Some Influences on Future
Modeling

Ken Jezek

Emergence of new observations — 3 dimensional Imaging (GISMO)
Incorporation of more physics (acceleration)

Better controls on model believability and predictability (Bayes)



Basal Ice Imaging Radar

Create 3-dimensional image maps of Greenland and Antarctica as they
would appear were the ice sheets stripped away. Use these first ever
maps to constrain estimates of present ice sheet mass balance. Use
the maps to feed numerical models that describe the past and predict
the future behavior of the ice sheets and their contribution to global sea

level rise.




Tomography formulation
for range and azimuth
compressed image
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X;: received signal of sensor i;  Kk: 4n/A,;
_ . d;: distance of sensor i; 0;: arrival angle;
X = A(?) S+ 1 p: number of sensors; s;: signal;

g: number of signals; n;: NOIse;



Multi-frequency Images of Ice Sheet Surface

July 20, 2008, 17 km wide, 150 MHz radar tomography GISMO image (geocoded) of the upper surface of the
ice sheet across Jacobshavn Glacier (right). 2000 Radarsat C-band image (center). Inset map from Radarsat
mosaic (left). July 15, 2008, MERIS optical image (lower left). GISMO image located at about 69.3N, 48.3 W



GISMO Lakes Result

Upper Left: Radarsat winter scene.

Upper Right: 150 MHz GISMO
surface image

Lower left: Radarsat summer scene

Lower Right: GISMO image on top

of Gismo topography (preliminary
result in need of a tilt correction)




GISMO Basal Imagery

5x20 Km 3-d image of the
base of the ice sheet. Scene is
an orthorectified mosaic
located just south of the main
Jacobshavn Drainage Channel
(to be corrected for cross track
bias between mosaic swaths)




BIIR Drivers on Future Models

To what extent does bed topography (valleys and roughness) control the present day locations of ice stream
networks and do any such subglacial valleys anchor the ice streams in place, providing resistance to any
flips in routing to the margin?
—  Compare ice stream networks to BIIR subglacial topography, in trunk zones and upstream of onset zones. Compare
known fluctuations of ice stream width and shutdowns to underlying topography.
Does ice stream location and vigor depend on the ability of the upstream bed topography to capture and
route meltwater?
—  Given coincident BIIR data on bed and ice surfaces, compute hydropotential surfaces for basal meltwater to see where
it should flow and the extent to which it feeds ice stream lubrication.
Is there a history of ice stream network evolution recorded in the bed geomorphology, and how stable are
the existing flow paths?
— Use BIIR data to investigate whether today’s ice stream configuration is just one of a possible set of network
configurations. Learn about longer term variability in ice streams than current observations permit.
Subglacial bedforms (drumlins etc) are the physical manifestation of processes operating at the ice-bed
interface and which facilitate fast ice flow. Are the existing numerical models on the formation of these
bedforms correct?
—  Current work uses predictions from such models tested against the scale and shape properties of now-exposed

landforms, but in the absence of the glaciological parameters to feed the model. Having BIIR data on bedforming in
action along with ice thickness and slope data provide the first chance to make better constrained tests of these models.

How well matched is basal and ice surface roughness?

—  BIIR will provide the first 3-d information to test transfer function models that describe the between surface and basal
topography. BIIR information on the 3-d slope of internal layers can be incorporated into the models.



Accelerating Ice Flow Fields

Ice flow models usually
assume a quasi-
equilibrium ice sheet.
Gradients in velocity are
used to compute
stresses




Equations of Motion

 Instead of making usual assumption allow

Du =
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Given the detailed spatial information about the velocity
field, we will make some estimates of the left side of the
equations

ot 0 . .
Now — poorly known. —— requires assumptions

ot Oz
about depth dependence. So here will simply assume
depth independence and evaluate



Analysis Method
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Lambert Glacier
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Lambert Glacier

* Log Scales




Lambert Glacier
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Velocity Field

T
s
A




Amery Ice Shelf
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Accelerations — what next

e Accelerations are small, but measurable. How do
we model these small observables?

* Acceleration velocity fields are organized on larger
scale but edge effects complicate small scale
Investigations

* Next steps are to investigate depth integra ou
force field, the possibility of extracting ot



Models, Predictions, Confidence

* Model uncertainties can be computed using
judicious application of standard error
propagation methods and useful shortcuts.

e Bayes Theorum provides a more direct and
robust approach for estimating the probability
density function of a parameter — but the
apparatus can be cumbersome.
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The balance velocity (V) is estimated as
VA
' H-W -(sin @] +|cosd))- r

where the ratio (r) between balance velocity and the ice surface balance velocity takes into account the
fact that the velocity decreases from the surface towards the bed.

Errors are estiamted using the total derivative short cut, which assumes normally distributed variables
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Model and Error Estimate
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Comments on Error Propagation

e The total derivative short cut is useful if the
variables are normally distributed

* This allows for an expansion about the local
maximum of the PDF resulting in typical least
squares type estimates.

e A curious question: The angle Theta is a
normally distributed random variable with
mean Theta 0. Compute the PDF(y) given

y= cos(theta)



Bayesian Inference

Wikle and Berliner, 2007:

DA is an approach for fusing data (observations) with prior knowledge (e.g., mathematical
representations of physical laws; model output) to obtain an estimate of the distribution of
the true state of a process. From this perspective, one needs the following components to
perform DA: a statistical model for observations (i.e., a data or measurement model), and an
a priori statistical model for the state process (i.e., a state or process model).

Gelman et al. [20, p. 2] define Bayesian inference as

“. .. the process of fitting a probability model to a set of data and summarizing the result by a
probability distribution on the parameters of the model and on unobserved quantities such as
predictions for new observations”.

P(RIH,1)P(H)
constant

P(H|R,I)=



Bayesian Hierarchical Modeling (BHM)

e BHM: sequence of conditional probability models
e Quintessential BHM: Data Y; Process of interest X

1. Data Model Y | X, 0]
2. Process Model [ X |0]
3. Parameter Model [ 6 |

e Bayes’ Theorem: [ X, 6 | Y |

Compare

e “Statistics”: | Y | 0 | (& | 6 ] for Bayesians)
e “Physics”: [ X [6(Y) ]



Glacial Dynamics Berliner et al. 2008 J. Glaciol.

e Flow: gravity moderated by drag (base and sides) & ....

e Simple flow models: flow from geometry.

Data

Program for Arctic Climate Regional Assessments (PARCA)
Radarsat Antarctic Mapping Project (RAMP)

e S: surface topography (Laser altimetry)
e B: basal topography (Radar altimetry)
e U: velocity data (Interferometry)
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Modelling

e Processes: surface; s: base; H: thickness; u: velocity
e Physical Model
— Basal Stress 7 = —pgHs' + stuff

— Velocities u=up, + G, H™
where u, = k7P (pgH)™
e Our Model

— Basal Stress ¥ = —pgHF +n
where 717 is a “corrector process”, H.§ are unknown
— Velocities u = i, + BH7 + e
where u, = k7P (pgH)"9 or an unknown constant,
3 is unknown, e is a noise process.

— Smoothing
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Possible applications of Bayes

Inference about basal conditions
lce Sheet Transfer Functions

Refine phase estimates in ice sounding radar
interferometry and tomography

Discrimination between surface melt/surface
freeze events



A simple example (similar to the
“Lighthouse Example”)

e Bayesian estimate of Aircraft Elevation

* An altimeter is mounted along the vertical axis of an aircraft. The aircraft
rolls in a statistical fashion. Roll is not measured. Range to the surface is
measured. Refine the estimate of aircraft height H by updating the prior
PDF with range data.




The model is

H = Rcosé

@ is a random variable with probability distribution P(&8)
From change of variables,the distribution of R is

PGO=F%9)%§

i=cos¢9
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H
Rz(l_Rz)l/z
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If &isnormally distributed with mean g, and standard deviation o

1 (0-6)°
P(0)= ——exp——2_
(0)=7_—exp 52
H
0 = acos(—
()
H
H (acos( )~ 6p)°
P(R|H)= 5 exp— 5
R2(1_H)1/2 2no 20
R2

From Bayes Theorum

P(R|H,)P(H)

P(H|R,I)=
( | ) constant

here | includes information such as the mean pointing angle and the fact that H must be equal to
or less than R.

Assume H is an imprecisely known parameter. Let P(H)be a uniform PDF extending from H, to H;
sothat P(H)=1/b



Assume R is measured many times but over a short enough period such that the surface can be taken as
flat. The ensemble is {R;, R,,.....R,}. Then

o [ Ry= ] ZRel HDPH)
1

constant
So for the case of the uniform distribution on angle
H
H 2
) R2(1— i )L/2
P(H|R,1)=
(H] ) l:[ newconstant

For the case of the Gaussian PDF on angle.

(@cos( - ) - 0p)’

H
exp—
2 HZ? .y, 270 20°
n R (1_F\’2)
P(H R, I)=
(HIRD) II[ newconstant

Here, the constants in the denominator are determined by ensuring that the integral of P(H|R,l) is unity.



Evolution of Posterior PDF
(Uniform distribution)
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updated phiprod histogram
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updated phiprod histogram
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