2

D=AH™!

(5)

dH ¢ OH™*

——=— D~ + D'H/Y*+G. (6)
ol ox ax
where
&H* m—1
D' = AH™! . (N
ox

Equations (6) and (7) formulate a |4-dimensional
model. Lateral discharge of ice mass is still possible
through the D' H/Y*term in (6). In principle Y
may be a function of x, or even of 1. For example,
in some cases it may be realistic to let Y grow
with H. If Y - oo the model becomes one-
dimensional. In some experiments this version will
be used.

Tellus 33 (1981), 1



EXPERIMENTS WITH A VERTICALLY-INTEGRATED ICE SHEET MODEL 3

TYPICAL
SCALE ¥

X-AXIS

Fig. 1. Sketch of an ice sheet and its orientation in the
coordinate system. The scale Y determines the lateral
ice-mass discharge.

The flow law (1) is only valid if the ice thickness
is at least a few hundred meters and longitudinal
stresses are small. This implicates that (1) does not
hold at the edge and at the centre of an ice sheet.
Moreover, (6) does not allow the ice sheet to grow
if G € 0 at the edge, because here D = 0. To avoid
such unrealistic behaviour, the condition D’ > Dy
is added to (7). In all experiments, Dy was set
equal to the diffusivity corresponding to a surface
slope of 2%107* and an ice thickness of 500 m.
Some sensitivity experiments showed that the
evolution of a model ice sheet does not depend
strongly on the choice of Dy.

Equations (6) and (7) are solved on a grid with
a spacing of 70 km. An explicit forward scheme is
used for the time integration, and spatial derivatives
are approximated by central differencing. With a
time step of 20 years, and without any smoothing,
the scheme appeared to be stable for all experi-
ments of interest. For some further discussion on
the numerical method, see Oerlemans (1980a).

3. Some basic experiments

In interpreting the resuits, it should be realized
that 4 and m govern two characteristic quantities
of the model ice sheet, namely, its height-to-width
ratio and the steepness of the edge. Therefore,
A and m were chosen in such a way that the model
gives realistic values of those quantities. It turned
out that taking m = 2.5 and 4 = 1 m™*? yr~! did
meet this requirement.

As a first experiment, an ice sheet was computed
for a flat continent bounded by deep ocean
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(H(t) = 0). The size of the continent was taken
to be 2030 km. The net mass balance was set to
0.3 m/yr, and the initial condition was H(x) = 0.
The pure one-dimensional model version was used
(Y = o0). The configuration sketched above
resembles the situation in the Antarctic region.

Fig. 2 shows the steady-state solution, reached
after approximately 20,000 years. Since the sheet
is symmetric with respect to its centre only one-half
is shown. For comparison, the dashed line shows
an ice-sheet profile obtained from a linear diffusion
equation with a diffusivity chosen such that H_,,
is equal to that for the nonlinear case. Apparently,
the linear model does not produce a steep edge.
Other experiments not shown here brought to light
that differences between linear and nonlinear
models may be very large for developing or
decaying sheets; this is physically quite clear.

Also shown is the diffusivity D’. It reaches a
maximum value halfway between the ice sheet’s
centre and edge. At the centre and edge D’ — 0
because dH/dx — 0 and H — 0, respectively. In
the model, D’ is set to Dj at these locations, but

HEIGHT (km)

(16

DIFFUSIVITY

X (100 km)

Fig. 2. Upper panel: ice-sheet profile of a steady-state
ice sheet computed with the nonlinear model (solid line)
and a linear model (dashed line). Lower panel: diffusivity
for the nonlinear case.
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since Dy = 0.25%10° m?/yr it appears as zero
in the figure.

The experiment was repeated for other values of
the mass balance G. Fig. 3 shows how in the steady
state the surface height at the centre of the sheet
(H ) depends on G. The dependence is rather
weak. suggesting that the height of the Antarctic
ice sheet is rather insensitive to variations in G.
This is a well-accepted point (e.g. Flint, 1971). It
should be noted that a perfectly plastic ice sheet
would not react to variations in G at all—its shape
is fully determined by its size.

Although the equilibrium ice-sheet height hardly
depends on G, this does not apply to the time
needed to reach equilibrium. It ranges from
45,000 years for G = 0.1 m/yr to 10,000 years
for G=1m/yr.

In the second experiment, the continent was
bounded by deep ocean at one side only, namely
at x = 0. This configuration may be seen as
representative for Northern Hemisphere conditions,
with x = 0 at the coast of the Arctic Sea and the
x-axis pointing southward. The lateral scale ¥ was
taken to be 1000 km. The mass balance was
prescribed as

G=04-03%10"%x m/yr, (8)

so it decreases linearly from 0.4 m/yr at x = 0 to
—0.3 m/yr at x = 2500 km. The equilibrium point,
defined here as the location on the x-axis where
G = 0, was thus located at x = 1333 km. Equation
(8) is not meant to represent real conditions, but is
employed merely to carry out a simple “academic”
experiment. More realistic representations of G in
which height dependence is included will be used
later.

0 { 1 I | |
0 0.2 0.4 0.6 0.8 1.0
MASS BALANCE (m/yr)

Fig. 3. Surface elevation (= ice thickness) at the centre
of the sheet, as a function of the annual mass balance.

Steady-state profiles for this experiment are
shown in Fig. 4. The upper profile is for a perfectly
flat base, the lower one for the case of a bedrock
elevation as indicated. Due to the x-dependency
of G, the sheet is not symmetric: the edge of the
ablation side is less steep. The presence of the
mountain range allows the ice to penetrate further
south. In this case, the enhanced shear stress on
the mountain slope creates a local minimum in
H at x = 900 km, while the sheet reaches.its
maximum thickness at x = 1200 km.

In order to get an idea of how the computed
steady-state depends on the model parameters,
some runs were carried out with other values of
A and Y, while the boundary conditions were kept
the same (only the case with a flat base was run).
Table 1 lists some results. Increasing the value of
A leads to a lower ice sheet, while its size is hardly
affected (not within the model resolution of 70 km).
For a small lateral scale Y, both H_, and L
are small. Larger Y implicates less ice-mass
discharge in the lateral direction, so H_, and L
increase. The one-dimensional case (¥ — «) does
not differ very much from the case with ¥ = 1000
km, i.e. an ice-sheet width of 2000 km.

4. Height-dependent mass balance

The behaviour of ice sheets becomes far more
interesting if the dependence of the mass balance
on surface height is taken into account. This adds

H* (km)
A

2

X (100 km)

Fig. 4. Steady-state ice-sheet profiles for a mass balance
depending on x only. The equilibrium point is located
at x = 1333 km. The upper panel shows the case with a
flat bedrock, the lower one the case with a mountain
range (all other things being equal).
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Table 1. Maximum height (H,,, in m) and size
(L in km) for wvarious values of the model
parameters A and Y (units m=? pr=! and km,
respectively). See text for further description of the

experiment

H_ . n) L (km)
Y = 1000 A =02 3240 1750
A=1 2489 1750
A=2 2217 1750
A=35 2020 1750
A=1 Y =100 1402 1400
Y =500 2207 1610
Y = 1000 2489 1750
Y- 2690 1890

an essentially nonlinear element, which is now
included into a study of the Northern Hemisphere
ice sheets.

The height dependence of the mass balance is
prescribed as

G =0.73*1073x(h — E) + 0.27+107%+(h — E)*
m/yr (9)

where h and E are in meters. E is the height of
the equilibrium line (defined by G = 0); it depends
on x, see Fig. 5. The maximum value of G is
0.5 m/yr for h — E = 1500 m; for larger values of
h — E, G is kept at this value.

A few considerations led to employing a
parabolic height dependence of G as formulated by
(9). Observations have shown that an upper limit
to precipitation amounts exists if one goes upward.
The reason for this simply is the decreasing water

HEIGHT (km)
\

G=05 above this line —

éﬂ‘ e 0

~

CLIMATE POINT P

X (100 km)

Fig. 5. Parameterization of the mass balance G. Unit is
‘m/yr. The point where the equilibrium line intersects
the sea level is called the “climate point” and is denoted
by P.
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vapour content of the air. For the same reason
precipitation amounts in the polar regions are
small. Characteristic values of the present yearly
precipitation are 0.3 m/yr in the Antarctic and
0.5 m/yr in the Arctic.

Mass balance studies of mountain glaciers yield
widely varying results depending on the exposure
of the glacier to local effects. The general picture
is that G increases less rapidly than linear with
height. However, it is very questionable whether
measurements on today’s valley glaciers are repre-
sentative for the conditions that surrounded the
large Northern Hemisphere ice sheets.

Experiments with an ice/snow melt model
carried out by the author (Oerlemans and Bienfait,
1980) have shown that the dependence of ice melt
on surface elevation can be fitted with a parabolic
curve quite well. It also appeared that this height
dependence is conserved if the Milankovitch
insolation variations are imposed. Altogether, the
parabolic profile of G seems to be most satisfying
at present, but the coefficients remain subject to
ambiguity.

The height of the equilibrium line is expressed
as a linear function of x (the x-axis pointing
southward again) according to

E(x)=6(x— P). (10)

The value of @ is positive, so E decreases with
latitude. P indicates where the equilibrium line
intersects sea level. It is called the “climate point”
because in a later stage it will serve as an indicator
for the prevailing climatic conditions. The slope
of the equilibrium line (@) is in the 0.5*107% to
1073 range. Data presented by Charlesworth
(1957) suggest a value of 0.5%1073, whereas
Weertman (1976) uses a value of 1073 the
experiments with the ice/snow melt model
mentioned above suggest a value close to the first
one.

The parameterization of the mass balance given
by eqs. (9) and (10) is of course schematic. It
should be emphasized that it is no fit to some field
experiment but meant to reflect the overall picture.
It should be sufficiently accurate to investigate the
principal effect of the height-mass balance feed-
back. At this point it should be noted that a similar
type of mass-balance representation was used by
Andrews and Mahaffy (1976) in a study of the
growth of the Laurentide Ice Sheet.

Fig. 5 shows an example of the distribution of G.
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L{1000 km)

INTEGRATION TIME (10% yr)

Fig. 6. Evolution of the model ice sheet for two values
of the slope of the equilibrium line §. Initial conditions:
H(x)=0.

The transition from polar sea to continent, which
is somewhere between 70 and 75° N, is located at
x = 0. The example shown reflects conditions very
close to present: the climate point is located well
in the polar sea.

With this parameterization of the mass balance,
runs were carried out with various values for ¢
and P. With a flat bedrock and initial condition
H(x) = 0, an ice sheet develops only if P > 0,
i.e. if the climate point is located on the continent.
The steady-state size and the time necessary to
reach it are very sensitive to 8, the slope of the
equilibrium line. Fig. 6 illustrates this point. It
shows the ice-sheet growth for 8 = 0.7¢10~* and
6 = 2.1*107, with P = 350 km and ¥ = 1000 km
in both cases. Obviously, a smaller slope increases
both the time scale and the equilibrium ice-sheet
size. Since a smaller slope of the equilibrium line
implicates a stronger feedback between southward
ice-sheet growth and mass balance, this result is not
unexpected. In the extreme case of an equilibrium
line running parallel to the surface (8 = 0), the
ice sheet will grow to infinity once it has reached a
certain critical mean height.

- The height-mass balance feedback creates a

strong nonlinearity in the model. It may therefore
be possible that, for given values of P and 6, more
than one equilibrium solution exists. This point has
already been noted by Bodvarsson (1955) and
Weertman (1961). In order to see whether the
present model possesses regions with multiple
solutions, many runs were carried out with different
initial conditions. The emerging solution diagram
(with respect to P) is shown in Fig. 7. The slope
of the equilibrium line was fixed at 0.84%1073
The value of P (horizontal axis) may be thought
to reflect the climatic conditions. Apparently, the

L {1000 km)
A

3.._

P {100 km)

Fig. 7. Solution diagram with respect to P for Northern
Hemisphere ice sheets. Solid lines and dashed line
indicate stable and unstable equilibrium solutions,
respectively. In the shaded region the ice sheet behaves
almost intransitively.

ice sheet shows hysteresis. For very warm con-
ditions (P < —750 km) no ice sheet is possible
(L = 0). For moderate conditions (-750 < P <0
km), three solutions exist: L = 0, L = small and
L = large; the solution with a small ice sheet is
unstable (dashed line). Finally, for cold (P > 0 km)
conditions only a large sheet is possible. A similar
behaviour was found by Weertman (1976) for a
perfectly plastic ice sheet with a step function of G,
l.e. regions of constant accumulation and ablation
separated by the equilibrium line.

The shaded region in Fig. 7 indicates a region
where the model ice-sheet behaves almost in-
transitive. That is, within this region the
convergence to the equilibrium solution is
extremely slow. This is due to the fact that the
average mass balance remains practically zero if
the sheet is made somewhat larger or smaller.

Some observational evidence exists that the
cryosphere has two states of preference. From a
Carribean deep-sea core, Imbrie et al. (1974) found
that the frequency distribution of sea-surface
temperature (over the last 450,000 yrs) shows a
uni-modal shape while that of global ice-volume
shows a bi-modal shape. This is in accordance
with Fig. 7. If climatic variations are such that
P runs back and forth along the x-axis, a bi-modal
distribution of the ice volume should be expected
(changes in global ice volume are due mainly to
changes in the American and Eurasian ice sheets
(e.g. Flint, 1971). The observational data thus seem
to support the model results displayed in Fig. 7.

Tellus 33 (1981), 1
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Fig. 8. Mass balance of the southern half of a perfectly
plastic ice sheet, for three values of the slope of the
equilibrium line.

In order to get a better understanding of how
the hysteresis is established, and to see how its
shape depends on some model parameters, an
analytical derivation will be discussed in the next
section.

5. Comparison to perfect-plasticity theory

The shape of a perfectly plastic ice sheet is fully
determined by its size L according to (e.g.
Weertman. 1976)

H(x)=oc4L — lx —3L1}1V2, (1

The constant ¢ depends on the yield stress of ice
and determines the height to width ratio, in
analogy to the constant 4 in the numerical model.
Equation (11) follows directly from the requirement
that the shear stress at the bottom equals the yield
stress everywhere. In the equilibrium case the
flux of ice mass through the centre of the sheet is
zero, implying that the ice-sheet size can be found
by making up the mass balance over the southern
half.

The mass balance is now taken linear with
respect to height, so

G=a(x—P)+ fh (12)

The slope of the equilibrium line is given by
6 = —a/p. Since H(x) is uniquely related to L,
the average mass balance over the southern half,
denoted by G*, can also be uniquely related to L.
Equilibrium solutions are then found by the
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ICE-SHEET SIZE (103 km)
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Fig. 9. Solution diagram for Northern Hemisphere ice
sheets according to perfect-plasticity theory {compare
Fig. 7).

requirement G* = 0; they are stable if G*/0L < 0
and unstable if 8G*/8L > 0.

Substitution of H{(x) from (11) for A in (12)
and integration from x = 1L to x = L yields

G*(L)=B,+B,LY* + B, L, (13)

where

B =—aP
B,=0.47 fo
B,=075¢a

Equation (13) shows that variations in P shift the
G*(L)-curve up and down without affecting its
shape. Therefore the case P = 0 is considered
first. Fig. 8 shows how G* depends on L for
various values of #(f = 107> y~'and ¢ = 2.5 m"?).
The equilibrium solutions are given by the inter-
sections of the G*(L)-curve with G* = 0. As was
found earlier with the numerical model, the ice-
sheet size increases strongly if the slope of the
equilibrium line () decreases.

Since a < 0, a positive value of P implies that
the G*(L)-curve shifts upward and that the
equilibrium ice-sheet size increases. On the other
hand, if 7 < O two equilibrium solutions appear:
a small and a large sheet. The small sheet is
unstable because 6G*/8L > 0 for this state. For
large negative values of P, i.e. if the climate point is
located far in the polar sea, the G*(L)-curve lies
completely below G* = 0. In this case no ice sheet
is possible.
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With the observation that L = 0 is always a
stable solution if P < 0, a solution diagram can now
be constructed. The equilibrium solutions are easily
found by setting G* = 0 in (13) and squaring.
Fig. 9 shows the result for three values of 6. The
solution diagram is essentially the same as that
shown in Fig. 7 (where 6 = 0.84%107* was used),
although the equilibrium size depends much
stronger on P. This is due to both differences in
the shape of the ice sheet and differences in the
formulation of G. Altogether, however, the
characteristics of the numerical and analytical
models are rather similar.

The position of the critical point P, below
which no ice sheet is possible, is found by equating
the determinant of (13) to zero. This yields

P..=—0.74 g* f*a (14)
So for P < P, the only solution is L = 0. Note
that P, is always negative. Equation (14)

shows directly that the hysteresis becomes more
pronounced if the slope of the equilibrium line
(0 = —a/p) is smaller.

6. The effects of mountains

The analysis of the foregoing sections shows that
the response of continental ice sheets to climatic
variations may be strongly nonlinear. An important
question now is how the presence of mountain
ranges can modify the picture.

The hysteresis displayed in Figs. 7 and 9 would
not appear if (i) G would not depend on surface
elevation, and (ii) if the continent was not bounded
by the polar sea. It may be expected that other
boundary conditions, like mountain ranges, can
exert a pronounced influence on the solution
diagram.

In order to isolate the effect of mountains, some
numerical experiments were carried out with 8 = 0,
i.e. with the lines of equal mass balance parallel
to the geoid. Consequently, only the height of the
equilibrium line (F) is the relevant climatic
parameter. Mountain ranges were introduced by
prescribing a surface elevation of parabolic shape
as shown in the upper right of Fig. 10. The land
on both sides of the mountain extended to infinity,
while the lateral scale ¥ was taken to be 1000 km.

Before discussing the solution diagram, a few
considerations may be useful. First, one should
realize that if no mountains were present, the

; B

i {

] | T T md |
e |
A

{
N L —— |
E 500 km

AREA OF CROSS-SECTION (108 m?)

£ (100 m)

Fig. 10. Solution diagram for ice sheets over various
kinds of mountain ranges. In each case the mountain
height is 2000 m, but horizontal scales are different as
indicated.

case @ = 0 can never give a steady-state ice
sheet—there will be no ice sheet at all or it will
grow to infinity. If mountains are introduced,
however, stable ice sheets are possible because the
surface height—-mass balance feedback can be
cancelled by larger ice-mass discharge due to the
mountain slopes. So if initially no ice sheet exists
and then the equilibrium line comes down (F
decreases) and reaches the mountain top, a small
cap may form and reach a steady state. If E is
dropped further, a critical point will be reached
where the ice sheet starts to grow to infinity. If the
equilibrium line is raised again, a small ice cap
may remain even if £ is slightly higher than the
mountain top—in this case the thickness of the cap
keeps a part of its surface in the accumulation
zone.

Fig. 10 shows the solution diagram, with respect
to E, for three types of mountains. In each case
the mountain height is 2000 m, but the horizontal
scales are different. The ice-sheet size is expressed
in terms of the cross-section area in the x-direction.

For a small mountain a stable ice cap may exist
if 1050 < £ < 2150 m. If £ > 2150 no cap is
possible and if £ < 1050 m it grows to infinity.
For larger mountains, i.e. for smaller slopes. the
critical points shift towards higher values of E.
Of course the precise position of the critical points

Tellus 33 (1981), 1
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depends on the ice-low parameters 4 and m, but
some sample calculations showed that this
dependence is rather weak. The general conclusion
should therefore be that mountain ranges introduce
another nonlinearity in the cryosphere. This makes
the total picture rather complicated. As an
illustration, consider the case of Scandinavia.

At present, part of Scandinavia consists of high
mountain regions up to 2000 m. In accordance
with the preceding section, this should give rise
to hysteresis (Fig. 10). On the other hand, since
the Scandinavian continent is bounded by the
polar sea, the type of hysteresis discussed in
Sections 4 and 5 will also occur. As a consequence,
for a certain range of climatic conditions the
Scandinavian sheet will have three stable equi-
librium solutions. Fig. 11 illustrates this rather
complicated behaviour. Experiments with a two-
dimensional model of the Scandinavian ice sheet
(Oerlemans, 1980a) indicate that this type of
behaviour indeed occurs.

7. Isostatic adjustment of the bedrock

So far it has been assumed that the bedrock
does not react to the load of ice mass. In reality
there is of course the tendency to restore isostatic
equilibrium. In the simplest form this may be
formulated by

oh

— = —w(H* + 2h) (15)
ot

where A is the height of the bedrock with respect
to its equilibrium value (the case of no ice sheet).

ICE-SHEET SIZE
/

south

POSITION OF CLIMATE POINT
Fig. 11. Schematic solution diagram for the Scandi-
navian ice sheet, combining the effects of bedrock
elevation and presence of coastlines.
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The time scale for adjustment is 1/2w. In the
steady state h = iH*, which corresponds to an
isostatic balance if the rock density is three times
that of ice [this ratio was for example used by
Weertman (1976), who included instantaneous
isostatic adjustment in a perfectly plastic ice sheet
model].

Equation (15) is a very crude representation of
what happens in the earth’s upper mantle,
because the adjustment is assumed to be local.
A more sophisticated treatment of bedrock
sinking has recently been described by Ghil and
Le Treut (1980), but it has not yet been
implemented in the present ice sheet model.

For the experiment to be discussed now,
eq. (15) serves the purpose: the bedrock sinks or
rises to restore the isostatic balance, and this
mechanism has an e-folding time scale of 7= 1/2w.

Consider the situation of Fig. 5 again. To mimic
a situation of temporary low insolation in the
Northern Hemisphere high latitudes, in the model
P is moved southward, is kept on the continent
for some time and is then moved northward again
into the polar sea. The upper curve of Fig. 12
shows this prescribed movement of the climate
point. The subsequent curves show how the ice
sheet reacts to this forcing for different values of .
Values of the model parameters are: m = 2.5,
A = 3 m™> yr', 8 = 0.5%107%; initially
h(x)=0.

In the case of no bedrock adjustment (7 = w0)
the ice sheet grows to a steady state in about
40,000 years. Apparently, if the climate point
shifts into the polar sea again, the height of the
ice sheet is already sufficient to keep the mass
balance of the sheet positive. If isostatic adjust-
ment with a long time scale is included (r = 30,000
years), the picture changes drastically. The ice
sheet grows during about 50,000 years, but then
the bedrock has sunk so much that a large part
of the ice surface comes below the equilibrium
line which causes the ice sheet to decay rapidly.
For smaller time scales for bedrock sinking, this
feature occurs earlier.

The “spontaneous” decay of a large ice sheet
due to bedrock sinking is of great importance in
explaining the Pleistocene glacial cycles. It can
provide an explanation for the sawtooth shape of
the dominant 100,000 years cycle in the oxygen
isotope record (Hays et al., 1976). For a further
discussion on this point, see Qerlemans (1980b).
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Fig. 12. Model experiments on the effect of bedrock
sinking. The upper curve shows the prescribed movement
of the climate point P (compare Fig. 5). The other
curves shows the corresponding evolution of a Northern
Hemisphere ice sheet, for different values of the
e-folding time scale for isostatic adjustment ().

8. Discussion

The experiments discussed in this paper have
shown that an ice sheet with very simple dynamics
can react strongly nonlinear to changing climatic
conditions. Although the model for ice flow used
does not contain many internal degrees of freedom,
the boundary conditions and the height of depen-
‘dence G create a rather complicated behaviour of

the {model) ice sheet. This behaviour may be
drastically changed again if bedrock sinking is
included.

As stated earlier, the goal of this article is
to show some basic characteristics of large ice
sheets which are relevant from the viewpoint of
dynamic climatology. The material presented here
I1s somewhat theoretical, real case studies have not
been carried out. However, the results give insight
into the effects of geometry and orography, and
this can be applied to real situations. A few
inferences are made below. ’

The Antarctic and Greenland Ice Sheets have
one point in common: they are both bounded by
ocean. According to the model results displayed
in Fig. 3, those sheets will be comparatively
insensitive to variations in the mass balance. This
applies up to a certain critical point, however.
If during some extremely intense climatic warming
the height of the equilibrium line increases so
much that the total mass balance of the sheet
becomes negative, the ice sheet will of course
disappear. If this would happen for example with
the Greenland Ice Sheet, it would probably not be
built up again if conditions would return to
to those of the present climate. It is obvious that
a solution diagram for ocean-bounded ice sheets
must also show hysteresis.

The Northern Hemisphere continental ice sheets
that are present during glacials (the Laurentide
and Eurasian Ice Sheets) are of a very different
nature. Since those sheets are not bounded by
ocean in the south, the slope of the equilibrium
line becomes dominating. In contrast to the
Antarctic and Greenland Ice Sheets, the Laurentide
and Eurasian sheets are much more sensitive to
variations in climatic conditions. Geological
evidence for this is abundant (e.g. Flint, 1971).

Finally, the results of this study point to the
extreme importance of bedrock sinking in the
evolution of the Northern Hemisphere ice sheets.
As was already mentioned by Weertman (1961),
this may be the clue in explaining the quaternary
glacial cycles as they appear in the oxygen isotope
record.
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HEKOTOPBIE DKCITEPUMEHTBI C BEPTUKAJLHO MPOUHTEIPUPOBAHHON MOIEJIBIO
JEJHUKOBOI'O IIUTA

TIpeanaraercs mpocras 1} MepHas MoAeNb KOHTUHE-
HTa/JbHOTO JIeAHHKOBOTO IUHTAa. Mogenb OCHO-
BhIBaeTCA Ha npeasioxeddd Has (1959) Beipaxath
OCpeHEHHYIO MO BEPTHKAJU T'OPU3OHTAMBHYIO CKO-
poCTb nbJa Kak u = Bty rme Tt,—KacaTelbHOe
HalpsAXeHHe Y OCHOBAaHHA JeJHHKa, a B U m—
nocTosiHHbie. CyUIECTBEHHO, 4YTO pacnpoCTpPaHEHHE
nbAa YIPaBJIseTCAd HEMUHEHHBIM YypaBHEHHeM Oud-
dy3un s ToawuHb! nbpaa. Jduddy3uonHas cmoco-
OHOCTb BO3PACTAET KaK ¢ POCTOM TOJIILMHBL TbAA,
Tak M HAKJIOHA €ro MOBepxXxHOCTH. B onxom Hampa-
BlleHUH (y) MPEINUCBIBAETCA THIIMYHBIA MacluTao,
KOTOpBIK DPETYTUPYET FOPU3OHTAJIBHBIK CTOK MAacChl
JibAa, TOT[d KaK B APYTOM HAanpaBaeHUH (x) 3BOTIONUS
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JIEAHUKOBOT O LIKTA NOAPOOHO BLIYHCIIAETCS HA CETKE
¢ waroMm B 70 kM.

BBl BBINONHEH PAA IKCIEPUMEHTOB C Pa3THYHBIMHE
TPaHUYHBIMH YCTOBHAMHM U ITapamMeTpH3aLUAMH [ OO0~
BOro 6ananca maccol. OKa3biBaeTcsa, YTO O pAHHYEH-
HOCTb KOHTMHEHTOB M MNpodHIM NOACTH IAIOLIEH
[OBEPXHOCTH CO3JAFOT CH/IBHO HETHMHEWHYIO PEaKIHIO
JIEIHUKOBBLIX 1LMHTOB Ha K/IIHMATHYECKHE WIMEHEHH,
Tlosenenue eOAHHKOBBIX IUMTOB B CEBEPHOM MO-
SIyIIApUH, PACCYHUTAHHOE ¢ MOMOIUBIO YHCIEHHON
MOIENM, CpaBHUBAETCA C IMOBeAEHMEM, [IpeacKa-
3bIBAEMBIM  MOJENBIO HACASbHONA I[IJIACTUYHOCTH.
HaiigeHo, 4YTO 3TH MOAeNH [AKOT Ka4eCTBEHHO
OJIHHAKOBBIE PE3Y/ILTATHI.



