
A new three-dimensional higher-order

thermomechanical ice sheet model:

Basic sensitivity, ice stream development, and

ice flow across subglacial lakes

Frank Pattyn
Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium

Received 29 November 2002; revised 27 March 2003; accepted 17 April 2003; published 16 August 2003.

[1] A new three-dimensional thermomechanically coupled ice sheet model is developed.
Contrary to the majority of three-dimensional ice sheet models (shallow ice
approximation), higher-order stress gradients (longitudinal and transverse) are accounted
for in the force balance equations. The horizontal velocity field is determined from
the force balance equations in their ‘‘derivative form’’ (elliptical equation) using the
method presented by Pattyn [2000, 2002a]. The model is solved on a regular grid in the
horizontal and an irregular grid in the vertical and is numerically stable. Basic experiments
include the European Ice Sheet Modeling Initiative (EISMINT) benchmarks for large-
scale ice sheet models and a comparison with the Saito-Blatter ice sheet model including
higher-order stress gradients [Saito et al., 2003]. Detailed calculations of ice flow over
three-dimensional bedrock perturbations showed the validity of the higher-order solution.
The model is capable of simulating the evolution of an ice stream within the ice sheet
and shows important aspects of observed ice stream features, such as the surface flattening
and the importance of side drag. The simulation of the ice flow over a subglacial lake
results in a flattening of the surface, a local velocity increase over the lake, and a deviation
of the ice flow from the main flow direction, features which are also observed at Lake
Vostok, Antarctica. INDEX TERMS: 1827 Hydrology: Glaciology (1863); 1863 Hydrology: Snow and
ice (1827); 3230 Mathematical Geophysics: Numerical solutions; KEYWORDS: higher-order, ice sheet model,
thermomechanical, ice stream, subglacial lake
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1. Introduction

[2] Most ice sheet models are based on the so-called
‘‘shallow ice approximation’’ (SIA) [Hutter, 1983], which
is valid for an ice mass with a small aspect ratio (H ! L),
where flow is dominated by internal shear deformation: ice
flow is driven by gravity, and vertical shearing is concen-
trated close to the bedrock. Almost no shearing exists
close to the surface. However, the SIA is not valid at all
places in an ice sheet, such as at the ice divide or near the
ice sheet margin [Baral et al., 2001]. Below the ice divide
there is theoretically no shearing present. This would mean
that according to the SIA and for a Glen-type rheology, the
effective stress becomes zero, implying an infinitely large
viscosity so that the free surface is stiff against shearing.
This is not realistic as longitudinal stresses must develop
which enhance the effective stress and lower the viscosity.
This effect goes beyond the lowest order of the shallow ice
approximation [Baral et al., 2001]. A precise knowledge
on the stress field underneath an ice divide is of impor-

tance to derive the vertical velocity, which determines age
versus depth, thinning of the stratigraphic layers by
vertical strain, and vertical advection of heat [Dansgaard
and Johnsen, 1969]. Numerical calculations have shown
that the profiles of velocity versus depth have different
shapes at divides compared to flank positions [Raymond,
1983; Schøtt Hvidberg, 1996].
[3] Near the margin of ice sheets (which comprises

grounding lines, transition zones, outlet glaciers and ice
streams), all forces in the force balance become equally
important, especially when basal sliding comes into play or
even dominates the horizontal flow field. Longitudinal
stretching and lateral shearing play an essential role in the
dynamics of large outlet glaciers and major Antarctic ice
streams. The governing processes near the margin involve a
reduction of the basal drag, leading to significant basal
motion (due to sliding and/or basal sediment deformation),
which increases the complexity of the problem. Furthermore,
thermomechanical control amplifies this complexity which
might even lead to channeling of ice flow [Hindmarsh,
2001].
[4] However, all these feedback processes are not clearly

understood as thermomechanical models that solve the
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Stokes problem in three dimensions are not widely devel-
oped. Present-day three-dimensional numerical ice sheet
models including full thermomechanical coupling are those
developed by Huybrechts [1990], Ritz et al. [1997], Greve
[1997], or Marshall and Clarke [1997], to name a few. All
these models have been successfully applied to simulate
major present and paleo-ice sheet behavior on the globe.
They are all based on the SIA and do not include longitu-
dinal nor transverse stress gradients in a systematic way.
The transition zone between different flow types (e.g.,
between ice sheet and ice shelf flow, or the onset regions
of ice streams) is often not properly accounted for, even
though all stresses and stress gradients are of equal impor-
tance in the force balance. Three-dimensional thermome-
chanically coupled ice sheet models including higher-order
stress gradients are sparsely seeded. Among them are the
models of Mayer [1996], Albrecht [2000] and Saito [2002],
the latter two based on the model by Blatter [1995] and
Colinge and Blatter [1998]. The reason for this sparsity
must be sought in the complexity of the model description,
the difficulty to obtain a numerically stable result, and the
high computational cost, despite the exponential increase
over time of computer power.
[5] This paper presents the mathematical and numerical

details of a new three-dimensional higher-order model (HO
model; including longitudinal and transverse stress gra-
dients) with full thermomechanical coupling. It is based
on a two-dimensional version developed earlier [Pattyn,
2000, 2002a]. Although transverse stresses and their gra-
dients are properly accounted for, some assumptions are
made, such as neglecting the variational stress term. An
approach different from that of Blatter [1995] was taken to
obtain a solution to the force balance equations. Basic
experiments with the model include the standard European
Ice Sheet Modeling Initiative (EISMINT) I benchmark
experiments [Huybrechts et al., 1996] as well the EISMINT
II experiments with thermomechanical coupling [Payne et
al., 2000]. Special attention is paid to the flow field
underneath the ice divide and a comparison is made with
a similar 3-D model according to the SIA. Both experiments
with and without (isotherm) thermomechanical coupling are
considered. Furthermore, the flow over small-scale bedrock
perturbations is considered in a diagnostic model experi-
ment. The evolution of an ice stream is investigated as well
as the ice flow over a subglacial lake, such as Lake Vostok,
Antarctica.

2. Field Equations

[6] The model approach is based on continuum thermo-
dynamic modeling, and encompasses balance laws of mass,
momentum and energy, extended with a constitutive equa-
tion. Treating ice as an incompressible fluid with constant
density, the equations for conservation of mass, momentum
and energy are written as

r " v ¼ 0; ð1Þ

r
dv

dt
¼ r " sþ rg; ð2Þ

r
d cpq
! "

dt
¼ r kirqð Þ þ !; ð3Þ

where r is the ice density, g is gravitational acceleration, v is
the velocity vector, [s] is the stress tensor, q is the ice
temperature, cp and ki are the heat capacity and thermal
conductivity of the ice, respectively, and ! is internal
frictional heating due to deformation. Values for constants
used in this paper are given in Table 1. Considering a
Cartesian coordinate system (x, y, z) with the z axis
vertically pointing upward (z = 0 at sea level), and denoting
the velocity components in either direction as u, v, and w,
the conservation of mass equation (1) can be rewritten as

@u

@x
þ @v

@y
þ @w

@z
¼ 0: ð4Þ

Neglecting acceleration terms in equation (2) and consider-
ing the gravitational acceleration only important in the
vertical direction, the linear momentum becomes

@sxx
@x

þ @sxy
@y

þ @sxz
@z

¼ 0; ð5Þ

@syx
@x

þ @syy
@y

þ @syz
@z

¼ 0; ð6Þ

@szx
@x

þ @szy
@y

þ @szz
@z

¼ rg: ð7Þ

As a complete solution to the stress equilibrium equations
(5)–(7) is quite complicated, these equations are solved in a
somewhat reduced form. The major assumption to the force
balance equations is to apply the hydrostatic approximation
in the vertical, so that equation (7) reduces to

@szz
@z

ffi rg: ð8Þ

This implies that the variational stress is neglected, i.e., the
resistance to a varying stress gradient in the direction of
motion (the so-called T term) in the vertically integrated
force budget [Budd, 1970a, 1970b, 1971]. This term is also

Table 1. Constants Used in the Numerical Model

Symbol Constant Value Units

b dependence of melting
on pressure

9.8 ( 10)8 K Pa)1

r ice density 910 kg m)3

B0 flow rate factor 2.207 Pa a1/n

C flow rate factor 0.16612 KK

G geothermal heat flux 4.2 ( 10)2 W m)2

K flow rate exponent 1.17
L specific latent heat of fusion 3.35 ( 105 J kg)1

Q activation energy for creep 7.88 ( 104 J mol)1

R universal gas constant 8.31 J mol)1 K)1

qr limit temperature in
flow rate factor

273.39 K

cp heat capacity of ice 2009 J kg)1 K)1

g gravitational constant 9.81 m s)2

ki thermal conductivity of ice 6.62 ( 10)7 J m)1 K)1 yr)1

m enhancement factor in flow law 1
n exponent in Glen’s flow law 3
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known as the vertical resistive stress [Van der Veen and
Whillans, 1989]. Numerical calculations have shown that
vertical resistive stress occurs in regions where the flow
regime changes, such as near the ice divide or near the
margin, but that this stress component is almost 2 orders of
magnitude smaller than other normal and shear stress
components [Pattyn, 2000]. Normal stress deviators are not
neglected and accounted for properly. Neglecting atmo-
spheric pressure, an expression for szz is obtained by
integrating equation (8) from the surface s to a height z in
the ice body. Since the flow relation (see below) is
unaffected by hydrostatic pressure it is convenient to work
with stress deviators. The stress deviator components are
obtained by subtracting the amplitude of the hydrostatic
pressure, s0ij ¼ sij ) 1

3 dij
P

k skk ; where dij is the Kronecker
delta. Inserting the stress deviator components and assum-
ing a zero normal stress at the surface, the horizontal force
balance equations (5) and (6) become after some algebraic
manipulation

@

@x
2s0xx þ s0yy

# $

þ
@s0xy
@y

þ @s0xz
@z

¼ rg
@s

@x
; ð9Þ

@

@y
2s0yy þ s0xx

# $

þ
@s0xy
@x

þ
@s0yz
@z

¼ rg
@s

@y
: ð10Þ

The constitutive equation governing the creep of poly-
crystalline ice and relating the deviatoric stresses to the
strain rates is taken as a Glen-type flow law with exponent
n = 3 [Paterson, 1994]

s0ij ¼ 2h_eij; h ¼ 1

2
A q*ð Þ)1=n _eþ _e0ð Þ 1)nð Þ=n; ð11Þ

where _e is the second invariant of the strain rate tensor,
defined by _e2 ¼

P

ij
1
2
_eij _eij and h is the effective viscosity.

_e0 is a small number (10)30) to make the viscosity finite.
When using a power law rheology, as is the case with Glen’s
flow law, a singularity might occur at the bed under a divide
(no shearing) when no slip boundary conditions hold. The
use of such a small number does not influence the numerical
outcome of the model. The flow law rate factor A(q*) is a
function of temperature, where q* is the ice temperature (K)
corrected for pressure melting, i.e., q* = q + bP, andwhere P is
the ice pressure (P = s0xx + s0yy ) rg (s ) z)). Following
Hooke [1981], A(q*) is parameterized as an Arrhenius
relationship:

A q*ð Þ ¼ m
1

B0

% &n

exp
3C

qr ) q*ð ÞK
) Q

Rq*

 !

: ð12Þ

Here Q is the activation energy for ice creep, R is the
universal gas constant, and m is an enhancement factor (or
tuning parameter). By definition, strain rates are related to
velocity gradients, so that

_exx _exy _exz
_eyx _eyy _eyz
_ezx _ezy _ezz

0

@

1

A ¼

@u
@x

1
2

@u
@y þ

@v
@x

# $

1
2
@u
@z

1
2

@u
@y þ

@v
@x

# $

@v
@y

1
2
@v
@z

1
2
@u
@z

1
2
@v
@z

@w
@z

0

B

B

@

1

C

C

A

: ð13Þ

Here, another assumption is made, i.e., that horizontal
gradients of the vertical velocity are small compared to the
vertical gradient of the horizontal velocity, or @w/@x! @u/@z
and @w/@y ! @v/@z. This is a common assumption in
ice sheet modeling, and is valid for most of the ice sheet
domain. Making use of the principle of mass conservation
equation (4), the effective strain rate is written as

_e ¼ _e2xx þ _e2yy þ _exx _eyy þ _e2xy þ _e2xz þ _e2yz
# $1

2

: ð14Þ

Combining the flow law equation (11) and the horizontal
stress field equations (9) and (10), and replacing the strain
rate components by velocity gradients using equations (13)
and (14), one obtains

@

@x
4h

@u

@x
þ 2h

@v

@y

% &

þ @

@y
h
@u

@y
þ h

@v

@x

% &

þ @

@z
h
@u

@z

% &

¼ rg
@s

@x
;

ð15Þ

@

@y
4h

@v

@y
þ 2h

@u

@x

% &

þ @

@x
h
@u

@y
þ h

@v

@x

% &

þ @

@z
h
@v

@z

% &

¼ rg
@s

@y
;

ð16Þ

where

h ¼ 1

2
A q*ð Þ)1=n @u

@x

% &2

þ @v

@y

% &2

þ @u

@x

@v

@y

(

þ 1

4

@u

@y
þ @v

@x

% &2 1

4

@u

@z

% &2

þ 1

4

@v

@z

% &2

þ_e20

) 1)nð Þ=2n

: ð17Þ

Expanding equations (15) and (16) and rearranging terms,
leads to

4
@h
@x

@u

@x
þ @h

@y

@u

@y
þ @h

@z

@u

@z
þ h 4

@2u

@x2
þ @2u

@y2
þ @2u

@z2

% &

¼ rg
@s

@x
) 2

@h
@x

@v

@y
) @h

@y

@v

@x
) 3h

@2v

@x@y
; ð18Þ

4
@h
@y

@v

@y
þ @h

@x

@v

@x
þ @h

@z

@v

@z
þ h 4

@2v

@y2
þ @2v

@x2
þ @2v

@z2

% &

¼ rg
@s

@y
) 2

@h
@y

@u

@x
) @h

@x

@u

@y
) 3h

@2u

@x@y
; ð19Þ

An expression for the vertical velocity w is obtained through
vertical integration of the incompressibility condition (4)
from the base of the glacier to a height z

w zð Þ ) w bð Þ ¼ )
Z

z

b

@u

@x
þ @v

@y

% &

dz: ð20Þ

Neglecting horizontal diffusion, the energy balance
equation (3) is written as

rcp
@q
@t

¼ ki
@2q
@z2

) rcp u
@q
@x

þ v
@q
@y

þ w
@q
@z

% &

þ 2_es; ð21Þ
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where s is the effective stress or the second invariant of
the stress tensor. The heat transfer is thus a result of
vertical diffusion, horizontal and vertical advection, and
internal deformational heating.
[7] Using a kinematic boundary condition at the upper and

lower surface of the ice mass (see below), the mass balance
equation (1) is integrated along the vertical in order to obtain
an expression for the change of local ice thickness in space

@H

@t
¼ )r

Z s

b

udzþMs )Mb ¼ )r "uHð Þ þMs )Mb; ð22Þ

where u is the horizontal velocity vector (m yr)1), H is the
ice thickness (m), Ms is the local accumulation-ablation
function (m yr)1 ice equivalent), and Mb is the melting
rate at the base of the glacier (m yr)1). Negative values of
Mb imply refreezing, which is not considered here. Local
ice thickness variations are thus in balance with the
divergence of the ice flux and the net input of mass at the
upper and lower surface of the ice mass.
[8] In order to verify the results of the HO model, a

‘‘shallow ice’’ model was implemented as well. According
to the SIA the horizontal velocity field is defined as [e.g.,
Huybrechts et al., 1996; Payne et al., 2000]

u zð Þ ¼ )2 rgð Þn rsj jn)1rs

Z

z

b

A q*ð Þ s) zð Þndzþ ub: ð23Þ

Note that according to the SIA the velocity is obtained
through vertical integration over the ice column and is only
a function of the local geometry of the ice mass.

3. Boundary Conditions

[9] Boundary conditions to the ice mass are zero ice
thickness (H = 0) at the edges of the model domain, a
stress-free surface and no-slip boundary condition at the base
(ub = vb = 0). In some of the experiments below a stress-free
boundary condition was applied at some grid points of the
numerical domain (free-slip condition or zero traction).
These two treatments of basal conditions represent only
the most extreme end-members of reality and are not
applicable to many natural situations (including ice streams,
where basal drag is small but not zero). However, such
conditions make it easier to compare the model with bench-
mark tests. Using extreme boundary conditions pushes the
model to its limits of application and demonstrate its
performance in terms of numerical stability under such
extreme conditions. Experiments carried out with varying
basal traction (according to a sliding law) resulted in more
realistic simulations, but did not alter the general perform-
ance of the model as shown in the experiments below.
[10] The kinematic boundary conditions at the lower ice

surface reads

w bð Þ ¼ @b

@t
þ ubrb)Mb: ð24Þ

Starting from the vertical velocity at the base (according to
equation (24)), equation (20) is numerically integrated to the
surface. The basal drag is defined as the sum of all basal

resistive forces and written as [Van der Veen and Whillans,
1989]

tbx ¼ s0xz bð Þ ) 2s0xx bð Þ þ s0yy bð Þ
# $ @b

@x
) s0xy bð Þ @b

@y
; ð25Þ

tby ¼ s0yz bð Þ ) 2s0yy bð Þ þ s0xx bð Þ
# $ @b

@y
) s0xy bð Þ @b

@x
: ð26Þ

The stress-free surface implies that [Van der Veen and
Whillans, 1989]

2s0xx sð Þ þ s0yy sð Þ
# $ @s

@x
þ s0xy

@s

@y
) sxz sð Þ ¼ 0 ð27Þ

2s0yy sð Þ þ s0xx sð Þ
# $ @s

@y
þ s0xy

@s

@x
) syz sð Þ ¼ 0: ð28Þ

Written in terms of velocity gradients, this results in

4
@u

@x
þ 2

@v

@y

% &

@s

@x
þ @u

@y
þ @v

@x

% &

@s

@y
) @u

@z
¼ 0; ð29Þ

4
@v

@y
þ 2

@u

@x

% &

@s

@y
þ @u

@y
þ @v

@x

% &

@s

@x
) @v

@z
¼ 0: ð30Þ

A similar expression can be obtained for a stress-free base,
as is the case in an ice shelf or an ice stream, simply by
replacing s in equations (29) and (30) by b. Boundary
conditions to the thermodynamic equation (21) follow from
the mean annual air temperature at the surface. At the base,
the temperature gradient is defined as

@qb
@z

¼ )Gþ tbub
ki

; ð31Þ

where G is the geothermal heat flux. However, a constant
geothermal heat flux is not strictly correct; it might be more
realistic to consider heat conduction in the bedrock, so that
G = )kr (@T/@z), where kr is the thermal conductivity in the
underlying bedrock. However, a constant value of G is a
common boundary condition in ice sheet and glacier
models, and facilitates model intercomparison according
to the EISMINT benchmarks. The basal temperature in the
ice mass is kept at the pressure melting point whenever it is
reached, and the basal melt rate Mb is calculated as

Mb ¼
1

rL
ki
@qb
@z

jc þ Gþ ubtb
% &

; ð32Þ

where L is the specific latent heat of fusion and the subscript
c stands for the temperature gradient after correction for
pressure melting.

4. Coordinate Transformation

[11] For numerical convenience a dimensionless vertical
coordinate is introduced to account for ice thickness
variations, and which is defined as z * (s ) z)/H, so that
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z = 0 at the upper surface and z = 1 at the base of the ice
mass. The coordinate transformation maps (x, y, z) !
(x0, y0, z), so that the function derivatives transform to
[Lliboutry, 1987]

@f

@x
* @f

@x0
@x0

@x
þ @f

@y0
@y0

@x
þ @f

@z
@z
@x

: ð33Þ

Similar expressions are obtained for @f /@y and @f/@z. A
further assumption is made that @x0/@x, @y0/@y ffi 1, and @x0/
@y, @x0/@z, @y0/@x, @y0/@z ffi 0, which is valid as long as
surface and bedrock gradients are not too large. The
function derivatives can thus be rewritten as

@f

@x
* @f

@x 0
þ ax

@f

@z
; ð34Þ

@2f

@x2
* @2f

@x02
þ bx

@f

@z
þ a2x

@2f

@z2
þ 2ax

@2f

@x0@z
; ð35Þ

@f

@z
* ) 1

H

@f

@z
; ð36Þ

@2f

@z2
* 1

H2

@2f

@z2
; ð37Þ

@2f

@x@z
* 1

H

1

H

@H

@x 0
@f

@z
) @2f

@x 0@z
) ax

@2f

@z2

% &

; ð38Þ

@2f

@x@y
* @2f

@x0@y0
þ cxy

@f

@z
þ ay

@2f

@x 0@z
þ ax

@2f

@y 0@z
þ axay

@2f

@z2
; ð39Þ

where

ax ¼
1

H

@s

@x 0
) z

@H

@x 0

% &

; ð40Þ

bx ¼
@ax
@x 0

þ ax
@ax
@z

¼ 1

H

@2s

@x02
) z

@2H

@x02
) 2ax

@H

@x 0

% &

; ð41Þ

cxy ¼
@ay
@x0

þ ax
@ay
@z

* @ax
@y 0

þ ay
@ax
@z

: ð42Þ

Similar expressions can be obtained for @f/@y, @2f/@y2, @2f/@y
@z, ay, and by. The incompressibility condition (4) thus
becomes

@w

@z
¼ H

@u

@x0
þ ax

@u

@z
þ @v

@y 0
þ ay

@v

@z

% &

: ð43Þ

Making use of equations (34) to (42), equation (18) then
becomes after coordinate transformation (equation (19) is
transformed accordingly):

4hx 0
@u

@x 0
þ hy 0

@u

@y 0
þ 4h

@2u

@x02

þ 4axhx 0 þ h 4bx þ by
! "

þ ayhy 0 þ
1

H2

@h
@z

% &

@u

@z

þ h
@2u

@y02
þ h 4a2x þ a2y þ

1

H2

% &

@2u

@z2
þ 8axh

@2u

@x 0@z

þ 2ayh
@2u

@y 0@z
¼ rg

@s

@x 0
) hy 0

@v

@x 0
) 2hx 0

@v

@y 0

) 2ayhx 0 þ axhy 0 þ 3cxyh
# $ @v

@z
) 3axayh

@2v

@z2

) 3h
@2v

@x 0@y 0
) 3ayh

@2v

@x 0@z
) 3axh

@2v

@y 0@z
; ð44Þ

where

hx 0 ¼
@h
@x 0

þ ax
@h
@z

: ð45Þ

[12] Similarly, the upper boundary condition (29)
becomes

4
@s

@x 0
@u

@x 0
þ @s

@y 0
@u

@y 0
þ 4ax

@s

@x 0
þ ay

@s

@y 0
þ 1

H

% &

@u

@z

¼ ) @s

@y 0
@v

@x 0
) 2

@s

@x 0
@v

@y 0
) 2ay

@s

@x 0
þ ax

@s

@y 0

% &

@v

@z
: ð46Þ

[13] Similar transformations are carried out for
equation (30), as well as for the strain rate definition (13).
Finally, the thermodynamic equation (21) is transformed as
follows:

@q
@t

þ @q
@z

axuþ ayvþ
1

H

@s

@t
) z

@H

@t
) w

% &' (

þ u
@q
@x 0

þ v
@q
@y 0

) k

H2rcp
@2q
@z2

¼ 2

rcp
_es: ð47Þ

[14] Equations (46) to (47) are solved on a regular grid in
x0 and y0, and an irregular grid in z. First and second central
difference approximations on a regular and irregular grid
are given by Pattyn [2002a]. At the surface boundaries (e.g.,
k = 1 and k = Nz), first and second derivatives are computed
using three-point upstream differences. With the exception
of the surface boundaries, central differences are used
everywhere. Using central differences leads to numerically
stable solutions as long as the ice flow is relatively slow
(e.g. ice sheet flow, ice flow at transition zones or grounding
lines). Whenever the ice moves considerably faster, i.e., for
model experiments where velocities of >1000 m yr)1 are
encountered, three-point upstream differences are applied
over the whole model domain for determining horizontal
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velocity gradients in the nonlinear viscosity term h, to yield
a stable solution.

5. Numerical Solution
5.1. Velocity Field

[15] The basic problem is the determination of the veloc-
ity field v in an ice mass. The problem is reduced to
determining the velocity in the horizontal direction u(u, v),
as the vertical velocity is obtained from the incompress-
ibility condition (4), using the kinematic boundary condi-
tion at the lower surface (equation (24)). Although the
problem is in itself a nonlinear one, equation (44) can be
treated as a pair of coupled linear equations with u (and v) as
unknowns, if h is approximated from the previous iteration.
The nonlinear part is given by the term h in above
equations, which is in itself a function of u and v through
the effective strain rate in the nonlinear flow law. The
problem is thus twofold: (1) solving a linear set of equations
using an estimate of the horizontal velocity field and
(2) iterating the nonlinear part by updating h with new
estimates of u and v.
5.1.1. Solving Sparse Linear Systems
[16] The finite difference notation of the transformed

differential equations for u and v (equation (44)) form a set
of linear equations with u(x0, y0, z) and v(x0, y0, z) as unknowns.
There are two ways to proceed. The easiest way is to solve
equation (44) for u, based on estimates for h and v. Subse-
quently, the related equation for the velocity in the transverse
direction is solved for v, based on previous estimates for h and
u. A more complex way of solving this set of equations is by
solving both equations at once for u and v. The coefficient
matrix will now be 2N( 2N instead of N( N, where N is the
number of velocity estimates (N = Nx ( Ny ( Nz). However,
for tests carried out in this study, there were no additional
benefits in terms of a more stable solution and it only
increased computational time. Therefore the two-step ap-
proach is favored. In matrix notation, the above problem is
written as

A u‘
! "

+ u‘þ1 ¼ b u‘
! "

; ð48Þ

C v‘
! "

+ v‘þ1 ¼ d v‘
! "

; ð49Þ

where ‘ is the iteration number, A and C are the coefficient
matrices (A is formed by the left-hand side of equation (44)),
and b and d are the solution vectors (b is formed by the
right-hand side of equation (44)).
[17] Starting from a zeroth-order estimate of the horizon-

tal velocity field u0, a new estimation u1 of the velocity is
obtained by solving the set of linear equations. A quick
analysis of the coefficient matrix A shows that this matrix
is highly sparse: for a horizontal grid of 61 ( 61 nodes and
41 layers in the vertical (N = 61 ( 61 ( 41 = 152561), the
matrix A contains N ( N or more than 23 billion elements,
of which at most 2 898 659 elements are strictly nonzero,
clustered around the diagonal, which is 0.012% of A.
Although A resembles a band-diagonal matrix, it is more
convenient to regard it as a sparse matrix and to solve the
linear system of equation (48) using the sparse matrix
algorithms of Press et al. [1992], which are based on the

conjugate gradient method. Although the coding of sparse
matrices is rather complicated, they are far more efficient in
terms of computation time compared to point relaxation
algorithms on the full or even parts of the matrix. A ‘‘good’’
convergence is obtained when the quantity jA.u ) bj/jbj is
less than 10)4.
5.1.2. Iterating the Nonlinear System
[18] Because of the nonlinear nature of equation (44) and

its transverse counterpart,A andC contain a parameter that is
still a function of u and v, i.e., the viscosity term h, which has
to be determined in an iterative fashion. The successive
substitution method or Picard iteration might be used for this
purpose, but is not favored as values for h vary a few orders of
magnitude over the whole ice sheet domain. This puts high
demands on the convergence scheme, and may eventually
lead to a divergence of the solution. In order to optimize the
rate of convergence a relaxation formula was used based on
the unstable manifold correction [Hindmarsh and Payne,
1996; Pattyn, 2002a]. Therefore equation (48) is written as
(a similar operation is carried out for equation (49)):

A u‘
! "

+ u* ¼ b u‘
! "

; ð50Þ

where u* is the velocity estimate obtained with the conjugate
gradient method. Consider an iterative solution of a nonlinear
equation which generates a series of approximate solutions
u‘+1, u‘,. . ., being updated by a series of correction vectors
c‘+1, c‘,. . ., such that u‘+1 = u‘ + c‘. Since the correction
vector is defined as c‘ = u* ) u‘, the Picard iteration would
simply update the velocity u‘+1 with this correction vector, so
that u‘+1 = u*. If e‘+1, e‘,. . . is taken as the error in the solution
vector u‘+1, u‘,. . ., then we can state that (e‘+1, e‘,. . .) = a
(c‘+1, c‘,. . .). Assuming that the decay is on a straight line in
the correction space, we obtain [Hindmarsh and Payne,
1996]

a ¼ k c‘)1 k
k c‘ ) c‘)1 k ; ð51Þ

and a new update of the velocity vector is obtained by

u‘þ1 ¼ au*þ 1) að Þu‘; ð52Þ

where the modified correction vector becomes c*
‘, a c‘. The

direction w between successive correction vectors is
computed as

w ¼ arccos
c‘ + c‘)1

k c‘ k +k c‘)1 k

% &

; ð53Þ

where the norms refer to the L2 norm. Whenever this angle is
close to 0 or p, the subspace iteration is applied. Using this
subspace relaxation algorithm the solution vector converges
properly.

5.2. Ice Sheet Evolution and Thermodynamics

[19] The continuity equation (22) is reformulated as a
diffusion equation for ice thickness H. Defining the diffu-
sivities as

Dx ¼ "uH
@s

@x

% &)1

; Dy ¼ "vH
@s

@y

% &)1

; ð54Þ
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the local change in ice thickness is written as

@H

@t
)r DrHð Þ ¼ r Drbð Þ þMs )Mb; ð55Þ

where D = (Dx, Dy) is the diffusion vector. Diffusivities are
calculated on a staggered grid, where Diþ1

2
is calculated as

the mean of two diffusivities defined on the neighboring grid
points i and i + 1, and corresponds to the type II diffusivity
defined by Huybrechts et al. [1996]. Such a scheme is
not mass conserving near the edge of the model domain,
but is generally more stable than the proper calculation
method between grid points (type I). Equation (55) results
in a sparse system of Nx ( Ny equations, and is solved
using the conjugate gradient method given by Press et al.
[1992].
[20] The thermodynamic equation (47) is solved implic-

itly in the vertical, giving rise to a tridiagonal system of Nz
equations and which is solved using the tridiagonal algo-
rithm of Press et al. [1992]. A two-point upstream
difference notation was employed for the horizontal, while
central differences were used in the vertical. The horizon-
tal implicit terms are found by iteration of this scheme.
Only a few iterations are necessary to obtain a good
convergence.

6. Experiments and Results

[21] Basic experiments were carried out following the
EISMINT benchmark for large-scale ice sheet models,
more specifically the ‘‘moving margin’’ benchmark of
Huybrechts et al. [1996]. The model domain is 1500 (
1500 km in the horizontal. Following the EISMINT II
experiments [Payne et al., 2000], a grid resolution of
25 km in both horizontal directions was taken, which
corresponds to a numerical grid of 61 ( 61 grid points.
The accumulation/ablation rate Ms is a function of the
distance from the ice divide, i.e.,

Ms x; yð Þ ¼ min Mmax; Sb Rel )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x) xsumð Þ2þ y) ysumð Þ2
q

% &* +

;

ð56Þ

relax where Mmax is the maximum accumulation rate and Sb
the gradient of accumulation rate change with horizontal
distance. The accumulation rate is zero at a radial distance
Rel from the summit (xsum, ysum), where x and y are distance
in km. At a distance larger than Rel from the summit, surface
mass balance becomes negative (ablation). The ice surface
temperature is also made a function of distance from the

summit, according to the benchmark experiments by Payne
et al. [2000],

qs x; yð Þ ¼ qmin þ Sq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x) xsumð Þ2þ y) ysumð Þ2
q

; ð57Þ

where qmin is the minimum surface air temperature and Sq
is the gradient of air-temperature change with distance form
the summit. A time step of 20 years was taken for all
experiments for the evolution of the continuity equation (55)
as well as for the thermodynamic part equation (47). The
model was run from zero ice thickness until a steady state
was reached (after 200,000 years of calculation). Two types
of experiments were carried out with both the HO model
(subscript 1) and the SIA model (subscript 0), similar to the
experiments described by Saito et al. [2003]. Experiment A
is the isothermal experiment. Its numerical parameters are
listed in Table 2. Experiment B is similar to experiment A,
but with thermomechanical coupling, i.e. A(q*) is determined
from equation (12). ExperimentC is a diagnostic experiment
of ice flow over bedrock undulations. Experiment D
demonstrates the development of an ice stream within an
ice sheet, by considering a frictionless zone (tb = 0) at the
base of an ice sheet. Another example of a stress-free
(lubricated) spot at the base of an ice sheet is the ice flow over
a subglacial lake, simulated in experiment E.

6.1. Isotherm Ice Sheet (Experiment A)
[22] Figure 1 displays the surface topography of the ice

sheet in steady state for A1. This ice sheet configuration is
similar to the SIA solution A0, as is expected, since the SIA
is valid for large ice sheets resting on a flat bed. The
difference between A1 and A0 amounts to 10 m (Figure 2).
A1 results in a somewhat smaller ice sheet and has a flatter
ice divide. The differences at the divide are traced back to

Table 2. List of Parameters Used for Experiment A
Parameter Value Units

ub, vb 0 m yr)1

A(q*) 10)16 Pa)1 yr)1

Mmax 0.5 m yr)1

Sb 10)2 m yr)1 km)1

Rel 450 km
qmin 238.15 K
Sq 1.67 ( 10)2 K km)1

xsum, ysum 750 km

Figure 1. Predicted surface topography of the steady state
ice sheet after 200,000 years of integration according to
experiment A1. The thick black line shows the position of
the ‘‘ice stream’’ for experiment D1.
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the effect of the inclusion of longitudinal stress gradients in
the HO model, which is the only nonzero stress component
at the symmetrical ice divide.
[23] The vertical velocity field demonstrates the major

difference between both models (Figure 3). A lower vertical
velocity under the ice divide forA1 results in a ‘‘bump’’ in the
vertical velocity field, confined to the immediate region of
the ice divide (Figure 3a). This corresponds to the so-called
‘‘Raymond bump’’ [Raymond, 1983; Schøtt Hvidberg,
1996], due to the fact that ice deep under an ice divide should
be very hard and slow to flow, so that upper layers would
tend to drape themselves over it. This anomaly in vertical
velocity is a result of differences in the horizontal velocity
field: close to the ice divide (at 25 km form the divide,
Figure 4) surface horizontal velocity is higher for A1

compared to A0. However, horizontal velocity at depth is
lower than for A0. This lower velocity is necessary to

compensate for the higher surface velocity: as the surface
mass balance is only a function of distance from the summit,
the steady state ice flux at any point should be the same for
both A0 and A1. Since ice thickness is similar in both
experiments (a difference of only ±10 m), the vertical
integrated horizontal velocity should be the same for both
models. Further away from the ice divide, the difference in
horizontal velocity between both models disappears. The
divide anomaly is also observed in the basal temperature: a
‘‘hot spot’’ arises underneath the ice divide according to A1

(Figure 5), due to the difference in vertical advection.

Figure 2. Difference in ice thickness between A1 and A0

(solid circles) and between B1 and B0 (open circles) after
200,000 years of integration in time.

Figure 3. Predicted vertical velocity: (a) near the ice divide for A1; (b) at the ice divide for A1 (solid
circles) and A0 (open circles). Note the ‘‘bump’’ in vertical velocity at the ice divide, which is not found
in A0.

Figure 4. Predicted horizontal velocity at a distance of
25 km from the ice divide for A1 (solid circles) and A0 (open
circles).
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[24] All these results, anomalies in vertical and horizontal
flow field and temperature near the ice divide, are corrob-
orated by the experiments carried out by Saito et al. [2003].
However, their model results show a slightly thicker A1 ice
sheet, while the present study shows a thinner steady state
ice sheet compared to A0. This difference is probably related
to the type of numerical scheme used for the ice sheet
evolution equation (55). The hot spot under the divide was
determined previously by Dahl-Jensen [1989].

6.2. Thermomechanical Coupling (Experiment B)
[25] Results of the thermomechanical coupling (B) are

similar to the results of A, i.e., an anomaly in vertical
velocity at the divide and a hot spot in the basal temperature

profile also occur in B1. The divide anomaly between both
models is more amplified and further generalized within the
central part of the ice sheet, as the temperature (and the hot
spot) influences the velocity field in a direct way. The
difference in ice thickness between B1 and B0 is almost
40 m at the divide, and gradually decreases from approx-
imately 300 km from the divide (Figure 2). The smaller ice
sheet for B1 is a direct result of the hot spot at the divide,
which leads to softer ice, a higher deformational velocity
compared to B0 and thus a smaller ice sheet. The difference
between both models is therefore most pronounced in the
interior part of the ice sheet.
[26] The stress field near the ice divide is shown in

Figure 6. Shear stress is slightly higher than driving stress,

Figure 5. Predicted basal temperature qb for A1 (solid circles) and A0 (open circles). Note the ‘‘hot
spot’’ under the ice divide.

Figure 6. (a) Predicted longitudinal stress gradient @s0xx/@x (Pa m)1); (b) shear stress sxz (z) (thick solid
line), driving stress ztd (thin solid line) and longitudinal stress deviator s0xx (z) (circles) at a distance of
25 km from the ice divide according to B1.
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which means that the longitudinal stress gradient must be
negative, although the longitudinal stress is positive as
stretching prevails near the ice divide (Figure 6b). The
negative stress gradient is a result of the relatively flat ice
divide in B1 and is only present at depth at a horizontal
distance of 25 to 100 km away from the ice divide. Further
away from the ice divide (-100 km), the longitudinal stress
gradient becomes positive (Figure 6). The overall results of

B1 are in agreement with the results by Saito et al. [2003],
albeit that some minor differences remain, probably attrib-
uted to differences in numerical schemes.

6.3. Ice Flow Over an Undulating Bedrock
(Experiment C)
[27] In this diagnostic experiment a similar grid of 61 (

61 grid points was considered, but the horizontal grid sizewas

Figure 7. Horizontal surface velocity anomaly#us = (us (C1) ) us(C0))/us (C1) (100 in the vicinity of
the ice divide (x, y = 150,150). Contour lines show basal topography (m).

Figure 8. Evolution of an ice stream (D1) starting from the steady state configuration of A1. Predicted
surface topography at t = 0 (solid line), at t = 50 year (dashed line) and at t = 100 year (dotted line) is
displayed, after invoking a stress-free basal condition tb = 0 along y = 750 km and between x = 350 km
from the divide and the edge of the model domain. Predicted surface velocity at t = 50 year is given in
solid circles.
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increased to 5 km, thus covering a surface of 300 ( 300 km.
The surface of the small ice cap is taken from the steady
state outcome of experiment A1. The bedrock is determined
from a sine wave function with a double amplitude of
1000 m and a wavelength of 37.5 km. The ice was made
stiffer by setting A(q*) equal to 10)18 Pa)1 yr)1. In this way
a high-resolution experiment is carried out in a region of
slow ice flow over a highly undulated bedrock. The model
geometry was kept constant.
[28] Since the velocity field for C0 (SIA) is locally

determined, it will be solely a function of the local ice
thickness and surface gradient (see equation (23)). This
implies that the velocity will be high for large ice thickness
and/or high surface slopes. The C1 horizontal velocity field
is a smoothed version of C0, i.e., high velocities in C0 attain
lower values in C1, and low velocities in C0 become higher
in C1. These anomalies are associated with the bedrock
topography (Figure 7). The maximum (minimum) velocity
in C1 still coincides with the maximum (minimum) velocity
in C0, but longitudinal pushes and pulls, due to the bedrock
perturbation, influence the velocity field in a global way and
not locally as is the case with C0. Such smoothing of
velocity and stress fields is typical for higher-order models.
Similar results were obtained with other higher-order mod-
els [Blatter et al., 1998; Pattyn, 2002b].

6.4. Ice Stream Evolution (Experiment D)
[29] Starting from the steady state ice sheet conditions

and temperature field from experiment A1, an ice stream
was generated by adjusting the basal boundary condition to
a stress-free surface (equations (29) and (30)) for the
following coordinates: i = 31 and j - 45. The ice stream
thus starts at a distance of 350 km from the ice divide and
stretches to the edge of the model domain (Figure 1). The
width of the ice stream is one grid point, or 25 km.
[30] Figure 8 shows the evolution of the ice stream for

the first 100 year after invoking the stress-free boundary
conditions. Rather rapidly the ice velocity increases with
almost 2 orders of magnitude, to reach maximum values of
2 500 km yr)1, a typical value for an Antarctic ice stream.
Also, the surface topography changes dramatically to
become almost flat over the whole length of the ice
stream. Similar characteristics of ice stream behavior are
shown in early flow line models of Van der Veen [1987].
The major difference here is that both longitudinal stresses
and transverse shear stresses are properly accounted and
solved for in three dimensions.
[31] The model result shows a concave inflection point at

the onset of the ice stream, similar to the transition between
an ice sheet and an ice shelf (Figure 8). It should be noted
here that the basal boundary condition applied to our ice
stream is similar to that of an ice shelf. Associated with the
sudden increase in mass flux is a forward migration of the
edge of the ice sheet, forming a frontal ‘‘bulge’’ (Figures 8 and
9a). Basal shear stress is zero along the whole length of
the ice stream (Figure 9b). As a result, the surface velocity
equals the basal velocity for the whole length of the ice
stream (not shown). The longitudinal stress deviator reaches
a maximum (extension flow) at the onset of the ice stream
and a minimum (compressive flow) at the edge of the ice
sheet (Figure 9c), but remains fairly low (s0xx . 0) along the
whole length of the ice stream.

[32] Transverse shear stress shows a pattern that is related
to the existence of shear margins and is characterized by
high positive values at the southern shear margin of the ice
stream and high negative values at the northern shear
margin. This results in an important lateral drag over the
central part of the ice stream (not shown), which will, due to
the absence of the basal shear as well as longitudinal stress
gradients, balance the driving stress in the central part of the
ice stream. The shear margins are a consequence of the
rapid ice flow embedded in the slow moving ice sheet. Both
patterns of longitudinal and transverse shear stress are
typical features for existing Antarctic ice streams, such as
the Siple Coast ice streams [Whillans and Van der Veen,
1997] albeit that the magnitude of the marginal shear stress
(20–80 kPa in Figure 9) is relatively small compared to the

Figure 9. Experiment D1. (a) Predicted surface topogra-
phy (m), (b) predicted basal shear stress sxz (b) (kPa),
(c) predicted surface longitudinal stress deviators0xx (s) (kPa),
(d) predicted surface transverse shear stress sxy (s) (kPa) at
t = 50 year. The ice stream is situated at y = 750 km and
stretches between x = 1100 km and the edge of the model
domain x = 1500 km.
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magnitude of marginal shear stresses calculated for modern
Antarctic ice streams.

6.5. Ice Flow Over a Subglacial Lake (Experiment E)
[33] Radio echo sounding in East Antarctica has revealed

the existence of numerous subglacial lakes. The largest one
is Lake Vostok (14,000 km2), near the homonymous Rus-
sian Station and drilling site. Lake Vostok is associated with

a prominent morphological surface feature within the Ant-
arctic ice sheet, as the ice sheet surface is relatively flat and
featureless, consistent with the surface of an ice shelf. Ice
flow over a large subglacial lake should be analogous to the
flow of an ice shelf, where the lack of basal shear stress
prevents deformation of internal layers [Siegert et al.,
2000]. Other distinct features of the ice flow over Lake
Vostok are revealed by the surface velocity field determined

Figure 10. Experiment E1. (a) Predicted surface velocity (m yr)1), (b) predicted surface slope ((103),
(c) predicted surface longitudinal stress deviator s0xx (s) (kPa), (d) predicted surface longitudinal stress
deviator s0yy (s) (kPa), (e) predicted surface transverse shear stress sxy (s) (kPa), (f ) predicted basal
shear stress (sxz2 (b) + syz2 (b))1/2. The ice divide is situated at (x, y) = (750, 750) km. The lake is situated
at (x, y) = (875, 875) km and is 50 km long in x and 25 km wide in y.
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from radar interferometry [Kwok et al., 2000]: (1) an
increase in ice velocity over the lake (extension flow)
followed by a decrease in ice speed passed the lake
(compression flow), and (2) a slight turning of the ice flow
over the lake, most visible over the central part of Lake
Vostok where surface slopes are small. Model simulations
of the ice flow at Lake Vostok demands the use of a HO
model. Mayer and Siegert [2000] investigated the ice flow
along a longitudinal transect with a 2-D HO flow line
model. Their results demonstrate that ice dynamics across
the inflow grounding line are similar to an ice sheet/ice shelf
transition.
[34] Experiment E1 thus consists of simulating the ice

flow over a subglacial lake with the 3-D HO model by
considering a stress-free basal surface (lubricated spot)
stretching over two grid points and situated approximately
100 km from the ice divide. The orientation of the so-called
subglacial lake with respect to the major ice flow is similar
to the situation of Lake Vostok. The initial conditions are
given by experiment A1 and the ice sheet was allowed to
react to the change in basal boundary conditions until the
ice sheet surface reached a steady state. Results of E1

indicate that the surface velocity over the subglacial lake
increases to reach a maximum near the center of the lake,
and decreases again at the downstream edge of the lake
(Figure 10a). Moreover, the ice sheet flow field seems only
locally influenced by the presence of the lake, as the
velocities downstream from the lake are similar to those if
no lake were present (Figure 11). These findings are
corroborated by Siegert and Ridley [1998] and by the
measurements of Kwok et al. [2000]. Also the turning of
the ice flow is visible in experiment E1, as the surface slope
of the lake depends on the orientation of the lake toward the
surrounding ice flow. The maximum slope is therefore
found in the longitudinal direction of the lake.
[35] A flattening of the surface topography above the lake

is observed in Figures 10b and 11, conform observations in
Antarctica [Siegert et al., 2000], which is associated with a

low basal shear stress (Figure 10f ). The zone of influence of
other stress components (longitudinal and transverse
stresses, Figures 10c, 10d, and 10e) is much larger than
the effective area occupied by the lake. These stress
components show a distinct ‘‘butterfly’’ pattern that extents
for more than 100 km in either horizontal direction.

7. Discussion and Conclusions

[36] The numerical model developed and presented here
is a three dimensional thermomechanical ice sheet model
including higher-order (HO) stress gradients. Similar HO
models exist, most of them solving for the stress field, using
the method proposed by Van der Veen and Whillans [1989]
and Van der Veen [1989]. The uniqueness of this model lies
in the fact that it solves the force balance equations in their
‘derivative’ form, by formulating them in terms of velocity
gradients (using Glen’s flow law) and solving second
derivatives analytically instead of numerically. The result-
ing equations look rather cumbersome, but assure a high
numerical stability. Stability of the numerical scheme can
be further improved by adapting upstream differences for
velocity gradients in the effective viscosity.
[37] Basic experiments with the model include the stan-

dard EISMINT I benchmark experiments [Huybrechts et
al., 1996] as well the EISMINT II experiments with
thermomechanical coupling [Payne et al., 2000]. A com-
parison is made with a similar 3-D model according to the
SIA, and both isothermal and thermomechanical experi-
ments are considered. Results are in agreement with results
from Saito et al. [2003], and the solution under the ice
divide (Raymond bump and hot spot) is confirmed by
earlier flow line studies [Raymond, 1983; Dahl-Jensen,
1989]. Model experiments by Schøtt Hvidberg [1996] were
carried out at much higher detail and show the rise of
isochrons (due to reduced vertical velocity with a HO
model) 1 to 2 ice thicknesses from the ice divide. The
model resolution of the present study (25 km) does not

Figure 11. Evolution of a subglacial lake in the central region of the ice sheet (E1) starting from the
steady state configuration of A1. Predicted surface topography (solid circles) without lake (dashed line)
and over a lake (solid line). Surface velocities (open circles) without (dashed line) and over a lake (solid
line). The lake is situated at (x, y) = (875, 875) km and is 50 km long in x and 25 km wide in y.
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allow to identify the span of the Raymond bump, as the grid
point closest to the divide is at least 8 ice thicknesses away.
However, the solution right under the ice divide remains
correct, irrespective of horizontal model resolution. Similar
remarks can be made for the rising basal temperatures under
the divide, associated with the reduced vertical advection.
[38] With the exception of the ice-flow-over-a-bumpy-

bed experiment, all model runs are prognostic, which keeps
an internal consistency between the conservation equations.
Two examples of prognostic model runs that can only be
solved with a HO model are the ice stream development
and the ice flow over a subglacial lake, both simulated by
considering locally a stress-free basal surface. Changing
from a basal stress dominated regime to a basal stress-free
regime is similar to the ice sheet/ice shelf/grounding line
problem, which remains a hot topic amidst the ice sheet
modeling community. For instance, Marshall and Clarke
[1997] solved this problem by treating the ice sheet area as
a binary mixture of sheet ice (shallow ice approximation)
and stream ice (vertically integrated force balance equa-
tions), which reduces the model complexity. In the present
model a proper treatment of the transition zone is given, as
the ice mass is considered as one single continuum. In
reality, the reduction of basal drag in an ice stream is a
complex process involving basal hydrology, sediment de-
formation, basal melting and sliding, which lies beyond the
scope of this paper. The simple basal boundary switch
seems sufficient to explain major processes that are ob-
served in real ice masses. For simulations of existing
glaciers and ice sheets, more complex basal boundary
conditions will become necessary.
[39] A major deficiency of the model runs remains the

low grid resolution used (with the exception of the ice-flow-
over-a-bumpy-bed experiment). For instance, the model
lake occupies only two grid points, which is insufficient
to draw solid conclusions. Nevertheless, the simulation is
successful, since major characteristics of the ice flow over a
subglacial lake, such as Lake Vostok, are represented. The
situation at Lake Vostok is also slightly different from the
model lake over a flat bedrock, as Lake Vostok lies in a
subglacial trench and the bedrock slope near the grounding
line dips toward the lake. Since major components of the
flow field could be simulated, this indicates that the stress-
free basal boundary condition is a decisive factor in the ice
dynamics over a subglacial lake, and not the geometric
configuration. The fact that the ‘real’ lake lies in a sub-
glacial trench overlain by thick ice adds to the insulation
effect and might be responsible for high basal temperatures,
hence ensuring the presence of a subglacial lake.
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