# Ice Sheets in the Community Climate System Model

William Lipscomb

Los Alamos National Laboratory

### The Community Climate System Model

- A comprehensive climate model to study the Earth's climate.
- Widely used to investigate the mechanisms of seasonal, interannual and longer-term variability.
- Explore the history of Earth's climate.
- Estimate the future of the environment for policy formulation.



http://www.ccsm.ucar.edu

NCAR/

Countesy of Peter/Gent

# Abrupt transitions in Arctic Sea Ice

September ice extent timeseries



Although A1B greenhouse gas forcing is gradually increasing, abrupt transitions in sea ice do occur in most simulations.

## Arctic Sea Ice Concentration



September is mostly ice free by 2050 for A1B scenario

### CCSM design

Spectral or finite-volume atmosphere, ~1° or 2°

- POP/CICE ocean and sea ice models, 1° displaced pole
- Community Land Model (CLM) on land grid with multiple surface types



### Ice sheets and the IPCC

- Global mean sea level is rising by ~3 mm/ year, with a significant and growing contribution from the Greenland and Antarctic ice sheets (as well as mountain glaciers and small ice caps).
- IPCC AR4: Sea level will rise by ~18-59 cm in the 21<sup>st</sup> century, excluding "rapid dynamical changes in ice flow."
- Ice sheet models used for AR4 were inadequate for sea level assessment (shallow-ice dynamics, crude physics, coarse resolution, not coupled to GCMs).
- There is considerable pressure for ice sheet modelers to do better for AR5.



•200 million people in regions <1m

•Raising California Central Valley levees by 0.15 m, will cost over \$1 billion



### CCSM Working Groups

#### From the CCSM web page:

- The CCSM Working Groups are relatively small teams of scientists that work on individual component models or specific coupling strategies.
- Each team takes responsibility for developing and continually improving its component of the CCSM.
- Each team will decide their own development priorities and work schedules, consistent with the overall goals of CCSM, and subject to oversight by the CCSM Scientific Steering Committee (SSC).

#### Current working groups:

- Atmosphere model
- Land Model
- Ocean Model
- Polar Climate
- Biogeochemistry
- Chemistry-Climate
- Climate Variability
- Climate Change
- Paleoclimate
- Software Engineering
- Whole Atmosphere
- Land Ice

http://www.ccsm.ucar.edu/working\_groups/



### CCSM Land Ice Working Group

#### Primary goals:

- To couple a well validated, fully dynamical ice sheet model to the CCSM
- To determine the likely range of decade-to-century-scale sea-level rise associated with the loss of land ice

#### Organization:

- Co-chairs Jesse Johnson (U. Montana) and Bill Lipscomb (LANL), liaison Steve Price (LANL)
- Two meetings per year: Summer (Breckenridge) and winter (Boulder in 2010)
- Web site and email list: http://www.ccsm.ucar.edu/ working\_groups/Land+Ice/

### Key questions for the Land Ice Working Group

#### Scientific

- How fast will sea level rise during the next one to two centuries as a result of mass loss from ice sheets and glaciers?
- What model improvements are needed to predict changes in ice sheets?
  - Better ice-flow dynamics, improved physics, finer grid resolution, ice-ocean coupling, etc.
- What coupled climate experiments are needed?
  How do we make optimal use of CCSM?

### Key questions for the Land Ice Working Group

### Management

- Given limited resources, how do we provide policymakers with useful information on short time scales (e.g., IPCC AR5)?
  - How do we interact with others in the CCSM community?
  - How should we collaborate with other ice sheet modeling groups?
  - How do we coordinate model development in a growing community?
  - How do we decide which model versions to release and which experiments to run?



- 2012: Analysis and report-writing
- 2013: IPCC AR5 scheduled for release

- 2011: Papers submitted and accepted
- 2012: Analysis and report-writing
- 2013: IPCC AR5 scheduled for release

- 2010: Climate change runs
- 2011: Papers submitted and accepted
- 2012: Analysis and report-writing
- 2013: IPCC AR5 scheduled for release

- Time is of the essence. We need to start now.
  - End of 2009: Ice sheet model development largely complete
  - 2010: Climate change runs
  - 2011: Papers submitted and accepted
  - 2012: Analysis and report-writing
  - 2013: IPCC AR5 scheduled for release

# Glimmer-CISM development path

#### Start with Glimmer

- Develop a more modular dynamical core
- Extend the dynamical core to include higher-order stresses and other numerical improvements
- Parallelize the model, using POP/CICE infrastructure as appropriate
- Add physics parameterizations (e.g., basal hydrology and iceberg calving)
- Develop useful data products and tools
- Conduct experiments (e.g., IPCC AR5)



# Coupling ice sheet models and GCMs

- Until recently, the major GCMs had static ice sheets. AR4 ice sheet models were run in standalone mode.
- Motivation for coupled ice sheet-climate models:
  - Interactive ice sheets are needed for paleoclimate studies.
  - Ice sheet changes could alter other parts of the climate system, such as the thermohaline circulation.
  - As ice sheets melt and retreat, the local climate can change, modifying the rate of retreat.



Laurentide volume change Pritchard et al. (2008)



### Coupled climate-ice sheet modeling

- Ridley et al. (2005) coupled HadCM3 to a Greenland ice sheet model and ran for 3000 ice sheet years with 4 x CO<sub>2</sub>.
  After 3000 years, most of the Greenland ice sheet melted. Sea level rise ~7 m, with max rate ~50 cm/century early in simulation.
- Shallow-ice approximation, positive-degree-day scheme, anomaly temperature forcing with prescribed mean.



### Coupled climate-ice sheet modeling

- Vizcaino (2006) coupled Max Planck Institute earth system models to a model of the Greenland and Antarctic ice sheets (80 km, SIA)
  - ESM1: T21, PDD
  - ESM2: T31, surface energy-balance, no flux corrections

Relatively slow melt rates with modest freshwater fluxes



Difference in elevation (m), model control v. ETOPO5

### Surface mass balance

- Ablation increases rapidly with temperature near the melting point and is critical to the mass balance (and possibly the dynamics).
- Positive-degree-day (PDD) schemes are not ideal for climate prediction.
   (Empirical PDD factors can change with the climate.)
- Better to use a physically based surface-energybalance scheme. Melting is computed as a function of surface radiative and turbulent fluxes.



### Surface mass balance in CCSM

- Traditional approach: Pass surface radiation and temperature fields to the ice sheet model and compute the mass balance on the fine (~10 km) ice sheet grid.
- We are computing the mass balance in the land model (CLM) on a coarse (~100 km) grid in ~10 elevation classes. Ice thickness changes are then interpolated to the ice sheet grid.
  - Energetic consistency
  - Cost savings (~1/10 as many columns)
  - Avoid code duplication
  - Surface albedo changes feed back on the atmosphere



### Surface mass balance in CLM

- The land model, CLM, has multiple landunits (vegetated, wetland, lake, urban, glacier) in each gridcell and allows multiple columns in each landunit.
- I have introduced a new landunit type, glacier\_mec, with multiple(~10) elevation classes in each gridcell. Each elevation column has its own surface fluxes and vertical temperature/snow profile.
- The surface temperature and specific humidity are downscaled to each column based on an assumed lapse rate. (Might try something fancier later.)
- CLM has fairly sophisticated surface energy-balance and snow models, which are used with modest modifications.

#### Glacier surface mass balance in CCSM

#### Standard CLM

 Snow in excess of 1 m LWE runs off instantly to the ocean
 Melted ice remains in place until refrozen.

#### Modified CLM

Snow in excess of 1 m LWE is converted to new ice.

- Melted ice runs off.
- The net ice growth/ melt rate in each elevation class is passed to GLINT and downscaled to Glimmer.



#### Two modes of coupling

#### One-way coupling:

- The land model (CLM) passes the surface mass balance to the ice sheet model, but land topography is fixed.
- Ice sheets evolve dynamically. Accuracy of forcing fields is not much affected if changes in elevation and extent are small.

#### Two-way coupling:

The CLM surface topography changes as the ice sheet evolves.

The ice sheet model supplies a freshwater flux that is routed to the ocean, but the ocean topography does not evolve (yet).

### CCSM ice-sheet model status

- The Glimmer ice sheet model has been coupled to CCSM 4.0 (Greenland for now; Antarctica and Laurentide later).
- A surface-mass-balance scheme with multiple elevation classes for land ice has been added to CLM.
- Fields are exchanged between CLM and GLIMMER via the coupler. The surface mass balance is downscaled from the land grid to the finer ice sheet grid.



# An ice sheet model in CCSM

#### Work remaining:

- Modify the land topography on the fly.
- Develop a parallel code using POP/ CICE infrastructure.

#### Climate change experiments:

- Begin with Greenland. IPCC climate-change experiments, Eemian interglacial.
- Add Antarctica when a better ice sheet model is available.



#### Proposed CCSM4 experiments with GLIMMER (0.9° x 1.25° atm, 1° ocn)

#### 1. Control

- Pre-industrial control, 230+ yrs
- Pre-industrial control, 0.5°, ~100 yrs
- 20<sup>th</sup> century (1870-2005)
- 2. IPCC AR5 scenarios
- RCP4.5, 100-300 yrs
- RCP8.5, 100-300 yrs

- 3. Long-term (asynchronous)
  - Continuation of RCP4.5, 200 yrs (AOGCM), 2000 yrs (ice sheet)
  - Branch runs of RCP4.5 and/or RCP8.5 (study irreversibility)
- Eemian interglacial: 1000 yr AOGCM w/ 10x accelerated Milankovich; 10,000 yr ice sheet

Miren Vizcaino (UC Berkeley) et al. will analyze these runs.

# Summary

- The new CCSM ice sheet model (with Glimmer dynamics and a new SMB scheme in CLM) is ready for CCSM4 climate applications.
- Glimmer is of limited value for climate change simulations because it is is missing critical physical processes.
- We aim to have a new and improved Glimmer-CISM implemented in CCSM by 2010, in time for IPCC AR5.
- CCSM will be one of a small number of GCMs making significant contributions to ice-sheet modeling and prediction during the next couple of years.

# Preview of coming attractions

Ice-ocean coupling (DOE IMPACTS project)

- Couple Glimmer-CISM to the HYPOP ocean model, which has a hybrid vertical coordinate
- Model ocean circulation beneath dynamic ice shelves





Amundsen sea temperature cross section from POP ocean model

# Preview of coming attractions

Computational advances (DOE ASCR projects)

- Scalable solvers (e.g., Newton-Krylov)
- Nested and adaptive meshes



